1
|
Jørgensen JA. Tuning expression of GPCRs for the secretory pathway in the baculovirus-insect cell expression system. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184397. [PMID: 39471908 DOI: 10.1016/j.bbamem.2024.184397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
The overexpression of G-protein-coupled receptors (GPCRs) remains one of the biggest hurdles for structural studies of these proteins. To date, the most usually applied system for this task is the insect cell/baculovirus expression system. A drawback of this system, however, is the accumulation of protein that is resistant to solubilization with the commonly used mild detergent DoDecylMaltoside (DDM). In addition, poor surface expression is often observed. In this study, it is shown how an earlier AcMNPV 39K promoter, can express receptors that are found primarily on the cell membrane, as revealed by confocal microscopy, and the protein can be solubilized to a higher degree by DDM in a less aggregation-prone form, as monitored by fluorescence size-exclusion chromatography. In addition, a strong effect on the yield was observed when the AcMNPV gp67 signal sequence was used. The documentation of the 39K promoter as an improvement over the frequently used polyhedrin promoter, along with the effect of the gp67 signal sequence are important steps toward ultimately improving the expression in terms of total functional yield, while also shedding light on the nature of the process of overproduction of membrane proteins, in particular, GPCRs.
Collapse
Affiliation(s)
- Jakob Aastrup Jørgensen
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Aargau, Switzerland; Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Kim KS, Bae JS, Moon HJ, Kim DY, Woo SD. A Novel Transgenic Sf9 Cell Line for Quick and Easy Virus Quantification. INSECTS 2024; 15:686. [PMID: 39336654 PMCID: PMC11431869 DOI: 10.3390/insects15090686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
The following study was conducted to generate a transgenic Sf9 cell line for rapid and easy virus quantification in the baculovirus expression system (BES). The hr3 (homologous region 3) and 39K and p10 promoters were used as the expression structures to induce rapid and intense expression of the enhanced green fluorescent protein gene in cells in response to viral infection. Of 20 transgenic Sf9 cell lines generated using the piggyBac system, the cell line that showed the highest fluorescence expression in the shortest time in response to viral infection was selected and named Sf9-QE. The average diameter of the Sf9-QE cells was around 16 μm, which is 2 μm smaller than the average diameter of Sf9 cells, whereas the rate of cell proliferation was around 1.6 times higher in the Sf9-QE cells. Virus quantification using the Sf9-QE cell line did not produce significantly different results compared to the other cell lines; however, the time required for complete virus quantification was approximately 5.3 to 6.0 days for the Sf9-QE cells, which is around 4 to 6 days shorter than the time required for the other cell lines, enabling convenient and accurate virus quantification via fluorescence photometry within around 6.0 to 6.3 days. The properties of the Sf9-QE cells were stable for up to at least 100 passages.
Collapse
Affiliation(s)
- Kyu-Seek Kim
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jun-Su Bae
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyuk-Jin Moon
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
- IPBL Inc., Cheongju 28644, Republic of Korea
| | - Do-Young Kim
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Soo-Dong Woo
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
- IPBL Inc., Cheongju 28644, Republic of Korea
| |
Collapse
|
3
|
Tao Y, Wang J, Xiao R, Zhang Q, Guo H. Development and Evaluation of a Shrimp Virus (IHHNV)-Mediated Gene Transfer and Expression System for Shrimps. Int J Mol Sci 2024; 25:8999. [PMID: 39201685 PMCID: PMC11354869 DOI: 10.3390/ijms25168999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
An efficient gene transfer and expression tool is lacking for shrimps and shrimp cells. To solve this, this study has developed a shrimp DNA virus-mediated gene transfer and expression system, consisting of insect Sf9 cells for viral packaging, the shrimp viral vector of pUC19-IHHNV-PH-GUS and the baculoviral vector of Bacmid or Bacmid-VP28 encoding the shrimp WSSV envelope protein VP28. The pUC19-IHHNV-PH-GUS vector was constructed by assembling the genomic DNA of shrimp infectious hypodermal and hematopoietic necrosis virus (IHHNV), which has shortened inverted terminal repeats, into a pUC19 backbone, and then an expression cassette of baculoviral polyhedron (PH) promoter-driven GUS (β-glucuronidase) reporter gene was inserted immediately downstream of IHHNV for proof-of-concept. It was found that the viral vector of pUC19-IHHNV-PH-GUS could be successfully packaged into IHHNV-like infective virions in the Sf9 cells, and the gene transfer efficiency of this system was evaluated and verified in three systems of Sf9 cells, shrimp hemolymph cells and tissues of infected shrimps, but the GUS expression could only be detected in cases where the viral vector was co-transfected or co-infected with a baculovirus of Bacmid or Bacmid-VP28 due to the Bacmid-dependence of the PH promoter. Moreover, the packaging and infection efficiencies could be significantly improved when Bacmid-VP28 was used instead of Bacmid.
