1
|
Wang B, Wang K, Zhao X, Fang Z, Zhao Y, Fang Y, Xiao Y, Yao D. Development and construction of a novel Bacillus subtilis autoinducible extracellular expression system based on a LuxI/R device. Microb Cell Fact 2025; 24:86. [PMID: 40251612 PMCID: PMC12008979 DOI: 10.1186/s12934-025-02719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Microbial chassis expression systems are valuable tools in biotechnology and synthetic biology, and Bacillus subtilis is an important industrial microbial chassis. Quorum sensing (QS)-based dynamic regulation is widely used to automatically activate gene expression in response to changes in cell density. The main bottleneck currently limiting the use of exogenous QS systems in B. subtilis for efficient autoinducible extracellular expression of recombinant proteins is their low level of autoinducible expression. RESULTS A novel B. subtilis autoinducible extracellular expression system based on the LuxI/R-type QS system (lux system) of Vibrio fischeri was developed in which the autoinducible expression of the lux system was enhanced by engineering the sensing module and response module promoters. By engineering the sensing module promoter SPluxI core region (- 10 and - 35 elements) and critical region (UP and spacer elements), and the response module promoter RPluxIR6 core region and lux box copy number in the original LuxI/R device (S0-R0), the high-expression Sc-R2 construct was obtained. After shake flask and 3-L fermenter fermentation, the extracellular amylase activity obtained with Sc-R2 was 2.7- and 3.1-fold greater, respectively, than that obtained with the well-characterized promoter Pveg. Sc-R2 achieved 2.6-fold greater extracellular activity than S0-R0 when either levansucrase or invertase was used as a reporter protein. Overall, the B. subtilis autoinducible extracellular expression system developed in this study showed good generalizability and application potential for industrial-scale fermentation. CONCLUSIONS To our knowledge, this is the first study to report enhanced autoinducible expression of the lux system in B. subtilis by engineering the sensing module promoter SPluxI sequence and the lux box copy number of the response module promoter RPluxIR6. This study further expands the application potential of the B. subtilis expression system in synthetic biology.
Collapse
Affiliation(s)
- Bin Wang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Keyi Wang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Xiuyue Zhao
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Yanyan Zhao
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Yulu Fang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, China.
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China.
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China.
| | - Dongbang Yao
- School of Life Sciences, Anhui University, Hefei, 230601, China.
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China.
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China.
| |
Collapse
|
2
|
Hao W, Yang S, Sheng Y, Ye C, Han L, Zhou Z, Cui W. Efficient expression of recombinant proteins in Bacillus subtilis using a rewired gene circuit of quorum sensing. Biotechnol Prog 2025:e70007. [PMID: 39968680 DOI: 10.1002/btpr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/15/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
Bacillus subtilis is a favored chassis for high productivity of several high value-added product in synthetic biology. Efficient production of recombinant proteins is critical but challenging using this chassis because these expression systems in use, such as constitutive and inducible expression systems, demand for coordination of cell growth with production and addition of chemical inducers. These systems compete for intracellular resources with the host, eventually resulting in dysfunction of cell survival. To overcome the problem, in this study, LuxRI quorum sensing (QS) system from Aliivibrio fischeri was functionally reconstituted in B. subtilis for achieving coordinated protein overproduction with cell growth in a cell-density-dependent manner. Furthermore, the output-controlling promoter, PluxI, was engineered through two rounds of evolution, by which we identified four mutants, P22, P47, P56, and P58 that exhibited elevated activity compared to the original PluxI. By incorporating a strong terminator (TB5) downstream of the target gene further enhanced expression level. The expression level of this system surpasses commonly used promoter-based systems in B. subtilis like P43 and PylbP. The LuxRI QS system proves to be a potent platform for recombinant protein overproduction in B. subtilis.
Collapse
Affiliation(s)
- Wenliang Hao
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shihao Yang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yuou Sheng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Chengfeng Ye
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Han Y, Wang B, Agnolin A, Dugar G, van der Kloet F, Sauer C, Costea PI, Felle MF, Appelbaum M, Hamoen LW. Ribosome pausing in amylase producing Bacillus subtilis during long fermentation. Microb Cell Fact 2025; 24:31. [PMID: 39865260 PMCID: PMC11770953 DOI: 10.1186/s12934-025-02659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Ribosome pausing slows down translation and can affect protein synthesis. Improving translation efficiency can therefore be of commercial value. In this study, we investigated whether ribosome pausing occurs during production of the α-amylase AmyM by the industrial production organism Bacillus subtilis under repeated batch fermentation conditions. RESULTS We began by assessing our ribosome profiling procedure using the antibiotic mupirocin that blocks translation at isoleucine codons. After achieving single codon resolution for ribosome pausing, we determined the genome wide ribosome pausing sites for B. subtilis at 16 h and 64 h growth under batch fermentation. For the highly expressed α-amylase gene amyM several strong ribosome pausing sites were detected, which remained during the long fermentation despite changes in nutrient availability. These pause sites were neither related to proline or rare codons, nor to secondary protein structures. When surveying the genome, an interesting finding was the presence of strong ribosome pausing sites in several toxins genes. These potential ribosome stall sites may prevent inadvertent activity in the cytosol by means of delayed translation. CONCLUSIONS Expression of the α-amylase gene amyM in B. subtilis is accompanied by several ribosome pausing events. Since these sites can neither be predicted based on codon specificity nor on secondary protein structures, we speculate that secondary mRNA structures are responsible for these translation pausing sites. The detailed information of ribosome pausing sites in amyM provide novel information that can be used in future codon optimization studies aimed at improving the production of this amylase by B. subtilis.
Collapse
Affiliation(s)
- Yaozu Han
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Biwen Wang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Alberto Agnolin
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Gaurav Dugar
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Frans van der Kloet
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Christopher Sauer
- White Biotechnology Research, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein, 67056, Germany
| | - Paul Igor Costea
- White Biotechnology Research, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein, 67056, Germany
| | - Max Fabian Felle
- White Biotechnology Research, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein, 67056, Germany
| | - Mathis Appelbaum
- White Biotechnology Research, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein, 67056, Germany
| | - Leendert W Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.
| |
Collapse
|
4
|
Yao ZY, Yu MJ, Li QQ, Gong JS, Zhang P, Jiang JY, Su C, Xu G, Jia BY, Xu ZH, Shi JS. Unlocking Green Biomanufacturing Potential: Superior Heterologous Gene Expression with a T7 Integration Overexpression System in Bacillus subtilis. ACS Synth Biol 2024. [PMID: 39718905 DOI: 10.1021/acssynbio.4c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Industrial biotechnology employs cells for producing valuable products and serving as biocatalysts sustainably, addressing resource, energy, and environmental issues. Bacillus subtilis is a preferred host for creating microbial chassis cells and producing industrial enzymes and functional nutritional products. In this study, a dual-module T7 integration expression system in B. subtilis was established. The first module, driven by the T7 RNA polymerase, was integrated into the genome via the CRISPR/Cas9 system. Another module responsible for expression control was systematically integrated into 28 discrete chromosomal loci and the impact of different genomic positions on gene expression was explored, resulting in a high-intensity integrated expression system. Furthermore, by modifying the LacI repressor factor for biological regulation, we achieved a strong expression intensity without the inducer addition. This system was successfully used to express phospholipase D and hyaluronic acid lyase, resulting in extracellular enzyme activities of 339.12 U/mL and 2.60 × 104 U/mL, respectively. Additionally, by exclusively targeting the HA gene cluster for expression, a production yield of 6.86 g/L was achieved on a 5 L fermentation scale. The system eliminates the use of antibiotics and inducers, offering a controllable, efficient, and promising gene expression regulation tool in B. subtilis, enhancing its potential for biomanufacturing applications.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Min-Jun Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qu-Quan Li
- Shandong Engineering Laboratory of Sodium Hyaluronate and Its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Peng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Guoqiang Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Bing-Yi Jia
- Shandong Engineering Laboratory of Sodium Hyaluronate and Its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| |
Collapse
|
5
|
Zhu Z, Ding X, Rang J, Xia L. Application and research progress of ARTP mutagenesis in actinomycetes breeding. Gene 2024; 929:148837. [PMID: 39127415 DOI: 10.1016/j.gene.2024.148837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Atmospheric and room temperature plasma (ARTP) is an emerging artificial mutagenesis breeding technology. In comparison to traditional physical and chemical methods, ARTP technology can induce DNA damage more effectively and obtain mutation strains with stable heredity more easily after screening. It possesses advantages such as simplicity, safety, non-toxicity, and cost-effectiveness, showing high application value in microbial breeding. This article focuses on ARTP mutagenesis breeding of actinomycetes, specifically highlighting the application of ARTP mutagenesis technology in improving the performance of strains and enhancing the biosynthetic capabilities of actinomycetes. We analyzed the advantages and challenges of ARTP technology in actinomycetes breeding and summarized the common features, specific mutation sites and metabolic pathways of ARTP mutagenic strains, which could give guidance for genetic modification. It suggested that the future research work should focus on the establishment of high throughput rapid screening methods and integrate transcriptomics, proteomics, metabonomics and other omics to delve into the genetic regulations and synthetic mechanisms of the bioactive substances in ARTP mutated actinomycetes. This article aims to provide new perspectives for actinomycetes breeding through the establishment and application of ARTP mutagenesis technology, thereby promoting source innovation and the sustainable industrial development of actinomycetes.
