1
|
Arrasate A, Bravo I, Lopez-Robles C, Arbelaiz-Sarasola A, Ugalde M, Meijueiro ML, Zuazo M, Valero A, Banos-Mateos S, Ramirez JC, Albo C, Lamsfus-Calle A, Fertin MJ. Establishment and Characterization of a Stable Producer Cell Line Generation Platform for the Manufacturing of Clinical-Grade Lentiviral Vectors. Biomedicines 2024; 12:2265. [PMID: 39457578 PMCID: PMC11504443 DOI: 10.3390/biomedicines12102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: To date, nearly 300 lentiviral-based gene therapy clinical trials have been conducted, with eight therapies receiving regulatory approval for commercialization. These advances, along with the increased number of advanced-phase clinical trials, have prompted contract development and manufacturing organizations (CDMOs) to develop innovative strategies to address the growing demand for large-scale batches of lentiviral vectors (LVVs). Consequently, manufacturers have focused on optimizing processes under good manufacturing practices (GMPs) to improve cost-efficiency, increase process robustness, and ensure regulatory compliance. Nowadays, the LVV production process mainly relies on the transient transfection of four plasmids encoding for the lentiviral helper genes and the transgene. While this method is efficient at small scales and has also proven to be scalable, the industry is exploring alternative processes due to the high cost of GMP reagents, and the batch-to-batch variability predominantly attributed to the transfection step. Methods: Here, we report the development and implementation of a reliable and clinical-grade envisioned platform based on the generation of stable producer cell lines (SCLs) from an initial well-characterized lentiviral packaging cell line (PCL). Results: This platform enables the production of VSV-G-pseudotyped LVVs through a fully transfection-free manufacturing process. Our data demonstrate that the developed platform will facilitate successful technological transfer to large-scale LVV production for clinical application. Conclusions: With this simple and robust stable cell line generation strategy, we address key concerns associated with the costs and reproducibility of current manufacturing processes.
Collapse
Affiliation(s)
- Ane Arrasate
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
- Campus of Biscay, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Igone Bravo
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Carlos Lopez-Robles
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Ane Arbelaiz-Sarasola
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Maddi Ugalde
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Martha Lucia Meijueiro
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Miren Zuazo
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Ana Valero
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Soledad Banos-Mateos
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Juan Carlos Ramirez
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Carmen Albo
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Andrés Lamsfus-Calle
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Marie J. Fertin
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| |
Collapse
|
2
|
Champeil J, Mangion M, Gilbert R, Gaillet B. Improved Manufacturing Methods of Extracellular Vesicles Pseudotyped with the Vesicular Stomatitis Virus Glycoprotein. Mol Biotechnol 2024; 66:1116-1131. [PMID: 38182864 DOI: 10.1007/s12033-023-01007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024]
Abstract
Extracellular vesicles (EV), which expose the vesicular stomatitis virus glycoprotein (VSVG) on their surface, are used for delivery of nucleic acids and proteins in human cell lines. These particles are biomanufactured using methods that are difficult to scale up. Here, we describe the development of the first EV-VSVG production process in serum-free media using polyethylenimine (PEI)-based transient transfection of HEK293 suspension cells, as well as the first EV-VSVG purification process to utilize both ultracentrifugation and chromatography. Three parameters were investigated for EV-VSVG production: cell density, DNA concentration, and DNA:PEI ratio. The best production titer was obtained with 3 × 106 cells/mL, a plasmid concentration of 2 µg/mL, and a DNA:PEI ratio of 1:4. The production kinetics of VSVG was performed and showed that the highest amount of VSVG was obtained 3 days after transfection. Addition of cell culture supplements during the transfection resulted in an increase in VSVG production, with a maximum yield obtained with 2 mM of sodium butyrate added 18 h after transfection. Moreover, the absence of EV-VSVG during cell transfection with a GFP-coding plasmid revealed to be ineffective, with no fluorescent cells. An efficient EV-VSVG purification procedure consisting of a two-step concentration by low-speed centrifugation and sucrose cushion ultracentrifugation followed by a heparin affinity chromatography purification was also developed. Purified bioactive EV-VSVG preparations were characterized and revealed that EV-VSVG are spherical particles of 176.4 ± 88.32 nm with 91.4% of protein similarity to exosomes.
