1
|
Popp S, Beitzke D, Strassl A, Kronberger C, Kammerlander A, Duca F, Loewe C, Hoffner M, Heidinger BH, Beitzke D. Evaluation of Extracellular Volume and Coronary Artery Disease in Cardiac Amyloidosis Using Photon-Counting CT. Invest Radiol 2025:00004424-990000000-00330. [PMID: 40279664 DOI: 10.1097/rli.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
OBJECTIVES In cardiac amyloidosis (CA) protein misfolding and consecutive storage into the extracellular myocardial compartment causes left ventricular hypertrophy and, in later stages of the disease, heart failure. The aim of this study was to compare extracellular volume (ECV) measurements obtained from photon-counting CT (PCCT) to the imaging reference cardiac magnetic resonance imaging (CMR) and to evaluate coronary artery disease (CAD) in a CA cohort. MATERIALS AND METHODS Thirty CA patients (mean age 77.5 +/- 7.9 years) underwent clinically indicated coronary CT angiography (CCTA) for the evaluation of CAD on a first-generation PCCT including a late-phase scan for assessment of ECV. ECV in PCCT was derived using 2 different techniques: (I) a single-energy (SE) technique, based on attenuation changes between the precontrast calcium scoring scan and delayed CCTA in the equilibrium phase (II) a dual-energy (DE) technique, based on iodine density maps from the delayed scan. Both methods were compared with CMR-derived ECV. Statistical analysis included repeated-measures analysis of variance (RM-ANOVA) with Bonferroni-adjusted pairwise comparisons. Correlations between methods were assessed using Pearson's correlation coefficient, and agreement was evaluated using Bland-Altman analysis. RESULTS CMR exhibited the highest mean ECV value (42.93 ± 10.14), followed by the SE method (42.5 ± 9.1), while the DE method yielded the lowest ECV values (40.7 ± 9.2). When compared with CMR, ECV obtained via the DE method was significantly lower (MDiff = -2.24, P = 0.04). In contrast, no significant difference was observed between CMR and the SE method (MDiff = 0.43, P = 1.00). Differences between the DE and SE methods were significant (MDiff = -1.82, P < 0.001). Despite these differences, all 3 methods demonstrated excellent positive correlations. The strongest correlation was observed between the DE and SE methods (r = 0.98, P < 0.001), indicating high consistency in their measurements. Comparatively, the correlation between CMR and DE (r = 0.892, P < 0.001) was slightly stronger than that between CMR and SE methods (r = 0.882, P < 0.001). CAD was present in 29 (97.0%) CA patients with a mean Agatston score of 1086 ± 1398 (range 0-6848.5). Despite this high mean plaque burden and 14 (47.6%) patients presenting with atrial fibrillation, image quality was preserved in 29 (97.0%) patients with 17 (57.6%) of the patients having nonobstructive CAD. CONCLUSIONS Compared to the imaging reference standard CMR, ECV derived from the DE and SE methods via PCCT demonstrated excellent positive correlations with CMR. The DE method exhibited minor differences compared to CMR, which were clinically not relevant. CAD with an extensive burden of calcified plaque was highly prevalent in CA; however, 57.6% of patients presented with nonobstructive CAD. Therefore, PCCT is a valuable tool for imaging both the coronary arteries and myocardial structure in CA.
Collapse
Affiliation(s)
- Sabine Popp
- From the Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (S.P., D.B., A.S., C.L., M.H., B.H., D.B.); and Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria (C.K., A.K., F.D.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Liu J, Zhang X, Lv R, Zhang X, Wang R, Zeng X. Predictive value of extracellular volume fraction determined using enhanced computed tomography for pathological grading of clear cell renal cell carcinoma: a preliminary study. Cancer Imaging 2025; 25:49. [PMID: 40186299 PMCID: PMC11969730 DOI: 10.1186/s40644-025-00866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
OBJECTIVE To explore the potential of using the extracellular volume fraction (ECV), measured through enhanced computed tomography (CT), as a tool for determining the pathological grade of clear cell renal cell carcinoma (ccRCC). METHODS This retrospective study, approved by the institutional review board, included 65 patients (median age: 58.40 ± 10.84 years) who were diagnosed with ccRCC based on the nucleolar grading of the International Society of Urological Pathology (ISUP). All patients underwent preoperative abdominal enhanced CT between January 2022 and August 2024. CT features from the unenhanced, corticomedullary, nephrographic, and delayed phases were analyzed, and the extracellular volume fraction (ECV) of ccRCC was calculated by measuring CT values from regions of interest in both the unenhanced and nephrographic phases. Statistical significance was evaluated for differences in these parameters across the four ISUP grades. Additionally, diagnostic efficiency was assessed using receiver operating characteristic (ROC) curve analysis. RESULTS The ECV showed significant differences across the four ISUP grades of ccRCC, its potential as an important predictor of high-grade ccRCC (P = 0.035). The ROC curve analysis indicated that ECV exhibited the highest diagnostic efficacy for assessing the lower- and higher- pathological grade of ccRCC, with an area under the ROC curve of 0.976. The optimal diagnostic threshold for ECV was determined to be 41.64%, with a sensitivity of 91.31% and a specificity of 97.62%. CONCLUSIONS ECV derived from enhanced CT has the potential to function as an in vivo biomarker for distinguishing between lower- and higher-grade ccRCC. This quantitative measure provides diagnostic value that extends beyond traditional qualitative CT features, offering a more precise and objective assessment of tumor grade.
Collapse
Affiliation(s)
- Jian Liu
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing & Cognitive Intelligence, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Ministry of Education, Guizhou University, No. 2708, Huaxi Avenue, Guiyang, 550025, Guizhou, China
- Department of nuclear medicine, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China
| | - Xunlan Zhang
- Department of nuclear medicine, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China
| | - Rui Lv
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China
| | - Xiaoyong Zhang
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China
| | - Rongpin Wang
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China
| | - Xianchun Zeng
- Department of nuclear medicine, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
3
|
Kojima T, Yamasaki Y, Nishigake D, Shirasaka T, Kondo M, Hioki K, Kamitani T, Kato T, Ishigami K. Clinical utility of non-gated 4-min delayed dual-energy CT for myocardial extracellular volume quantification. Br J Radiol 2025; 98:600-606. [PMID: 39918967 DOI: 10.1093/bjr/tqaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/26/2024] [Accepted: 01/25/2025] [Indexed: 02/09/2025] Open
Abstract
OBJECTIVES To develop and validate the myocardial extracellular volume (ECV) obtained from non-electrocardiography (ECG)-gated delayed CT images acquired 4 min post-contrast infusion (4-min-non-ECG-ECV) compared with the ECV obtained from ECG-gated delayed CT images acquired 10 min post-contrast infusion (Conv-ECV). METHODS We retrospectively analysed 29 patients (males: 21) after a comprehensive CT protocol of both 4-min-non-ECG-ECV and Conv-ECV on a dual-layer CT scanner. The mean volume of contrast medium administered was 90 ± 11.8 mL, and the average heart rate during the CT examinations was 74.2 ± 18.2 bpm. Two independent observers calculated the respective 4-min-non-ECG-ECV and Conv-ECV. We determined the correlation between the ECV obtained by the 2 methods and conducted a Bland-Altman analysis to identify systematic errors and determine the limits of agreement (LOA) between the 4-min-non-ECG-ECV and Conv-ECV values. RESULTS The respective median ECV values for observer 1 were 27.3 for 4-min-non-ECG-ECV and 26.5 for Conv-ECV; for observer 2, they were 27.8 and 27.1. The correlation between the methods was 0.97 for both observers (P < .01). The Bland-Altman plots for observers 1 and 2 demonstrated a minor bias (-0.2% and -0.5%, respectively), with the 95% LOA ranges at -4.4% to 4.0% and -5.0% to 4.0%, respectively. CONCLUSION The 4-min-non-ECG-ECV provided ECV values comparable to those obtained by Conv-ECV. ADVANCES IN KNOWLEDGE Myocardial ECV quantification is feasible using a non-gated, 4-min delayed dual-energy CT scan with an already established CT acquisition method. This approach achieves ECV accuracy comparable to that of the conventional CT-ECV calculation method (gated 10-min delayed imaging) while enhancing clinical efficacy and diagnostic throughput.
Collapse
Affiliation(s)
- Tsukasa Kojima
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuzo Yamasaki
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daisuke Nishigake
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Takashi Shirasaka
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Masatoshi Kondo
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazuhito Hioki
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Takeshi Kamitani
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Toyoyuki Kato
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
4
|
Martuszewski A, Paluszkiewicz P, Poręba R, Gać P. Clinical Significance of Extracellular Volume of Myocardium (ECV) Assessed by Computed Tomography: A Systematic Review and Meta-Analysis. J Clin Med 2025; 14:2066. [PMID: 40142874 PMCID: PMC11942809 DOI: 10.3390/jcm14062066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Extracellular volume (ECV) of the myocardium, a biomarker of interstitial space and fibrosis, plays a critical role in cardiac disease diagnosis and prognosis. Although cardiac magnetic resonance imaging (MRI) is the gold standard for ECV assessment, computed tomography (CT) offers a viable alternative, particularly in patients with contraindications to MRI. This study aimed to assess whether CT-derived ECV is systematically elevated in cardiac diseases associated with myocardial fibrosis. Methods: A systematic search of PubMed and Web of Science up to January 2023 identified 364 studies, including 16 from registers and 4 from manual searches. After exclusions, 73 studies were included in the systematic review. Of these, 15 provided quantitative data on group sizes, mean ECV values, standard deviations, and imaging modalities (CTA, DECT, LIE-DECT) and were analyzed in the meta-analysis. Standardized mean differences (SMD) were calculated using Cochrane Handbook formulas. Statistical analyses employed random-effects models (R version 4.4.2). Results: The pooled analysis showed that ECV was significantly higher in pathological groups compared to controls (SMD 1.60; 95% CI: 1.23-1.96; I2 = 84.6%). Elevated ECV correlated with worse clinical outcomes, including higher mortality in heart failure and advanced myocardial fibrosis in amyloidosis and cardiomyopathies. Subgroup analyses demonstrated that advanced CT techniques (DECT, LIE-DECT) and CTA provided comparable diagnostic accuracy. Conclusions: CT-derived ECV is a reliable, non-invasive marker of myocardial fibrosis, offering diagnostic and prognostic value similar to MRI. Standardizing CT protocols and conducting multicenter studies are essential to validate its broader clinical application.
Collapse
Affiliation(s)
- Adrian Martuszewski
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-345 Wrocław, Poland
- Department of Neurology, Specialist Hospital in Walbrzych, 58-309 Wałbrzych, Poland
| | - Patrycja Paluszkiewicz
- Department of Neurology, Specialist Hospital in Walbrzych, 58-309 Wałbrzych, Poland
- Department of Emergency Medical Service, Wroclaw Medical University, Bartla 5, 50-367 Wrocław, Poland
| | - Rafał Poręba
- Department of Biological Principles of Physical Activity, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Paweł Gać
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-345 Wrocław, Poland
- Centre of Diagnostic Imaging, 4th Military Hospital, Weigla 5, 50-981 Wrocław, Poland
| |
Collapse
|
5
|
Kidoh M, Oda S, Tabata N, Kuyama N, Oguni T, Takashio S, Hayashi H, Yamaguchi S, Nakaura T, Nagayama Y, Nakato K, Izumiya Y, Tsujita K, Hirai T. CT-derived extracellular volume fraction in aortic stenosis, cardiac amyloidosis, and dual pathology. Eur Heart J Cardiovasc Imaging 2025; 26:509-517. [PMID: 39657958 DOI: 10.1093/ehjci/jeae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/24/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
AIMS To investigate CT-derived extracellular volume fraction (CT-ECV) in patients with lone aortic stenosis (AS), dual pathology of AS and transthyretin cardiac amyloidosis (AS-ATTR), and lone ATTR, and to examine the diagnostic performance and optimal cut-off values of CT-ECV for differentiating between patients with lone AS and AS-ATTR and between patients with lone AS and lone ATTR. METHODS AND RESULTS This retrospective study included consecutive patients with severe AS (including lone AS and AS-ATTR) and lone ATTR who underwent CT-ECV analysis and technetium 99 m pyrophosphate (99mTc-PYP) scintigraphy. The diagnostic performance of CT-ECV for detecting cardiac amyloidosis was evaluated using the area under the receiver operating characteristic curve (AUC). Of 138 patients (mean age, 80 ± 8; 96 men), 55 had lone AS, 19 had AS-ATTR, and 64 had lone ATTR. CT-derived extracellular volume fraction of patients with lone AS was 31 ± 5%. CT-derived extracellular volume fraction was significantly lower in patients with AS-ATTR than lone ATTR (45 ± 12% vs. 53 ± 13%, P = 0.04). The AUC for differentiating patients with AS-ATTR from lone AS was lower than for lone ATTR from lone AS [0.90 (95% CI: 0.81, 0.96) vs. 0.95 (95% CI: 0.90, 0.98)]. The cut-off values of CT-ECV for differentiation between patients with lone AS and AS-ATTR were lower than those between patients with lone AS and lone ATTR [36.6% vs. 38.5% (Youden index)]. There was no significant difference in the proportion of 99mTc-PYP scintigraphy grade between patients with AS-ATTR and lone ATTR (P = 0.20). CONCLUSION Despite no significant difference in degree of ATTR between patients with AS-ATTR and lone ATTR, CT-ECV of patients with dual AS-ATTR pathology was significantly lower than that of patients with lone ATTR. The diagnostic performance and optimal cut-off values of CT-ECV for differentiating between patients with lone AS and AS-ATTR were lower than those between patients with lone AS and lone ATTR.
Collapse
Affiliation(s)
- Masafumi Kidoh
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Noriaki Tabata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Naoto Kuyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tetsuya Oguni
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hidetaka Hayashi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Shinpei Yamaguchi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kengo Nakato
- Department of Medical Image Analysis, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
6
|
Meng Q, Zhao L, Sun X, Wang Y, Yu L, Schoepf UJ, Varga-Szemes A, Kravchenko D, Wang Y, Liu H, Zhang Y, Xu L, Yu X, Guo Y, Chen J, Feng D, Bo K, Gao Y, Lu B. Development and validation of a radiomics model for detecting cardiac amyloidosis at coronary CT angiography. Eur Heart J Cardiovasc Imaging 2025:jeaf071. [PMID: 40036823 DOI: 10.1093/ehjci/jeaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/23/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
AIMS To investigate the diagnostic performance of CT-based radiomics in detecting cardiac amyloidosis (CA) in patients with diffuse myocardial thickening. METHODS AND RESULTS Patients with diffuse myocardial thickening who underwent coronary CT angiography were retrospectively enrolled from five hospitals. Patients from one hospital were randomly divided into training and internal test cohorts at a 7:3 ratio, and the other 4 hospitals constituted the external test cohort. The diagnosis of CA followed established guidelines. Regions of interest of myocardium were delineated to extract radiomics features to construct the radiomics model and myocardial CT attenuation was measured. The diagnostic performance and clinical utility of the radiomics model and myocardial CT attenuation were compared with the area under the curve (AUC) and decision curve analysis (DCA). The correlation between radiomics score and left ventricular function was analyzed. A total of 378 patients (median age, 57 years; 257 men) were enrolled. Ten features were selected to construct the radiomics model. The AUCs of radiomics model were significantly higher than myocardial CT attenuation in the training (0.95 vs. 0.58, P < 0.001), internal test (0.95 vs. 0.59, P < 0.001), and external test cohorts (0.91 vs. 0.64, P < 0.001). DCA indicated the radiomics model provided a greater net benefit than myocardial CT attenuation across cohorts. Radiomics scores were correlated with n-terminal proB-type natriuretic peptide and left ventricular diastolic diameter across cohorts (P < 0.05). CONCLUSION The radiomics model exhibited good diagnostic performance for CA detection in patients with hypertrophic phenotypes, outperforming myocardial CT attenuation.