Collapse
Affiliation(s)
- Zirong Zhu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jie Rang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
6
|
Zhu Z, Chen W, Cao L, Xia Z, Rang J, Hu S, Xia L. ARTP/NTG Compound Mutagenesis Improved the Spinosad Production and the Insecticidal Virulence of Saccharopolyspora Spinosa. Int J Mol Sci 2024; 25:12308. [PMID: 39596372 PMCID: PMC11594378 DOI: 10.3390/ijms252212308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Spinosad is an efficient and broad-spectrum environmentally friendly biopesticide, but its low yield in wild-type Saccharopolyspora spinosa limits its further application. ARTP/NTG compound mutagenesis was used in this study to improve the spinosad titer of S. spinosa and obtain a high-yield mutant-NT24. Compared with the wild-type strain, the fermentation cycle of NT24 was shortened by 2 days and its maximum titer of spinosad reached 858.3 ± 27.7 mg/L, which is 5.12 times more than for the same-period titer of the wild-type strain. In addition, RT-qPCR, resequencing, and targeted metabolomics showed that the upregulation of the key differential genes accD6, fadD, sdhB, oadA, and gntZ caused increased metabolic flux in the tricarboxylic acid cycle and pentose phosphate pathway, suggesting that the accumulation of pyruvate and short-chain acyl-CoA was the primary cause of spinosad accumulation in NT24. This study demonstrates the effectiveness of ARTP mutagenesis in S. spinosa, and provides new insights for the mechanism of spinosad biosynthesis and metabolic engineering in S. spinosa.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China; (Z.Z.); (W.C.); (L.C.); (Z.X.); (J.R.); (S.H.)
| |
Collapse
|
7
|
Xiao R, Du C, Li H, Zhang M, Wu Y, Xing L, Bu K, Wang P. Heterologous expression and characterization of an unsaturated glucuronyl hydrolase from Alteromonas sp. A321. Int J Biol Macromol 2024; 282:137012. [PMID: 39486732 DOI: 10.1016/j.ijbiomac.2024.137012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Strong promoters and stable mRNAs are essential for the overproduction of heterologous proteins in Bacillus subtilis. To improve the strength of natural promoters and ensure robust protein output, promoter and genetic insulator engineering have been used. A series of plasmids containing single and dual promoters and genetic insulators to express alt3796 were engineered, which encoded an unsaturated glucuronyl hydrolase (UGL). As a first step, we screened the host and deleted the signal peptide (SPALT) of alt3796, successfully expressed secreted ALT3796 from B. subtilis WB800. Subsequently, to improve expression, we screened the dual promoter PHag-spoVG from a collection of 22 promoters, which yielded higher enzymatic activity. Finally, using a recombinant strain carrying a plasmid with the PHag-spoVG dual promoter and a genetic insulator, we obtained 40.9 U/mL of activity. Purified recombinant ALT3796 exhibited good stability and specifically degraded ulvan. In conclusion, a system for the heterologous expression of ALT3796 was constructed, and the obtained protein exhibited favorable properties, suggesting its potential for preparing novel ulvan oligosaccharides.
Collapse
Affiliation(s)
- Rui Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chunying Du
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Huawei Li
- School of Nursing, Qingdao University, Qingdao 266011, China
| | - Man Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yinglu Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Laigui Xing
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Kaixuan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
8
|
Yuan F, Li G, Li Z, Li M, Liu X, Yang H, Yu X. Efficient biosynthesis of transglutaminase in Streptomyces mobaraensis via systematic engineering strategies. Curr Res Food Sci 2024; 8:100756. [PMID: 38736907 PMCID: PMC11087917 DOI: 10.1016/j.crfs.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Transglutaminases (TGases) have been widely used in food, pharmaceutical, biotechnology, and other industries because of their ability to catalyze deamidation, acyl transfer, and crosslinking reactions between Ƴ-carboxamide groups of peptides or protein-bound glutamine and the Ɛ-amino group of lysine. In this study, we demonstrated an efficient systematic engineering strategy to enhance the synthesis of TGase in a recombinant Streptomyces mobaraensis smL2020 strain in a 1000-L fermentor. Briefly, the enzymatic properties of the TGase TGL2020 from S. mobaraensis smL2020 and TGase TGLD from S. mobaraensis smLD were compared to obtain the TGase TGLD with perfected characteristics for heterologous expression in a recombinant S. mobaraensis smL2020ΔTG without the gene tgL 2020. Through multiple engineering strategies, including promoter engineering, optimizing the signal peptides and recombination sites, and increasing copies of the expression cassettes, the final TGLD activity in the recombinant S. mobaraensis smL2020ΔTG: (PL2020-spL2020-protgLD-tgLD)2 (tgL2020and BT1) reached 56.43 U/mL and 63.18 U/mL in shake flask and 1000-L fermentor, respectively, which was the highest reported to date. With the improvement of expression level, the application scope of TGLD in the food industry will continue to expand. Moreover, the genetic stability of the recombinant strain maintained at more than 20 generations. These findings proved the feasibility of multiple systematic engineering strategies in synthetic biology and provided an emerging solution to improve biosynthesis of industrial enzymes.
Collapse
Affiliation(s)
- Fang Yuan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guoying Li
- Jiangsu Yiming Biological Technology Co., Ltd., Taixing, 225400, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingming Li
- Jiangsu Yiming Biological Technology Co., Ltd., Taixing, 225400, China
| | - Xiaobo Liu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, Jiangsu, 210094, China
| | - Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaobin Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
9
|
Squire S, Sebghati S, Hammond MC. Cytoplasmic Accumulation and Permeability of Antibiotics in Gram Positive and Gram Negative Bacteria Visualized in Real-Time via a Fluorogenic Tagging Strategy. ACS Chem Biol 2024; 19:3-8. [PMID: 38096425 PMCID: PMC10805102 DOI: 10.1021/acschembio.3c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
In this study, we describe the first real-time live cell assay for compound accumulation and permeability in both Gram positive and Gram negative bacteria. The assay utilizes a novel fluorogenic tagging strategy that permits direct visualization of compound accumulation dynamics in the cytoplasm of live cells, unobscured by washing or other processing steps. Quantitative differences could be reproducibly measured by flow cytometry at compound concentrations below the limit of detection for MS-based approaches. We establish the fluorogenic assay in E. coli and B. subtilis and compare the intracellular accumulation of two antibiotics, ciprofloxacin and ampicillin, with related pharmacophores in these bacteria.
Collapse
Affiliation(s)
- Scott
O. Squire
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Sepehr Sebghati
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Ming C. Hammond
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
10
|
Zeng M, Sarker B, Howitz N, Shah I, Andrews LB. Synthetic Homoserine Lactone Sensors for Gram-Positive Bacillus subtilis Using LuxR-Type Regulators. ACS Synth Biol 2024; 13:282-299. [PMID: 38079538 PMCID: PMC10805106 DOI: 10.1021/acssynbio.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 01/23/2024]
Abstract
A universal biochemical signal for bacterial cell-cell communication could facilitate programming dynamic responses in diverse bacterial consortia. However, the classical quorum sensing paradigm is that Gram-negative and Gram-positive bacteria generally communicate via homoserine lactones (HSLs) or oligopeptide molecular signals, respectively, to elicit population responses. Here, we create synthetic HSL sensors for Gram-positive Bacillus subtilis 168 using allosteric LuxR-type regulators (RpaR, LuxR, RhlR, and CinR) and synthetic promoters. Promoters were combinatorially designed from different sequence elements (-35, -16, -10, and transcriptional start regions). We quantified the effects of these combinatorial promoters on sensor activity and determined how regulator expression affects its activation, achieving up to 293-fold activation. Using the statistical design of experiments, we identified significant effects of promoter regions and pairwise interactions on sensor activity, which helped to understand the sequence-function relationships for synthetic promoter design. We present the first known set of functional HSL sensors (≥20-fold dynamic range) in B. subtilis for four different HSL chemical signals: p-coumaroyl-HSL, 3-oxohexanoyl-HSL, n-butyryl-HSL, and n-(3-hydroxytetradecanoyl)-HSL. This set of synthetic HSL sensors for a Gram-positive bacterium can pave the way for designable interspecies communication within microbial consortia.
Collapse
Affiliation(s)
- Min Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Biprodev Sarker
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nathaniel Howitz
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Ishita Shah
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
Wu Y, Li Y, Zhang Y, Liu Y, Li J, Du G, Lv X, Liu L. Efficient Protein Expression and Biosynthetic Gene Cluster Regulation in Bacillus subtilis Driven by a T7-BOOST System. ACS Synth Biol 2023; 12:3328-3339. [PMID: 37885173 DOI: 10.1021/acssynbio.3c00331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Bacillus subtilis is a generally recognized as safe microorganism that is widely used for protein expression and chemical production, but has a limited number of genetic regulatory components compared with the Gram-negative model microorganism Escherichia coli. In this study, a two-module plug-and-play T7-based optimized output strategy for transcription (T7-BOOST) systems with low leakage expression and a wide dynamic range was constructed based on the inducible promoters Phy-spank and PxylA. The first T7 RNA polymerase-driven module was seamlessly integrated into the genome based on the CRISPR/Cpf1 system, while the second expression control module was introduced into low, medium, and high copy plasmids for characterization. As a proof of concept, the T7-BOOST systems were successfully employed for whole-cell catalysis production of γ-aminobutyric acid (109.8 g/L with a 98.0% conversion rate), expression of human αS1 casein and human lactoferrin, and regulation of exogenous lycopene biosynthetic gene cluster and endogenous riboflavin biosynthetic gene cluster. Overall, the T7-BOOST system serves as a stringent, controllable, and effective tool for regulating gene expression in B. subtilis.