Collapse
Affiliation(s)
- Yiwen Tao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Y.T.); (J.W.); (R.X.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jinwu Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Y.T.); (J.W.); (R.X.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Rui Xiao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Y.T.); (J.W.); (R.X.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Qingli Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Huarong Guo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Y.T.); (J.W.); (R.X.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Bruder MR, Aucoin MG. Utility of Alternative Promoters for Foreign Gene Expression Using the Baculovirus Expression Vector System. Viruses 2022; 14:v14122670. [PMID: 36560674 PMCID: PMC9786725 DOI: 10.3390/v14122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
The baculovirus expression vector system (BEVS) is a widely used platform for recombinant protein production for use in a wide variety of applications. Of particular interest is production of virus-like particles (VLPs), which consist of multiple viral proteins that self-assemble in strict stoichiometric ratios to mimic the structure of a virus but lacks its genetic material, while a significant amount of effort has been spent on optimizing expression ratios by co-infecting cells with multiple recombinant BEVs and modulating different process parameters, co-expressing multiple foreign genes from a single rBEV may offer more promise. However, there is currently a lack of promoters available with which to optimize co-expression of each foreign gene. To address this, previously published transcriptome data was used to identify promoters that have incrementally lower expression profiles and compared by expressing model cytoplasmic and secreted proteins. Bioinformatics was also used to identify sequence determinants that may be important for late gene transcription regulation, and translation initiation. The identified promoters and bioinformatics analyses may be useful for optimizing expression of foreign genes in the BEVS.
Collapse
|
5
|
Huang J, Liu H, Xu X. Homologous recombination risk in baculovirus expression vector system. Virus Res 2022; 321:198924. [PMID: 36089109 DOI: 10.1016/j.virusres.2022.198924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
The baculovirus expression vector system (BEVS) is widely used for producing recombinant proteins. To achieve high expression level of recombinant proteins, baculoviral elements, such as enhancers, promoters, signal peptide coding sequences and 3'-UTR, have been extensively employed. There is a recombination risk derived from homologous sequences between viral genome and functional baculovirus-derived elements associated with foreign genes. Although homologous recombination have distinct biological functions, these potential adverse recombination may trigger a DNA fragment being inverted or looped out, resulting in the production of defective viruses and eventual yields declines of recombinant proteins. However, the risk of such homologous recombination has not been systematically assessed. Here, we measured the recombination rate using a promoter-less fluorescent reporter integrated with various lengths homologous of p10 coding region. Homologous fragments longer than 60 bp possess sufficient recombination probability and exerts effect on purity and integrity of virus. Shortening the length of homologous fragments and separating homologous fragments by point mutations can effectively reduce unfavorable recombination. These findings reveal a homologous recombination risk resulted from genome-homologous baculoviral elements and propose reliable strategies reducing recombination rate to facilitate viral stability and integrity in baculovirus expression vector system.
Collapse
Affiliation(s)
- Jianan Huang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Huanlei Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xiaodong Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
6
|
Grose C, Putman Z, Esposito D. A review of alternative promoters for optimal recombinant protein expression in baculovirus-infected insect cells. Protein Expr Purif 2021; 186:105924. [PMID: 34087362 PMCID: PMC8266756 DOI: 10.1016/j.pep.2021.105924] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
Generating recombinant proteins in insect cells has been made possible via the use of the Baculovirus Expression Vector System (BEVS). Despite the success of many proteins via this platform, some targets remain a challenge due to issues such as cytopathic effects, the unpredictable nature of co-infection and co-expressions, and baculovirus genome instability. Many promoters have been assayed for the purpose of expressing diverse proteins in insect cells, and yet there remains a lack of implementation of those results when reviewing the landscape of commercially available baculovirus vectors. In advancing the platform to produce a greater variety of proteins and complexes, the development of such constructs cannot be avoided. A better understanding of viral gene regulation and promoter options including viral, synthetic, and insect-derived promoters will be beneficial to researchers looking to utilize BEVS by recruiting these intricate mechanisms of gene regulation for heterologous gene expression. Here we summarize some of the developments that could be utilized to improve the expression of recombinant proteins and multi-protein complexes in insect cells.