Collapse
Affiliation(s)
- Qingchao Meng
- Department of Radiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, #167 Bei-Li-Shi Street, Beijing 100037, China
| | - Li Zhao
- Department of Radiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, #167 Bei-Li-Shi Street, Beijing 100037, China
| | - Xiaoxin Sun
- Nuclear Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, #167 Bei-Li-Shi Street, Beijing 100037, China
| | - Yang Wang
- Medical Research & Biometrics Center, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, #167 Bei-Li-Shi Street, Beijing 100037, China
| | - Lu Yu
- Department of Radiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, #167 Bei-Li-Shi Street, Beijing 100037, China
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
| | - Dmitrij Kravchenko
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Laboratory Bonn (QILaB), Bonn, Germany
| | - Yining Wang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yan Zhang
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xianbo Yu
- CT Collaboration, Siemens Healthineers Ltd, Beijing, China
| | - Yubo Guo
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiayu Chen
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Dong Feng
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kairui Bo
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yang Gao
- Department of Radiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, #167 Bei-Li-Shi Street, Beijing 100037, China
| | - Bin Lu
- Department of Radiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, #167 Bei-Li-Shi Street, Beijing 100037, China
| |
Collapse
|
7
|
Marques N, Aguiar Rosa S, Cordeiro F, Menezes Fernandes R, Ferreira C, Bento D, Brito D, Cardim N, Lopes L, Azevedo O. Portuguese recommendations for the management of transthyretin amyloid cardiomyopathy (Part 1 of 2): Screening, diagnosis and treatment. Developed by the Task Force on the management of transthyretin amyloid cardiomyopathy of the Working Group on Myocardial and Pericardial Diseases of the Portuguese Society of Cardiology. Rev Port Cardiol 2025; 44 Suppl 1:7-48. [PMID: 39956765 DOI: 10.1016/j.repc.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 02/18/2025] Open
Affiliation(s)
- Nuno Marques
- Cardiology Department, Unidade Local de Saúde do Alentejo Central, Portugal; Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Portugal; ABC-RI - Algarve Biomedical Center Research Institute, Portugal; Active Ageing Competence Center, Portugal.
| | - Sílvia Aguiar Rosa
- Cardiology Department, Hospital de Santa Marta, Unidade Local de Saúde São José, Lisboa, Portugal; Centro Clínico Académico de Lisboa, Lisboa, Portugal; Nova Medical School, Lisboa, Portugal
| | - Filipa Cordeiro
- Cardiology Department, Hospital Senhora da Oliveira, Guimarães, Portugal
| | | | - Catarina Ferreira
- Cardiology Department, Hospital de S. Pedro, Unidade Local de Saúde de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Dina Bento
- Cardiology Department, Hospital de Faro, Unidade Local de Saúde do Algarve, Portugal
| | - Dulce Brito
- Cardiology Department, Hospital de Santa Maria, Lisboa, Portugal; CCUL@RISE, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Cardim
- Cardiology Department, Hospital CUF-Descobertas, Lisbon, Portugal; Nova Medical School, Lisboa, Portugal
| | - Luís Lopes
- Institute of Cardiovascular Science, University College London, UK; St Bartholomew's Hospital, Barts Heart Centre, London, UK
| | - Olga Azevedo
- Cardiology Department, Hospital Senhora da Oliveira, Guimarães, Portugal
| |
Collapse
|
8
|
Bartoli A, Gnasso C, Palmisano A, Bettinelli A, Vignale D, Esposito A. Myocardial Characterization on CT: Late Iodine Enhancement and Extracellular Volume. Echocardiography 2025; 42:e70108. [PMID: 39963992 DOI: 10.1111/echo.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 02/03/2025] [Indexed: 05/10/2025] Open
Abstract
Myocardial tissue characterization is fundamental in diagnosing, treating, and managing various cardiac diseases. In recent years, cardiac computed tomography (CCT) emerged as a valuable alternative to cardiac magnetic resonance (CMR) for myocardial tissue characterization, with the possibility to detect myocardial scar and quantify the extracellular volume fraction in a single CT study with the advantage of combined coronary arteries evaluation, shorter scanning time, and less susceptibility to device artifacts compared to CMR. However, CCT is typically affected by a lower contrast-to-noise ratio and potentially increased radiation exposure. Therefore, a deep understanding of the available technology and the strategies for acquisition optimization is of fundamental importance to improve image quality and accuracy, while minimizing radiation exposure. This review summarizes principles of myocardial characterization on CCT, acquisition protocols according to the different technologies available including the dual-energy CT and the innovative photon-counting detector CT, and setting of clinical utility.
Collapse
Affiliation(s)
- Axel Bartoli
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Radiology, TIMONE Hospital, AP-HM, Marseille, France
- CRMBM - UMR CNRS 7339, Aix-Marseille University, Marseille, France
| | - Chiara Gnasso
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Palmisano
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Bettinelli
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Davide Vignale
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
9
|
Liu S, Hua X, Zhao Y, Mo H, Chen X, Wang W, Li Y, Zhao Q, Yan J, Song J. Left ventricular posterior wall hypertrophy leads to poor prognosis of hypertrophic obstructive cardiomyopathy in children: a cohort study. Int J Surg 2025; 111:771-780. [PMID: 38905490 PMCID: PMC11745586 DOI: 10.1097/js9.0000000000001862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVE The modified Morrow operation for hypertrophic obstructive cardiomyopathy (HOCM) in children has a favorable outcome, but some children still have a poor prognosis after the procedure. In this study, the authors aimed to investigate the application of cardiac computed tomography (CCT) to construct a three-dimensional (3D) model of the left ventricle (LV) and analyze the association between hypertrophy in different parts of the LV and poor prognosis. METHODS The authors retrospectively analyzed 57 children with HOCM from April 2015 to October 2022, among whom 16 underwent preoperative CCT examination. All children underwent the modified Morrow surgery in our center. The authors defined heart failure, malignant ventricular arrhythmia, and recurrent left ventricular outflow tract obstruction (LVOTO) as adverse events. The authors performed a retrospective Cox analysis and conducted genetic testing. A 3D model of the LV was built through the standard 17-segment method and analyzing the high-risk factors. RESULTS Seventeen (29.8%) had adverse events during follow-up. Multivariate Cox analysis revealed that genetic mutation (HR: 5.634, 95% CI: 1.663-19.086, P =0.005), Noonan syndrome (HR: 3.770, 95% CI: 1.245-11.419, P =0.019), preoperational systolic anterior motion (HR: 4.596, 95% CI: 1.532-13.792, P =0.007)and mid-ventricular obstruction (HR: 4.763, 95% CI: 1.538-14.754, P =0.007) were high-risk factors, suggesting that the degree of hypertrophy in the LV is associated with poor prognosis. By analyzing the CCT with a 3D model, children with poor prognosis have more hypertrophy in basal-inferior ( P =0.014), mid-inferoseptal ( P =0.044), and mid-inferior ( P =0.017). It suggests that a more hypertrophied posterior left ventricular wall portends a worse prognosis. CONCLUSION Even after modified Morrow surgery, the prognostic impact of genetic mutation remains significant. Moreover, the degree of hypertrophy of the posterior wall in the LV was also related to the postoperative prognosis through CCT combined with 3D technology. It provides surgeons guiding to evaluate the overall prognosis and the treatment plan before surgery.
Collapse
Affiliation(s)
- Shun Liu
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xiumeng Hua
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yiqi Zhao
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Han Mo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, People’s Republic of China
| | - Xiao Chen
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Weiteng Wang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yijing Li
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Qian Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Jun Yan
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
- Department of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Jiangping Song
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, People’s Republic of China
| |
Collapse
|
10
|
Kadoya Y, Omaygenc MO, Chow B, Small GR. Reproducibility of myocardial extracellular volume quantification using dual-energy computed tomography in patients with cardiac amyloidosis. J Cardiovasc Comput Tomogr 2025; 19:74-80. [PMID: 39368897 DOI: 10.1016/j.jcct.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Quantifying myocardial extracellular volume (ECV) using computed tomography (CT) has been shown to be useful in the evaluation of cardiac amyloidosis. However, the reproducibility of CT measurements for myocardial ECV, is not well-established in patients with proven cardiac amyloidosis. METHODS This prospective single-center study enrolled cardiac amyloidosis patients to undergo dual-energy CT for myocardial fibrosis assessment. Delayed imaging at 7 and 8 min post-contrast and independent evaluations by two blinded cardiologists were performed for ECV quantification using 16-segment (ECVglobal) and septal sampling (ECVseptal). Inter- and intraobserver variability and test-retest reliability were measured using Spearman's rank correlation, Bland-Altman analysis, and intraclass correlation coefficients (ICC). RESULTS Among the 24 participants (median age = 78, 67 % male), CT ECVglobal and ECVseptal showed median values of 53.6 % and 49.1 % at 7 min, and 53.3 % and 50.1 % at 8 min, respectively. Inter- and intraobserver variability and test-retest reliability for CT ECVglobal (ICC = 0.798, 0.912, and 0.894, respectively) and ECVseptal (ICC = 0.791, 0.898, and 0.852, respectively) indicated good reproducibility, with no evidence of systemic bias between observers or scans. CONCLUSIONS Dual-energy CT-derived ECV measurements demonstrated good reproducibility in patients with proven cardiac amyloidosis, suggesting potential utility as a repeatable imaging biomarker for this disease.
Collapse
Affiliation(s)
- Yoshito Kadoya
- Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, K1Y 4W7, Canada
| | - Mehmet Onur Omaygenc
- Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, K1Y 4W7, Canada
| | - Benjamin Chow
- Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, K1Y 4W7, Canada
| | - Gary R Small
- Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, K1Y 4W7, Canada.
| |
Collapse
|
11
|
Muthalaly RG, Abrahams T, Lin A, Patel K, Tan S, Dey D, Han D, Tamarappoo BK, Nicholls SJ, Nerlekar N. Myocardial extracellular volume measurement using cardiac computed tomography. Int J Cardiovasc Imaging 2024; 40:2237-2245. [PMID: 39400790 PMCID: PMC11561108 DOI: 10.1007/s10554-024-03226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/13/2024] [Indexed: 10/15/2024]
Abstract
Myocardial fibrosis is a common endpoint of many cardiac diseases and increasingly recognized as a predictor of heart failure, arrhythmia, and death. Recent studies have utilised cardiac computed tomography (CT) scans with delayed phase imaging to quantify diffuse fibrosis of the myocardium. CT extracellular volume (CT-ECV) measurement correlates well with CMR and histological myocardial fibrosis. Furthermore, CT-ECV predicts outcomes such as death, heart failure and arrhythmia in various disease states. This review summarizes the rationale and methodology behind CT-ECV measurement and provides a detailed summary of the current clinical evidence for the use of CT-ECV.
Collapse
Affiliation(s)
- Rahul G Muthalaly
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, VIC, 3168, Australia
- Victorian Heart Hospital, Monash Health, Clayton, VIC, Australia
| | - Timothy Abrahams
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, VIC, 3168, Australia
- Victorian Heart Hospital, Monash Health, Clayton, VIC, Australia
| | - Andrew Lin
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, VIC, 3168, Australia
- Victorian Heart Hospital, Monash Health, Clayton, VIC, Australia
- St. Bartholomew's Heart Centre, London, UK
| | - Kush Patel
- St. Bartholomew's Heart Centre, London, UK
| | - Sean Tan
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, VIC, 3168, Australia
- Victorian Heart Hospital, Monash Health, Clayton, VIC, Australia
| | - Damini Dey
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Centre, Los Angeles, CA, USA
| | - Donghee Han
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Centre, Los Angeles, CA, USA
| | - Balaji K Tamarappoo
- Cardiovascular Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephen J Nicholls
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, VIC, 3168, Australia
- Victorian Heart Hospital, Monash Health, Clayton, VIC, Australia
| | - Nitesh Nerlekar
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, VIC, 3168, Australia.
- Victorian Heart Hospital, Monash Health, Clayton, VIC, Australia.
- Baker Heart and Diabetes Institute, Commercial Road, Melbourne, 3004, Australia.
| |
Collapse
|
12
|
Guglielmo M, Fedele D. Tissue characterisation with cardiac computed tomography: an intriguing possibility becoming reality. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:2233-2235. [PMID: 39497004 DOI: 10.1007/s10554-024-03285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Affiliation(s)
- Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University Medical Center, Utrecht, 3584 CX, The Netherlands.
- Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands.
| | - Damiano Fedele
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Androshchuk V, Montarello N, Lahoti N, Hill SJ, Zhou C, Patterson T, Redwood S, Niederer S, Lamata P, De Vecchi A, Rajani R. Evolving capabilities of computed tomography imaging for transcatheter valvular heart interventions - new opportunities for precision medicine. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024:10.1007/s10554-024-03247-z. [PMID: 39347934 DOI: 10.1007/s10554-024-03247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
The last decade has witnessed a substantial growth in percutaneous treatment options for heart valve disease. The development in these innovative therapies has been mirrored by advances in multi-detector computed tomography (MDCT). MDCT plays a central role in obtaining detailed pre-procedural anatomical information, helping to inform clinical decisions surrounding procedural planning, improve clinical outcomes and prevent potential complications. Improvements in MDCT image acquisition and processing techniques have led to increased application of advanced analytics in routine clinical care. Workflow implementation of patient-specific computational modeling, fluid dynamics, 3D printing, extended reality, extracellular volume mapping and artificial intelligence are shaping the landscape for delivering patient-specific care. This review will provide an insight of key innovations in the field of MDCT for planning transcatheter heart valve interventions.
Collapse
Affiliation(s)
- Vitaliy Androshchuk
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
- Guy's & St Thomas' NHS Foundation Trust, King's College London, St Thomas' Hospital, The Reyne Institute, 4th Floor, Lambeth Wing, London, SE1 7EH, UK.
| | - Natalie Montarello
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Nishant Lahoti
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Samuel Joseph Hill
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Can Zhou
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Tiffany Patterson
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Simon Redwood
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Adelaide De Vecchi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Ronak Rajani
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
14
|
Lisi C, Moser LJ, Mergen V, Klambauer K, Uçar E, Eberhard M, Alkadhi H. Advanced myocardial characterization and function with cardiac CT. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024:10.1007/s10554-024-03229-1. [PMID: 39240440 DOI: 10.1007/s10554-024-03229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
Non-invasive imaging with characterization and quantification of the myocardium with computed tomography (CT) became feasible owing to recent technical developments in CT technology. Cardiac CT can serve as an alternative modality when cardiac magnetic resonance imaging and/or echocardiography are contraindicated, not feasible, inconclusive, or non-diagnostic. This review summarizes the current and potential future role of cardiac CT for myocardial characterization including a summary of late enhancement techniques, extracellular volume quantification, and strain analysis. In addition, this review highlights potential fields for research about myocardial characterization with CT to possibly include it in clinical routine in the future.