Collapse
Affiliation(s)
- Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yuting Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| |
Collapse
|
12
|
Ma Y, Guo N, Li X, Jiang Z, Zhang D, Guo L, Wang Y. Development of an Efficient Recombinant Protein Expression System in Clostridium saccharoperbutylacetonicum Based on the Bacteriophage T7 System. ACS Synth Biol 2023; 12:3092-3105. [PMID: 37712503 DOI: 10.1021/acssynbio.3c00439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Recombinant proteins have broad applications. However, there is a lack of a recombinant protein expression system specifically for large-scale production in anaerobic hosts. Here, we developed a powerful and stringently inducible protein expression system based on the bacteriophage T7 system in the strictly anaerobic solvent-producing Clostridium saccharoperbutylacetonicum. With the integration of a codon optimized T7 RNA polymerase into the chromosome, a single plasmid carrying a T7 promoter could efficiently drive high-level expression of the target gene in an orthogonal manner, which was tightly regulated by a lactose-inducible system. Furthermore, by deleting beta-galactosidase genes involved in lactose metabolism, the transcriptional strength was further improved. In the ultimately optimized strain TM-07, the transcriptional strength of the T7 promoter showed 9.5-fold increase compared to the endogenous strong promoter Pthl. The heterologous NADP+-dependent 3-hydroxybutyryl-CoA dehydrogenase (Hbd1) from C. kluyveri was expressed in TM-07, and the yield of the recombinant protein reached 30.4-42.4% of the total cellular protein, surpassing the strong protein expression systems in other Gram-positive bacteria. The relative activity of Hbd1 in the crude enzyme was 198.0 U/mg, which was 8.3-fold higher than the natural activity in C. kluyveri. The relative activity of the purified enzyme reached 467.4 U/mg. To the best of our knowledge, this study represents the first application of the T7 expression system in Clostridium species, and this optimized expression system holds great potential for large-scale endotoxin-free recombinant protein production under strictly anaerobic conditions. This development paves the way for significant advancements in biotechnology and opens up new avenues for industrial applications.
Collapse
Affiliation(s)
- Yuechao Ma
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama 36849, United States
- Center for Bioenergy and Bioproducts, Auburn University, Auburn, Alabama 36849, United States
| | - Na Guo
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama 36849, United States
- Center for Bioenergy and Bioproducts, Auburn University, Auburn, Alabama 36849, United States
| | - Xiao Li
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama 36849, United States
| | - Zhihua Jiang
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Dunhua Zhang
- Aquatic Animal Health Research Unit, Agricultural Research Service, USDA, Auburn, Alabama 36832, United States
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama 36849, United States
- Center for Bioenergy and Bioproducts, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
13
|
Chu PTB, Phan TTP, Nguyen TTT, Truong TTT, Schumann W, Nguyen HD. Potent IPTG-inducible integrative expression vectors for production of recombinant proteins in Bacillus subtilis. World J Microbiol Biotechnol 2023; 39:143. [PMID: 37004690 DOI: 10.1007/s11274-023-03566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/03/2023] [Indexed: 04/04/2023]
Abstract
The IPTG-inducible promoter family, Pgrac, allows high protein expression levels in an inducible manner. In this study, we constructed IPTG-inducible expression vectors containing strong Pgrac promoters that allow integration of the transgene at either the amyE or lacA locus or both loci in Bacillus subtilis. Our novel integrative expression vectors based on Pgrac promoters could control the repression of protein production in the absence and the induction in the presence of an inducer, IPTG. The β-galactosidase (BgaB) protein levels were 9.0%, 15% and 30% of the total cellular protein in the B. subtilis strains carrying single cassettes with the Pgrac01, Pgrac100 or Pgrac212 promoters, respectively. The maximal induction ratio of Pgrac01-bgaB was 35.5 while that of Pgrac100-bgaB was 7.5 and that of Pgrac212-bgaB was 9. The inducible expression of GFP and BgaB protein was stably maintained for 24 h, with the highest yield of GFP being 24% of cell total protein while the maximum amount of BgaB was found to be 38%. A dual integration of two copies of the gfp+ gene into the B. subtilis genome at the lacA and amyE loci resulted in a yield of about 40% of total cellular protein and a 1.74-fold increase in GFP compared with single-integrated strains containing the same Pgrac212 promoter. The capability of protein production from low to high levels of these inducible integrative systems is useful for fundamental and applied research in B. subtilis.
Collapse
Affiliation(s)
- Phuong Thi Bich Chu
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City, Vietnam
| | - Trang Thi Phuong Phan
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
- Laboratory of Molecular Biotechnology, University of Science, Ho Chi Minh City, Vietnam.
| | - Tam Thi Thanh Nguyen
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City, Vietnam
| | - Tuom Thi Tinh Truong
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Cancer Research Laboratory, University of Science, Ho Chi Minh City, Vietnam
| | - Wolfgang Schumann
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Institute of Genetics, University of Bayreuth, 95440, Bayreuth, Germany
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
14
|
Ye B, Tao Q, Yan X. A transposon system for random insertion of a gene expression cassette into the chromosome of Bacillus subtilis. J Biotechnol 2023; 361:66-73. [PMID: 36494011 DOI: 10.1016/j.jbiotec.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Bacillus subtilis is a robust industrial workhorse for the production of heterologous proteins. Chromosomal integration-based protein production has advantages over plasmid-based methods. Considering that the expression level of a gene is affected by its location in the chromosome, it is important to find an optimal integration site for the gene to be expressed. This work establishes a method for random insertion of a gene expression cassette into chromosomes, enabling the screening of optimal integration sites for high-level protein production. Specifically, a gene expression cassette and a chloromycetin-resistance marker are assembled into a transposon. This transposon is inserted between the promoter and the ribosomal binding site of the zeocin-resistance marker in the chromosome, which blocks the transcription of the zeocin-resistance gene. Transposase Himar1-mediated transposition of this transposon activates the zeocin-resistance marker, which can be selected on plates containing both chloromycetin and zeocin. The transposition frequency was over 10-5. This method was used to select proper insertion sites for the expression cassette of methyl parathion hydrolase (MPH). Compared with the common integration site amyE, the expression level of MPH was increased up to 50 % at the yjbH site.
Collapse
Affiliation(s)
- Bin Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; Institute of Microbe and Host Health, College of Agriculture and Forestry, Linyi University, Linyi, Shandong 276000, PR China
| | - Qing Tao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
15
|
Chemla Y, Dorfan Y, Yannai A, Meng D, Cao P, Glaven S, Gordon DB, Elbaz J, Voigt CA. Parallel engineering of environmental bacteria and performance over years under jungle-simulated conditions. PLoS One 2022; 17:e0278471. [PMID: 36516154 PMCID: PMC9750038 DOI: 10.1371/journal.pone.0278471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Engineered bacteria could perform many functions in the environment, for example, to remediate pollutants, deliver nutrients to crops or act as in-field biosensors. Model organisms can be unreliable in the field, but selecting an isolate from the thousands that naturally live there and genetically manipulating them to carry the desired function is a slow and uninformed process. Here, we demonstrate the parallel engineering of isolates from environmental samples by using the broad-host-range XPORT conjugation system (Bacillus subtilis mini-ICEBs1) to transfer a genetic payload to many isolates in parallel. Bacillus and Lysinibacillus species were obtained from seven soil and water samples from different locations in Israel. XPORT successfully transferred a genetic function (reporter expression) into 25 of these isolates. They were then screened to identify the best-performing chassis based on the expression level, doubling time, functional stability in soil, and environmentally-relevant traits of its closest annotated reference species, such as the ability to sporulate and temperature tolerance. From this library, we selected Bacillus frigoritolerans A3E1, re-introduced it to soil, and measured function and genetic stability in a contained environment that replicates jungle conditions. After 21 months of storage, the engineered bacteria were viable, could perform their function, and did not accumulate disruptive mutations.