Collapse
Affiliation(s)
- Carissa Grose
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| | - Zoe Putman
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| |
Collapse
|
7
|
Comparison of CRISPR-Cas9 Tools for Transcriptional Repression and Gene Disruption in the BEVS. Viruses 2021; 13:v13101925. [PMID: 34696355 PMCID: PMC8541072 DOI: 10.3390/v13101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
The generation of knock-out viruses using recombineering of bacmids has greatly accelerated scrutiny of baculovirus genes for a variety of applications. However, the CRISPR-Cas9 system is a powerful tool that simplifies sequence-specific genome editing and effective transcriptional regulation of genes compared to traditional recombineering and RNAi approaches. Here, the effectiveness of the CRISPR-Cas9 system for gene disruption and transcriptional repression in the BEVS was compared. Cell lines constitutively expressing the cas9 or dcas9 gene were developed, and recombinant baculoviruses delivering the sgRNA were evaluated for disruption or repression of a reporter green fluorescent protein gene. Finally, endogenous AcMNPV genes were targeted for disruption or downregulation to affect gene expression and baculovirus replication. This study provides a proof-of-concept that CRISPR-Cas9 technology may be an effective tool for efficient scrutiny of baculovirus genes through targeted gene disruption and transcriptional repression.
Collapse
|
8
|
Korn J, Schäckermann D, Kirmann T, Bertoglio F, Steinke S, Heisig J, Ruschig M, Rojas G, Langreder N, Wenzel EV, Roth KDR, Becker M, Meier D, van den Heuvel J, Hust M, Dübel S, Schubert M. Baculovirus-free insect cell expression system for high yield antibody and antigen production. Sci Rep 2020; 10:21393. [PMID: 33288836 PMCID: PMC7721901 DOI: 10.1038/s41598-020-78425-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
Antibodies are essential tools for therapy and diagnostics. Yet, production remains expensive as it is mostly done in mammalian expression systems. As most therapeutic IgG require mammalian glycosylation to interact with the human immune system, other expression systems are rarely used for production. However, for neutralizing antibodies that are not required to activate the human immune system as well as antibodies used in diagnostics, a cheaper production system would be advantageous. In our study, we show cost-efficient, easy and high yield production of antibodies as well as various secreted antigens including Interleukins and SARS-CoV-2 related proteins in a baculovirus-free insect cell expression system. To improve yields, we optimized the expression vector, media and feeding strategies. In addition, we showed the feasibility of lyophilization of the insect cell produced antibodies. Furthermore, stability and activity of the antibodies was compared to antibodies produced by Expi293F cells revealing a lower aggregation of antibodies originating from High Five cell production. Finally, the newly established High Five expression system was compared to the Expi293F mammalian expression system in regard of yield and costs. Most interestingly, all tested proteins were producible in our High Five cell expression system what was not the case in the Expi293F system, hinting that the High Five cell system is especially suited to produce difficult-to-express target proteins.
Collapse
Affiliation(s)
- Janin Korn
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Dorina Schäckermann
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Toni Kirmann
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
- Medical Faculty, Carl Ludwig Institute for Physiology, Universität Leipzig, Liebigstraße 27, 04103, Leipzig, Germany
| | - Federico Bertoglio
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Stephan Steinke
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Janyn Heisig
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
- Department Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Maximilian Ruschig
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Gertrudis Rojas
- Center of Molecular Immunology, PO Box 16040, 11300, Havana, Cuba
| | - Nora Langreder
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Kristian Daniel Ralph Roth
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Marlies Becker
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Doris Meier
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Joop van den Heuvel
- Department Structure and Function of Proteins, Helmholtz-Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Michael Hust
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Stefan Dübel
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Maren Schubert
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany.