Collapse
Affiliation(s)
- Juliette Champeil
- Chemical Engineering Department, Université Laval, 1065, Avenue de la Médecine, Pavillon Pouliot, Québec, QC, G1V 0A6, Canada
- PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC, H2X 3Y7, Canada
- ThéCell: FRQS Cell, Tissue and Gene Therapy Network, Laboratoire d'organogénèse expérimentale - LOEX, 1401, 18E rue, Québec, QC, G1J 1Z4, Canada
| | - Mathias Mangion
- Chemical Engineering Department, Université Laval, 1065, Avenue de la Médecine, Pavillon Pouliot, Québec, QC, G1V 0A6, Canada
- PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC, H2X 3Y7, Canada
- ThéCell: FRQS Cell, Tissue and Gene Therapy Network, Laboratoire d'organogénèse expérimentale - LOEX, 1401, 18E rue, Québec, QC, G1J 1Z4, Canada
| | - Rénald Gilbert
- ThéCell: FRQS Cell, Tissue and Gene Therapy Network, Laboratoire d'organogénèse expérimentale - LOEX, 1401, 18E rue, Québec, QC, G1J 1Z4, Canada
- Human Health Therapeutics Research Center, National Research Council Canada, 6100, Avenue Royalmount, Montréal, Québec, H4P 2R2, Canada
| | - Bruno Gaillet
- Chemical Engineering Department, Université Laval, 1065, Avenue de la Médecine, Pavillon Pouliot, Québec, QC, G1V 0A6, Canada.
- PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC, H2X 3Y7, Canada.
- ThéCell: FRQS Cell, Tissue and Gene Therapy Network, Laboratoire d'organogénèse expérimentale - LOEX, 1401, 18E rue, Québec, QC, G1J 1Z4, Canada.
| |
Collapse
|
3
|
Kearney AM. Chromatographic Purification of Viral Vectors for Gene Therapy Applications. Methods Mol Biol 2023; 2699:51-60. [PMID: 37646993 DOI: 10.1007/978-1-0716-3362-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Chromatography has been a mainstay in the downstream processing and purification of biopharmaceutical medicines. Until now, this has largely involved the purification of protein products such as recombinant enzymes and monoclonal antibodies using large-scale column chromatography methods. The development of advanced therapeutic medicinal products (ATMP) is heralding in a new era of therapeutics for a range of indications. These new therapeutics use diverse substances ranging from live stem cell preparations to fragments of nucleic acid enclosed in a viral delivery system. With these new technologies come new challenges in their purification. In this chapter, the challenges faced in producing and purifying viral vectors capable of delivering life-altering gene therapy to the patient will be discussed. Current methods of chromatography capable of adaptation to meet these new challenges and advancements that may be needed to increase the purification capabilities for these new products will also be discussed.
Collapse
|
4
|
Moreira AS, Cavaco DG, Faria TQ, Alves PM, Carrondo MJT, Peixoto C. Advances in Lentivirus Purification. Biotechnol J 2020; 16:e2000019. [PMID: 33089626 DOI: 10.1002/biot.202000019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022]
Abstract
Lentiviral vectors (LVs) have been increasingly used as a tool for gene and cell therapies since they can stably integrate the genome in dividing and nondividing cells. LV production and purification processes have evolved substantially over the last decades. However, the increasing demands for higher quantities with more restrictive purity requirements are stimulating the development of novel materials and strategies to supply the market with LV in a cost-effective manner. A detailed review of each downstream process unit operation is performed, limitations, strengths, and potential outcomes being covered. Currently, the majority of large-scale LV manufacturing processes are still based on adherent cell culture, although it is known that the industry is migrating fast to suspension cultures. Regarding the purification strategy, it consists of batch chromatography and membrane technology. Nevertheless, new solutions are being created to improve the current production schemes and expand its clinical use.