Collapse
Affiliation(s)
- Costanza Lisi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Lukas J Moser
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Victor Mergen
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Konstantin Klambauer
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Eda Uçar
- Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Matthias Eberhard
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Muthalaly RG, Tan S, Nelson AJ, Abrahams T, Han D, Tamarappoo BK, Dey D, Nicholls SJ, Lin A, Nerlekar N. Variation of computed tomography-derived extracellular volume fraction and the impact of protocol parameters: A systematic review and meta-analysis. J Cardiovasc Comput Tomogr 2024; 18:457-464. [PMID: 38879421 DOI: 10.1016/j.jcct.2024.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Cardiac computed tomography quantification of extracellular volume fraction (CT-ECV) is an emerging biomarker of myocardial fibrosis which has demonstrated high reproducibility, diagnostic and prognostic utility. However, there has been wide variation in the CT-ECV protocol in the literature and useful disease cut-offs are yet to be established. The objectives of this meta-analysis were to describe mean CT-ECV estimates and to estimate the effect of CT-ECV protocol parameters on between-study variation. METHODS We conducted a meta-analysis of studies assessing CT-ECV in healthy and diseased participants. We used meta-analytic methods to pool estimates of CT-ECV and performed meta-regression to identify the contribution of protocol parameters to CT-ECV heterogeneity. RESULTS Thirteen studies had a total of 248 healthy participants who underwent CT-ECV assessment. Studies of healthy participants had high variation in CT-ECV protocol parameters. The pooled estimate of CT-ECV in healthy participants was 27.6% (95%CI 25.7%-29.4%) with significant heterogeneity (I2 = 93%) compared to 50.2% (95%CI 46.2%-54.2%) in amyloidosis, 31.2% (28.5%-33.8%) in severe aortic stenosis and 36.9% (31.6%-42.3%) in non-ischaemic dilated cardiomyopathies. Meta-regression revealed that CT protocol parameters account for approximately 25% of the heterogeneity in CT-ECV estimates. CONCLUSION CT-ECV estimates for healthy individuals vary widely in the literature and there is significant overlap with estimates in cardiac disease. One quarter of this heterogeneity is explained by differences in CT-ECV protocol parameters. Standardization of CT-ECV protocols is necessary for widespread implementation of CT-ECV assessment for diagnosis and prognosis.
Collapse
Affiliation(s)
- Rahul G Muthalaly
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia; Victorian Heart Hospital, Monash Health, Clayton, VIC, Australia
| | - Sean Tan
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia; Victorian Heart Hospital, Monash Health, Clayton, VIC, Australia
| | - Adam J Nelson
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia; Victorian Heart Hospital, Monash Health, Clayton, VIC, Australia; University of Adelaide, Adelaide, Australia
| | - Timothy Abrahams
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia; Victorian Heart Hospital, Monash Health, Clayton, VIC, Australia
| | - Donghee Han
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Centre, Los Angeles, CA, USA
| | - Balaji K Tamarappoo
- Cardiovascular Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Damini Dey
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Centre, Los Angeles, CA, USA
| | - Stephen J Nicholls
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia; Victorian Heart Hospital, Monash Health, Clayton, VIC, Australia
| | - Andrew Lin
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia; Victorian Heart Hospital, Monash Health, Clayton, VIC, Australia
| | - Nitesh Nerlekar
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia; Victorian Heart Hospital, Monash Health, Clayton, VIC, Australia.
| |
Collapse
|
16
|
Small GR. Myocardial extracellular volume by CT: Assessing the state of the union. J Cardiovasc Comput Tomogr 2024; 18:465-466. [PMID: 39098511 DOI: 10.1016/j.jcct.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Affiliation(s)
- Gary R Small
- Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
17
|
Yamasaki H, Kondo H, Shiroo T, Iwata N, Masuda T, Makita T, Iwabuchi Y, Tanazawa K, Takahashi M, Ono Y, Ogawa N, Harada T, Mitarai K, Yamauchi S, Takano M, Kodama N, Hirota K, Miyoshi M, Yonezu K, Tawara K, Abe I, Saito S, Fukui A, Fukuda T, Akioka H, Shinohara T, Akiyoshi K, Teshima Y, Yufu K, Daa T, Matsubara E, Asayama Y, Ueda M, Takahashi N. Efficacy of Computed Tomography-Based Evaluation of Myocardial Extracellular Volume Combined With Red Flags for Early Screening of Concealed Cardiac Amyloidosis in Patients With Atrial Fibrillation. Circ J 2024; 88:1167-1175. [PMID: 38522901 DOI: 10.1253/circj.cj-23-0948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
BACKGROUND The prevalence of transthyretin amyloid cardiomyopathy (ATTR-CM) in atrial fibrillation (AF) patients remains unclear. We explored the efficacy of computed tomography-based myocardial extracellular volume (CT-ECV) combined with red flags for the early screening of concealed ATTR-CM in AF patients undergoing catheter ablation. METHODS AND RESULTS Patients referred for AF ablation at Oita University Hospital were prescreened using the red-flag signs defined by echocardiographic or electrocardiographic findings, medical history, symptoms, and blood biochemical findings. Myocardial CT-ECV was quantified in red flag-positive patients using routine pre-AF ablation planning cardiac CT with the addition of delayed-phase cardiac CT scans. Patients with high (>35%) ECV were evaluated using technetium pyrophosphate (99 mTc-PYP) scintigraphy. A cardiac biopsy was performed during the planned AF ablation procedure if 99 mTc-PYP scintigraphy was positive. Between June 2022 and June 2023, 342 patients were referred for AF ablation. Sixty-seven (19.6%) patients had at least one of the red-flag signs. Myocardial CT-ECV was evaluated in 57 patients because of contraindications to contrast media, revealing that 16 patients had high CT-ECV. Of these, 6 patients showed a positive 99 mTc-PYP study, and 6 patients were subsequently diagnosed with wild-type ATTR-CM via cardiac biopsy and genetic testing. CONCLUSIONS CT-ECV combined with red flags could contribute to the systematic early screening of concealed ATTR-CM in AF patients undergoing catheter ablation.
Collapse
Affiliation(s)
- Hirochika Yamasaki
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Hidekazu Kondo
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Tomoaki Shiroo
- Department of Medical Technology, Oita University Hospital
| | - Naohiro Iwata
- Department of Medical Technology, Oita University Hospital
| | - Teruaki Masuda
- Department of Neurology, Faculty of Medicine, Oita University
| | - Taiki Makita
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Yuki Iwabuchi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Kota Tanazawa
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Masaki Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Yuma Ono
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Naoko Ogawa
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Taisuke Harada
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Kazuki Mitarai
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Shuichiro Yamauchi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Masayuki Takano
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Nozomi Kodama
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Kei Hirota
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Miho Miyoshi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Keisuke Yonezu
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Katsunori Tawara
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Ichitaro Abe
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Shotaro Saito
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Akira Fukui
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Tomoko Fukuda
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Hidefumi Akioka
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Kumiko Akiyoshi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Yasushi Teshima
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Kunio Yufu
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University
| | | | - Yoshiki Asayama
- Department of Radiology, Faculty of Medicine, Oita University
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| |
Collapse
|
18
|
Tore D, Faletti R, Palmisano A, Salto S, Rocco K, Santonocito A, Gaetani C, Biondo A, Bozzo E, Giorgino F, Landolfi I, Menchini F, Esposito A, Fonio P, Gatti M. Cardiac computed tomography with late contrast enhancement: A review. Heliyon 2024; 10:e32436. [PMID: 38933964 PMCID: PMC11200357 DOI: 10.1016/j.heliyon.2024.e32436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiac computed tomography (CCT) has assumed an increasingly significant role in the evaluation of coronary artery disease (CAD) during the past few decades, whereas cardiovascular magnetic resonance (CMR) remains the gold standard for myocardial tissue characterization. The discovery of late myocardial enhancement following intravenous contrast administration dates back to the 1970s with ex-vivo CT animal investigations; nevertheless, the clinical application of this phenomenon for cardiac tissue characterization became prevalent for CMR imaging far earlier than for CCT imaging. Recently the technical advances in CT scanners have made it possible to take advantage of late contrast enhancement (LCE) for tissue characterization in CCT exams. Moreover, the introduction of extracellular volume calculation (ECV) on cardiac CT images combined with the possibility of evaluating cardiac function in the same exam is making CCT imaging a multiparametric technique more and more similar to CMR. The aim of our review is to provide a comprehensive overview on the role of CCT with LCE in the evaluation of a wide range of cardiac conditions.
Collapse
Affiliation(s)
- Davide Tore
- Radiology Unit, Department of Surgical Sciences, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| | - Anna Palmisano
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Salto
- Radiology Unit, Department of Surgical Sciences, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| | - Katia Rocco
- Radiology Unit, Department of Surgical Sciences, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| | - Ambra Santonocito
- Radiology Unit, Department of Surgical Sciences, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| | - Clara Gaetani
- Radiology Unit, Department of Surgical Sciences, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| | - Andrea Biondo
- Radiology Unit, Department of Surgical Sciences, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| | - Elena Bozzo
- Radiology Unit, Department of Surgical Sciences, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| | - Fabio Giorgino
- Radiology Unit, Department of Surgical Sciences, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| | - Ilenia Landolfi
- Radiology Unit, Department of Surgical Sciences, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| | - Francesca Menchini
- Radiology Unit, Department of Surgical Sciences, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| | - Antonio Esposito
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Fonio
- Radiology Unit, Department of Surgical Sciences, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Hu W, Zhao Y, Ji H, Chen A, Xu Q, Liu Y, Zhang Z, Liu A. Nomogram based on dual-energy CT-derived extracellular volume fraction for the prediction of microsatellite instability status in gastric cancer. Front Oncol 2024; 14:1370031. [PMID: 38854729 PMCID: PMC11156999 DOI: 10.3389/fonc.2024.1370031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose To develop and validate a nomogram based on extracellular volume (ECV) fraction derived from dual-energy CT (DECT) for preoperatively predicting microsatellite instability (MSI) status in gastric cancer (GC). Materials and methods A total of 123 patients with GCs who underwent contrast-enhanced abdominal DECT scans were retrospectively enrolled. Patients were divided into MSI (n=41) and microsatellite stability (MSS, n=82) groups according to postoperative immunohistochemistry staining, then randomly assigned to the training (n=86) and validation cohorts (n=37). We extracted clinicopathological characteristics, CT imaging features, iodine concentrations (ICs), and normalized IC values against the aorta (nICs) in three enhanced phases. The ECV fraction derived from the iodine density map at the equilibrium phase was calculated. Univariate and multivariable logistic regression analyses were used to identify independent risk predictors for MSI status. Then, a nomogram was established, and its performance was evaluated by ROC analysis and Delong test. Its calibration performance and clinical utility were assessed by calibration curve and decision curve analysis, respectively. Results The ECV fraction, tumor location, and Borrmann type were independent predictors of MSI status (all P < 0.05) and were used to establish the nomogram. The nomogram yielded higher AUCs of 0.826 (0.729-0.899) and 0.833 (0.675-0.935) in training and validation cohorts than single variables (P<0.05), with good calibration and clinical utility. Conclusions The nomogram based on DECT-derived ECV fraction has the potential as a noninvasive biomarker to predict MSI status in GC patients.
Collapse
Affiliation(s)
- Wenjun Hu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Zhao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Dalian Engineering Research Center for Artificial Intelligence in Medical Imaging, Dalian, Liaoning, China
| | - Hongying Ji
- Department of Pathology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Anliang Chen
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Dalian Engineering Research Center for Artificial Intelligence in Medical Imaging, Dalian, Liaoning, China
| | - Qihao Xu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yijun Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ziming Zhang
- College of Medical Imaging, Dalian Medical University, Dalian, Liaoning, China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Dalian Engineering Research Center for Artificial Intelligence in Medical Imaging, Dalian, Liaoning, China
| |
Collapse
|
20
|
Patel KP, Scully PR, Saberwal B, Sinha A, Yap-Sanderson JJL, Cheasty E, Mullen M, Menezes LJ, Moon JC, Pugliese F, Klotz E, Treibel TA. Regional Distribution of Extracellular Volume Quantified by Cardiac CT in Aortic Stenosis: Insights Into Disease Mechanisms and Impact on Outcomes. Circ Cardiovasc Imaging 2024; 17:e015996. [PMID: 38771906 DOI: 10.1161/circimaging.123.015996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/19/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Extracellular volume fraction (ECV) is a marker for myocardial fibrosis and infiltration, can be quantified using cardiac computed tomography (ECVCT), and has prognostic utility in several diseases. This study aims to map out regional differences in ECVCT to obtain greater insights into the pathophysiological mechanisms of ECV expansion and its clinical implications. METHODS Three prospective cohorts were included: patients with aortic stenosis (AS) and coexisting AS and transthyretin cardiac amyloidosis were referred for a transcatheter aortic valve replacement and had ECG-gated CT angiography and Technetium-99m-labelled 3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy to differentiate between the 2 cohorts. Controls had CT angiography and cardiac magnetic resonance demonstrating no significant coronary artery disease or infarction. Global and regional ECVCT was analyzed, and its association with mortality was assessed for patients with AS. RESULTS In 199 patients, controls (n=65; 66% male), AS (n=115), and coexisting AS and transthyretin cardiac amyloidosis (n=19) had a global ECVCT of 26.1 (25.0-27.8%) versus 29.1 (27.5-31.1%) versus 37.4 (32.5-46.6%), respectively; P<0.001. Across cohorts, ECVCT was higher at the base (versus apex), the inferoseptum (versus anterolateral wall), and the subendocardium (versus subepicardium); P<0.05 for all. Among patients with AS, epicardial ECVCT, rather than any other regional value or global ECVCT, was the strongest predictor of mortality at a median of 3.9 (max 6.3) years (adjusted hazard ratio, 1.21 [95% CI, 1.08-1.36]; P=0.002). CONCLUSIONS Regional differences in ECVCT suggest a predilection for fibrosis and amyloid infiltration at the base, subendocardium, inferior wall, and septum more than the anterior and lateral myocardium. ECVCT can predict long-term mortality with the subepicardium demonstrating the strongest discriminatory power. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifiers: NCT03029026 and NCT03094143.
Collapse
Affiliation(s)
- Kush P Patel
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (K.P.P., P.R.S., B.S., A.S., J.J.L.Y.-S., E.C., M.M., L.J.M., J.C.M., F.P., T.A.T.)
- Institute of Cardiovascular Sciences, University College London, United Kingdom (K.P.P., P.R.S., J.C.M., T.A.T.)
| | - Paul R Scully
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (K.P.P., P.R.S., B.S., A.S., J.J.L.Y.-S., E.C., M.M., L.J.M., J.C.M., F.P., T.A.T.)
| | - Bunny Saberwal
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (K.P.P., P.R.S., B.S., A.S., J.J.L.Y.-S., E.C., M.M., L.J.M., J.C.M., F.P., T.A.T.)
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (B.S., F.P., T.A.T.)
| | - Apurva Sinha
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (K.P.P., P.R.S., B.S., A.S., J.J.L.Y.-S., E.C., M.M., L.J.M., J.C.M., F.P., T.A.T.)
| | - Joanna J L Yap-Sanderson
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (K.P.P., P.R.S., B.S., A.S., J.J.L.Y.-S., E.C., M.M., L.J.M., J.C.M., F.P., T.A.T.)
| | - Emma Cheasty
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (K.P.P., P.R.S., B.S., A.S., J.J.L.Y.-S., E.C., M.M., L.J.M., J.C.M., F.P., T.A.T.)
| | - Michael Mullen
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (K.P.P., P.R.S., B.S., A.S., J.J.L.Y.-S., E.C., M.M., L.J.M., J.C.M., F.P., T.A.T.)
| | - Leon J Menezes
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (K.P.P., P.R.S., B.S., A.S., J.J.L.Y.-S., E.C., M.M., L.J.M., J.C.M., F.P., T.A.T.)
- Institute of Nuclear Medicine, University College London, United Kingdom (L.J.M.)