| |
Collapse
|
9
|
Ac25 in Autographa californica multiple nucleopolyhedrovirus was crucial for progeny budded virion production. Biotechnol Lett 2019; 41:1121-1131. [DOI: 10.1007/s10529-019-02725-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/18/2019] [Indexed: 11/25/2022]
|
10
|
Bleckmann M, Schürig M, Endres M, Samuels A, Gebauer D, Konisch N, van den Heuvel J. Identifying parameters to improve the reproducibility of transient gene expression in High Five cells. PLoS One 2019; 14:e0217878. [PMID: 31170233 PMCID: PMC6553862 DOI: 10.1371/journal.pone.0217878] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
Abstract
Virus-free, transient gene expression (TGE) in High Five cells was recently presented as an efficient protein production method. However, published TGE protocols have not been standardized to a general protocol. Therefore, reproducibility and implementation of the method in other labs remains difficult. The aim of this study is to analyse the parameters determining the reproducibility of the TGE in insect cells. Here, we identified that using linear 40 kDa PEI instead of 25 kDa PEI was one of the most important aspects to improve TGE. Furthermore, DNA amount, DNA:PEI ratio, growth phase of the cells before transfection, passage number, the origin of the High-Five cell isolates and the type of cultivation medium were considered. Interestingly, a correlation of the passage number to the DNA content of single cells (ploidy) and to the transfection efficacy could be shown. The optimal conditions for critical parameters were used to establish a robust TGE method. Finally, we compared the achieved product yields in High Five cells using our improved TGE method with both the baculoviral expression system and TGE in the mammalian HEK293-6E cell line. In conclusion, the presented robust TGE protocol in High Five cells is easy to establish and produces ample amounts of high-quality recombinant protein, bridging the gap in expression level of this method to the well-established mammalian TGE in HEK293 cells as well as to the baculoviral expression vector system (BEVS).
Collapse
Affiliation(s)
- Maren Bleckmann
- Department Recombinant Protein Expression Facility, Rudolf Virchow Centre, Würzburg, Bavaria, Germany
| | - Margitta Schürig
- Department Recombinant Protein Expression, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Michelle Endres
- Department Recombinant Protein Expression Facility, Rudolf Virchow Centre, Würzburg, Bavaria, Germany
| | - Anke Samuels
- Department Recombinant Protein Expression, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Daniela Gebauer
- Department Recombinant Protein Expression, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Nadine Konisch
- Department Recombinant Protein Expression, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Joop van den Heuvel
- Department Recombinant Protein Expression, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
11
|
Premanand B, Zhong Wee P, Prabakaran M. Baculovirus Surface Display of Immunogenic Proteins for Vaccine Development. Viruses 2018; 10:E298. [PMID: 29857561 PMCID: PMC6024371 DOI: 10.3390/v10060298] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
Vaccination is an efficient way to prevent the occurrence of many infectious diseases in humans. To date, several viral vectors have been utilized for the generation of vaccines. Among them, baculovirus-categorized as a nonhuman viral vector-has been used in wider applications. Its versatile features, like large cloning capacity, nonreplicative nature in mammalian cells, and broad tissue tropism, hold it at an excellent position among vaccine vectors. In addition to ease and safety during swift production, recent key improvements to existing baculovirus vectors (such as inclusion of hybrid promoters, immunostimulatory elements, etc.) have led to significant improvements in immunogenicity and efficacy of surface-displayed antigens. Furthermore, some promising preclinical results have been reported that mirror the scope and practicality of baculovirus as a vaccine vector for human applications in the near future. Herein, this review provides an overview of the induced immune responses by baculovirus surface-displayed vaccines against influenza and other infectious diseases in animal models, and highlights the strategies applied to enhance the protective immune responses against the displayed antigens.