Collapse
Affiliation(s)
- Yonatan Chemla
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yuval Dorfan
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Adi Yannai
- School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Dechuan Meng
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Paul Cao
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sarah Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States of America
| | - D. Benjamin Gordon
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Johann Elbaz
- School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Christopher A. Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
16
|
Le NTP, Phan TTP, Phan HTT, Truong TTT, Schumann W, Nguyen HD. Influence of N-terminal His-tags on the production of recombinant proteins in the cytoplasm of Bacillus subtilis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00754. [PMID: 35911505 PMCID: PMC9326129 DOI: 10.1016/j.btre.2022.e00754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 05/26/2023]
Abstract
The influence of fusion tags to produce recombinant proteins in the cytoplasm of Bacillus subtilis is not well-studied as in E. coli. This study aimed to investigate the influence of His-tags with different codons on the protein production levels of the high expression gene (gfp+) and low expression gene (egfp) in the cytoplasm of B. subtilis cells. We used three different N-terminal His-tags, M-6xHis, MRGS-8xHis and MEA-8xHis, to investigate their effects on the production levels of GFP variants under the control of the Pgrac212 in B. subtilis. The fusions of His-tags with GFP+ caused a reduction compared to the construct without His-tag. When three His-tags fused with egfp, the EGFP production levels were significantly increased up to 3.5-, 12-, and 15-fold. This study suggested that His-tag at the N-terminus could enhance the protein production for the low expression gene and reduce that of the high expression gene in B. subtilis.
Collapse
Affiliation(s)
- Ngan Thi Phuong Le
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Trang Thi Phuong Phan
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Laboratory of Molecular Biotechnology, University of Science, Ho Chi Minh City, Vietnam
| | - Hanh Thi Thu Phan
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tuom Thi Tinh Truong
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Cancer research laboratory, University of Science, Ho Chi Minh City, Vietnam
| | - Wolfgang Schumann
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
17
|
Ye J, Li Y, Bai Y, Zhang T, Jiang W, Shi T, Wu Z, Zhang YHPJ. A facile and robust T7-promoter-based high-expression of heterologous proteins in Bacillus subtilis. BIORESOUR BIOPROCESS 2022; 9:56. [PMID: 38647747 PMCID: PMC10991129 DOI: 10.1186/s40643-022-00540-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
To mimic the Escherichia coli T7 protein expression system, we developed a facile T7 promoter-based protein expression system in an industrial microorganism Bacillus subtilis. This system has two parts: a new B. subtilis strain SCK22 and a plasmid pHT7. To construct strain SCK22, the T7 RNA polymerase gene was inserted into the chromosome, and several genes, such as two major protease genes, a spore generation-related gene, and a fermentation foam generation-related gene, were knocked out to facilitate good expression in high-density cell fermentation. The gene of a target protein can be subcloned into plasmid pHT7, where the gene of the target protein was under tight control of the T7 promoter with a ribosome binding site (RBS) sequence of B. subtilis (i.e., AAGGAGG). A few recombinant proteins (i.e., green fluorescent protein, α-glucan phosphorylase, inositol monophosphatase, phosphoglucomutase, and 4-α-glucanotransferase) were expressed with approximately 25-40% expression levels relative to the cellular total proteins estimated by SDS-PAGE by using B. subtilis SCK22/pHT7-derived plasmid. A fed-batch high-cell density fermentation was conducted in a 5-L fermenter, producing up to 4.78 g/L inositol monophosphatase. This expression system has a few advantageous features, such as, wide applicability for recombinant proteins, high protein expression level, easy genetic operation, high transformation efficiency, good genetic stability, and suitability for high-cell density fermentation.
Collapse
Affiliation(s)
- Jing Ye
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yunjie Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yuqing Bai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ting Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Wei Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ting Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
18
|
Nguyen HD, Phan TTP. A Protocol to Enhance Soluble Protein Expression in the Cytoplasm of Bacillus subtilis. Methods Mol Biol 2022; 2406:233-243. [PMID: 35089561 DOI: 10.1007/978-1-0716-1859-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacillus subtilis is a generally regarded as safe (GRAS) microorganism, which has been used for industrial production of recombinant enzymes. Many inducible and inducer-free expression vectors have been developed for intracellular production; some of those demonstrated the capability for protein expression up to 42% of total cellular proteins. In this chapter, we introduce the method to enhance the expression of soluble protein in B. subtilis. It includes the construction of vectors, the transformation of a plasmid into B. subtilis, and checking the expression of the protein.
Collapse
Affiliation(s)
- Hoang D Nguyen
- University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| | - Trang T P Phan
- University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
19
|
Wang ZK, Gong JS, Qin J, Li H, Lu ZM, Shi JS, Xu ZH. Improving the Intensity of Integrated Expression for Microbial Production. ACS Synth Biol 2021; 10:2796-2807. [PMID: 34738786 DOI: 10.1021/acssynbio.1c00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chromosomal integration of exogenous genes is preferred for industrially related fermentation, as plasmid-mediated fermentation leads to extra metabolic burden and genetic instability. Moreover, with the development and advancement of genome engineering and gene editing technologies, inserting genes into chromosomes has become more convenient; integration expression is extensively utilized in microorganisms for industrial bioproduction and expected to become the trend of recombinant protein expression. However, in actual research and application, it is important to enhance the expression of heterologous genes at the host genome level. Herein, we summarized the basic principles and characteristics of genomic integration; furthermore, we highlighted strategies to improve the expression of chromosomal integration of genes and pathways in host strains from three aspects, including chassis cell optimization, regulation of expression elements in gene expression cassettes, optimization of gene dose level and integration sites on chromosomes. Moreover, we reviewed and summarized the relevant studies on the application of integrated expression in the exploration of gene function and the various types of industrial microorganism production. Consequently, this review would serve as a reference for the better application of integrated expression.
Collapse
Affiliation(s)
- Zi-Kai Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jiufu Qin
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
20
|
Jia H, Cao S, Wu Y, Zhu W, Luo J, Shen Y, Wang M. Genomewide Transcriptome Responses of Arthrobacter simplex to Cortisone Acetate and its Mutants with Enhanced Δ 1-Dehydrogenation Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12773-12784. [PMID: 34694802 DOI: 10.1021/acs.jafc.1c04934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to its superior Δ1-dehydrogenation ability, Arthrobacter simplex has been widely used for the biotransformation of cortisone acetate (CA) into prednisone acetate (PA) in the steroid industry. However, its molecular fundamentals are still unclear. Herein, the genome organization, gene regulation, and previously unreported genes involved in Δ1-dehydrogenation are revealed through genome and transcriptome analysis. A comparative study of transcriptomes of an industrial strain induced by CA or at different biotransformation periods was performed. By overexpression, the roles of six genes in CA conversion were confirmed, among which sufC and hsaA behaved better by reinforcing catalytic enzyme activity and substrate transmembrane transport. Additionally, GroEL endowed cells with the strongest stress tolerance by alleviating oxidative damage and enhancing energy levels. Finally, an optimal strain was created by coexpressing three genes, achieving 46.8 and 70.6% increase in PA amount and productivity compared to the initial values, respectively. Our study expanded the understanding of the Δ1-dehydrogenation mechanism and offered an effective approach for excellent steroid-transforming strains.
Collapse
Affiliation(s)
- Hongchen Jia
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Shuting Cao
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yan Wu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wencheng Zhu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
21
|
Cao Y, Tian R, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Inducible Population Quality Control of Engineered Bacillus subtilis for Improved N-Acetylneuraminic Acid Biosynthesis. ACS Synth Biol 2021; 10:2197-2209. [PMID: 34404207 DOI: 10.1021/acssynbio.1c00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Biosynthesis by microorganisms using renewable feedstocks is an important approach for realizing sustainable chemical manufacturing. However, cell-to-cell variation in biosynthesis capability during fermentation restricts the robustness and efficiency of bioproduction, hampering the industrialization of biosynthesis. Herein, we developed an inducible population quality control system (iPopQC) for dynamically modulating the producing and nonproducing subpopulations of engineered Bacillus subtilis, which was constructed via inducible promoter- and metabolite-responsive biosensor-based genetic circuit for regulating essential genes. Moreover, iPopQC achieved a 1.97-fold increase in N-acetylneuraminic acid (NeuAc) titer by enriching producing cell subpopulation during cultivation, representing 52% higher than that of previous PopQC. Strains with double-output iPopQC cocoupling the expression of double essential genes with NeuAc production improved production robustness further, retaining NeuAc production throughout 96 h of fermentation, upon which the strains cocoupling one essential gene expression with NeuAc production abolished the production ability.
Collapse
Affiliation(s)
- Yanting Cao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
22
|
Abstract
Converting biomass into high value-added compounds has attracted great attention for solving fossil fuel consumption and global warming. 5-Hydroxymethylfurfural (HMF) has been considered as a versatile biomass-derived building block that can be used to synthesize a variety of sustainable fuels and chemicals. Among these derivatives, 2,5-furandicarboxylic acid (FDCA) is a desirable alternative to petroleum-derived terephthalic acid for the synthesis of biodegradable polyesters. Herein, to fully understand the current development of the catalytic conversion of biomass to FDCA, a comprehensive review of the catalytic conversion of cellulose biomass to HMF and the oxidation of HMF to FDCA is presented. Moreover, future research directions and general trends of using biomass for FDCA production are also proposed.
