1
|
Keyser S, Marcu D, Davidse MTD, Bennett M, Petrik L, Maree L. Human sperm as an in vitro toxicity model: a versatile tool for assessing the risk of environmental contaminants. Arch Toxicol 2025:10.1007/s00204-025-04035-x. [PMID: 40317336 DOI: 10.1007/s00204-025-04035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/19/2025] [Indexed: 05/07/2025]
Abstract
Contaminants of emerging concern (CECs) pose a significant threat to human and ecosystem health due to their persistence, bioaccumulation in higher trophic levels, and potential toxicity. While in vivo models are commonly used for toxicity screening, developing alternative in vitro techniques for rapid environmental risk assessment is essential. Spermatozoa, with their compartmentalized structure, measurable characteristics and sensitivity to environmental changes, offer potential as an in vitro model for toxicity screening. We evaluated the impact of selected CECs, including pharmaceuticals and pesticides, on sperm function in highly motile sperm subpopulations selected from donor semen. Standardised protocols were applied to assess various sperm functional parameters after 1-4 h of exposure to either individual or a mixture of chemicals. Our findings revealed that total motility is insufficient to detect subtle toxic effect. More responsive measures, such as sperm kinematics, induced hyperactivation, viability, mitochondrial membrane potential (MMP) and presence of reactive oxygen species (ROS) should be assessed to elucidate the effect of a toxic environment on sperm function. Most chemicals exerted a dose-response effect on sperm parameters, with the higher concentrations resulting in the most negative effects. The inherent sensitivity of human spermatozoa to oxidative stress, mitochondrial damage and energy metabolism, makes them a robust model for assessing toxicity. These features highlight their utility as an alternative cellular model for evaluating CECs and advancing risk assessment methodologies.
Collapse
Affiliation(s)
- Shannen Keyser
- School of Nursing, Faculty of Community and Health Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Daniel Marcu
- School of Biological Sciences, University of East Anglia, Norwhich, NR4 7TJ, UK
| | - Morgan T D Davidse
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Monique Bennett
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.
| |
Collapse
|
2
|
Sürmeli Y, Vardar-Yel N, Tütüncü HE. Recent advances of structure, function, and engineering of carboxylesterases for the pharmaceutical industry: A minireview. Int J Biol Macromol 2025; 307:142206. [PMID: 40107535 DOI: 10.1016/j.ijbiomac.2025.142206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Carboxylesterases have a wide range of applications due to their catalytic efficiency, robust structure, and broad substrate specificity. These enzymes, which can hydrolyze carboxylic acid esters, amides, and thioesters, stand out with their regio- and enantioselective properties. They play a crucial role in synthesizing pharmaceutical intermediates, including secondary and tertiary alcohols, α-hydroxy acids, and various bioactive compounds. However, in some cases, the enantioselectivity of carboxylesterases may be insufficient to achieve conversions with the purity required by the pharmaceutical industry. This review summarizes the crucial role of carboxylesterases, particularly in the pharmaceutical field, focusing on the classification, structure, and engineering approaches. After introducing the main families of carboxylesterases, the structural studies are presented to give a comprehensive insight into the active site architecture and related key determinants for enantioselectivity. The protein engineering studies to improve the enantioselectivity of carboxylesterases are discussed along with solvent engineering and immobilization applications.
Collapse
Affiliation(s)
- Yusuf Sürmeli
- Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, 59030 Tekirdağ, Turkey
| | - Nurcan Vardar-Yel
- Department of Medical Laboratory Techniques, Altınbaş University, 34145 İstanbul, Turkey
| | - Havva Esra Tütüncü
- Department of Nutrition and Dietetics, Malatya Turgut Özal University, 44210 Malatya, Turkey.
| |
Collapse
|
3
|
Hu J, Li R, Zhang J, Cao L, Lei H, Zhao R, Lin L, Li XY, Zhang W, Li B. Deciphering the N 1-substituent effects on biodegradation of sulfonamides: Novel insights revealed from molecular biology and computational chemistry approaches. WATER RESEARCH 2025; 274:123037. [PMID: 39740328 DOI: 10.1016/j.watres.2024.123037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/27/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Elucidating biodegradation mechanisms and predicting pollutant reactivities are essential for advancing the application of biodegradation engineering to address the challenge of thousands of emerging contaminants. Molecular biology and computational chemistry are powerful tools for this purpose, enabling the investigation of biochemical reactions at both the gene and atomic levels. This study employs the biodegradation of ten sulfonamide antibiotics as a case study to demonstrate the integration of genomics and quantum chemistry approaches in exploring the biodegradation behavior of emerging contaminants. The isolated functional strain, Paenarthrobacter sp., could completely degrade all ten model sulfonamides under aerobic conditions. These compounds share a 4-aminobenzenesulfonamide core but differ in N1-substituent rings. Despite structural variations, all sulfonamides follow a consistent degradation pathway, yielding aminated heterocycles as end products. This pathway involves key steps such as dehydrogenation activation, ipso-hydroxylation, and the cleavage of S-N and S-C bonds, with the latter being particularly influenced by the N1-substituents. Heterocyclic structures affect biodegradation rates by altering the electronic density at the C3 and N1 atoms of sulfonamides. Substituents with higher electron-donating potential and lower Gibbs free energy barriers for S-C and C-N bond cleavage significantly enhance biodegradation efficiency. This work not only deciphers the universal biodegradation mechanism of sulfonamides but also offers theoretical insights for predicting the biodegradation behavior and pattern of emerging contaminants. These findings contribute to the effective removal of emerging contaminants from aquatic environments, advancing the practical application of biotreatment technologies.