- NIHR University College London Hospitals Biomedical Research Centre, United Kingdom (L.J.M.)
| | - James C Moon
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (K.P.P., P.R.S., B.S., A.S., J.J.L.Y.-S., E.C., M.M., L.J.M., J.C.M., F.P., T.A.T.)
| | - Francesca Pugliese
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (K.P.P., P.R.S., B.S., A.S., J.J.L.Y.-S., E.C., M.M., L.J.M., J.C.M., F.P., T.A.T.)
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (B.S., F.P., T.A.T.)
| | - Ernst Klotz
- Siemens Healthineers, Forchheim, Germany (E.K.)
| | - Thomas A Treibel
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (K.P.P., P.R.S., B.S., A.S., J.J.L.Y.-S., E.C., M.M., L.J.M., J.C.M., F.P., T.A.T.)
- Institute of Cardiovascular Sciences, University College London, United Kingdom (K.P.P., P.R.S., J.C.M., T.A.T.)
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (B.S., F.P., T.A.T.)
| |
Collapse
|
21
|
Kato S, Misumi Y, Horita N, Yamamoto K, Utsunomiya D. Clinical Utility of Computed Tomography-Derived Myocardial Extracellular Volume Fraction: A Systematic Review and Meta-Analysis. JACC Cardiovasc Imaging 2024; 17:516-528. [PMID: 37999657 DOI: 10.1016/j.jcmg.2023.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Computed tomography (CT)-derived extracellular volume fraction (ECV) is a noninvasive method to quantify myocardial fibrosis. Although studies suggest CT is a suitable measure of ECV, clinical use remains limited. OBJECTIVES A meta-analysis was performed to determine the clinical value of CT-derived ECV in cardiovascular diseases. METHODS Electronic database searches of PubMed, Web of Science Core Collection, Cochrane advanced search, and EMBASE were performed. The most pivotal analysis entailed the comparison of ECV ascertained through CT-ECV among the control, aortic stenosis, and cardiac amyloidosis cohorts. The diagnostic test accuracy for detecting cardiac amyloidosis was assessed using summary receiver-operating characteristics curve. RESULTS Pooled CT-derived ECV values were 28.5% (95% CI: 27.3%-29.7%) in the control, 31.9% (95% CI: 30.2%-33.8%) in the aortic stenosis, and 48.9% (95% CI: 44.5%-53.3%) in the cardiac amyloidosis group. ECV was significantly elevated in aortic stenosis (P = 0.002) (vs controls) but further elevated in cardiac amyloidosis (P < 0.001) (vs aortic stenosis). CT-derived ECV had a high diagnostic accuracy for cardiac amyloidosis, with sensitivity of 92.8% (95% CI: 86.7%-96.2%), specificity of 84.8% (95% CI: 68.6%-93.4%), and area under the summary receiver-operating characteristic curve of 0.94 (95% CI: 0.88-1.00). CONCLUSIONS This study is the first comprehensive systematic review and meta-analysis of CT-derived ECV evaluation in cardiac disease. The high diagnostic accuracy of CT-ECV suggests the usefulness of CT-ECV in the diagnosis of cardiac amyloidosis in preoperative CT planning for transcatheter aortic valve replacement.
Collapse
Affiliation(s)
- Shingo Kato
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yuka Misumi
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouji Yamamoto
- Department of Biostatistics, Yokohama City University School of Medicine, Yokohama, Japan
| | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
22
|
Meloni A, Maffei E, Clemente A, De Gori C, Occhipinti M, Positano V, Berti S, La Grutta L, Saba L, Cau R, Bossone E, Mantini C, Cavaliere C, Punzo B, Celi S, Cademartiri F. Spectral Photon-Counting Computed Tomography: Technical Principles and Applications in the Assessment of Cardiovascular Diseases. J Clin Med 2024; 13:2359. [PMID: 38673632 PMCID: PMC11051476 DOI: 10.3390/jcm13082359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Spectral Photon-Counting Computed Tomography (SPCCT) represents a groundbreaking advancement in X-ray imaging technology. The core innovation of SPCCT lies in its photon-counting detectors, which can count the exact number of incoming x-ray photons and individually measure their energy. The first part of this review summarizes the key elements of SPCCT technology, such as energy binning, energy weighting, and material decomposition. Its energy-discriminating ability represents the key to the increase in the contrast between different tissues, the elimination of the electronic noise, and the correction of beam-hardening artifacts. Material decomposition provides valuable insights into specific elements' composition, concentration, and distribution. The capability of SPCCT to operate in three or more energy regimes allows for the differentiation of several contrast agents, facilitating quantitative assessments of elements with specific energy thresholds within the diagnostic energy range. The second part of this review provides a brief overview of the applications of SPCCT in the assessment of various cardiovascular disease processes. SPCCT can support the study of myocardial blood perfusion and enable enhanced tissue characterization and the identification of contrast agents, in a manner that was previously unattainable.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Erica Maffei
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Carmelo De Gori
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Mariaelena Occhipinti
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Vicenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Sergio Berti
- Diagnostic and Interventional Cardiology Department, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Ludovico La Grutta
- Department of Radiology, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (CA), Italy; (L.S.); (R.C.)
| | - Riccardo Cau
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (CA), Italy; (L.S.); (R.C.)
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy;
| | - Cesare Mantini
- Department of Radiology, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Carlo Cavaliere
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Bruna Punzo
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Simona Celi
- BioCardioLab, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| |
Collapse
|
23
|
Hayashi H, Oda S, Kidoh M, Yamaguchi S, Yoshimura F, Takashio S, Usuku H, Nagayama Y, Nakaura T, Ueda M, Tsujita K, Hirai T. Myocardial extracellular volume quantification in cardiac amyloidosis: a comparative study between cardiac computed tomography and magnetic resonance imaging. Eur Radiol 2024; 34:1016-1025. [PMID: 37597032 DOI: 10.1007/s00330-023-10129-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVES Myocardial extracellular volume (ECV) on computed tomography (CT), an alternative to cardiac magnetic resonance (CMR), has significant practical clinical advantages. However, the consistency between ECVs quantified via CT and CMR in cardiac amyloidosis (CA) has not been investigated sufficiently. Therefore, the current study investigated the application of CT-ECV in CA with CMR-ECV as the reference standard. METHODS We retrospectively evaluated 31 patients with CA who underwent cardiac CT and CMR. Pearson correlation analysis was performed to investigate correlations between CT-ECV and CMR-ECV at each segment. Further, correlations between ECV and clinical parameters were assessed. RESULTS There were no significant differences in the mean global ECVs between CT scan and CMR (51.3% ± 10.2% vs 50.0% ± 10.5%). CT-ECV was correlated with CMR-ECV at the septal (r = 0.88), lateral (r = 0.80), inferior (r = 0.79), anterior (r = 0.77) segments, and global (r = 0.87). In both CT and CMR, the ECV had a weak to strong correlation with high-sensitivity cardiac troponin T level, a moderate correlation with global longitudinal strain, and an inverse correlation with left ventricular ejection fraction. Further, the septal ECV and global ECV had a slightly higher correlation with the clinical parameters. CONCLUSIONS Cardiac CT can quantify myocardial ECV and yield results comparable to CMR in patients with CA. Moreover, a significant correlation between CT-ECV and clinical parameters was observed. Thus, CT-ECV can be an imaging biomarker and alternative to CMR-ECV. CLINICAL RELEVANCE STATEMENT Cardiac CT can quantify myocardial ECV and yield results comparable to CMR in patients with CA, and CT-ECV can be used clinically as an imaging biomarker and alternative to CMR-ECV. KEY POINTS • A significant correlation was found between CT myocardial extracellular volume and cardiac MR myocardial extracellular volume in patients with cardiac amyloidosis. • In CT and cardiac MR, the myocardial extracellular volume correlated well with high-sensitivity cardiac troponin T level, global longitudinal strain, and left ventricular ejection fraction. • CT myocardial extracellular volume can be an imaging biomarker and alternative to cardiac MR myocardial extracellular volume.
Collapse
Affiliation(s)
- Hidetaka Hayashi
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Shinpei Yamaguchi
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Fumihiro Yoshimura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroki Usuku
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
24
|
Oyama-Manabe N, Oda S, Ohta Y, Takagi H, Kitagawa K, Jinzaki M. Myocardial late enhancement and extracellular volume with single-energy, dual-energy, and photon-counting computed tomography. J Cardiovasc Comput Tomogr 2024; 18:3-10. [PMID: 38218665 DOI: 10.1016/j.jcct.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Computed tomography late enhancement (CT-LE) is emerging as a non-invasive technique for cardiac diagnosis with wider accessibility compared to MRI, despite its typically lower contrast-to-noise ratio. Optimizing CT-LE image quality necessitates a thorough methodology addressing contrast administration, timing, and radiation dose, alongside a robust understanding of extracellular volume (ECV) quantification methods. This review summarizes CT-LE protocols, clinical utility, and advances in ECV measurement through both single-energy and dual-energy CT. It also highlights photon-counting detector CT technology as an innovative means to potentially improve image quality and reduce radiation exposure.
Collapse
Affiliation(s)
- Noriko Oyama-Manabe
- Department of Radiology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasutoshi Ohta
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hidenobu Takagi
- Department of Advanced Radiological Imaging Collaborative Research, Tohoku University, Sendai, Japan; Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Kakuya Kitagawa
- Department of Radiology, Mie University Hospital, Tsu, Japan.
| | | |
Collapse
|
25
|
Pergola V, Cameli M, Mattesi G, Mushtaq S, D’Andrea A, Guaricci AI, Pastore MC, Amato F, Dellino CM, Motta R, Perazzolo Marra M, Dellegrottaglie S, Pedrinelli R, Iliceto S, Nodari S, Perrone Filardi P, Pontone G. Multimodality Imaging in Advanced Heart Failure for Diagnosis, Management and Follow-Up: A Comprehensive Review. J Clin Med 2023; 12:7641. [PMID: 38137711 PMCID: PMC10743799 DOI: 10.3390/jcm12247641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced heart failure (AHF) presents a complex landscape with challenges spanning diagnosis, management, and patient outcomes. In response, the integration of multimodality imaging techniques has emerged as a pivotal approach. This comprehensive review delves into the profound significance of these imaging strategies within AHF scenarios. Multimodality imaging, encompassing echocardiography, cardiac magnetic resonance imaging (CMR), nuclear imaging and cardiac computed tomography (CCT), stands as a cornerstone in the care of patients with both short- and long-term mechanical support devices. These techniques facilitate precise device selection, placement, and vigilant monitoring, ensuring patient safety and optimal device functionality. In the context of orthotopic cardiac transplant (OTC), the role of multimodality imaging remains indispensable. Echocardiography offers invaluable insights into allograft function and potential complications. Advanced methods, like speckle tracking echocardiography (STE), empower the detection of acute cell rejection. Nuclear imaging, CMR and CCT further enhance diagnostic precision, especially concerning allograft rejection and cardiac allograft vasculopathy. This comprehensive imaging approach goes beyond diagnosis, shaping treatment strategies and risk assessment. By harmonizing diverse imaging modalities, clinicians gain a panoramic understanding of each patient's unique condition, facilitating well-informed decisions. The aim is to highlight the novelty and unique aspects of recently published papers in the field. Thus, this review underscores the irreplaceable role of multimodality imaging in elevating patient outcomes, refining treatment precision, and propelling advancements in the evolving landscape of advanced heart failure management.
Collapse
Affiliation(s)
- Valeria Pergola
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Matteo Cameli
- Department of Cardiovascular Diseases, University of Sienna, 53100 Siena, Italy; (M.C.); (M.C.P.)
| | - Giulia Mattesi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (C.M.D.); (G.P.)
| | | | - Andrea Igoren Guaricci
- University Cardiology Unit, Interdisciplinary Department of Medicine, Policlinic University Hospital, 70121 Bari, Italy;
| | - Maria Concetta Pastore
- Department of Cardiovascular Diseases, University of Sienna, 53100 Siena, Italy; (M.C.); (M.C.P.)
| | - Filippo Amato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Carlo Maria Dellino
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (C.M.D.); (G.P.)
| | - Raffaella Motta
- Unit of Radiology, Department of Medicine, Medical School, University of Padua, 35122 Padua, Italy;
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Santo Dellegrottaglie
- Division of Cardiology, Ospedale Medico-Chirurgico Accreditato Villa dei Fiori, 80011 Acerra, Italy;
| | - Roberto Pedrinelli
- Cardiac, Thoracic and Vascular Department, University of Pisa, 56126 Pisa, Italy;
| | - Sabino Iliceto
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Savina Nodari
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Institute of Cardiology, University of Brescia, 25123 Brescia, Italy;
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80138 Naples, Italy;
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (C.M.D.); (G.P.)
- Department of Biomedical, Surgical and Sciences, University of Milan, 20122 Milan, Italy
| | | |
Collapse
|
26
|
Zhang H, Guo H, Liu G, Wu C, Ma Y, Li S, Zheng Y, Zhang J. CT for the evaluation of myocardial extracellular volume with MRI as reference: a systematic review and meta-analysis. Eur Radiol 2023; 33:8464-8476. [PMID: 37378712 DOI: 10.1007/s00330-023-09872-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/18/2023] [Accepted: 04/14/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE Myocardial extracellular volume (ECV) fraction is an important imaging biomarker in clinical decision-making. CT-ECV is a potential alternative to MRI for ECV quantification. We conducted a meta-analysis to comprehensively assess the reliability of CT for ECV quantification with MRI as a reference. METHODS We systematically searched PubMed, EMBASE, and the Cochrane Library for relevant articles published since the establishment of the database in July 2022. The articles comparing CT-ECV with MRI as a reference were included. Meta-analytic methods were applied to determine the pooled weighted bias, limits of agreement (LOA), and correlation coefficient (r) between CT-ECV and MRI-ECV. RESULTS Seventeen studies with a total of 459 patients and 2231 myocardial segments were included. The pooled mean difference (MD), LOA, and r for ECV quantification at the per-patient level was (0.07%; 95% LOA: - 0.42 to 0.55%) and 0.89 (95% CI: 0.86-0.91), respectively, while on the per-segment level was (0.44%; 95% LOA: 0.16-0.72%) and 0.84 (95% CI: 0.82-0.85), respectively. The pooled r from studies with the ECViodine method for ECV quantification was significantly higher compared to those with the ECVsub method (0.94 (95% CI: 0.91-0.96) vs. 0.84 (95% CI: 0.80-0.88), respectively, p = 0.03). The pooled r from septal segments was significantly higher than those from non-septal segments (0.88 (95% CI: 0.86-0.90) vs. 0.76 (95% CI: 0.71-0.90), respectively, p = 0.009). CONCLUSION CT showed a good agreement and excellent correlation with MRI for ECV quantification and is a potentially attractive alternative to MRI. CLINICAL RELEVANCE STATEMENT The myocardial extracellular volume fraction can be acquired using a CT scan, which is not only a viable alternative to myocardial extracellular volume fraction derived from MRI but is also less time-consuming and costly for patients. KEY POINTS • Noninvasive CT-ECV is a viable alternative to MRI-ECV for ECV quantification. • CT-ECV using the ECViodine method showed more accurate myocardial ECV quantification than ECVsub. • Septal myocardial segments showed lower measurement variability than non-septal segments for the ECV quantification.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, No.82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China
| | - Huimin Guo
- Department of Radiology, Zhengzhou University People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450003, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, No.82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China
| | - Chuang Wu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, No.82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China
| | - Yurong Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, No.82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China
| | - Shilan Li
- Department of Magnetic Resonance, Lanzhou University Second Hospital, No.82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China
| | - Yurong Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, No.82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, No.82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China.