Collapse
|
23
|
Yang H, Qu J, Zou W, Shen W, Chen X. An overview and future prospects of recombinant protein production in Bacillus subtilis. Appl Microbiol Biotechnol 2021; 105:6607-6626. [PMID: 34468804 DOI: 10.1007/s00253-021-11533-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
Bacillus subtilis is a well-characterized Gram-positive bacterium and a valuable host for recombinant protein production because of its efficient secretion ability, high yield, and non-toxicity. Here, we comprehensively review the recent studies on recombinant protein production in B. subtilis to update and supplement other previous reviews. We have focused on several aspects, including optimization of B. subtilis strains, enhancement and regulation of expression, improvement of secretion level, surface display of proteins, and fermentation optimization. Among them, optimization of B. subtilis strains mainly involves undirected chemical/physical mutagenesis and selection and genetic manipulation; enhancement and regulation of expression comprises autonomous plasmid and integrated expression, promoter regulation and engineering, and fine-tuning gene expression based on proteases and molecular chaperones; improvement of secretion level predominantly involves secretion pathway and signal peptide screening and optimization; surface display of proteins includes surface display of proteins on spores or vegetative cells; and fermentation optimization incorporates medium optimization, process condition optimization, and feeding strategy optimization. Furthermore, we propose some novel methods and future challenges for recombinant protein production in B. subtilis.Key points• A comprehensive review on recombinant protein production in Bacillus subtilis.• Novel techniques facilitate recombinant protein expression and secretion.• Surface display of proteins has significant potential for different applications.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Jinfeng Qu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, Sichuan, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
24
|
Manfrão-Netto JHC, Queiroz EB, de Oliveira Junqueira AC, Gomes AMV, Gusmão de Morais D, Paes HC, Parachin NS. Genetic strategies for improving hyaluronic acid production in recombinant bacterial culture. J Appl Microbiol 2021; 132:822-840. [PMID: 34327773 DOI: 10.1111/jam.15242] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
Hyaluronic acid (HA) is a biopolymer of repeating units of glucuronic acid and N-acetylglucosamine. Its market was valued at USD 8.9 billion in 2019. Traditionally, HA has been obtained from rooster comb-like animal tissues and fermentative cultures of attenuated pathogenic streptococci. Various attempts have been made to engineer a safe micro-organism for HA synthesis; however, the HA titres obtained from these attempts are in general still lower than those achieved by natural, pathogenic producers. In this scenario, ways to increase HA molecule length and titres in already constructed strains are gaining attention in the last years, but no recent publication has reviewed the main genetic strategies applied to improve HA production on heterologous hosts. In light of that, we hereby compile the advances made in the engineering of micro-organisms to improve HA synthesis.
Collapse
Affiliation(s)
- João H C Manfrão-Netto
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Enzo Bento Queiroz
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Ana C de Oliveira Junqueira
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Antônio M V Gomes
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Daniel Gusmão de Morais
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil.,Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Hugo Costa Paes
- Clinical Medicine Division, University of Brasília Medical School, Brasília, Brazil
| | - Nádia Skorupa Parachin
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil.,Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
25
|
Shen P, Niu D, Permaul K, Tian K, Singh S, Wang Z. Exploitation of ammonia-inducible promoters for enzyme overexpression in Bacillus licheniformis. J Ind Microbiol Biotechnol 2021; 48:6298226. [PMID: 34124759 PMCID: PMC9113418 DOI: 10.1093/jimb/kuab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Ammonium hydroxide is conventionally used as an alkaline reagent and cost-effective nitrogen source in enzyme manufacturing processes. However, few ammonia-inducible enzyme expression systems have been described thus far. In this study, genomic-wide transcriptional changes in Bacillus licheniformis CBBD302 cultivated in media supplemented with ammonia were analyzed, resulting in identification of 1443 differently expressed genes, of which 859 genes were upregulated and 584 downregulated. Subsequently, the nucleotide sequences of ammonia-inducible promoters were analyzed and their functionally-mediated expression of amyL, encoding an α-amylase, was shown. TRNA_RS39005 (copA), TRNA_RS41250 (sacA), TRNA_RS23130 (pdpX), TRNA_RS42535 (ald), TRNA_RS31535 (plp), and TRNA_RS23240 (dfp) were selected out of the 859 upregulated genes and each showed higher transcription levels (FPKM values) in the presence of ammonia and glucose than that of the control. The promoters, PcopA from copA, PsacA from sacA, PpdpX from pdpX, Pald from ald, and Pplp from plp, except Pdfp from dfp, were able to mediate amyL expression and were significantly induced by ammonia. The highest enzyme expression level was mediated by Pplp and represented 23% more α-amylase activity after induction by ammonia in a 5-L fermenter. In conclusion, B. licheniformis possesses glucose-independent ammonia-inducible promoters, which can be used to mediate enzyme expression and therefore enhance the enzyme yield in fermentations conventionally fed with ammonia for pH adjustment and nitrogen supply.
Collapse
Affiliation(s)
- Peili Shen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dandan Niu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kugen Permaul
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban 4001, South Africa
| | - Kangming Tian
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban 4001, South Africa
| | - Zhengxiang Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.,Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
26
|
Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain. Essays Biochem 2021; 65:173-185. [PMID: 34028523 DOI: 10.1042/ebc20210011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022]
Abstract
Currently, increasing demand of biochemicals produced from renewable resources has motivated researchers to seek microbial production strategies instead of traditional chemical methods. As a microbial platform, Bacillus subtilis possesses many advantages including the generally recognized safe status, clear metabolic networks, short growth cycle, mature genetic editing methods and efficient protein secretion systems. Engineered B. subtilis strains are being increasingly used in laboratory research and in industry for the production of valuable proteins and other chemicals. In this review, we first describe the recent advances of bioinformatics strategies during the research and applications of B. subtilis. Secondly, the applications of B. subtilis in enzymes and recombinant proteins production are summarized. Further, the recent progress in employing metabolic engineering and synthetic biology strategies in B. subtilis platform strain to produce commodity chemicals is systematically introduced and compared. Finally, the major limitations for the further development of B. subtilis platform strain and possible future directions for its research are also discussed.
Collapse
|
27
|
Yahaya RSR, Normi YM, Phang LY, Ahmad SA, Abdullah JO, Sabri S. Molecular strategies to increase keratinase production in heterologous expression systems for industrial applications. Appl Microbiol Biotechnol 2021; 105:3955-3969. [PMID: 33937928 DOI: 10.1007/s00253-021-11321-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
Keratinase is an important enzyme that can degrade recalcitrant keratinous wastes to form beneficial recyclable keratin hydrolysates. Keratinase is not only important as an alternative to reduce environmental pollution caused by chemical treatments of keratinous wastes, but it also has industrial significance. Currently, the bioproduction of keratinase from native keratinolytic host is considered low, and this hampers large-scale usage of the enzyme. Straightforward approaches of cloning and expression of recombinant keratinases from native keratinolytic host are employed to elevate the amount of keratinase produced. However, this is still insufficient to compensate for the lack of its large-scale production to meet the industrial demands. Hence, this review aimed to highlight the various sources of keratinase and the strategies to increase its production in native keratinolytic hosts. Molecular strategies to increase the production of recombinant keratinase such as plasmid selection, promoter engineering, chromosomal integration, signal peptide and propeptide engineering, codon optimization, and glycoengineering were also described. These mentioned strategies have been utilized in heterologous expression hosts, namely, Escherichia coli, Bacillus sp., and Pichia pastoris, as they are most widely used for the heterologous propagations of keratinases to further intensify the production of recombinant keratinases adapted to better suit the large-scale demand for them. KEY POINTS: • Molecular strategies to enhance keratinase production in heterologous hosts. • Construction of a prominent keratinolytic host from a native strain. • Patent analysis of keratinase production shows rapid high interest in molecular field.
Collapse
Affiliation(s)
- Radin Shafierul Radin Yahaya
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Lai Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
28
|
Yin X, Li Y, Zhou J, Rao S, Du G, Chen J, Liu S. Enhanced Production of Transglutaminase in Streptomyces mobaraensis through Random Mutagenesis and Site-Directed Genetic Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3144-3153. [PMID: 33651593 DOI: 10.1021/acs.jafc.1c00645] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Streptomyces transglutaminase (TGase) is widely used to improve food texture properties. In this study, random mutagenesis and site-directed genetic modification were used to improve the production of TGase in Streptomyces mobaraensis. First, S. mobaraensis DSM40587 (smWT) was subjected to atmospheric and room-temperature plasma mutagenesis, and then a mutant (smY2019) with a 5.5-fold increase in TGase yield was screened from approximately 3000 × 25 (round) mutants. Compared to smWT, smY2019 exhibits a 3.2-fold higher TGase mRNA level and two site mutations within the -10 region of the TGase promoter. The recombinant expression analysis in the TGase-deficient S. mobaraensis suggests that the mutated TGase promoter is more robust than the wild-type one. Finally, we integrated two additional TGase expression cassettes into the smY2019 genome, yielding the recombinant strain smY2019-3C with a 103% increase in TGase production compared to smY2019. The smY2019-3C strain with 40 U/mL of TGase yield could be a suitable candidate for the industrial production of TGase.
Collapse
Affiliation(s)
- Xiaoqiang Yin
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yangyang Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
29
|
Riley LA, Guss AM. Approaches to genetic tool development for rapid domestication of non-model microorganisms. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:30. [PMID: 33494801 PMCID: PMC7830746 DOI: 10.1186/s13068-020-01872-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/30/2020] [Indexed: 05/04/2023]
Abstract
Non-model microorganisms often possess complex phenotypes that could be important for the future of biofuel and chemical production. They have received significant interest the last several years, but advancement is still slow due to the lack of a robust genetic toolbox in most organisms. Typically, "domestication" of a new non-model microorganism has been done on an ad hoc basis, and historically, it can take years to develop transformation and basic genetic tools. Here, we review the barriers and solutions to rapid development of genetic transformation tools in new hosts, with a major focus on Restriction-Modification systems, which are a well-known and significant barrier to efficient transformation. We further explore the tools and approaches used for efficient gene deletion, DNA insertion, and heterologous gene expression. Finally, more advanced and high-throughput tools are now being developed in diverse non-model microbes, paving the way for rapid and multiplexed genome engineering for biotechnology.