Collapse
Affiliation(s)
- Jiahui Hu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey, 07102-1982, USA
| | - Ruiyang Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiayu Zhang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lijia Cao
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huaxin Lei
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Renxin Zhao
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lin Lin
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiao-Yan Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey, 07102-1982, USA
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Yu H, Wang Y, Wang Y, Niu Y, Zhou J, Li J, Chen J, Du G, Zhao X. Metabolic engineering of yeast to efficiently synthesize heme and hemoproteins: recent advance and prospects. FEMS Yeast Res 2025; 25:foaf019. [PMID: 40228812 PMCID: PMC12020473 DOI: 10.1093/femsyr/foaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/30/2025] [Accepted: 04/12/2025] [Indexed: 04/16/2025] Open
Abstract
Owing to the potential for commercialization, the recombinant production of hemoproteins has been heavily investigated. Yeast is a superior host for the synthesis of eukaryotic hemoproteins with optimal pathway to facilitate heme delivery and utilization, as well as suitable environment for the post-translational folding and modification. The efficient binding of heme is the critical determinant for the various functions of hemeproteins. Thus, many metabolic engineering strategies have been employed to modify heme synthetic pathways and balance the intracellular metabolic burden. This paper provides a comprehensive review on the improvement of heme supply, the enhancement of hemoprotein expression, and the current efforts to harmonize the synthesis of heme and the expression of protein components in yeast. These insights offer a solid foundation for the development of yeast chassis for the efficient production of high-active hemoproteins in the future.
Collapse
Affiliation(s)
- Haibo Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunpeng Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yijie Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yueheng Niu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Wang Y, Li X, You L, Hu S, Fang J, Hu B, Chen Z. Enhancement of PFAS stress tolerance and wastewater treatment efficiency by arbuscular mycorrhizal fungi in constructed wetlands. ENVIRONMENTAL RESEARCH 2024; 263:120148. [PMID: 39424036 DOI: 10.1016/j.envres.2024.120148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
This study aims to explore the effects of arbuscular mycorrhizal fungi (AMF) on the growth of Iris pseudacorus L. and treatment efficacy in constructed wetlands (CWs) subjected to stress from per-and poly-fluoroalkyl substances (PFASs). The findings reveal that PFASs exposure induces oxidative damage and inhibits the growth of I. pseudacorus. However, AMF symbiosis enhances plant tolerance to PFAS stress by modulating oxidative responses. AMF treatment not only promoted plant growth but also improved photosynthetic efficiency under PFAS exposure. Compared to non-AMF treatment, those with AMF treatment exhibited significantly increased levels of peroxidases and antioxidant enzymes, including peroxidase and superoxide dismutase, along with a notable reduction in lipid peroxidation. Additionally, AM symbiosis markedly enhanced the efficacy of CWs in the remediation of wastewater under PFASs-induced stress, with removal efficiencies for COD, TP, TN, and NH4+-N increasing by 19-34%, 67-180%, 106-137%, and 25-95%, respectively, compared to the AMF- treatments. In addition, the metabolic pathways of PFASs appeared to be influenced by their carbon chain length, with long-chain PFASs like perfluorooctanoic acid (PFOA) and perfluoro anionic acid (PFNA) exhibiting more complex pathways compared to short-chain PFASs such as perfluoro acetic acid (PFPeA), and perfluoro hexanoic acid (PFHpA). These results suggest that AMF-plant symbiosis can enhance plant resilience against PFAS-induced stress and improve the pollutant removal efficiency of CWs. This study highlights the significant potential of AMF in enhancing environmental remediation strategies, providing new insights for the more effective management of PFAS-contaminated ecosystems.