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China.
| |
Collapse
|
27
|
Tsuji T, Aoyama D, Ishida T, Nomura R, Kakehashi S, Mukai M, Hasegawa K, Uzui H, Tada H. Contrast-enhanced computed tomography in the venous rather than the arterial phase is essential for the evaluation of the right phrenic nerve. Pacing Clin Electrophysiol 2023; 46:1526-1535. [PMID: 37899685 DOI: 10.1111/pace.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Preprocedural detection of the running course of the right pericardiophrenic bundles (PBs) is considered to be useful in preventing phrenic nerve (PN) injury during catheter ablation for atrial fibrillation (AF). However, previous studies using the arterial phase of contrast-enhanced computed tomography (CT) reported a relatively low right PBs detection rate. METHODS This study included 63 patients with AF who underwent catheter ablation and preoperative contrast-enhanced CT imaging of the venous and arterial phases (66.7 ± 10.2 years; 44 male). The venous phase of contrast-enhanced CT significantly improved the detection rate of PBs compared to the arterial phase (96.8% vs. 60.3%, p < .001), and PBs were detected in the venous phase only in 23 (36.7%) patients. No significant differences were observed between the right PBs detection rate using non-contrast CT versus the arterial phase of contrast-enhanced CT (p = .37). Patients without visualization of the right PBs during the arterial phase had a higher frequency of chronic heart failure (p = .0083), lower left ventricular ejection fraction (p = .021), and a higher CHADS2 score (p = .048) than those with visualization. In five patients whose right PBs could only be detected during the venous phase of contrast-enhanced CT, the reconstructed running course of the right PBs corresponded with the PN generated by electrical high-output pacing. CONCLUSION Contrast-enhanced CT images of the venous phase, rather than the arterial phase, are useful in detecting the right PBs, especially in patients with heart failure or reduced left ventricular ejection fraction.
Collapse
Affiliation(s)
- Toshihiko Tsuji
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Daisetsu Aoyama
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tomokazu Ishida
- Department of Radiography, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Ryohei Nomura
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shota Kakehashi
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Moe Mukai
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kanae Hasegawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hiroyasu Uzui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hiroshi Tada
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
28
|
Ravassa S, López B, Treibel TA, San José G, Losada-Fuentenebro B, Tapia L, Bayés-Genís A, Díez J, González A. Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies. Mol Aspects Med 2023; 93:101194. [PMID: 37384998 DOI: 10.1016/j.mam.2023.101194] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes.
Collapse
Affiliation(s)
- Susana Ravassa
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, UK; Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Gorka San José
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Blanca Losada-Fuentenebro
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Leire Tapia
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain; Servei de Cardiologia i Unitat d'Insuficiència Cardíaca, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
29
|
Han D, Lin A, Kuronuma K, Gransar H, Dey D, Friedman JD, Berman DS, Tamarappoo BK. Cardiac Computed Tomography for Quantification of Myocardial Extracellular Volume Fraction: A Systematic Review and Meta-Analysis. JACC Cardiovasc Imaging 2023; 16:1306-1317. [PMID: 37269267 DOI: 10.1016/j.jcmg.2023.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Extracellular volume (ECV) is a quantitative measure of extracellular compartment expansion, and an increase in ECV is a marker of myocardial fibrosis. Although cardiac magnetic resonance (CMR) is considered the standard imaging tool for ECV quantification, cardiac computed tomography (CT) has also been used for ECV assessment. OBJECTIVES The aim of this meta-analysis was to evaluate the correlation and agreement in the quantification of myocardial ECV by CT and CMR. METHODS PubMed and Web of Science were searched for relevant publications reporting on the use of CT for ECV quantification compared with CMR as the reference standard. The authors employed a meta-analysis using the restricted maximum-likelihood estimator with a random-effects method to estimate summary correlation and mean difference. A subgroup analysis was performed to compare the correlation and mean differences between single-energy CT (SECT) and dual-energy CT (DECT) techniques for the ECV quantification. RESULTS Of 435 papers, 13 studies comprising 383 patients were identified. The mean age range was 57.3 to 82 years, and 65% of patients were male. Overall, there was an excellent correlation between CT-derived ECV and CMR-derived ECV (mean: 0.90 [95% CI: 0.86-0.95]). The pooled mean difference between CT and CMR was 0.96% (95% CI: 0.14%-1.78%). Seven studies reported correlation values using SECT, and 4 studies reported those using DECT. The pooled correlation from studies utilizing DECT for ECV quantification was significantly higher compared with those with SECT (mean: 0.94 [95% CI: 0.91-0.98] vs 0.87 [95% CI: 0.80-0.94], respectively; P = 0.01). There was no significant difference in pooled mean differences between SECT vs DECT (P = 0.85). CONCLUSIONS CT-derived ECV showed an excellent correlation and mean difference of <1% with CMR-derived ECV. However, the overall quality of the included studies was low, and larger, prospective studies are needed to examine the accuracy and diagnostic and prognostic utility of CT-derived ECV.
Collapse
Affiliation(s)
- Donghee Han
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Andrew Lin
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Keiichiro Kuronuma
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Heidi Gransar
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - John D Friedman
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daniel S Berman
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - Balaji K Tamarappoo
- Cardiovascular Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
30
|
Cundari G, Galea N, Mergen V, Alkadhi H, Eberhard M. Myocardial extracellular volume quantification with computed tomography-current status and future outlook. Insights Imaging 2023; 14:156. [PMID: 37749293 PMCID: PMC10519917 DOI: 10.1186/s13244-023-01506-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/18/2023] [Indexed: 09/27/2023] Open
Abstract
Non-invasive quantification of the extracellular volume (ECV) is a method for the evaluation of focal and diffuse myocardial fibrosis, potentially obviating the need for invasive endomyocardial biopsy. While ECV quantification with cardiac magnetic resonance imaging (ECVMRI) is already an established method, ECV quantification with CT (ECVCT) is an attractive alternative to ECVMRI, similarly using the properties of extracellular contrast media for ECV calculation. In contrast to ECVMRI, ECVCT provides a more widely available, cheaper and faster tool for ECV quantification and allows for ECV calculation also in patients with contraindications for MRI. Many studies have already shown a high correlation between ECVCT and ECVMRI and accumulating evidence suggests a prognostic value of ECVCT quantification in various cardiovascular diseases. Adding a late enhancement scan (for dual energy acquisitions) or a non-enhanced and late enhancement scan (for single-energy acquisitions) to a conventional coronary CT angiography scan improves risk stratification, requiring only minor adaptations of the contrast media and data acquisition protocols and adding only little radiation dose to the entire scan.Critical relevance statementThis article summarizes the technical principles of myocardial extracellular volume (ECV) quantification with CT, reviews the literature comparing ECVCT with ECVMRI and histopathology, and reviews the prognostic value of myocardial ECV quantification for various cardiovascular disease.Key points• Non-invasive quantification of myocardial fibrosis can be performed with CT.• Myocardial ECV quantification with CT is an alternative in patients non-eligible for MRI.• Myocardial ECV quantification with CT strongly correlates with ECV quantification using MRI.• Myocardial ECV quantification provides incremental prognostic information for various pathologies affecting the heart (e.g., cardiac amyloidosis).
Collapse
Affiliation(s)
- Giulia Cundari
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Victor Mergen
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| | - Matthias Eberhard
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Radiology, Spital Interlaken, Spitäler FMI AG, Unterseen, Switzerland
| |
Collapse
|
31
|
Moura B, Aimo A, Al-Mohammad A, Keramida K, Ben Gal T, Dorbala S, Todiere G, Cameli M, Barison A, Bayes-Genis A, von Bardeleben RS, Bucciarelli-Ducci C, Delgado V, Mordi IR, Seferovic P, Savarese G, Čelutkienė J, Rapezzi C, Emdin M, Coats A, Metra M, Rosano G. Diagnosis and management of patients with left ventricular hypertrophy: Role of multimodality cardiac imaging. A scientific statement of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2023; 25:1493-1506. [PMID: 37581253 DOI: 10.1002/ejhf.2997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023] Open
Abstract
Left ventricular (LV) hypertrophy consists in an increased LV wall thickness. LV hypertrophy can be either secondary, in response to pressure or volume overload, or primary, i.e. not explained solely by abnormal loading conditions. Primary LV hypertrophy may be due to gene mutations or to the deposition or storage of abnormal substances in the extracellular spaces or within the cardiomyocytes (more appropriately defined as pseudohypertrophy). LV hypertrophy is often a precursor to subsequent development of heart failure. Cardiovascular imaging plays a key role in the assessment of LV hypertrophy. Echocardiography, the first-line imaging technique, allows a comprehensive assessment of LV systolic and diastolic function. Cardiovascular magnetic resonance provides added value as it measures accurately LV and right ventricular volumes and mass and characterizes myocardial tissue properties, which may provide important clues to the final diagnosis. Additionally, scintigraphy with bone tracers is included in the diagnostic algorithm of cardiac amyloidosis. Once the diagnosis is established, imaging findings may help predict future disease evolution and inform therapy and follow-up. This consensus document by the Heart Failure Association of the European Society of Cardiology provides an overview of the role of different cardiac imaging techniques for the differential diagnosis and management of patients with LV hypertrophy.
Collapse
Affiliation(s)
- Brenda Moura
- Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiology Department, Porto Armed Forces Hospital, Porto, Portugal
| | - Alberto Aimo
- Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Abdallah Al-Mohammad
- South Yorkshire Cardiothoracic Centre (Northern General Hospital), Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Kalliopi Keramida
- Cardiology Department, General Anti-Cancer, Oncological Hospital Agios Savvas, Athens, Greece
| | - Tuvia Ben Gal
- Rabin Medical Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharmila Dorbala
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Giancarlo Todiere
- Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Matteo Cameli
- Cardiology Division, University Hospital of Siena, Siena, Italy
| | | | - Antoni Bayes-Genis
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | | | | | - Victoria Delgado
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Ify R Mordi
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Petar Seferovic
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
- University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Heart and Vascular and Neuro Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Jelena Čelutkienė
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Claudio Rapezzi
- Cardiology Centre, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Michele Emdin
- Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiology Department, Porto Armed Forces Hospital, Porto, Portugal
| | | | - Marco Metra
- Cardiology, ASST Spedali Civili and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | | |
Collapse
|
32
|
Meloni A, Cademartiri F, Positano V, Celi S, Berti S, Clemente A, La Grutta L, Saba L, Bossone E, Cavaliere C, Punzo B, Maffei E. Cardiovascular Applications of Photon-Counting CT Technology: A Revolutionary New Diagnostic Step. J Cardiovasc Dev Dis 2023; 10:363. [PMID: 37754792 PMCID: PMC10531582 DOI: 10.3390/jcdd10090363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Photon-counting computed tomography (PCCT) is an emerging technology that can potentially transform clinical CT imaging. After a brief description of the PCCT technology, this review summarizes its main advantages over conventional CT: improved spatial resolution, improved signal and contrast behavior, reduced electronic noise and artifacts, decreased radiation dose, and multi-energy capability with improved material discrimination. Moreover, by providing an overview of the existing literature, this review highlights how the PCCT benefits have been harnessed to enhance and broaden the diagnostic capabilities of CT for cardiovascular applications, including the detection of coronary artery calcifications, evaluation of coronary plaque extent and composition, evaluation of coronary stents, and assessment of myocardial tissue characteristics and perfusion.
Collapse
Affiliation(s)
- Antonella Meloni
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
- Unità Operativa Complessa di Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
| | - Vicenzo Positano
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
- Unità Operativa Complessa di Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Simona Celi
- BioCardioLab, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Sergio Berti
- Diagnostic and Interventional Cardiology Department, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
| | - Ludovico La Grutta
- Department of Radiology, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato, CA, Italy;
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy;
| | - Carlo Cavaliere
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SynLab-SDN, 80131 Naples, Italy; (C.C.); (B.P.)
| | - Bruna Punzo
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SynLab-SDN, 80131 Naples, Italy; (C.C.); (B.P.)
| | - Erica Maffei
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
| |
Collapse
|
33
|
Baggiano A, Conte E, Spiritigliozzi L, Mushtaq S, Annoni A, Carerj ML, Cilia F, Fazzari F, Formenti A, Frappampina A, Fusini L, Gaudenzi Asinelli M, Junod D, Mancini ME, Mantegazza V, Maragna R, Marchetti F, Penso M, Tassetti L, Volpe A, Baessato F, Guglielmo M, Rossi A, Rovera C, Andreini D, Rabbat MG, Guaricci AI, Pepi M, Pontone G. Quantification of extracellular volume with cardiac computed tomography in patients with dilated cardiomyopathy. J Cardiovasc Comput Tomogr 2023; 17:261-268. [PMID: 37147147 DOI: 10.1016/j.jcct.2023.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Cardiac computed tomography (CCT) was recently validated to measure extracellular volume (ECV) in the setting of cardiac amyloidosis, showing good agreement with cardiovascular magnetic resonance (CMR). However, no evidence is available with a whole-heart single source, single energy CT scanner in the clinical context of newly diagnosed left ventricular dysfunction. Therefore, the aim of this study was to test the diagnostic accuracy of ECVCCT in patients with a recent diagnosis of dilated cardiomyopathy, having ECVCMR as the reference technique. METHODS 39 consecutive patients with newly diagnosed dilated cardiomyopathy (LVEF <50%) scheduled for clinically indicated CMR were prospectively enrolled. Myocardial segment evaluability assessment with each technique, agreement between ECVCMR and ECVCCT, regression analysis, Bland-Altman analysis and interclass correlation coefficient (ICC) were performed. RESULTS Mean age of enrolled patients was 62 ± 11 years, and mean LVEF at CMR was 35.4 ± 10.7%. Overall radiation exposure for ECV estimation was 2.1 ± 1.1 mSv. Out of 624 myocardial segments available for analysis, 624 (100%) segments were assessable by CCT while 608 (97.4%) were evaluable at CMR. ECVCCT demonstrated slightly lower values compared to ECVCMR (all segments, 31.8 ± 6.5% vs 33.9 ± 8.0%, p < 0.001). At regression analysis, strong correlations were described (all segments, r = 0.819, 95% CI: 0.791 to 0.844). On Bland-Altman analysis, bias between ECVCMR and ECVCCT for global analysis was 2.1 (95% CI: -6.8 to 11.1). ICC analysis showed both high intra-observer and inter-observer agreement for ECVCCT calculation (0.986, 95%CI: 0.983 to 0.988 and 0.966, 95%CI: 0.960 to 0.971, respectively). CONCLUSIONS ECV estimation with a whole-heart single source, single energy CT scanner is feasible and accurate. Integration of ECV measurement in a comprehensive CCT evaluation of patients with newly diagnosed dilated cardiomyopathy can be performed with a small increase in overall radiation exposure.