Collapse
Affiliation(s)
- Balraj Premanand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Poh Zhong Wee
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Mookkan Prabakaran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
12
|
Shobahah J, Xue S, Hu D, Zhao C, Wei M, Quan Y, Yu W. Quantitative phosphoproteome on the silkworm (Bombyx mori) cells infected with baculovirus. Virol J 2017. [PMID: 28629377 PMCID: PMC5477107 DOI: 10.1186/s12985-017-0783-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Bombyx mori has become an important model organism for many fundamental studies. Bombyx mori nucleopolyhedrovirus (BmNPV) is a significant pathogen to Bombyx mori, yet also an efficient vector for recombinant protein production. A previous study indicated that acetylation plays many vital roles in several cellular processes of Bombyx mori while global phosphorylation pattern upon BmNPV infection remains elusive. Method Employing tandem mass tag (TMT) labeling and phosphorylation affinity enrichment followed by high-resolution LC-MS/MS analysis and intensive bioinformatics analysis, the quantitative phosphoproteome in Bombyx mori cells infected by BmNPV at 24 hpi with an MOI of 10 was extensively examined. Results Totally, 6480 phosphorylation sites in 2112 protein groups were identified, among which 4764 sites in 1717 proteins were quantified. Among the quantified proteins, 81 up-regulated and 25 down-regulated sites were identified with significant criteria (the quantitative ratio above 1.3 was considered as up-regulation and below 0.77 was considered as down-regulation) and with significant p-value (p < 0.05). Some proteins of BmNPV were also hyperphosphorylated during infection, such as P6.9, 39 K, LEF-6, Ac58-like protein, Ac82-like protein and BRO-D. Conclusion The phosphorylated proteins were primary involved in several specific functions, out of which, we focused on the binding activity, protein synthesis, viral replication and apoptosis through kinase activity.
Collapse
Affiliation(s)
- Jauharotus Shobahah
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Shengjie Xue
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Dongbing Hu
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Cui Zhao
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Ming Wei
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Yanping Quan
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China. .,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
13
|
García-Reina A, Rodríguez-García MJ, Ramis G, Galián J. Real-time cell analysis and heat shock protein gene expression in the TcA Tribolium castaneum cell line in response to environmental stress conditions. INSECT SCIENCE 2017; 24:358-370. [PMID: 26678377 DOI: 10.1111/1744-7917.12306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 06/05/2023]
Abstract
The rust red flour beetle, Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae), is a pest of stored grain and one of the most studied insect model species. Some of the previous studies involved heat response studies in terms of survival and heat shock protein expression, which are regulated to protect other proteins against environmental stress conditions. In the present study, we characterize the impedance profile with the xCELLigence Real-Time Cell Analyzer and study the effect of increased temperature in cell growth and viability in the cell line BCIRL-TcA-CLG1 (TcA) of T. castaneum. This novel system measures cells behavior in real time and is applied for the first time to insect cells. Additionally, cells are exposed to heat shock, increased salinity, acidic pH and UV-A light with the aim of measuring the expression levels of Hsp27, Hsp68a, and Hsp83 genes. Results show a high thermotolerance of TcA in terms of cell growth and viability. This result is likely related to gene expression results in which a significant up-regulation of all studied Hsp genes is observed after 1 h of exposure to 40 °C and UV light. All 3 genes show similar expression patterns, but Hsp27 seems to be the most affected. The results of this study validate the RTCA method and reveal the utility of insect cell lines, real-time analysis and gene expression studies to better understand the physiological response of insect cells, with potential applications in different fields of biology such as conservation biology and pest management.