Collapse
Affiliation(s)
- Yuchen Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xue Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lexing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shanshan Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jinfu Fang
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha - Suchdol, 16500, Czech Republic; School of Resource and Environmental Sciences, Wuhan University of Technology, Wuhan, 430079, China
| | - Bo Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha - Suchdol, 16500, Czech Republic
| |
Collapse
|
6
|
Nguyen LTT, Nguyen TT, Nguyen LTH, Mai TX, Bui ND, Chu NM, Nguyen HQ, Nguyen NTT, Tran TV. Boosting the catalytic activity of nanostructured ZnFe 2O 4 spinels incorporating with Cu 2+ for photo-Fenton degradation under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67368-67381. [PMID: 38097835 DOI: 10.1007/s11356-023-31469-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/06/2023] [Indexed: 01/01/2025]
Abstract
Methylene blue (MB) is hazardous in natural water because this dye causes serious diseases that endangers public health and ecosystems. Photocatalytic degradation is a prominent technique for achieving the effective elimination of dye pollutants from wastewater and contribute vitally to ecology and environmental safety. Herein, Cu2+-substituted ZnFe2O4 nanomaterials (CuxZn1-xFe2O4; x = 0, 0.1, 0.2, 0.3, 0.4, 0.6) were synthesized, characterized, and applied for the photocatalytic degradation of MB dye beneath visible light with the assistance of hydrogen peroxide (H2O2). The feature of the photo-catalysts was determined by XRD, EDX, FTIR, DRS, BET, SEM, and TEM techniques. Incorporation of Cu2+ ions changed the crystalline phase, particle size, morphology, and surface area. The photocatalysis condition was optimized with the following major factors, the amout of doping Cu2+ ions, H2O2 concentration, adsorbent dosage, and MB concentration. As a result, the photocatalytic MB degradation efficiency by Cu0.6Zn0.4Fe2O4 catalyst was 99.83% within 90 min under LED light (λ ≥ 420 nm), which was around 4 folds higher than that of pure ZnFe2O4. The photo-Fenton kinetics were in accordance with the pseudo-first-order kinetic model (R2 = 0.981), giving the highes rate constant of 0.034 min-1. It can be, therefore, concluded that Cu2+ substitution considerably boosted the photocatalytic activity of CuxZn1-xFe2O4 ZnFe2O4, suggesting a bright prospect of Cu0.6Zn0.4Fe2O4 as a photo-catalyst in the dyes wastewater treatment.
Collapse
Affiliation(s)
- Loan T T Nguyen
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Vietnam
| | - Thom T Nguyen
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Vietnam
| | - Lan T H Nguyen
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Vietnam
| | - Truong X Mai
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Vietnam
| | - Nguyen D Bui
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Vietnam
| | - Nhuong M Chu
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Vietnam
| | - Hai Q Nguyen
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Vietnam
| | - Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam.
| |
Collapse
|
7
|
Rajamanickam R, Selvasembian R. Mechanistic insights into the potential application of Scenedesmus strains towards the elimination of antibiotics from wastewater. BIORESOURCE TECHNOLOGY 2024; 410:131289. [PMID: 39153695 DOI: 10.1016/j.biortech.2024.131289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Scenedesmus strains have been reported to have the potential to tolerate and bioremediate antibiotic pollutants through bioadsorption, bioaccumulation, and biodegradation mechanism from the wastewater medium. Hormesis effects have been observed in the Scenedesmus strains when exposed to different concentrations of antibiotic pollutants. Lower concentrations of antibiotic pollutants are known to trigger growth-stimulating effects by triggering adaptive responses such as increased metabolic activity and activating detoxifying mechanisms leading to the biotransformation pathway. The present review examines the existing body of information pertaining to biotransformation pathways tolerance, hormesis effects, and efficiency of Scenedesmus strains in removing various antibiotic pollutants. This review provides critical information on using Scenedesmus species to treat antibiotic-polluted wastewater by boosting growth and resilience tolerant doses and avoiding toxicity at higher doses.
Collapse
Affiliation(s)
- Ricky Rajamanickam
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.
| |
Collapse
|
8
|
Sun Y, Guo M, Hu S, Jia Y, Zhu W, Yamauchi Y, Wang C. A carbon-based bifunctional heterogeneous enzyme: toward sustainable pollution control. Chem Sci 2024:d4sc03752a. [PMID: 39386913 PMCID: PMC11459632 DOI: 10.1039/d4sc03752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
We present a study on an immobilized functional enzyme (IFE), a novel biomaterial with exceptional sustainability in enzyme utility, widely employed across various fields worldwide. However, conventional carriers are prone to eroding the active functional domain of the IFE, thereby weakening its intrinsic enzyme activity. Consequently, there is a burgeoning interest in developing next-generation IFEs. In this study, we engineered a carbon-based bifunctional heterogeneous enzyme (MIP-AMWCNTs@lipase) for the intelligent recognition of di(2-ethylhexyl)phthalate (DEHP), a common plasticizer. The heterogeneous enzyme contains a bifunctional structural domain that both enriches and degrades DEHP. We investigated its dual-response performance for the enrichment and specific removal of DEHP. The imprinting factor of the carrier for DEHP was 3.4, demonstrating selectivity for DEHP. The removal rate reached up to 94.2% over a short period. The heterogeneous enzyme exhibited robust activity, catalytic efficiency, and excellent stability under harsh environmental conditions, retaining 77.7% of its initial lipase activity after 7 cycles. Furthermore, we proposed a stepwise heterogeneous enzyme reaction kinetic model based on the Michaelis-Menten equation to enhance our understanding of enzyme reaction kinetics. Our study employs a dual-effect recognition strategy of molecular blotting and enzyme immobilization to establish a method for the removal of organic pollutants. These findings hold significant implications for the fields of biomaterials and environmental science.