Collapse
Affiliation(s)
- Andrea Baggiano
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Edoardo Conte
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Luigi Spiritigliozzi
- Dipartimento di Diagnostica per Immagini e Radiologia Interventistica, Policlinico Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | - Laura Fusini
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | | | | | | | | | | | | | - Marco Penso
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | | | | | - Francesca Baessato
- Department of Cardiology, San Maurizio Regional Hospital, Bolzano, Italy
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands; Department of Cardiology, Haga Teaching Hospital, The Hague, the Netherlands
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital, Zurich, Switzerland; Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Daniele Andreini
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mark G Rabbat
- Loyola University of Chicago, Chicago, IL, USA; Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Andrea Igoren Guaricci
- Institute of Cardiovascular Disease, Department of Emergency and Organ Transplantation, University Hospital Policlinico of Bari, Bari, Italy
| | - Mauro Pepi
- Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | |
Collapse
|
34
|
Takumi K, Nagano H, Oose A, Gohara M, Kamimura K, Nakajo M, Harada-Takeda A, Ueda K, Tabata K, Yoshiura T. Extracellular volume fraction derived from equilibrium contrast-enhanced CT as a diagnostic parameter in anterior mediastinal tumors. Eur J Radiol 2023; 165:110891. [PMID: 37245341 DOI: 10.1016/j.ejrad.2023.110891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE To assess the usefulness of extracellular volume (ECV) fraction derived from equilibrium contrast-enhanced CT (CECT) for diagnosing anterior mediastinal tumors. METHOD This study included 161 histologically confirmed anterior mediastinal tumors (55 low-risk thymomas, 57 high-risk thymomas, 32 thymic carcinomas, and 17 malignant lymphomas) that were assessed by pretreatment CECT. ECV fraction was calculated using measurements obtained within the lesion and the aorta on unenhanced and equilibrium phase CECT. ECV fraction was compared among anterior mediastinal tumors using one-way ANOVA or t-test. Receiver-operating characteristic (ROC) curve analysis was performed to evaluate the ability of ECV fraction to differentiate thymic carcinomas/lymphomas from thymomas. RESULTS ECV fraction differed significantly among the anterior mediastinal tumors (p < 0.001). ECV fraction of thymic carcinomas was significantly higher than those of low-risk thymomas, high-risk thymomas, and lymphomas (p < 0.001, p < 0.001, and p = 0.006, respectively). ECV fraction of lymphomas was significantly higher than that of low-risk thymomas (p < 0.001). ECV fraction was significantly higher in thymic carcinomas/lymphomas than in thymomas (40.1 % vs. 27.7 %, p < 0.001). The optimal cutoff value to differentiate thymic carcinomas/lymphomas from thymomas was 38.5 % (AUC, 0.805; 95 %CI, 0.736-0.863). CONCLUSIONS ECV fraction derived from equilibrium CECT is helpful in diagnosing anterior mediastinal tumors. High ECV fraction is indicative of thymic carcinomas/lymphomas, particularly thymic carcinomas.
Collapse
Affiliation(s)
- Koji Takumi
- Departments of Radiology Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544, Japan.
| | - Hiroaki Nagano
- Departments of Radiology Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544, Japan
| | - Arata Oose
- Departments of Radiology Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544, Japan
| | - Misaki Gohara
- Departments of Radiology Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544, Japan
| | - Kiyohisa Kamimura
- Departments of Radiology Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544, Japan
| | - Masatoyo Nakajo
- Departments of Radiology Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544, Japan
| | - Aya Harada-Takeda
- General Thoracic Surgery Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544, Japan
| | - Kazuhiro Ueda
- General Thoracic Surgery Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544, Japan
| | - Kazuhiro Tabata
- Human Pathology Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544, Japan
| | - Takashi Yoshiura
- Departments of Radiology Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544, Japan
| |
Collapse
|
35
|
Myocardial extracellular volume assessment at CT in hospitalized COVID-19 patients with regards to pulmonary embolism. Eur J Radiol 2023; 163:110809. [PMID: 37062205 PMCID: PMC10079318 DOI: 10.1016/j.ejrad.2023.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Purpose To evaluate myocardial status through the assessment of extracellular volume (ECV) calculated at computed tomography (CT) in patients hospitalized for novel coronavirus disease (COVID-19), with regards to the presence of pulmonary embolism (PE) as a risk factor for cardiac dysfunction. Method Hospitalized patients with COVID-19 who underwent contrast-enhanced CT at our institution were retrospectively included in this study and grouped with regards to the presence of PE. Unenhanced and portal venous phase scans were used to calculate ECV by placing regions of interest in the myocardial septum and left ventricular blood pool. ECV values were compared between patients with and without PE, and correlations between ECV values and clinical or technical variables were subsequently appraised. Results Ninety-four patients were included, 63/94 of whom males (67%), with a median age of 70 (IQR 56−76 years); 28/94 (30%) patients presented with PE. Patients with PE had a higher myocardial ECV than those without (33.5%, IQR 29.4−37.5% versus 29.8%, IQR 25.1−34.0%; p = 0.010). There were no correlations between ECV and patients’ age (p = 0.870) or sex (p = 0.122), unenhanced scan voltage (p = 0.822), portal phase scan voltage (p = 0.631), overall radiation dose (p = 0.569), portal phase scan timing (p = 0.460), and contrast agent dose (p = 0.563). Conclusions CT-derived ECV could help identify COVID-19 patients at higher risk of cardiac dysfunction, especially when related to PE, to potentially plan a dedicated, patient-tailored clinical approach.
Collapse
|
36
|
Cersosimo A, Bonelli A, Lombardi CM, Moreo A, Pagnesi M, Tomasoni D, Arabia G, Vizzardi E, Adamo M, Farina D, Metra M, Inciardi RM. Multimodality imaging in the diagnostic management of concomitant aortic stenosis and transthyretin-related wild-type cardiac amyloidosis. Front Cardiovasc Med 2023; 10:1108696. [PMID: 36998972 PMCID: PMC10043370 DOI: 10.3389/fcvm.2023.1108696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Severe aortic stenosis (AS) is the most common valvular heart disease with a prevalence rate of more than 4% in 75-year-old people or older. Similarly, cardiac amyloidosis (CA), especially "wild-type transthyretin" (wTTR), has shown a prevalence rate ranging from 22% to 25% in people older than 80 years. The detection of the concomitant presence of CA and AS is challenging primarily because of the similar type of changes in the left ventricle caused by AS and CA, which share some morphological characteristics. The aim of this review is to identify the imaging triggers in order to recognize occult wtATTR-CA in patients with AS, clarifying the crucial step of the diagnostic process. Multimodality imaging methods such as echocardiography, cardiac magnetic resonance, cardiac computed tomography, and DPD scintigraphy will be analyzed as part of the available diagnostic workup to identify wtATTR-CA early in patients with AS.
Collapse
Affiliation(s)
- Angelica Cersosimo
- ASST Spedali Civili di Brescia, Division of Cardiology and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Andrea Bonelli
- ASST Grande Ospedale Metropolitano Niguarda, “A. De Gasperis” Department, Cardiology IV, Milan, Italy
| | - Carlo M. Lombardi
- ASST Spedali Civili di Brescia, Division of Cardiology and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Antonella Moreo
- ASST Grande Ospedale Metropolitano Niguarda, “A. De Gasperis” Department, Cardiology IV, Milan, Italy
| | - Matteo Pagnesi
- ASST Spedali Civili di Brescia, Division of Cardiology and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Daniela Tomasoni
- ASST Spedali Civili di Brescia, Division of Cardiology and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Gianmarco Arabia
- ASST Spedali Civili di Brescia, Division of Cardiology and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Enrico Vizzardi
- ASST Spedali Civili di Brescia, Division of Cardiology and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Marianna Adamo
- ASST Spedali Civili di Brescia, Division of Cardiology and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Davide Farina
- ASST Spedali Civili di Brescia, Division of Radiology and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Marco Metra
- ASST Spedali Civili di Brescia, Division of Cardiology and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Riccardo M. Inciardi
- ASST Spedali Civili di Brescia, Division of Cardiology and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
37
|
Importance of imaging-acquisition protocol and post-processing analysis for extracellular volume fraction assessment by computed tomography. J Cardiovasc Comput Tomogr 2023:S1934-5925(23)00082-5. [PMID: 36922309 DOI: 10.1016/j.jcct.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Computed tomography angiography (CTA) assessment of myocardial extracellular volume fraction (CT-ECV) is feasible, although the protocols for imaging acquisition and post-processing methodology have varied. We aimed to identify a pragmatic protocol for CT-ECV assessment encompassing both imaging acquisition and post-processing methodologies to facilitate its clinical implementation. METHODS We evaluated consecutive patients with severe aortic stenosis undergoing evaluation for transcatheter aortic valve replacement (TAVR). Pre-contrast and 3-min-delayed CTA were obtained in systole using either helical prospective-ECG-triggered (high-pitch) or axial sequential-ECG-gated acquisition, adding to standard TAVR CTA protocol. Using a dedicated software for co-registration of CTA datasets, three methodologies for ECV measurement were evaluated: (1) mid-septum region of interest (Septal ECV), (2) averaged-global ECV (Global ECV) encompassing 16-AHA segments, and (3) average of septal and lateral segments (Averaged ECVsep and Averaged ECVlat). RESULTS Among the 142 patients enrolled (median = 81 years, 44% females), 8 were excluded due to significant imaging artifacts precluding Global ECV assessment. High-pitch scan mode was performed in 68 patients (48%). Suboptimal image quality for Global ECV assessment was associated with high-pitch scan mode (odds ratio: OR = 2.26, p = 0.036), along with the presence of intracardiac leads (OR = 4.91, p = 0.002), and BMI≥35 kg/m2 (OR = 2.80, p = 0.026). Septal ECV [median = 29.4%] and Averaged ECVsep [29.0%] were similar (p = 0.108), while Averaged ECVlat [27.5%] was lower than Averaged ECVsep (p < 0.001), resulting in lower Global ECV [28.6%]. CONCLUSIONS Myocardial CT-ECV assessment is feasible using a systolic sequential acquisition pre-contrast, and similar additional 3-min delayed scan. Septal ECV measurement provides similar values to Global ECV and is equally reproducible.
Collapse
|
38
|
Kidoh M, Oda S, Takashio S, Hirakawa K, Kawano Y, Shiraishi S, Hayashi H, Nakaura T, Nagayama Y, Funama Y, Ueda M, Tsujita K, Hirai T. CT Extracellular Volume Fraction versus Myocardium-to-Lumen Signal Ratio for Cardiac Amyloidosis. Radiology 2023; 306:e220542. [PMID: 36255307 DOI: 10.1148/radiol.220542] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Large studies on the diagnostic performance of CT-derived myocardial extracellular volume fraction (ECV) for detecting cardiac amyloidosis are lacking. A simple and practical index as a surrogate for CT ECV would be clinically useful. Purpose To compare the diagnostic performances between CT-derived myocardial ECV and myocardium-to-lumen signal ratio for the detection of cardiac amyloidosis in a large patient sample. Materials and Methods This retrospective study included patients who underwent CT ECV analysis because of suspected heart failure or cardiomyopathy between January 2018 and July 2021. CT ECV was quantified using routine pre-transcatheter aortic valve replacement planning cardiac CT, pre-atrial fibrillation ablation planning cardiac CT, or coronary CT angiography with the addition of unenhanced and delayed phase cardiac CT scans. The diagnostic performances of CT ECV and myocardium-to-lumen signal ratio in delayed phase cardiac CT (a simplified index not requiring unenhanced CT and hematocrit) for detecting cardiac amyloidosis were evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Results Of 552 patients (mean age, 69 years ± 14 [SD]; 295 men), 41 had cardiac amyloidosis. The sensitivity of CT ECV for amyloidosis was 90% (37 of 41 patients [95% CI: 77, 97]), with a specificity of 92% (472 of 511 patients [95% CI: 90, 95]) and optimal ECV cutoff value of 37% (AUC, 0.97 [95% CI: 0.96, 0.99]). The sensitivity of myocardium-to-lumen signal ratio was 88% (36 of 41 patients [95% CI: 74, 96]), with a specificity of 92% (469 of 511 patients [95% CI: 89, 94]) and optimal myocardium-to-lumen signal ratio cutoff value of 0.87 (AUC, 0.96 [95% CI: 0.94, 0.97]; P = .27 for comparison with ECV). Conclusion CT-derived myocardial extracellular volume fraction and myocardium-to-lumen signal ratio showed comparable and excellent diagnostic performance in detecting cardiac amyloidosis in a large patient sample. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Williams in this issue.
Collapse
Affiliation(s)
- Masafumi Kidoh
- From the Departments of Diagnostic Radiology (M.K., S.O., S.S., H.H., T.N., Y.N., T.H.), Cardiovascular Medicine (S.T., K.H., K.T.), Hematology, Rheumatology, and Infectious Disease (Y.K.), and Neurology (M.U.), Graduate School of Medical Sciences, and Department of Medical Physics, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Seitaro Oda
- From the Departments of Diagnostic Radiology (M.K., S.O., S.S., H.H., T.N., Y.N., T.H.), Cardiovascular Medicine (S.T., K.H., K.T.), Hematology, Rheumatology, and Infectious Disease (Y.K.), and Neurology (M.U.), Graduate School of Medical Sciences, and Department of Medical Physics, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Seiji Takashio
- From the Departments of Diagnostic Radiology (M.K., S.O., S.S., H.H., T.N., Y.N., T.H.), Cardiovascular Medicine (S.T., K.H., K.T.), Hematology, Rheumatology, and Infectious Disease (Y.K.), and Neurology (M.U.), Graduate School of Medical Sciences, and Department of Medical Physics, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kyoko Hirakawa
- From the Departments of Diagnostic Radiology (M.K., S.O., S.S., H.H., T.N., Y.N., T.H.), Cardiovascular Medicine (S.T., K.H., K.T.), Hematology, Rheumatology, and Infectious Disease (Y.K.), and Neurology (M.U.), Graduate School of Medical Sciences, and Department of Medical Physics, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yawara Kawano
- From the Departments of Diagnostic Radiology (M.K., S.O., S.S., H.H., T.N., Y.N., T.H.), Cardiovascular Medicine (S.T., K.H., K.T.), Hematology, Rheumatology, and Infectious Disease (Y.K.), and Neurology (M.U.), Graduate School of Medical Sciences, and Department of Medical Physics, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Shinya Shiraishi
- From the Departments of Diagnostic Radiology (M.K., S.O., S.S., H.H., T.N., Y.N., T.H.), Cardiovascular Medicine (S.T., K.H., K.T.), Hematology, Rheumatology, and Infectious Disease (Y.K.), and Neurology (M.U.), Graduate School of Medical Sciences, and Department of Medical Physics, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hidetaka Hayashi
- From the Departments of Diagnostic Radiology (M.K., S.O., S.S., H.H., T.N., Y.N., T.H.), Cardiovascular Medicine (S.T., K.H., K.T.), Hematology, Rheumatology, and Infectious Disease (Y.K.), and Neurology (M.U.), Graduate School of Medical Sciences, and Department of Medical Physics, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takeshi Nakaura
- From the Departments of Diagnostic Radiology (M.K., S.O., S.S., H.H., T.N., Y.N., T.H.), Cardiovascular Medicine (S.T., K.H., K.T.), Hematology, Rheumatology, and Infectious Disease (Y.K.), and Neurology (M.U.), Graduate School of Medical Sciences, and Department of Medical Physics, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasunori Nagayama
- From the Departments of Diagnostic Radiology (M.K., S.O., S.S., H.H., T.N., Y.N., T.H.), Cardiovascular Medicine (S.T., K.H., K.T.), Hematology, Rheumatology, and Infectious Disease (Y.K.), and Neurology (M.U.), Graduate School of Medical Sciences, and Department of Medical Physics, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yoshinori Funama
- From the Departments of Diagnostic Radiology (M.K., S.O., S.S., H.H., T.N., Y.N., T.H.), Cardiovascular Medicine (S.T., K.H., K.T.), Hematology, Rheumatology, and Infectious Disease (Y.K.), and Neurology (M.U.), Graduate School of Medical Sciences, and Department of Medical Physics, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Mitsuharu Ueda
- From the Departments of Diagnostic Radiology (M.K., S.O., S.S., H.H., T.N., Y.N., T.H.), Cardiovascular Medicine (S.T., K.H., K.T.), Hematology, Rheumatology, and Infectious Disease (Y.K.), and Neurology (M.U.), Graduate School of Medical Sciences, and Department of Medical Physics, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kenichi Tsujita
- From the Departments of Diagnostic Radiology (M.K., S.O., S.S., H.H., T.N., Y.N., T.H.), Cardiovascular Medicine (S.T., K.H., K.T.), Hematology, Rheumatology, and Infectious Disease (Y.K.), and Neurology (M.U.), Graduate School of Medical Sciences, and Department of Medical Physics, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Toshinori Hirai
- From the Departments of Diagnostic Radiology (M.K., S.O., S.S., H.H., T.N., Y.N., T.H.), Cardiovascular Medicine (S.T., K.H., K.T.), Hematology, Rheumatology, and Infectious Disease (Y.K.), and Neurology (M.U.), Graduate School of Medical Sciences, and Department of Medical Physics, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
39
|
Gama FF, Patel K, Bennett J, Aziminia N, Pugliese F, Treibel T. Myocardial Evaluation in Patients with Aortic Stenosis by Cardiac Computed Tomography. ROFO-FORTSCHR RONTG 2023; 195:506-513. [PMID: 36854383 DOI: 10.1055/a-1999-7271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Aortic valve stenosis (AVS) is one of the most prevalent pathologies affecting the heart that can curtail expected survival and quality of life if not managed appropriately. CURRENT STATUS Cardiac computed tomography (CT) has long played a central role in this subset, mostly for severity assessment and for procedural planning. Although not as widely accepted as other imaging modalities for functional myocardial assessment [i. e., transthoracic echocardiogram (TTE), cardiac magnetic resonance (CMR)], this technique has recently increased its clinical application in this regard. FUTURE OUTLOOK The ability to provide morphological, functional, tissue, and preprocedural information highlights the potential of the "all-in-one" concept of cardiac CT as a potential reality for the near future for AVS assessment. In this review article, we sought to analyze the current applications of cardiac CT that allow a full comprehensive evaluation of aortic valve disease. KEY POINTS · Noninvasive myocardial tissue characterization stopped being an exclusive feature of cardiac magnetic resonance.. · Emerging acquisition methods make cardiac CT an accurate and widely accessible imaging modality.. · Cardiac CT has the potential to become a "one-stop" exam for comprehensive aortic stenosis assessment.. CITATION FORMAT · Gama FF, Patel K, Bennett J et al. Myocardial Evaluation in Patients with Aortic Stenosis by Cardiac Computed Tomography. Fortschr Röntgenstr 2023; DOI: 10.1055/a-1999-7271.