Collapse
Affiliation(s)
- Lauren A Riley
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
30
|
Luo JM, Zhu WC, Cao ST, Lu ZY, Zhang MH, Song B, Shen YB, Wang M. Improving Biotransformation Efficiency of Arthrobacter simplex by Enhancement of Cell Stress Tolerance and Enzyme Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:704-716. [PMID: 33406824 DOI: 10.1021/acs.jafc.0c06592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arthrobacter simplex exhibits excellent Δ1-dehydrogenation ability, but the acquisition of the desirable strain is limited due to lacking of comprehensive genetic manipulation. Herein, a promoter collection for fine-tuning gene expression was achieved. Next, the expression level was enhanced and directed evolution of the global transcriptional factor (IrrE) was applied to enhance cell viability in systems containing more substrate and ethanol, thus contributing to higher production. IrrE promotes a stronger antioxidant defense system, more energy generation, and changed signal transduction. Using a stronger promoter, the enzyme activities were boosted but their positive effects on biotransformation performance were inferior to cell stress tolerance when exposed to challenging systems. Finally, an optimal strain was created by collectively reinforcing cell stress tolerance and catalytic enzyme activity, achieving a yield 261.8% higher relative to the initial situation. Our study provided effective methods for steroid-transforming strains with high efficiency.
Collapse
Affiliation(s)
- Jian-Mei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wen-Cheng Zhu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Shu-Ting Cao
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhi-Yi Lu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Meng-Han Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Bo Song
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yan-Bing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
31
|
Meng D, Mukhitov N, Neitzey D, Lucht M, Schaak DD, Voigt CA. Rapid and simultaneous screening of pathway designs and chassis organisms, applied to engineered living materials. Metab Eng 2021; 66:308-318. [PMID: 33460821 DOI: 10.1016/j.ymben.2021.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/10/2021] [Indexed: 01/22/2023]
Abstract
Achieving a high product titer through pathway optimization often requires screening many combinations of enzymes and genetic parts. Typically, a library is screened in a single chassis that is a model or production organism. Here, we present a technique where the library is first introduced into B. subtilis XPORT, which has the ability to transfer the DNA to many Gram-positive species using an inducible integrated conjugated element (ICE). This approach is demonstrated using a two-gene pathway that converts tyrosine to melanin, a pigment biopolymer that can serve as a protective coating. A library of 18 pathway variants is conjugated by XPORT into 18 species, including those isolated from soil and industrial contaminants. The resulting 324 strains are screened and the highest titer is 1.2 g/L in B. amyloliquefaciens BT16. The strains were evaluated as co-cultures in an industrial process to make mycelia-grown bulk materials, where the bacteria need to be productive in a stressful, spatially non-uniform and dynamic environment. B. subtilis BGSC 3A35 is found to perform well under these conditions and make melanin in the material, which can be seen visually. This approach enables the simultaneous screening of genetic designs and chassis during the build step of metabolic engineering.
Collapse
Affiliation(s)
- Dechuan Meng
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nikita Mukhitov
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dana Neitzey
- Ecovative Design LLC, 70 Cohoes Avenue, Green Island, NY, 12183, USA
| | - Matthew Lucht
- Ecovative Design LLC, 70 Cohoes Avenue, Green Island, NY, 12183, USA
| | - Damen D Schaak
- Ecovative Design LLC, 70 Cohoes Avenue, Green Island, NY, 12183, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
32
|
Ji M, Li S, Chen A, Liu Y, Xie Y, Duan H, Shi J, Sun J. A wheat bran inducible expression system for the efficient production of α-L-arabinofuranosidase in Bacillus subtilis. Enzyme Microb Technol 2020; 144:109726. [PMID: 33541569 DOI: 10.1016/j.enzmictec.2020.109726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 11/26/2022]
Abstract
α-l-arabinofuranosidases (EC 3.2.1.55; AFs) cause the release of arabinosyl residues from hemicellulose polymers such as xylans, and are receiving increased levels of research attention as they could be applied in a range of processes that involve the enzymatic degradation of xylans. The secretory production of bacterial AFs has not been attempted previously. In this study, we designed a unique induction system for the production of a recombinant AF in Bacillus subtilis in order to exploit its enzymic degradation of wheat bran. We found that non-starch phytochemicals were more efficient than d-xylose when inducing the expression of T7 RNA polymerase and driving the transcription of AF by the T7 promoter. The host cell, B. subtilis (ATCC 6051a-derived strain 164T7P) was engineered to incorporate a DNA cassette that expressed T7 RNA polymerase under the control of a d-xylose inducible promoter (PxylA). The T7 promoter engineered into 164T7P was initially tested and compared with P43 in terms of GFP expression; we found that the expression level of GFP by the T7 promoter was ten-fold higher than that achieved by P43. When cultured in a flask with gentle shaking, and with d-xylose as an inducer, the recombinant strain successfully expressed arbf, a family 51 (GH 51) glycoside hydrolase from Bacillus licheniformis, and secreted 141.4 ± 4.8 U/mL of enzyme, with a Km of 1.4 ± 0.1 mM and a kcat of 139.4 s-1. However, the protein was devoid of a secretary signal peptide. When cultures were supplemented with wheat bran, the maximal yield of the secreted AF reached 194.8 ± 4.1 U/mL. The results provide a foundation for the high level production of heterologous proteins using wheat bran as the inducer in B. subtilis.
Collapse
Affiliation(s)
- Minghua Ji
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sijie Li
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
| | - Ai Chen
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yunhui Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yukang Xie
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Duan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Junsong Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
33
|
Integrative expression vectors with P grac promoters for inducer-free overproduction of recombinant proteins in Bacillus subtilis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00540. [PMID: 33163371 PMCID: PMC7599426 DOI: 10.1016/j.btre.2020.e00540] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 11/27/2022]
Abstract
The new inducer-free integrative expression vectors could repress the reporter gene expression in the E. coli cloning strain, thereby facilitating the cloning step. The expression vectors carrying IPTG-inducible Pgrac promoters allow the production of the recombinant protein at high levels in B. subtilis in the absence of the inducer. The single-copy expression levels of integrative constructs, Pgrac01-bgaB, Pgrac100-bgaB, Pgrac212-bgaB could reach to % and 8%, 20.9 % and 42 % of total cellular proteins after 12 h incubation, respectively. The double integration of Pgrac212-bgaB into both amyE and lacA loci resulted in BgaB expression up to 53.4 %.
Inducer-free integrative vectors are often used to create B. subtilis strains for industrial purposes, but employing strong promoters to produce high levels of recombinant proteins in B. subtilis results in high leaky expression that can hamper cloning in Escherichia coli. To overcome the problem, we used strong IPTG-inducible Pgrac promoters harboring lac operators to construct inducer-free integrative vectors able to integrate into the B. subtilis genome at either the lacA or the amyE locus, or both and examined their ability to repress the β-galactosidase (bgaB) gene in E. coli and to overexpress BgaB in B. subtilis. The Pgrac01 vectors could repress bgaB expression about 24-fold in E. coli to low background levels. The integrated Pgrac01-bgaB constructs exhibited inducer-free expression and produced 8% of total cellular proteins, only 1.25 or 1.75 times less compared with their cognates as plasmids. The stronger promoters, Pgrac100-bgaB and Pgrac212-bgaB yielded 20.9 % and 42 % of total intracellular proteins after 12 h of incubation, respectively. Incorporation of the Pgrac212-bgaB into both amyE and lacA loci resulted in BgaB expression up to 53.4 %. In conclusion, integrative vectors containing the Pgrac promoter family have great potential for inducer-free overproduction of recombinant proteins in B. subtilis.
Collapse
|
34
|
Luo JM, Cui HL, Jia HC, Li F, Cheng HJ, Shen YB, Wang M. Identification, Biological Characteristics, and Active Site Residues of 3-Ketosteroid Δ 1-Dehydrogenase Homologues from Arthrobacter simplex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9496-9512. [PMID: 32786835 DOI: 10.1021/acs.jafc.0c03360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenase (KsdD) is the key enzyme responsible for Δ1-dehydrogenation, which is one of the most valuable reactions for steroid catabolism. Arthrobacter simplex has been widely used in the industry due to its superior bioconversion efficiency, but KsdD information is not yet fully clear. Here, five KsdD homologues were identified in A. simplex CGMCC 14539. Bioinformatic analysis indicated their distinct properties and structures. Each KsdD was functionally confirmed by transcriptional response, overexpression, and heterologous expression. The substantial difference in substrate profiles might be related to the enzyme loop structure. Two promising enzymes (KsdD3 and KsdD5) were purified and characterized, exhibiting strong organic solvent tolerance and clear preference for 4-ene-3-oxosteroids. KsdD5 seemed to be more versatile due to good activity on substrates with or without a substituent at C11 and high optimal temperature and also possessed unique residues. It is the first time that KsdDs have been comprehensively disclosed in the A. simplex industrial strain.