Collapse
Affiliation(s)
- Yuting Sun
- College of Environmental and Resource Sciences, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Shengnan Hu
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Yankun Jia
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Wenkai Zhu
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8601 Japan
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 South Korea
| | - Chaohai Wang
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction Pingdingshan Henan 467036 China
| |
Collapse
|
9
|
Hoang TD, Van Anh N, Yusuf M, Ali S A M, Subramanian Y, Hoang Nam N, Minh Ky N, Le VG, Thi Thanh Huyen N, Abi Bianasari A, K Azad A. Valorization of Agriculture Residues into Value-Added Products: A Comprehensive Review of Recent Studies. CHEM REC 2024; 24:e202300333. [PMID: 39051717 DOI: 10.1002/tcr.202300333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/08/2024] [Indexed: 07/27/2024]
Abstract
Global agricultural by-products usually go to waste, especially in developing countries where agricultural products are usually exported as raw products. Such waste streams, once converted to "value-added" products could be an additional source of revenue while simultaneously having positive impacts on the socio-economic well-being of local people. We highlight the utilization of thermochemical techniques to activate and convert agricultural waste streams such as rice and straw husk, coconut fiber, coffee wastes, and okara power wastes commonly found in the world into porous activated carbons and biofuels. Such activated carbons are suitable for various applications in environmental remediation, climate mitigation, energy storage, and conversions such as batteries and supercapacitors, in improving crop productivity and producing useful biofuels.
Collapse
Affiliation(s)
- Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 10000, Vietnam
- Vietam National Univeristy Hanoi -, School of Interdisciplinary Sciences and Arts, 144 Cau Giay, Hanoi, 10000, Hanoi, Vietnam
| | - Nguyen Van Anh
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 10000, Vietnam
| | - Mohammad Yusuf
- Clean Energy Technologies Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, 140401, Punjab, India
| | - Muhammed Ali S A
- Fuel Cell Institute, (CETRI), Universiti Kebangsasn Malaysia, 43600, Bangi, Malaysia
| | - Yathavan Subramanian
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| | - Nguyen Hoang Nam
- Faculty of Environment, Climate change and Urban Studies, National Economics University, 10000, Hanoi, Vietnam
| | - Nguyen Minh Ky
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Vietnam
| | | | - Alien Abi Bianasari
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| | - Abul K Azad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
10
|
Kumar A, Singh P, Nguyen VH, Le QV, Ahamad T, Thakur S, Matsagar BM, Kaya S, Maslov MM, Wu KCW, Nguyen LH, Raizada P. DFT and experimental studies of the facet-dependent oxygen vacancies modulated WS 2/BiOCl-OV S-scheme structure for enhanced photocatalytic removal of ciprofloxacin from wastewater. ENVIRONMENTAL RESEARCH 2024; 250:118519. [PMID: 38382660 DOI: 10.1016/j.envres.2024.118519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The present study explores visible light-assisted photodegradation of ciprofloxacin hydrochloride (CIP) antibiotic as a promising solution to water pollution. The focus is on transforming the optical and electronic properties of BiOCl through the generation of oxygen vacancies (OVs) and the exposure of (110) facets, forming a robust S-scheme heterojunction with WS2. The resultant OVs mediated composite with an optimal ratio of WS2 and BiOCl-OV (4-WS2/BiOCl-OV) demonstrated remarkable efficiency (94.3%) in the visible light-assisted photodegradation of CIP antibiotic within 1.5 h. The CIP degradation using 4-WS2/BiOCl-OV followed pseudo-first-order kinetics with the rate constant of 0.023 min-1, outperforming bare WS2, BiOCl, and BiOCl-OV by 8, 6, and 4 times, respectively. Density functional theory (DFT) analysis aligned well with experimental results, providing insights into the structural arrangement and bandgap analysis of the photocatalysts. Liquid chromatography-mass spectrometry (LC-MS) analysis utilized for identifying potentially degraded products while scavenging experiments and electron paramagnetic resonance (EPR) spin trapping analysis elucidated the S-scheme charge transfer mechanism. This research contributes to advancing the design of oxygen vacancy-mediated S-scheme systems in the realm of photocatalysis, with potential implications for addressing water pollution concerns.
Collapse
Affiliation(s)
- Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anamro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University (NTU), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Savas Kaya
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Mikhail M Maslov
- Nanoengineering in Electronics, Spintronics and Photonics Institute, National Research Nuclear University "MEPhI", Kashirskoe Shosse 31, Moscow, 115409, Russia
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University (NTU), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Lan Huong Nguyen
- Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
11
|
Ebsa G, Gizaw B, Admassie M, Degu T, Alemu T. The role and mechanisms of microbes in dichlorodiphenyltrichloroethane (DDT) and its residues bioremediation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00835. [PMID: 38560709 PMCID: PMC10972831 DOI: 10.1016/j.btre.2024.e00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Environmental contamination with dichlorodiphenyltrichloroethane (DDT) has sever effects on the ecosystem worldwide. DDT is a recalcitrant synthetic chemical with high toxicity and lipophilicity. It is also bioaccumulated in the food chain and causes genotoxic, estrogenic, carcinogenic, and mutagenic effects on aquatic organisms and humans. Microbial remediation mechanism and its enzymes are very important for removing DDT from environment. DDT and its main residues dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD) can biodegrade slowly in soil and water. To enhance this process, a number of strategies are proposed, such as bio-attenuation, biostimulation, bioaugmentation and the manipulation of environmental conditions to enhance the activity of microbial enzymes. The addition of organic matter and flooding of the soil enhance DDT degradation. Microbial candidates for DDT remediation include micro-algae, fungi and bacteria. This review provide brief information and recommendation on microbial DDT remediation and its mechanisms.