Collapse
Affiliation(s)
- Francisco F Gama
- Cardiology, Hospital Centre of West Lisbon Campus Hospital of Santa Cruz, Lisboa, Portugal.,Cardiac Imaging, Barts Health NHS Trust, London, United Kingdom of Great Britain and Northern Ireland
| | - Kush Patel
- Cardiac Imaging, Barts Health NHS Trust, London, United Kingdom of Great Britain and Northern Ireland
| | - Jonathan Bennett
- Cardiac Imaging, Barts Health NHS Trust, London, United Kingdom of Great Britain and Northern Ireland
| | - Nikoo Aziminia
- Cardiac Imaging, Barts Health NHS Trust, London, United Kingdom of Great Britain and Northern Ireland
| | - Francesca Pugliese
- Cardiac Imaging, Barts Health NHS Trust, London, United Kingdom of Great Britain and Northern Ireland
| | - Thomas Treibel
- Cardiac Imaging, Barts Health NHS Trust, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
40
|
Wang W, Fan X, Yang J, Wang X, Gu Y, Chen M, Jiang Y, Liu L, Zhang M. Preliminary MRI Study of Extracellular Volume Fraction for Identification of Lymphovascular Space Invasion of Cervical Cancer. J Magn Reson Imaging 2023; 57:587-597. [PMID: 36094153 DOI: 10.1002/jmri.28423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Lymphovascular space invasion (LVSI) is a risk factor for poor prognosis of cervical cancer. Preoperative identification of LVSI is very difficult. PURPOSE To evaluate the potential of extracellular volume (ECV) fraction based on T1 mapping in preoperative identification of LVSI in cervical cancer compared with dynamic contrast-enhanced MRI (DCE-MRI). STUDY TYPE Retrospective. SUBJECTS A total of 79 patients (median age 54 years) with cervical cancer were classified into LVSI group (n = 29) and without LVSI group (n = 50) according to postoperative pathology. FIELD STRENGTH/SEQUENCE A 3-T, noncontrast and contrast-enhanced T1 mapping performed with volume interpolated breath hold examination (VIBE) sequence, DCE-MRI applied with 3D T1-weighted VIBE sequence. ASSESSMENT Regions of interest along the medial edge of the lesion were drawn on slices depicting the maximum cross-section of the tumor. The noncontrast and contrast-enhanced T1 value of the tumor and arteries in the same slice were measured, and ECV was calculated from T1 values. The parametric maps (Ktrans , kep , and ve ) derived from DCE-MRI standard Toft's model were evaluated. STATISTICAL TESTS ECV, Ktrans , kep , and ve between groups with and without LVSI were compared using Student's t-test. The receiver operating characteristic (ROC) curve and DeLong test were used to evaluate and compare the diagnostic performance of ECV, Ktrans , kep , and ve for differentiating LVSI. P < 0.05 was considered statistically significant. RESULTS The ECV and Ktrans of the LVSI group were significantly higher than that of non-LVSI group (52.86% vs. 36.77%, 0.239 vs. 0.176, respectively), and no significant differences in Kep or ve values were observed (P = 0.071 and P = 0.168, respectively). The ECV fraction showed significantly higher area under ROC curve than Ktrans for differentiating LVSI (0.874 vs. 0.655, respectively). DATA CONCLUSION ECV measurements based on T1 mapping might improve the discrimination between patients with and without LVSI in cervical cancer, showing better performance for this purpose than DCE-MRI. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Wei Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaofei Fan
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jie Yang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xuemei Wang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu Gu
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Mingxin Chen
- Inpatient Service Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yueluan Jiang
- MR Scientific Marketing, Diagnostic Imaging, Siemens Healthineers Ltd., Beijing, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
41
|
Lopez-Mattei J, Yang EH, Baldassarre LA, Agha A, Blankstein R, Choi AD, Chen MY, Meyersohn N, Daly R, Slim A, Rochitte C, Blaha M, Whelton S, Dzaye O, Dent S, Milgrom S, Ky B, Iliescu C, Mamas MA, Ferencik M. Cardiac computed tomographic imaging in cardio-oncology: An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT). Endorsed by the International Cardio-Oncology Society (ICOS). J Cardiovasc Comput Tomogr 2023; 17:66-83. [PMID: 36216699 DOI: 10.1016/j.jcct.2022.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022]
Abstract
Cardio-Oncology is a rapidly growing sub-specialty of medicine, however, there is very limited guidance on the use of cardiac CT (CCT) in the care of Cardio-Oncology patients. In order to fill in the existing gaps, this Expert Consensus statement comprised of a multidisciplinary collaboration of experts in Cardiology, Radiology, Cardiovascular Multimodality Imaging, Cardio-Oncology, Oncology and Radiation Oncology aims to summarize current evidence for CCT applications in Cardio-Oncology and provide practice recommendations for clinicians.
Collapse
Affiliation(s)
| | - Eric H Yang
- UCLA Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | | | - Ali Agha
- Department of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | - Ron Blankstein
- Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew D Choi
- Division of Cardiology and Department of Radiology, The George Washington University School of Medicine, Washington, DC, USA
| | - Marcus Y Chen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nandini Meyersohn
- Division of Cardiovascular Imaging, Department of Radiology, Massachusetts General Hospital, USA
| | - Ryan Daly
- Franciscan Health Indianapolis, Indianapolis, IN, USA
| | | | - Carlos Rochitte
- InCor Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Michael Blaha
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
| | - Seamus Whelton
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
| | - Omar Dzaye
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
| | - Susan Dent
- Duke Cancer Institute, Department of Medicine, Duke University, Durham, NC, USA
| | - Sarah Milgrom
- Department of Radiation Oncology, University of Colorado, Boulder, CO, USA
| | - Bonnie Ky
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Cezar Iliescu
- Heart and Vascular Institute, Lee Health, Fort Myers, FL, USA
| | - Mamas A Mamas
- Keele Cardiovascular Research Group, Centre for Prognosis Research, Keele University, UK
| | - Maros Ferencik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
42
|
Dual versus single energy cardiac CT to measure extra cellular volume in cardiac amyloidosis: Correlations with cardiac MRI. IJC HEART & VASCULATURE 2022; 44:101166. [PMID: 36620203 PMCID: PMC9813536 DOI: 10.1016/j.ijcha.2022.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/27/2022]
Abstract
Rationale and objectives Determine in cardiac amyloid (CA) patients, whether cardiac CT derived extracellular volume (ECV) correlates with that obtained by MRI. Perform this correlation with single (SECT) versus dual energy (DECT) CT and evaluate whether a single sample volume ECV-measure was as reliable as a global (16 segment) assessment. Materials and methods CA patients who had undergone a clinical cardiac MRI (CMR) were recruited prospectively. SECT and DECT cardiac scans were performed. Three ECG-triggered prospective SECT scans were acquired: non-contrast, arterial-phase contrast and 5-minute delayed images. A DECT scan was performed at 7 min. Post processing was used to determine ECV. Analyses of SECT or DECT global ECV versus CMR were performed using the Pearson correlation coefficient, Bland Altman analysis and Intraclass correlation coefficient (ICC). Similar analyses were performed to examine the performance of single-segment sampling by SECT or DECT versus CMR. Results 25 patients were recruited, mean age was 80.0 ± 7.1 years, 80 % were male, 21 patients had transthyretin- CA, 4 had light chain- CA. Correlations were close with both SECT or DECT global ECV versus CMR (r = 0.79 and 0.88 respectively, p < 0.001 for both). Reliability of both SECT and DECT to assess global ECV in comparison to CMR was good: ICC for SECT was 0.88 (95 % CI 0.73-0.95) and 0.93 (95 % CI 0.82-0.97) for DECT. For single volume sampling techniques: correlations were close with both SECT or DECT versus CMR (r = 0.60 and 0.72 respectively, p < 0.01 for both) There was no difference in ICC for SECT (0.74, 95 %CI 0.41-0.88) versus DECT (0.84, 95 % CI 0.63-0.93). Wider confidence intervals were noted for ICC with single versus global CT derived ECV assessment. Mean effective radiation dose was for SECT was 5.49 ± 8.04 mSv and 6.90 ± 3.01 mSv for DECT dual energy CT (p = 0.75). Conclusions Global ECV values derived by both DECT or SECT correlated with those obtained by CMR and demonstrated good reliability by ICC in a population of CA patients. DECT and SECT single sampling derived ECV values also demonstrated close correlation and good reliability but the ICCs for single sampling had wider confidence intervals than global ECV assessment.
Collapse
|
43
|
Gama F, Rosmini S, Bandula S, Patel KP, Massa P, Tobon-Gomez C, Ecke K, Stroud T, Condron M, Thornton GD, Bennett JB, Wechelakar A, Gillmore JD, Whelan C, Lachmann H, Taylor SA, Pugliese F, Fontana M, Moon JC, Hawkins PN, Treibel TA. Extracellular Volume Fraction by Computed Tomography Predicts Long-Term Prognosis Among Patients With Cardiac Amyloidosis. JACC Cardiovasc Imaging 2022; 15:2082-2094. [PMID: 36274040 DOI: 10.1016/j.jcmg.2022.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Light chain (AL) and transthyretin (ATTR) amyloid fibrils are deposited in the extracellular space of the myocardium, resulting in heart failure and premature mortality. Extracellular expansion can be quantified by computed tomography, offering a rapid, cheaper, and more practical alternative to cardiac magnetic resonance, especially among patients with cardiac devices or on renal dialysis. OBJECTIVES This study sought to investigate the association of extracellular volume fraction by computed tomography (ECVCT), myocardial remodeling, and mortality in patients with systemic amyloidosis. METHODS Patients with confirmed systemic amyloidosis and varying degrees of cardiac involvement underwent electrocardiography-gated cardiac computed tomography. Whole heart and septal ECVCT was analyzed. All patients also underwent clinical assessment, electrocardiography, echocardiography, serum amyloid protein component, and/or technetium-99m (99mTc) 3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. ECVCT was compared across different extents of cardiac infiltration (ATTR Perugini grade/AL Mayo stage) and evaluated for its association with myocardial remodeling and all-cause mortality. RESULTS A total of 72 patients were studied (AL: n = 35, ATTR: n = 37; median age: 67 [IQR: 59-76] years, 70.8% male). Mean septal ECVCT was 42.7% ± 13.1% and 55.8% ± 10.9% in AL and ATTR amyloidosis, respectively, and correlated with indexed left ventricular mass (r = 0.426; P < 0.001), left ventricular ejection fraction (r = 0.460; P < 0.001), N-terminal pro-B-type natriuretic peptide (r = 0.563; P < 0.001), and high-sensitivity troponin T (r = 0.546; P < 0.001). ECVCT increased with cardiac amyloid involvement in both AL and ATTR amyloid. Over a mean follow-up of 5.3 ± 2.4 years, 40 deaths occurred (AL: n = 14 [35.0%]; ATTR: n = 26 [65.0%]). Septal ECVCT was independently associated with all-cause mortality in ATTR (not AL) amyloid after adjustment for age and septal wall thickness (HR: 1.046; 95% CI: 1.003-1.090; P = 0.037). CONCLUSIONS Cardiac amyloid burden quantified by ECVCT is associated with adverse cardiac remodeling as well as all-cause mortality among ATTR amyloid patients. ECVCT may address the need for better identification and risk stratification of amyloid patients, using a widely accessible imaging modality.
Collapse
Affiliation(s)
- Francisco Gama
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom; Hospital Santa Cruz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Stefania Rosmini
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Steve Bandula
- Centre for Medical Image Computing, Department of Medical Physics, University College London, London, United Kingdom
| | - Kush P Patel
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Paolo Massa
- University Sant'Orsola Hospital, Bologna, Italy; National Amyloidosis Centre, Royal Free Hospital, University College London, London, United Kingdom
| | | | - Karolin Ecke
- Canon Medical Systems Europe, Zoetermeer, the Netherlands
| | - Tyler Stroud
- Canon Medical Systems Europe, Zoetermeer, the Netherlands
| | - Mark Condron
- Canon Medical Systems Europe, Zoetermeer, the Netherlands
| | - George D Thornton
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Jonathan B Bennett
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Ashutosh Wechelakar
- Queen Mary University of London, London, United Kingdom; National Amyloidosis Centre, Royal Free Hospital, University College London, London, United Kingdom
| | - Julian D Gillmore
- Queen Mary University of London, London, United Kingdom; National Amyloidosis Centre, Royal Free Hospital, University College London, London, United Kingdom
| | - Carol Whelan
- Centre for Medical Image Computing, Department of Medical Physics, University College London, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom; Queen Mary University of London, London, United Kingdom; National Amyloidosis Centre, Royal Free Hospital, University College London, London, United Kingdom
| | - Helen Lachmann
- Queen Mary University of London, London, United Kingdom; National Amyloidosis Centre, Royal Free Hospital, University College London, London, United Kingdom
| | - Stuart A Taylor
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Francesca Pugliese
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom; Queen Mary University of London, London, United Kingdom
| | - Marianna Fontana
- Centre for Medical Image Computing, Department of Medical Physics, University College London, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom; Queen Mary University of London, London, United Kingdom; National Amyloidosis Centre, Royal Free Hospital, University College London, London, United Kingdom
| | - James C Moon
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Philip N Hawkins
- Queen Mary University of London, London, United Kingdom; National Amyloidosis Centre, Royal Free Hospital, University College London, London, United Kingdom
| | - Thomas A Treibel
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom.
| |
Collapse
|
44
|
Wechalekar AD, Fontana M, Quarta CC, Liedtke M. AL Amyloidosis for Cardiologists: Awareness, Diagnosis, and Future Prospects: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:427-441. [PMID: 36444232 PMCID: PMC9700258 DOI: 10.1016/j.jaccao.2022.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid light chain (AL) amyloidosis is a rare, debilitating, often fatal disease. Symptoms of cardiomyopathy are common presenting features, and patients often are referred to cardiologists. Cardiac amyloid infiltration is the leading predictor of death. However, the variable presentation and perceived rarity of the disease frequently lead to delay in suspecting amyloidosis as a cause of heart failure, leading to misdiagnoses and a marked delay in diagnosis, with devastating consequences for the patient. A median time from symptom onset to correct diagnosis of about 2 years is often too long when median survival from diagnosis for patients with AL amyloidosis and cardiomyopathy is 4 months to 2 years. The authors highlight the challenges to diagnosis, identify gaps in the current knowledge, and summarize novel treatments on the horizon to raise awareness about the critical need for early recognition of symptoms and diagnosis of AL amyloidosis aimed at accelerating treatment and improving outcomes for patients.