Collapse
Affiliation(s)
- Jian-Mei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin 300071, P. R. China
| | - Hui-Lin Cui
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Hong-Chen Jia
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Fang Li
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Hong-Jin Cheng
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Yan-Bing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| |
Collapse
|
35
|
Zhang L, Li X, Zhan N, Sun T, Li J, Shan A. Maltose Induced Expression of Cecropin AD by SUMO Technology in Bacillus subtilis WB800N. Protein J 2020; 39:383-391. [PMID: 32661730 DOI: 10.1007/s10930-020-09908-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cecropin AD (CAD) is a hybrid peptide composed of 37 amino acids with the characters of strong antibacterial, antitumor properties and no hemolytic activity, which was regarded as a promising antibiotic candidate. Thus, a safe method to produce Cecropin AD is necessary to be found. In the study, Bacillus subtilis WB800N was employed as host strain. The CAD coding sequence fused with the signal peptide of SPsacB, the 6 × His gene and the gene of small ubiquitin-like modifier were cloned into the maltose-inducible vector pGJ148. Under the induction by 6% maltose, the recombinant fusion protein was successfully expressed and detected in culture substrate. An optimized amount (26.4 mg/L) of the recombinant CAD was purified of culture supernatant. After purification and digestion, the recombinant CAD was harvested about 4.5 mg/L with a purity of 93%. Recombinant CAD exhibited similar antimicrobial activity with synthetic CAD. This shows that the production of CAD in maltose-induced Bacillus subtilis expression system is a relatively safe method, which is vital for the application of CAD in animal husbandry production.
Collapse
Affiliation(s)
- Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xiaodan Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Zhan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Taotao Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
36
|
Liu S, Wang J, Zhu Z, Shi T, Zhang YHPJ. Efficient secretory production of large-size heterologous enzymes in Bacillus subtilis: A secretory partner and directed evolution. Biotechnol Bioeng 2020; 117:2957-2968. [PMID: 32589796 DOI: 10.1002/bit.27478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
Secretory production of recombinant proteins provides a simple approach to the production and purification of target proteins in the enzyme industry. We developed a combined strategy for the secretory production of three large-size heterologous enzymes with a special focus on 83-kDa isoamylase (IA) from an archaeon Sulfolobus tokodaii in a bacterium Bacillus subtilis. First, a secretory protein of the B. subtilis family 5 glycoside hydrolase endoglucanase (Cel5) was used as a fusion partner, along with the NprB signal peptide, to facilitate secretory production of IA. This secretory partner strategy was effective for the secretion of two other large enzymes: family 9 glycoside hydrolase from Clostridium phytofermentas and cellodextrin phosphorylase from Clostridium thermocellum. Second, the secretion of Cel5-IA was improved by directed evolution with two novel double-layer Petri-dish-based high-throughput screening (HTS) methods. The high-sensitivity HTS relied on the detection of high-activity Cel5 on the carboxymethylcellulose/Congo-red assay. The second modest-sensitivity HTS focused on the detection of low-activity IA on the amylodextrin-I2 assay. After six rounds of HTS, a secretory Cel5-IA level was increased to 234 mg/L, 155 times the wild-type IA with the NprB signal peptide only. This combinatory strategy could be useful to enhance the secretory production of large-size heterologous proteins in B. subtilis.
Collapse
Affiliation(s)
- Shan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Juan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ting Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
37
|
Yang H, Liu Y, Li J, Liu L, Du G, Chen J. Systems metabolic engineering of
Bacillus subtilis
for efficient biosynthesis of 5‐methyltetrahydrofolate. Biotechnol Bioeng 2020; 117:2116-2130. [DOI: 10.1002/bit.27332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Han Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi China
| |
Collapse
|
38
|
Wu Y, Liu Y, Lv X, Li J, Du G, Liu L. CAMERS‐B: CRISPR/Cpf1 assisted multiple‐genes editing and regulation system for
Bacillus subtilis. Biotechnol Bioeng 2020; 117:1817-1825. [DOI: 10.1002/bit.27322] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| |
Collapse
|
39
|
Han L, Chen Q, Lin Q, Cheng J, Zhou L, Liu Z, Guo J, Zhang L, Cui W, Zhou Z. Realization of Robust and Precise Regulation of Gene Expression by Multiple Sigma Recognizable Artificial Promoters. Front Bioeng Biotechnol 2020; 8:92. [PMID: 32140461 PMCID: PMC7042180 DOI: 10.3389/fbioe.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/31/2020] [Indexed: 01/28/2023] Open
Abstract
Precise regulation of gene expression is fundamental for tailor-made gene circuit design in synthetic biology. Current strategies for this type of development are mainly based on directed evolution beginning with a native promoter template. The performances of engineered promoters are usually limited by the growth phase because only one promoter is recognized by one type of sigma factor (σ). Here, we constructed multiple-σ recognizable artificial hybrid promoters (AHPs) composed of tandems of dual and triple natural minimal promoters (NMPs). These NMPs, which use σA, σH and σW, had stable functions in different growth phases. The functions of these NMPs resulted from an effect called transcription compensation, in which AHPs sequentially use one type of σ in the corresponding growth phase. The strength of the AHPs was influenced by the combinatorial order of each NMP and the length of the spacers between the NMPs. More importantly, the output of the precise regulation was achieved by equipping AHPs with synthetic ribosome binding sites and by redesigning them for induced systems. This strategy might offer promising applications to rationally design robust synthetic promoters in diverse chassis to spur the construction of more complex gene circuits, which will further the development of synthetic biology.
Collapse
Affiliation(s)
- Laichuang Han
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qiaoqing Chen
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qiao Lin
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jintao Cheng
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Junling Guo
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Linpei Zhang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
40
|
Yang H, Ma Y, Zhao Y, Shen W, Chen X. Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis. Appl Microbiol Biotechnol 2020; 104:2973-2985. [DOI: 10.1007/s00253-020-10435-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 01/25/2023]
|
41
|
Tao Z, Fu G, Wang S, Jin Z, Wen J, Zhang D. Hyper-secretion mechanism exploration of a heterologous creatinase in Bacillus subtilis. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Le VD, Phan TTP, Nguyen TM, Brunsveld L, Schumann W, Nguyen HD. Using the IPTG-Inducible Pgrac212 Promoter for Overexpression of Human Rhinovirus 3C Protease Fusions in the Cytoplasm of Bacillus subtilis Cells. Curr Microbiol 2019; 76:1477-1486. [PMID: 31612259 DOI: 10.1007/s00284-019-01783-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/27/2019] [Indexed: 01/19/2023]
Abstract
Expression and secretion of recombinant proteins in the endotoxin-free bacterium, Bacillus subtilis, has been thoroughly studied, but overexpression in the cytoplasm has been limited to only a few proteins. Here, we used the robust IPTG-inducible promoter, Pgrac212, to overexpress human rhinovirus 3C protease (HRV3C) in the cytoplasm of B. subtilis cells. A novel solubility tag, the N-terminal domain of the lysS gene of B. subtilis coding for a lysyl-tRNA synthetase was placed at the N terminus with a cleavage site for the endoprotease HRV3C, followed by His-HRV3C or His-GST-HRV3C. The recombinant protease was purified by using a Ni-NTA column. In this study, the His-HRV3C and His-GST-HRV3C proteases were overexpressed in the cytoplasm of B. subtilis at 11% and 16% of the total cellular proteins, respectively. The specific protease activities were 8065 U/mg for His-HRV3C and 3623 U/mg for His-GST-HRV3C. The purified enzymes were used to cleave two different substrates followed by purification of the two different protein targets, the green fluorescent protein and the beta-galactosidase. In conclusion, the combination of an inducible promoter Pgrac212 and a solubility tag allowed the overexpression of the HRV3C protease in the cytoplasm of B. subtilis. The resulting fusion protein was purified using a nickel column and was active in cleaving target proteins to remove the fusion tags. This study offers an effective method for producing recombinant proteins in the cytoplasm of endotoxin-free bacteria.
Collapse
Affiliation(s)
- Vuong Duong Le
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu Str., Binh Thanh Dist., Hochiminh, Vietnam
- Department of Microbiology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Trang Thi Phuong Phan
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Laboratory of Molecular Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Tri Minh Nguyen
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu Str., Binh Thanh Dist., Hochiminh, Vietnam
| | - Luc Brunsveld
- Laboratory of Chemical Biology & Institute of Complex Molecular Systems, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, Netherlands
| | - Wolfgang Schumann
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Institute of Genetics, University of Bayreuth, 95440, Bayreuth, Germany
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam.