Collapse
Affiliation(s)
- Girma Ebsa
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| | - Birhanu Gizaw
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| | - Mesele Admassie
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| | - Tizazu Degu
- Department of Crop Protection, Ethiopian Institute of Agricultural Research, P. O. Box: 2003, Addis Ababa, Ethiopia
| | - Tesfaye Alemu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Yamaguchi H, Miyazaki M. Bioremediation of Hazardous Pollutants Using Enzyme-Immobilized Reactors. Molecules 2024; 29:2021. [PMID: 38731512 PMCID: PMC11085290 DOI: 10.3390/molecules29092021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Bioremediation uses the degradation abilities of microorganisms and other organisms to remove harmful pollutants that pollute the natural environment, helping return it to a natural state that is free of harmful substances. Organism-derived enzymes can degrade and eliminate a variety of pollutants and transform them into non-toxic forms; as such, they are expected to be used in bioremediation. However, since enzymes are proteins, the low operational stability and catalytic efficiency of free enzyme-based degradation systems need improvement. Enzyme immobilization methods are often used to overcome these challenges. Several enzyme immobilization methods have been applied to improve operational stability and reduce remediation costs. Herein, we review recent advancements in immobilized enzymes for bioremediation and summarize the methods for preparing immobilized enzymes for use as catalysts and in pollutant degradation systems. Additionally, the advantages, limitations, and future perspectives of immobilized enzymes in bioremediation are discussed.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Department of Food and Life Science, School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
| | - Masaya Miyazaki
- HaKaL Inc., Kurume Research Park, 1488-4 Aikawa, Kurume, Fukuoka 839-0864, Japan;
| |
Collapse
|
13
|
Ahmad S, Ahmad S, Ali S, Esa M, Khan A, Yan H. Recent Advancements and Unexplored Biomedical Applications of Green Synthesized Ag and Au Nanoparticles: A Review. Int J Nanomedicine 2024; 19:3187-3215. [PMID: 38590511 PMCID: PMC10999736 DOI: 10.2147/ijn.s453775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Green synthesis of silver (Ag) and gold (Au) nanoparticles (NPs) has acquired huge popularity owing to their potential applications in various fields. A large number of research articles exist in the literature describing the green synthesis of Ag and Au NPs for biomedical applications. However, these findings are scattered, making it time-consuming for researchers to locate promising advancements in Ag and Au NPs synthesis and their unexplored biomedical applications. Unlike other review articles, this systematic study not only highlights recent advancements in the green synthesis of Ag and Au NPs but also explores their potential unexplored biomedical applications. The article discusses the various synthesis approaches for the green synthesis of Ag and Au NPs highlighting the emerging developments and novel strategies. Then, the article reviews the important biomedical applications of green synthesized Ag and Au NPs by critically evaluating the expected advantages. To expose future research direction in the field, the article describes the unexplored biomedical applications of the NPs. Finally, the articles discuss the challenges and limitations in the green synthesis of Ag and Au NPs and their biomedical applications. This article will serve as a valuable reference for researchers, working on green synthesis of Ag and Au NPs for biomedical applications.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Muhammad Esa
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
14
|
Dhanapal A, Thiruvengadam M, Vairavanathan J, Venkidasamy B, Easwaran M, Ghorbanpour M. Nanotechnology Approaches for the Remediation of Agricultural Polluted Soils. ACS OMEGA 2024; 9:13522-13533. [PMID: 38559935 PMCID: PMC10975622 DOI: 10.1021/acsomega.3c09776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Soil pollution from various anthropogenic and natural activities poses a significant threat to the environment and human health. This study explored the sources and types of soil pollution and emphasized the need for innovative remediation approaches. Nanotechnology, including the use of nanoparticles, is a promising approach for remediation. Diverse types of nanomaterials, including nanobiosorbents and nanobiosurfactants, have shown great potential in soil remediation processes. Nanotechnology approaches to soil pollution remediation are multifaceted. Reduction reactions and immobilization techniques demonstrate the versatility of nanomaterials in mitigating soil pollution. Nanomicrobial-based bioremediation further enhances the efficiency of pollutant degradation in agricultural soils. A literature-based screening was conducted using different search engines, including PubMed, Web of Science, and Google Scholar, from 2010 to 2023. Keywords such as "soil pollution, nanotechnology, nanoremediation, heavy metal remediation, soil remediation" and combinations of these were used. The remediation of heavy metals using nanotechnology has demonstrated promising results and offers an eco-friendly and sustainable solution to address this critical issue. Nanobioremediation is a robust strategy for combatting organic contamination in soils, including pesticides and herbicides. The use of nanophytoremediation, in which nanomaterials assist plants in extracting and detoxifying pollutants, represents a cutting-edge and environmentally friendly approach for tackling soil pollution.