Collapse
Affiliation(s)
- Andrés García-Reina
- Department of Zoology and Physical Anthropology, University of Murcia, Campus Mare Nostrum, E-30100, Murcia, Spain
| | | | - Guillermo Ramis
- Department of Animal Production, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, E-30100, Murcia, Spain
| | - José Galián
- Department of Zoology and Physical Anthropology, University of Murcia, Campus Mare Nostrum, E-30100, Murcia, Spain
| |
Collapse
|
14
|
Cao L, Li X, Zheng S, Liang A, Fu Y. SfP53 and filamentous actin (F-actin) are the targets of viral pesticide AcMNPV-BmK IT (P10/PH) in host Spodoptera frugiperda 9 cells. Biotechnol Lett 2016; 38:2059-2069. [PMID: 27578392 DOI: 10.1007/s10529-016-2201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To analyze the anti-insect mechanism of viral pesticide AcMNPV-BmK IT(P10/PH) in the host Spodoptera frugiperda 9 (Sf9) cells. RESULTS Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV)- mediated expression of BmK IT, regulated by P10 protein promoter (P10) and polyhedrosis promoter (PH), promoted the replication of progeny virus in host Sf9 cells. AcMNPV-BmK IT(P10) could accelerate the budding process (or speed) of budded virus (BV) in Sf9 cells. The impact of AcMNPV-BmK IT(P10) on the nuclear polymerization of filamentous actin (F-actin) participated in regulating the accelerated budding process. Unexpectedly, both AcMNPV-BmK IT(P10) and AcMNPV-BmK IT(PH) delayed the nuclear polymerization of F-actin and promoted the clearance of F-actin in the nucleus. SfP53, an important apoptosis factor, was involved in the regulation of AcMNPV-BmK IT(P10/PH) in Sf9 cells. AcMNPV-BmK IT(P10/PH) could also delay and promote the nuclear recruitment of SfP53 after 27 h post infection (h p.i.). CONCLUSION SfP53 and F-actin are the targets of viral pesticide AcMNPV-BmK IT (P10/PH) in host Sf9 cells, which provides the experimental basis for the development of recombinant baculovirus biopesticides.
Collapse
Affiliation(s)
- Leixi Cao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Xing Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Shuhua Zheng
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
15
|
Martínez-Solís M, Gómez-Sebastián S, Escribano JM, Jakubowska AK, Herrero S. A novel baculovirus-derived promoter with high activity in the baculovirus expression system. PeerJ 2016; 4:e2183. [PMID: 27375973 PMCID: PMC4928464 DOI: 10.7717/peerj.2183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022] Open
Abstract
The baculovirus expression vector system (BEVS) has been widely used to produce a large number of recombinant proteins, and is becoming one of the most powerful, robust, and cost-effective systems for the production of eukaryotic proteins. Nevertheless, as in any other protein expression system, it is important to improve the production capabilities of this vector. The orf46 viral gene was identified among the most highly abundant sequences in the transcriptome of Spodoptera exigua larvae infected with its native baculovirus, the S. exigua multiple nucleopolyhedrovirus (SeMNPV). Different sequences upstream of the orf46 gene were cloned, and their promoter activities were tested by the expression of the GFP reporter gene using the Autographa californica nucleopolyhedrovirus (AcMNPV) vector system in different insect cell lines (Sf21, Se301, and Hi5) and in larvae from S. exigua and Trichoplusia ni. The strongest promoter activity was defined by a 120 nt sequence upstream of the ATG start codon for the orf46 gene. On average, GFP expression under this new promoter was more than two fold higher than the expression obtained with the standard polyhedrin (polh) promoter. Additionally, the orf46 promoter was also tested in combination with the polh promoter, revealing an additive effect over the polh promoter activity. In conclusion, this new characterized promoter represents an excellent alternative to the most commonly used baculovirus promoters for the efficient expression of recombinant proteins using the BEVS.
Collapse
Affiliation(s)
- María Martínez-Solís
- Department of Genetics, Universitat de València, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | | | - José M Escribano
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | | | - Salvador Herrero
- Department of Genetics, Universitat de València, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| |
Collapse
|
16
|
Maghodia AB, Geisler C, Jarvis DL. Characterization of an Sf-rhabdovirus-negative Spodoptera frugiperda cell line as an alternative host for recombinant protein production in the baculovirus-insect cell system. Protein Expr Purif 2016. [PMID: 26923062 DOI: 10.1016/j.pep.2016.02.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Cell lines derived from the fall armyworm, Spodoptera frugiperda (Sf), are widely used as hosts for recombinant protein production in the baculovirus-insect cell system (BICS). However, it was recently discovered that these cell lines are contaminated with a virus, now known as Sf-rhabdovirus [1]. The detection of this adventitious agent raised a potential safety issue that could adversely impact the BICS as a commercial recombinant protein production platform. Thus, we examined the properties of Sf-RVN, an Sf-rhabdovirus-negative Sf cell line, as a potential alternative host. Nested RT-PCR assays showed Sf-RVN cells had no detectable Sf-rhabdovirus over the course of 60 passages in continuous culture. The general properties of Sf-RVN cells, including their average growth rates, diameters, morphologies, and viabilities after baculovirus infection, were virtually identical to those of Sf9 cells. Baculovirus-infected Sf-RVN and Sf9 cells produced equivalent levels of three recombinant proteins, including an intracellular prokaryotic protein and two secreted eukaryotic glycoproteins, and provided similar N-glycosylation patterns. In fact, except for the absence of Sf-rhabdovirus, the only difference between Sf-RVN and Sf9 cells was SF-RVN produced higher levels of infectious baculovirus progeny. These results show Sf-RVN cells can be used as improved, alternative hosts to circumvent the potential safety hazard associated with the use of Sf-rhabdovirus-contaminated Sf cells for recombinant protein manufacturing with the BICS.