- Department of Microbiology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam.
| |
Collapse
|
43
|
Wang Y, Shi Y, Hu L, Du G, Chen J, Kang Z. Engineering strong and stress-responsive promoters in Bacillus subtilis by interlocking sigma factor binding motifs. Synth Syst Biotechnol 2019; 4:197-203. [PMID: 31750410 PMCID: PMC6849360 DOI: 10.1016/j.synbio.2019.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/11/2019] [Accepted: 10/29/2019] [Indexed: 01/24/2023] Open
Abstract
Prokaryotic gene expression is largely regulated on transcriptional levels with the involvement of promoters, RNA polymerase and sigma factors. Developing new promoters to customize gene transcriptional regulation becomes increasingly demanded in synthetic biology and biotechnology. In this study, we designed synthetic promoters in the Gram-positive model bacterium Bacillus subtilis by interlocking the binding motifs of σA for house-keeping gene expression and that of two alternative sigma factors σH and σB which are involved in responding post-exponential growth and general stress, respectively. The developed promoters are recognized by multiple sigma factors and hence generate strong transcriptional strength when host cells grow under normal or stressed conditions. With green fluorescent protein as the reporter, a set of strong promoters were identified, in which the transcription activities of PHA-1, PHAB-4, PHAB-7 were 18.6, 4.1, 3.3 fold of that of the commonly used promoter P43, respectively. Moreover, some of the promoters such as PHA-1, PHAB-4, PHAB-7, PBA-2 displayed increased transcriptional activities in response to high salinity or low pH. The promoters developed in this study should enrich the biotechnological toolboxes of B. subtilis.
Collapse
Affiliation(s)
- Yang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yanan Shi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Litao Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
44
|
Identification and characterization of sequence signatures in the Bacillus subtilis promoter P ylb for tuning promoter strength. Biotechnol Lett 2019; 42:115-124. [PMID: 31691164 PMCID: PMC6940355 DOI: 10.1007/s10529-019-02749-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/18/2019] [Indexed: 01/24/2023]
Abstract
Objective To thoroughly characterize the Pylb promoter and identify the elements that affect the promoter activity. Result The sequences flanking the − 35 and − 10 box of the Pylb promoter were divided into six segments, and six random-scanning mutant promoter libraries fused to an enhanced green fluorescent protein EGFP were made and analyzed by flow cytometry. Our results showed that the four nucleotides flanking the − 35 box could mostly influence the promoter activity, and this influence was related to the GC content. The promoters mutated in these regions were successfully used for expressing the gene ophc2 encoding organophosphorus hydrolase (OPHC2) and the gene katA encoding catalase (KatA). Conclusion Our work identified and characterized the sequence signatures of the Pylb promoter that could tune the promoter strength, providing further information for the potential application of this promoter. Meanwhile, the sequence signatures have the potential to be used for tuning gene expression in enzyme production, metabolic engineering, and synthetic biology. Electronic supplementary material The online version of this article (10.1007/s10529-019-02749-4) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Zhang S, Xu Z, Qin L, Kong J. Development of strong lactose/galactose-inducible expression system for Lactobacillus plantarum by optimizing promoter. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Liu H, Wang S, Song L, Yuan H, Liu K, Meng W, Wang T. Trehalose Production Using Recombinant Trehalose Synthase in Bacillus subtilis by Integrating Fermentation and Biocatalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9314-9324. [PMID: 31352776 DOI: 10.1021/acs.jafc.9b03402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trehalose, a stable nonreducing disaccharide, protects biomolecules against environmental stress. However, trehalose production using secretory trehalose synthase (TreS) by Bacillus subtilis has not been well studied. In this study, a mutant TreS was successfully secreted and expressed in B. subtilis WB800N. The extracellular enzyme activity of TreS regulated by the P43 promoter and SPPhoD signal peptide in recombinant B. subtilis WB800N reached 23080.6 ± 1119.4 U/L in a 5-L fermenter after optimizing the culture medium, while xpF, skfA, lytC, and sdpC were knocked out. To reduce maltose consumption, malP and amyE corresponding to maltose transporters were further deleted. To simplify the trehalose production process, we invented a fermentation-coupling biocatalysis process involving recombinant bacteria fermentation to secrete TreS and simultaneous conversion of maltose to trehalose by TreS and found that the conversion rate of maltose to trehalose reached 75.5%, suggesting that this is an efficient strategy for large-scale trehalose production using recombinant B. subtilis.
Collapse
Affiliation(s)
- Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Song Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Longxiang Song
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Wu Meng
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| |
Collapse
|
47
|
Zhou C, Ye B, Cheng S, Zhao L, Liu Y, Jiang J, Yan X. Promoter engineering enables overproduction of foreign proteins from a single copy expression cassette in Bacillus subtilis. Microb Cell Fact 2019; 18:111. [PMID: 31200722 PMCID: PMC6570832 DOI: 10.1186/s12934-019-1159-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/09/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bacillus subtilis is developed to be an attractive expression host to produce both secreted and cytoplasmic proteins owing to its prominent biological characteristics. Chromosomal integration is a stable expression strategy while the expression level is not ideal compared with plasmid expression. Thus, to meet the requirement of protein overexpression, promoter, as one of the key elements, is important. It is necessary to obtain an ideal promoter for overproduction of foreign proteins from a single copy expression cassette. RESULTS The activity of promoter Pylb was further enhanced by optimizing the - 35, - 10 core region and upstream sequence (UP) by substituting both sequences with consensus sequences. The final engineered promoter exhibited almost 26-fold in β-galactosidase (BgaB) activity and 195-fold in super-folded green fluorescent protein (sfGFP) intensity than that of WT. The two proteins account for 43% and 30% of intracellular proteins, respectively. The promoter was eventually tested by successful extracellular overproduction of Methyl Parathion Hydrolase (MPH) and Chlorothalonil hydrolytic dehalogenase (Chd) to a level of 0.3 g/L (144 U/mL) and 0.27 g/L (4.4 U/mL) on shake-flask culture condition. CONCLUSIONS A strong promoter was engineered for efficient chromosomally integrated expression of heterologous proteins.
Collapse
Affiliation(s)
- Chaoyang Zhou
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Bin Ye
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shan Cheng
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Leizhen Zhao
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yuanxin Liu
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xin Yan
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
48
|
Han L, Cui W, Suo F, Miao S, Hao W, Chen Q, Guo J, Liu Z, Zhou L, Zhou Z. Development of a novel strategy for robust synthetic bacterial promoters based on a stepwise evolution targeting the spacer region of the core promoter in Bacillus subtilis. Microb Cell Fact 2019; 18:96. [PMID: 31142347 PMCID: PMC6540529 DOI: 10.1186/s12934-019-1148-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023] Open
Abstract
Background Promoter evolution by synthetic promoter library (SPL) is a powerful approach to development of functional synthetic promoters to synthetic biology. However, it requires much tedious and time-consuming screenings because of the plethora of different variants in SPL. Actually, a large proportion of mutants in the SPL are significantly lower in strength, which contributes only to fabrication of a promoter library with a continuum of strength. Thus, to effectively obtain the evolved synthetic promoter exhibiting higher strength, it is essential to develop novel strategies to construct mutant library targeting the pivotal region rather than the arbitrary region of the template promoter. In this study, a strategy termed stepwise evolution targeting the spacer of core promoter (SETarSCoP) was established in Bacillus subtilis to effectively evolve the strength of bacterial promoter. Results The native promoter, PsrfA, from B. subtilis, which exhibits higher strength than the strong promoter P43, was set as the parental template. According to the comparison of conservation of the spacer sequences between − 35 box and − 10 box among a set of strong and weak native promoter, it revealed that 7-bp sequence immediately upstream of the − 10 box featured in the regulation of promoter strength. Based on the conservative feature, two rounds of consecutive evolution were performed targeting the hot region of PsrfA. In the first round, a primary promoter mutation library (pPML) was constructed by mutagenesis targeting the 3-bp sequence immediately upstream of the − 10 box of the PsrfA. Subsequently, four evolved mutants from pPML were selected to construction of four secondary promoter mutation libraries (sPMLs) based on mutagenesis of the 4-bp sequence upstream of the first-round target. After the consecutive two-step evolution, the mutant PBH4 was identified and verified to be a highly evolved synthetic promoter. The strength of PBH4 was higher than PsrfA by approximately 3 times. Moreover, PBH4 also exhibited broad suitability for different cargo proteins, such as β-glucuronidase and nattokinase. The proof-of-principle test showed that SETarSCoP successfully evolved both constitutive and inducible promoters. Conclusion Comparing with the commonly used SPL strategy, SETarSCoP facilitates the evolution process to obtain strength-evolved synthetic bacterial promoter through fabrication and screening of small-scale mutation libraries. This strategy will be a promising method to evolve diverse bacterial promoters to expand the toolbox for synthetic biology. Electronic supplementary material The online version of this article (10.1186/s12934-019-1148-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laichuang Han
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenjing Cui
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Feiya Suo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Shengnan Miao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenliang Hao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qiaoqing Chen
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Junling Guo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhongmei Liu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhemin Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
49
|
Liu X, Wang H, Wang B, Pan L. High-level extracellular protein expression in Bacillus subtilis by optimizing strong promoters based on the transcriptome of Bacillus subtilis and Bacillus megaterium. Protein Expr Purif 2018; 151:72-77. [DOI: 10.1016/j.pep.2018.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 10/14/2022]
|
50
|
Westbrook AW, Ren X, Moo‐Young M, Chou CP. Metabolic engineering ofBacillus subtilisforl‐valine overproduction. Biotechnol Bioeng 2018; 115:2778-2792. [DOI: 10.1002/bit.26789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Adam W. Westbrook
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - Xiang Ren
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - Murray Moo‐Young
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - C. Perry Chou
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| |
Collapse
|