Collapse
Affiliation(s)
- Anand
Raj Dhanapal
- Chemistry
and Bioprospecting Division, Institute of Forest Genetics and Tree
Breeding (IFGTB), Forest Campus, Indian
Council of Forestry Research and Education (ICFRE), Coimbatore 641 002, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department
of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic
of Korea
- Center
for Global Health Research, Saveetha Medical College, Saveetha Institute
of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Jayavarshini Vairavanathan
- Department
of Biotechnology, Karpagam Academy of Higher
Education, Coimbatore 641 021, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department
of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals,
Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil
Nadu, India
| | - Maheswaran Easwaran
- Department
of Research Analytics, Saveetha Dental College and Hospitals, Saveetha
Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Mansour Ghorbanpour
- Department
of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran
- Institute
of Nanoscience and Nanotechnology, Arak
University, Arak 38156-8-8349, Iran
| |
Collapse
|
15
|
Saleem MH, Mfarrej MFB, Khan KA, Alharthy SA. Emerging trends in wastewater treatment: Addressing microorganic pollutants and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169755. [PMID: 38176566 DOI: 10.1016/j.scitotenv.2023.169755] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
This review focuses on the challenges and advances associated with the treatment and management of microorganic pollutants, encompassing pesticides, industrial chemicals, and persistent organic pollutants (POPs) in the environment. The translocation of these contaminants across multiple media, particularly through atmospheric transport, emphasizes their pervasive nature and the subsequent ecological risks. The urgency to develop cost-effective remediation strategies for emerging organic contaminants is paramount. As such, wastewater-based epidemiology and the increasing concern over estrogenicity are explored. By incorporating conventional and innovative wastewater treatment techniques, this article highlights the integration of environmental management strategies, analytical methodologies, and the importance of renewable energy in waste treatment. The primary objective is to provide a comprehensive perspective on the current scenario, imminent threats, and future directions in mitigating the effects of these pollutants on the environment. Furthermore, the review underscores the need for international collaboration in developing standardized guidelines and policies for monitoring and controlling these microorganic pollutants. It advocates for increased investment in research and development of advanced materials and technologies that can efficiently remove or neutralize these contaminants, thereby safeguarding environmental health and promoting sustainable practice.
Collapse
Affiliation(s)
- Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates.
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Saif A Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
16
|
Gong X, Tian L, Wang P, Wang Z, Zeng L, Hu J. Microplastic pollution in the groundwater under a bedrock island in the South China sea. ENVIRONMENTAL RESEARCH 2023; 239:117277. [PMID: 37778600 DOI: 10.1016/j.envres.2023.117277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Groundwater is the only freshwater resource on islands. Research on microplastic pollution in groundwater on islands is scarce. This study is the first to explore microplastic pollution in the groundwater under a bedrock island (Dawanshan Island) located in the South China Sea. The influence of hydrogeological factors on the distribution, source, and ageing features of microplastics in the groundwater were investigated. Despite the small scale of industrial and agricultural activities on the island, the amount of microplastics in the groundwater ranged from 34 to 64 particles/L, with over 80% of the microplastics being polyester fibres with diameters smaller than 2 mm, which is comparable to those in coastal cities. These microplastics were originated from inland plastic usage, rather than from the surrounding sea, which was confirmed by the lack of seawater intrusion on the island. Owing to the low permeability of granite, microplastics were mainly distributed in the water of the loose layer of porous sediment, and their quantity decreased with depth. In addition, the abundance of microplastics in pore groundwater increased with an increase in the velocity of groundwater flow. The severity of microplastic pollution in the groundwater increased with an increase and decrease in the content of total dissolved solids and dissolved oxygen, respectively. The microplastics originated from plastic waste disposed of on the island, rather than from seawater intrusion. Also, through groundwater infiltration into exposed soil at recharge areas, artificial wells at residential areas, and water exchange with surface water at valley areas. Microplastics buried in the groundwater aged faster along the migration path of the groundwater. These microplastics threaten the safety of people and plants on the island through exposure resulting from the extraction of groundwater for irrigation, while they endanger marine life through submarine groundwater discharge.
Collapse
Affiliation(s)
- Xing Gong
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong Province, 511400, China
| | - Lingning Tian
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong Province, 511400, China
| | - Peng Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong Province, 511400, China.
| | - Zhongzhong Wang
- Guangdong Geological Survey Institute, Guangzhou, Guangdong Province, 510030, China
| | - Lvdan Zeng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong Province, 511400, China
| | - Jiyuan Hu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong Province, 511400, China
| |
Collapse
|
17
|
Gnanasekaran L, Manoj D, Rajendran S, Gracia F, Jalil AA, Chen WH, Soto-Moscoso M, Gracia-Pinilla MA. Mesoporous NiO/Ni 2O 3 nanoflowers for favorable visible light photocatalytic degradation of 4-chlorophenol. ENVIRONMENTAL RESEARCH 2023; 236:116790. [PMID: 37517483 DOI: 10.1016/j.envres.2023.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
The present study highlights the treatment of industrial effluent, which is one of the most life-threatening factors. Herein, for the first time, two types of NiO (green and black) photocatalysts were prepared by facile chemical precipitation and thermal decomposition methods separately. The synthesized NiO materials were demonstrated with various instrumental techniques for finding their characteristics. The X-ray diffraction studies (XRD) and X-ray photoelectron spectroscopy (XPS) revealed the presence of Ni2O3 in black NiO material. The transmission electron microscopic (TEM) images engrained the nanospherical shaped green NiO and nanoflower shaped black NiO/Ni2O3 materials. Further, the band gap of black NiO nanoflower was 2.9 eV compared to green NiO having 3.8 eV obtained from UV-vis spectroscopy. Meanwhile, both NiO catalysts were employed for visible light degradation, which yields a 60.3% efficiency of black NiO comparable to a 4.3% efficiency of green NiO within 180 min of exposure. The higher degrading efficiency of black NiO was due to the presence of Ni2O3 and the development of pores, which was evident from the Barrett-Joyner-Halenda (BJH) method. Type IV hysteresis was observed in black NiO nanoflowers with high surface area and pore size measurements. This black NiO/Ni2O3 synthesized from the thermal decomposition method has promoted better photocatalytic degradation of 4-chlorophenol upon exposure to visible light and is applicable for other industrial pollutants.