Collapse
Affiliation(s)
| | | | - Donald L Jarvis
- GlycoBac, LLC, Laramie, WY 82072, USA; Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
17
|
Cao MY, Kuang XX, Li HQ, Lei XJ, Xiao WF, Dong ZQ, Zhang J, Hu N, Chen TT, Lu C, Pan MH. Screening and optimization of an efficient Bombyx mori nucleopolyhedrovirus inducible promoter. J Biotechnol 2016; 231:72-80. [PMID: 27245143 DOI: 10.1016/j.jbiotec.2016.05.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/25/2022]
Abstract
Pathogen-inducible promoters have been studied extensively and widely used in resistance breeding and gene therapy. However, few reports have been published that explore the efficacy of Bombyx mori nucleopolyhedrovirus (BmNPV)-inducible promoters in antiviral research in the Bombyx mori (Lepidoptera). Here, we screened BmNPV promoters (VP1054, P33, Bm21, Bm122, 39K, P143, and P6.9) and found that the 39K promoter had the highest BmNPV-induced transcriptional activity by dual-luciferase reporter assays system. By 5' truncation analysis, two regions of 39K promoter were critical for optimal virus-inducible activity, indicated that they could serve as a candidate to produce synthetic pathogen-induced promoters. Furthermore, we enhanced the virus-inducible activity of BmNPV 39K promoter using a hybrid enhancer comprising hr3 and polh-up (designated as HP39K). Finally, we showed that RNAi regulated by HP39K promoter could significantly inhibit the proliferation of BmNPV in silkworm cells. Taken together, our results have practical value in antiviral research of silkworm and baculovirus expression system.
Collapse
Affiliation(s)
- Ming-Ya Cao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xiu-Xiu Kuang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Hai-Qing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xue-Jiao Lei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Wen-Fu Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jun Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Institute of Life Sciences, Chongqing Medical University, Chongqing 400716, China
| | - Nan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ting-Ting Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
18
|
Maghodia AB, Geisler C, Jarvis DL. Characterization of an Sf-rhabdovirus-negative Spodoptera frugiperda cell line as an alternative host for recombinant protein production in the baculovirus-insect cell system. Protein Expr Purif 2016; 122:45-55. [PMID: 26923062 DOI: 10.1016/j.pep.2016.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 01/23/2023]
Abstract
Cell lines derived from the fall armyworm, Spodoptera frugiperda (Sf), are widely used as hosts for recombinant protein production in the baculovirus-insect cell system (BICS). However, it was recently discovered that these cell lines are contaminated with a virus, now known as Sf-rhabdovirus [1]. The detection of this adventitious agent raised a potential safety issue that could adversely impact the BICS as a commercial recombinant protein production platform. Thus, we examined the properties of Sf-RVN, an Sf-rhabdovirus-negative Sf cell line, as a potential alternative host. Nested RT-PCR assays showed Sf-RVN cells had no detectable Sf-rhabdovirus over the course of 60 passages in continuous culture. The general properties of Sf-RVN cells, including their average growth rates, diameters, morphologies, and viabilities after baculovirus infection, were virtually identical to those of Sf9 cells. Baculovirus-infected Sf-RVN and Sf9 cells produced equivalent levels of three recombinant proteins, including an intracellular prokaryotic protein and two secreted eukaryotic glycoproteins, and provided similar N-glycosylation patterns. In fact, except for the absence of Sf-rhabdovirus, the only difference between Sf-RVN and Sf9 cells was SF-RVN produced higher levels of infectious baculovirus progeny. These results show Sf-RVN cells can be used as improved, alternative hosts to circumvent the potential safety hazard associated with the use of Sf-rhabdovirus-contaminated Sf cells for recombinant protein manufacturing with the BICS.