Collapse
Key Words
- AL amyloidosis
- AL, amyloid light chain
- ASCT, autologous stem cell transplantation
- ATTR, transthyretin
- CMR, cardiac magnetic resonance imaging
- CR, complete response
- CyBorD, cyclophosphamide-bortezomib-dexamethasone
- FLC, free light chain
- Ig, immunoglobulin
- LGE, late gadolinium enhancement
- NT-proBNP, N-terminal pro–brain natriuretic peptide
- PCD, plasma cell dyscrasia
- QoL, quality of life
- VGPR, very good partial response
- awareness
- diagnosis
- future therapies
Collapse
Affiliation(s)
| | - Marianna Fontana
- National Amyloidosis Centre, London, United Kingdom
- Royal Free London NHS Foundation Trust, London, United Kingdom
| | - C. Cristina Quarta
- Alexion Pharmaceuticals, AstraZeneca Rare Disease, Boston, Massachusetts, USA
| | - Michaela Liedtke
- Stanford Amyloid Center, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
45
|
Timóteo AT, Rosa SA, Brás PG, Ferreira MJV, Bettencourt N. Multimodality imaging in cardiac amyloidosis: State-of-the-art review. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1084-1096. [PMID: 36218201 DOI: 10.1002/jcu.23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
Amyloidosis is a systemic disease, characterized by deposition of amyloid fibrils in various organs, including the heart. For the diagnosis of cardiac amyloidosis (CA) it is required a high level of clinical suspicion and in the presence of clinical, laboratorial, and electrocardiographic red flags, a comprehensive multimodality imaging evaluation is warranted, including echocardiography, magnetic resonance, scintigraphy, and computed tomography, that will confirm diagnosis and define the CA subtype, which is of the utmost importance to plan a treatment strategy. We will review the use of multimodality imaging in the evaluation of CA, including the latest applications, and a practical flow-chart will sum-up this evidence.
Collapse
Affiliation(s)
- Ana Teresa Timóteo
- Cardiology Department, Santa Marta Hospital, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- NOVA Medical School, Lisbon, Portugal
| | - Silvia Aguiar Rosa
- Cardiology Department, Santa Marta Hospital, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- Heart Center, Hospital Cruz Vermelha Portuguesa, Lisbon, Portugal
| | - Pedro Garcia Brás
- Cardiology Department, Santa Marta Hospital, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Maria João Vidigal Ferreira
- Faculty of Medicine, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra University, Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | |
Collapse
|
46
|
Kardiale MRT bei nichtischämischen Kardiomyopathien. DIE RADIOLOGIE 2022; 62:920-932. [PMID: 36129478 PMCID: PMC9490698 DOI: 10.1007/s00117-022-01068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/15/2022]
Abstract
Hintergrund Die in Deutschland angewandte Einteilung der Kardiomyopathien geht auf die Klassifikation der Europäischen Gesellschaft für Kardiologie (ESC) von 2008 zurück. Dort werden sie nach ihrem Phänotyp unterteilt, so dass die Magnetresonanztomographie (MRT) in der Lage ist, die unterschiedlichen Kardiomyopathien zu differenzieren. Bildgebung und Differenzialdiagnostik Die Stärke der MRT ist es, anhand der Möglichkeiten der Gewebsdifferenzierung nichtischämische Kardiomyopathien von anderen Erkrankungen mit ähnlichen morphofunktionellen Aspekten zu differenzieren. So gelingt im Fall der dilatativen Kardiomyopathie (DCM) eine Differenzierung zur inflammatorischen DCM. Im Fall der hypertrophen Kardiomyopathie (HCM) kann analog zur Echographie eine obstruktive und nichtobstruktive Form differenziert werden, aber auch die Detektion einer Amyloidose oder eines Morbus Fabry ist möglich. Die Evaluation der rechtsventrikulären Funktion gelingt im Rahmen einer arrhythmogenen rechtsventrikulären Kardiomyopathie (ARVC) zuverlässig. Außerdem ist die MRT in der Lage, die charakteristische fettige Ersatzfibrose direkt nachzuweisen. Bei den seltenen restriktiven Kardiomyopathien kann sie die Restriktion nachvollziehen und z. B. mittels T1-, T2- und T2*-Mapping die Sphingolipid-Akkumulation im Myokard bei einem Morbus Fabry oder eine Eisenüberladung bei Hämochromatose nachvollziehen. Innovationen Die quantitativen Verfahren des parametrischen Mappings bieten die Möglichkeit eines Therapiemonitorings; die klinische Relevanz dieses Monitorings ist aber noch Gegenstand aktueller Forschung. Die unklassifizierten Kardiomyopathien können sich klinisch mit ähnlicher Symptomatik wie ischämische oder inflammatorische Erkrankungen präsentieren, so dass im Fall eines Myokardinfarkts ohne verschlossene Koronararterien („myocardial infarction without obstructive coronary arteries“, MINOCA) in der Herzkatheteruntersuchung die MRT ein entscheidendes diagnostisches Instrument ist, um die tatsächlich zugrundeliegende Erkrankung festzustellen. Gleichermaßen kann sie bei neuen Kardiomyopathien wie der Non-compaction-Kardiomyopathie der Wegbereiter für eine morphologische Krankheitsdefinition sein.
Collapse
|
47
|
Velaga J, Liew C, Choo Poh AC, Lee PT, Lath N, Low SC, Bharadwaj P. Multimodality Imaging in the Diagnosis and Assessment of Cardiac Amyloidosis. World J Nucl Med 2022; 21:173-183. [PMID: 36060088 PMCID: PMC9436521 DOI: 10.1055/s-0042-1751057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Amyloidosis is a rare disorder where abnormal protein aggregates are deposited in tissues forming amyloid fibrils, leading to progressive organ failure. Although any organ can be affected, cardiac involvement is the main cause of morbidity and mortality associated with amyloidosis as diagnosis is often delayed due to the indolent nature of the disease in some forms. An early diagnosis of disease and knowledge of the type/subtype of cardiac amyloidosis (CA) are essential for appropriate management and better outcome. Echocardiography is often the first line of investigation for patients suspected of CA and offers superior hemodynamic assessment. Although cardiovascular magnetic resonance (CMR) imaging is not diagnostic of CA, it provides vital clues to diagnosis and has a role in disease quantification and prognostication. Radiolabeled bone seeking tracers are the mainstay of diagnosis of CA and when combined with screening of monoclonal light chains, bone scintigraphy offers high sensitivity in diagnosing transthyretin type of CA. This review aims to describe the noninvasive imaging assessment and approach to diagnosis of patients with suspected CA. Imaging features of echocardiography, nuclear scintigraphy, and CMR are described with a brief mention on computed tomography.
Collapse
Affiliation(s)
- Jyothirmayi Velaga
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
| | - Charlene Liew
- Department of Radiology, Changi General Hospital, Singapore, Singapore
| | | | | | - Narayan Lath
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
| | - Shoen Choon Low
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
| | - Pushan Bharadwaj
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore
| |
Collapse
|
48
|
Shao J, Jiang JS, Wang XY, Wu SM, Xiao J, Zheng KL, Qi RX. Measurement of myocardial extracellular volume using cardiac dual-energy computed tomography in patients with ischaemic cardiomyopathy: a comparison of different methods. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2022; 38:1591-1600. [PMID: 35201509 DOI: 10.1007/s10554-022-02532-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/20/2022] [Indexed: 11/05/2022]
Abstract
To clarify the consistency and efficiency of four methods for myocardial extracellular volume (ECV) measurement (manual method using dual-energy iodine [manual ECViodine], manual method using subtraction [manual ECVsub], automatic ECViodine, automatic ECVsub) in patients with ischaemic cardiomyopathy. Fifty patients with ischaemic cardiomyopathy who underwent coronary computed tomography angiography (CCTA) following dual-energy computed tomography (CT) with late iodine enhancement (LIE-DECT) were included. LIE with ischaemic patterns representing scarring could be detected using iodine maps in all patients. The global and remote ECVs of non-scarred myocardium were measured using four methods (manual ECViodine, automatic ECViodine, manual ECVsub, and automatic ECVsub). The consistency and time cost of the four methods were analysed. There were no significant differences in the mean global ECVs or remote ECVs among the four methods (p > 0.05). ECViodine resulted in a lower Bland-Altman limit of agreement than that of ECVsub for both global and remote measurements. Intraclass correlation coefficients of the automatic and manual ECViodine measurements demonstrated better concordance (0.804 and 0.859, respectively) than those of automatic and manual ECVsub (0.607 and 0.669, respectively) for both global and remote measurements. The measurement time for automatic ECV was less than that for manual ECV for both global and remote ECV measurements (all p < 0.001). ECV measurement using dual-energy iodine yielded good concordance, and the automatic method has the advantages of being simple and convenient, which can become a useful tool for quantification of myocardial fibrosis.
Collapse
Affiliation(s)
- Jun Shao
- Department of Radiology, The Affiliated Rudong Hospital of Nantong University, Jianghai (West) Road No. 2, Nantong, 226400, China
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Haierxiang (North) Road No. 6, Nantong, 226001, China
| | - Jia-Shen Jiang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Haierxiang (North) Road No. 6, Nantong, 226001, China
| | - Xiao-Yu Wang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Haierxiang (North) Road No. 6, Nantong, 226001, China
| | - Su-Meng Wu
- Department of Radiology, The Affiliated Rudong Hospital of Nantong University, Jianghai (West) Road No. 2, Nantong, 226400, China
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Haierxiang (North) Road No. 6, Nantong, 226001, China
| | - Jing Xiao
- Epidemiology and Medical Statistics, School of Public Health, Nantong University, Seyuan Road No. 9, Nantong, 226019, China
| | - Kou-Long Zheng
- Cardiology, The Second Affiliated Hospital of Nantong University, Haierxiang (North) Road No. 6, Nantong, 226001, China.
| | - Rong-Xing Qi
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Haierxiang (North) Road No. 6, Nantong, 226001, China.
| |
Collapse
|
49
|
Mergen V, Sartoretti T, Klotz E, Schmidt B, Jungblut L, Higashigaito K, Manka R, Euler A, Kasel M, Eberhard M, Alkadhi H. Extracellular Volume Quantification With Cardiac Late Enhancement Scanning Using Dual-Source Photon-Counting Detector CT. Invest Radiol 2022; 57:406-411. [PMID: 35066531 PMCID: PMC9390230 DOI: 10.1097/rli.0000000000000851] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the feasibility and accuracy of cardiac late enhancement (LE) scanning for extracellular volume (ECV) quantification with dual-source photon-counting detector computed tomography (PCD-CT). MATERIALS AND METHODS In this institutional review board-approved study, 30 patients (mean age, 79 years; 12 women; mean body mass index, 28 kg/m2) with severe aortic stenosis undergoing PCD-CT as part of their preprocedural workup for transcatheter aortic valve replacement were included. The scan protocol consisted of a nonenhanced calcium-scoring scan, coronary CT angiography (CTA) followed by CTA of the thoracoabdominal aorta, and a low-dose LE scan 5 minutes after the administration of 100 mL contrast media (all scans electrocardiogram-gated). Virtual monoenergetic (65 keV) and dual-energy (DE) iodine images were reconstructed from the LE scan. Extracellular volume was calculated using the iodine ratios of myocardium and blood-pool of the LE scan, and additionally based on single-energy (SE) subtraction of the nonenhanced scan from the LE scan. Three-dimensional analysis was performed automatically for the whole-heart myocardial volume by matching a heart model generated from the respective coronary CTA data. Bland-Altman and correlation analysis were used to compare the ECV values determined by both methods. RESULTS The median dose length product for the LE scan was 84 mGy·cm (interquartile range, 69; 125 mGy·cm). Extracellular volume quantification was feasible in all patients. The median ECV value was 30.5% (interquartile range, 28.4%-33.6%). Two focal ECV elevations matched known prior myocardial infarction. The DE- and SE-based ECV quantification correlated well (r = 0.87, P < 0.001). Bland-Altman analysis showed small mean errors between DE- and SE-based ECV quantification (0.9%; 95% confidence interval, 0.1%-1.6%) with narrow limits of agreement (-3.3% to 5.0%). CONCLUSIONS Dual-source PCD-CT enables accurate ECV quantification using an LE cardiac DE scan at low radiation dose. Extracellular volume calculation from iodine ratios of the LE scan obviates the need for acquisition of a true nonenhanced scan and is not affected by potential misregistration between 2 separate scans.
Collapse
Affiliation(s)
- Victor Mergen
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Thomas Sartoretti
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Switzerland
| | | | | | - Lisa Jungblut
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Kai Higashigaito
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Robert Manka
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - André Euler
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Markus Kasel
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Eberhard
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Hatem Alkadhi
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
50
|
Rimbas RC, Balinisteanu A, Magda SL, Visoiu SI, Ciobanu AO, Beganu E, Nicula AI, Vinereanu D. New Advanced Imaging Parameters and Biomarkers-A Step Forward in the Diagnosis and Prognosis of TTR Cardiomyopathy. J Clin Med 2022; 11:2360. [PMID: 35566485 PMCID: PMC9101617 DOI: 10.3390/jcm11092360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Transthyretin amyloid cardiomyopathy (ATTR-CM) is an infiltrative disorder characterized by extracellular myocardial deposits of amyloid fibrils, with poor outcome, leading to heart failure and death, with significant treatment expenditure. In the era of a novel therapeutic arsenal of disease-modifying agents that target a myriad of pathophysiological mechanisms, timely and accurate diagnosis of ATTR-CM is crucial. Recent advances in therapeutic strategies shown to be most beneficial in the early stages of the disease have determined a paradigm shift in the screening, diagnostic algorithm, and risk classification of patients with ATTR-CM. The aim of this review is to explore the utility of novel specific non-invasive imaging parameters and biomarkers from screening to diagnosis, prognosis, risk stratification, and monitoring of the response to therapy. We will summarize the knowledge of the most recent advances in diagnostic, prognostic, and treatment tailoring parameters for early recognition, prediction of outcome, and better selection of therapeutic candidates in ATTR-CM. Moreover, we will provide input from different potential pathways involved in the pathophysiology of ATTR-CM, on top of the amyloid deposition, such as inflammation, endothelial dysfunction, reduced nitric oxide bioavailability, oxidative stress, and myocardial fibrosis, and their diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Roxana Cristina Rimbas
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Anca Balinisteanu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Stefania Lucia Magda
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Simona Ionela Visoiu
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Andrea Olivia Ciobanu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Elena Beganu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
| | - Alina Ioana Nicula
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
- Radiology Department, University and Emergency Hospital, 050098 Bucharest, Romania
| | - Dragos Vinereanu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| |
Collapse
|