Collapse
Affiliation(s)
- Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India
| | - Devaraj Manoj
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India; Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - F Gracia
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 6th Floor, Santiago, Chile
| | - A A Jalil
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | | | - M A Gracia-Pinilla
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico-Matemáticas, Av. Universidad, Cd. Universitaria, San Nicolás de los Garza, NL, Mexico; University of Twente, Mesoscale Chemical System, MESA+ Institute, Enschede 7500AE, The Netherlands
| |
Collapse
|
18
|
Elmerhi N, Al-Maqdi K, Athamneh K, Mohammed AK, Skorjanc T, Gándara F, Raya J, Pascal S, Siri O, Trabolsi A, Shah I, Shetty D, Ashraf SS. Enzyme-immobilized hierarchically porous covalent organic framework biocomposite for catalytic degradation of broad-range emerging pollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132261. [PMID: 37572608 DOI: 10.1016/j.jhazmat.2023.132261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Efficient enzyme immobilization is crucial for the successful commercialization of large-scale enzymatic water treatment. However, issues such as lack of high enzyme loading coupled with enzyme leaching present challenges for the widespread adoption of immobilized enzyme systems. The present study describes the development and bioremediation application of an enzyme biocomposite employing a cationic macrocycle-based covalent organic framework (COF) with hierarchical porosity for the immobilization of horseradish peroxidase (HRP). The intrinsic hierarchical porous features of the azacalix[4]arene-based COF (ACA-COF) allowed for a maximum HRP loading capacity of 0.76 mg/mg COF with low enzyme leaching (<5.0 %). The biocomposite, HRP@ACA-COF, exhibited exceptional thermal stability (∼200 % higher relative activity than the free enzyme), and maintained ∼60 % enzyme activity after five cycles. LCMSMS analyses confirmed that the HRP@ACA-COF system was able to achieve > 99 % degradation of seven diverse types of emerging pollutants (2-mercaptobenzothiazole, paracetamol, caffeic acid, methylparaben, furosemide, sulfamethoxazole, and salicylic acid)in under an hour. The described enzyme-COF system offers promise for efficient wastewater bioremediation applications.
Collapse
Affiliation(s)
- Nada Elmerhi
- Department of Chemistry, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates; Center for Catalysis and Separations, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates
| | - Khadega Al-Maqdi
- Department of Chemistry, United Arab Emirates University, Abu Dhabi, the United Arab Emirate
| | - Khawlah Athamneh
- Department of Biology, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates
| | - Abdul Khayum Mohammed
- Department of Chemistry, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates
| | - Tina Skorjanc
- Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, 5270 Ajdovscina, Slovenia
| | - Felipe Gándara
- Instituto de Ciencia de Materiales de Madrid-CSIC, C/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Jesus Raya
- Membrane Biophysics and NMR, Institute of Chemistry, University of Strasbourg - CNRS, Rue Blaise, Pascal 1, Strasbourg, France
| | - Simon Pascal
- Aix Marseille University, UMR 7325 CNRS, Centre Interdisciplinaire de Nanosciences de Marseille (CINaM), Campus de Luminy, 13288 Marseille cedex 09, France
| | - Olivier Siri
- Aix Marseille University, UMR 7325 CNRS, Centre Interdisciplinaire de Nanosciences de Marseille (CINaM), Campus de Luminy, 13288 Marseille cedex 09, France
| | - Ali Trabolsi
- Chemistry Program & NYUAD Water Research Center, New York University Abu Dhabi (NYUAD), 129188 Abu Dhabi, the United Arab Emirates
| | - Iltaf Shah
- Department of Chemistry, United Arab Emirates University, Abu Dhabi, the United Arab Emirate
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates; Center for Catalysis and Separations, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates.
| | - Syed Salman Ashraf
- Department of Biology, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates; Center for Biotechnology, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates; Advanced Materials Chemistry Center, Khalifa University, PO Box: 127788, Abu Dhabi, the United Arab Emirates.