Collapse
Affiliation(s)
| | | | - Donald L Jarvis
- GlycoBac, LLC, Laramie, WY 82072, USA; Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
19
|
Fundamentals of Baculovirus Expression and Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:187-97. [DOI: 10.1007/978-3-319-27216-0_12] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Abstract
Insect systems, including the baculovirus-insect cell and Drosophila S2 cell systems are widely used as recombinant protein production platforms. Historically, however, no insect-based system has been able to produce glycoproteins with human-type glycans, which often influence the clinical efficacy of therapeutic glycoproteins and the overall structures and functions of other recombinant glycoprotein products. In addition, some insect cell systems produce N-glycans with immunogenic epitopes. Over the past 20 years, these problems have been addressed by efforts to glyco-engineer insect-based expression systems. These efforts have focused on introducing the capacity to produce complex-type, terminally sialylated N-glycans and eliminating the capacity to produce immunogenic N-glycans. Various glyco-engineering approaches have included genetically engineering insect cells, baculoviral vectors, and/or insects with heterologous genes encoding the enzymes required to produce various glycosyltransferases, sugars, nucleotide sugars, and nucleotide sugar transporters, as well as an enzyme that can deplete GDP-fucose. In this chapter, we present an overview and history of glyco-engineering in insect expression systems as a prelude to subsequent chapters, which will highlight various methods used for this purpose.
Collapse
|
21
|
A new insect cell glycoengineering approach provides baculovirus-inducible glycogene expression and increases human-type glycosylation efficiency. J Biotechnol 2014; 182-183:19-29. [PMID: 24768688 DOI: 10.1016/j.jbiotec.2014.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/26/2014] [Accepted: 04/14/2014] [Indexed: 12/19/2022]
Abstract
Insect cells are often glycoengineered using DNA constructs encoding foreign glyocoenzymes under the transcriptional control of the baculovirus immediate early promoter, ie1. However, we recently found that the delayed early baculovirus promoter, 39K, provides inducible and higher levels of transgene expression than ie1 after baculovirus infection (Lin and Jarvis, 2013). Thus, the purpose of this study was to assess the utility of the 39K promoter for insect cell glycoengineering. We produced two polyclonal transgenic insect cell populations in parallel using DNA constructs encoding foreign glycoenzymes under either ie1 (Sfie1SWT) or 39K (Sf39KSWT) promoter control. The surface of Sfie1SWT cells was constitutively sialylated, whereas the Sf39KSWT cell surface was only strongly sialylated after baculovirus infection, indicating Sf39KSWT cells were inducibly-glycoengineered. All nine glycogene-related transcript levels were induced by baculovirus infection of Sf39KSWT cells and most reached higher levels in Sf39KSWT than in Sfie1SWT cells at early times after infection. Similarly, galactosyltransferase activity, sialyltransferase activity, and sialic acid levels were induced and reached higher levels in baculovirus-infected Sf39KSWT cells. Finally, two different recombinant glycoproteins produced by baculovirus-infected Sf39KSWT cells had lower proportions of paucimannose-type and higher proportions of sialylated, complex-type N-glycans than those produced by baculovirus-infected Sfie1SWT cells. Thus, the 39K promoter provides baculovirus-inducible expression of foreign glycogenes, higher glycoenzyme activity levels, and higher human-type N-glycan processing efficiencies than the ie1 promoter, indicating that this delayed early baculovirus promoter has great utility for insect cell glycoengineering.
Collapse
|
22
|
Engineering cells to improve protein expression. Curr Opin Struct Biol 2014; 26:32-8. [PMID: 24704806 DOI: 10.1016/j.sbi.2014.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 12/22/2022]
Abstract
Cellular engineering of bacteria, fungi, insect cells and mammalian cells is a promising methodology to improve recombinant protein production for structural, biochemical, and commercial applications. Increased understanding of the host organism biology has suggested engineering strategies targeting bottlenecks in transcription, translation, protein processing and secretory pathways, as well as cell growth and survival. A combination of metabolic engineering and synthetic biology has been used to improve the properties of cells for protein production, which has resulted in enhanced yields of multiple protein classes.
Collapse
|