| |
Collapse
|
19
|
Bani-Melhem K, Elektorowicz M, Tawalbeh M, Al Bsoul A, El Gendy A, Kamyab H, Yusuf M. Integrating of electrocoagulation process with submerged membrane bioreactor for wastewater treatment under low voltage gradients. CHEMOSPHERE 2023; 339:139693. [PMID: 37536541 DOI: 10.1016/j.chemosphere.2023.139693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Treating and reusing wastewater has become an essential aspect of water management worldwide. However, the increase in emerging pollutants such as polycyclic aromatic hydrocarbons (PAHs), which are presented in wastewater from various sources like industry, roads, and household waste, makes their removal difficult due to their low concentration, stability, and ability to combine with other organic substances. Therefore, treating a low load of wastewater is an attractive option. The study aimed to address membrane fouling in the submerged membrane bioreactor (SMBR) used for wastewater treatment. An aluminum electrocoagulation (EC) device was combined with SMBR as a pre-treatment to reduce fouling. The EC-SMBR process was compared with a conventional SMBR without EC, fed with real grey water. To prevent impeding biological growth, low voltage gradients were utilized in the EC deviceThe comparison was conducted over 60 days with constant transmembrane pressure and infinite solid retention time (SRT). In phase I, when the EC device was operated at a low voltage gradient (0.64 V/cm), no significant improvement in the pollutants removal was observed in terms of color, turbidity, and chemical oxygen demand (COD). Nevertheless, during phase II, a voltage gradient of 1.26 V/cm achieved up to 100%, 99.7%, 92%, 94.1%, and 96.5% removals in the EC-SMBR process in comparison with 95.1%, 95.4%, 85%, 91.7% and 74.2% removals in the SMBR process for turbidity, color, COD, ammonia nitrogen (NH3-N), total phosphorus (TP), respectively. SMBR showed better anionic surfactant (AS) removal than EC-SMBR. A voltage gradient of 0.64 V/cm in the EC unit significantly reduced fouling by 23.7%, while 1.26 V/cm showed inconsistent results. Accumulation of Al ions negatively affected membrane performance. Low voltage gradients in EC can control SMBR fouling if Al concentration is controlled. Future research should investigate EC-SMBR with constant membrane flux for large-scale applications, considering energy consumption and operating costs.
Collapse
Affiliation(s)
- Khalid Bani-Melhem
- Water Technology Unit (WTU), Center for Advanced Materials (CAM). Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Maria Elektorowicz
- Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 Blvd de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada
| | - Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Abeer Al Bsoul
- Al-Balqa Applied University, Al-Huson University College, Department of Chemical Engineering, Jordan
| | - Ahmed El Gendy
- Environmental Engineering Program, Department of Construction and Architectural Engineering, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| |
Collapse
|
20
|
Adigüzel AO, Könen-Adigüzel S, Cilmeli S, Mazmancı B, Yabalak E, Üstün-Odabaşı S, Kaya NG, Mazmancı MA. Heterologous expression, purification, and characterization of thermo- and alkali-tolerant laccase-like multicopper oxidase from Bacillus mojavensis TH309 and determination of its antibiotic removal potential. Arch Microbiol 2023; 205:287. [PMID: 37454356 DOI: 10.1007/s00203-023-03626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Laccases or laccase-like multicopper oxidases have great potential in bioremediation to oxidase phenolic or non-phenolic substrates. However, their inability to maintain stability in harsh environmental conditions and against non-substrate compounds is one of the main reasons for their limited use. The gene (mco) encoding multicopper oxidase from Bacillus mojavensis TH309 were cloned into pET14b( +), expressed in Escherichia coli, and purified as histidine tagged enzyme (BmLMCO). The molecular weight of the enzyme was about 60 kDa. The enzyme exhibited laccase-like activity toward 2,6-dimethoxyphenol (2,6-DMP), syringaldazine (SGZ), and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The highest enzyme activity was recorded at 80 °C and pH 8. BmLMCO showed a half-life of ~ 305, 99, 50, 46, 36, and 20 min at 40, 50, 60, 70, 80, and 90 °C, respectively. It retained more than 60% of its activity after pre-incubation in the range of pH 5-12 for 60 min. The enzyme activity significantly increased in the presence of 1 mM of Cu2+. Moreover, BmLMCO tolerated various chemicals and showed excellent compatibility with organic solvents. The Michaelis constant (Km) and the maximum velocity (Vmax) values of BmLMCO were 0.98 mM and 93.45 µmol/min, respectively, with 2,6-DMP as the substrate. BmLMCO reduced the antibacterial activity of cefprozil, gentamycin, and erythromycin by 72.3 ± 1.5%, 79.6 ± 6.4%, and 19.7 ± 4.1%, respectively. This is the first revealing shows the recombinant production of laccase-like multicopper oxidase from any B. mojavensis strains, its biochemical properties, and potential for use in bioremediation.
Collapse
Affiliation(s)
- Ali Osman Adigüzel
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey.
| | | | - Sümeyye Cilmeli
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey
| | - Birgül Mazmancı
- Department of Biology, Faculty of Science, Mersin University, Mersin, Turkey
| | - Erdal Yabalak
- Department of Chemistry Technology, Vocational School of Technical Sciences, Mersin University, Mersin, Turkey
| | - Sevde Üstün-Odabaşı
- Department of Environmental Engineering, Ondokuz Mayıs University, Samsun, Turkey
| | - Nisa Gül Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey
| | | |
Collapse
|