Collapse
Affiliation(s)
- Ana Sofia Moreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - David Guia Cavaco
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Tiago Q Faria
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| |
Collapse
|
5
|
Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020; 10:291-312. [PMID: 32292625 PMCID: PMC7104128 DOI: 10.1016/j.jpha.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products. Chromatography techniques are widely implemented at both academic and industrial levels in the purification of viral particles, whole viruses and virus-like particles to remove viral contaminants from biopharmaceutical products. This paper focuses on polysaccharide adsorbents, particulate resins and membrane adsorbers, used in virus purification/removal chromatography processes. Different chromatographic modes are surveyed, with particular attention to ion exchange and affinity/pseudo-affinity adsorbents among which commercially available agarose-based resins (Sepharose®) and cellulose-based membrane adsorbers (Sartobind®) occupy a dominant position. Mainly built on the development of new ligands coupled to conventional agarose/cellulose matrices, the development perspectives of polysaccharide-based chromatography media in this antiviral area are stressed in the conclusive part.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| |
Collapse
|
6
|
Valkama AJ, Oruetxebarria I, Lipponen EM, Leinonen HM, Käyhty P, Hynynen H, Turkki V, Malinen J, Miinalainen T, Heikura T, Parker NR, Ylä-Herttuala S, Lesch HP. Development of Large-Scale Downstream Processing for Lentiviral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:717-730. [PMID: 32346549 PMCID: PMC7177191 DOI: 10.1016/j.omtm.2020.03.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
The interest in lentiviral vectors (LVs) has increased prominently for gene therapy applications, but few have reached the later stages of clinical trials. The main challenge has remained in scaling up the manufacturing process for the fragile vector to obtain high titers for in vivo usage. We have previously scaled up the LV production to iCELLis 500, being able to produce up to 180 L of harvest material in one run with perfusion. The following challenge considers the purification and concentration of the product to meet titer and purity requirements for clinical use. We have developed a downstream process, beginning with clarification, buffer exchange, and concentration, by tangential flow filtration. This is followed by a purification step using single membrane-based anion exchange chromatography and final formulation with tangential flow filtration. Different materials and conditions were compared to optimize the process, especially for the chromatography step that has been the bottleneck in lentiviral vector purification scale-up. The final infectious titer of the lentiviral vector product manufactured using the optimized scale-up process was determined to be 1.97 × 109 transducing units (TU)/mL, which can be considered as a high titer for lentiviral vectors.
Collapse
Affiliation(s)
- Anniina J Valkama
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Igor Oruetxebarria
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Eevi M Lipponen
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Hanna M Leinonen
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Piia Käyhty
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Heidi Hynynen
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Vesa Turkki
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Joonas Malinen
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Tuukka Miinalainen
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Tommi Heikura
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Nigel R Parker
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Hanna P Lesch
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| |
Collapse
|
7
|
Boudeffa D, Bertin B, Biek A, Mormin M, Leseigneur F, Galy A, Merten OW. Toward a Scalable Purification Protocol of GaLV-TR-Pseudotyped Lentiviral Vectors. Hum Gene Ther Methods 2020; 30:153-171. [PMID: 31516018 DOI: 10.1089/hgtb.2019.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lentiviral vectors (LV) that are used in research and development as well as in clinical trials are in majority vesicular stomatitis virus G glycoprotein (VSVg) pseudotyped. The predominance of this pseudotype choice for clinical gene therapy studies is largely due to a lack of purification schemes for pseudotypes other than VSVg. In this study, we report for the first time the development of a new downstream process protocol allowing high-yield production of stable and infectious gibbon ape leukemia virus (GaLV)-TR-LV particles. We identified critical conditions in tangential flow filtration (TFF) and chromatographic steps for preserving the infectivity/functionality of LV during purification. This was carried out by identifying for each step, the critical parameters affecting LV infectivity, including pH, salinity, presence of stabilizers, temperature, and by defining the optimal order of these steps. A three-step process was developed for GaLV-TR-LV purification consisting of one TFF and two chromatographic steps (ion-exchange chromatography and size exclusion chromatography) permitting recoveries of >27% of infectious particles. With this process, purified GaLV-pseudotyped LV enabled the transduction of 70% human CD34+ cells in the presence of the Vectofusin-1 peptide, whereas in the same conditions nonpurified vector transduced only 9% of the cells (multiplicity of infection 20). Our protocol will allow for the first time the purification of GaLV-TR-LV that are biologically active, stable, and with sufficient recovery in the perspective of preclinical studies and clinical applications. Obviously, further optimizations are required to improve final vector yields.
Collapse
Affiliation(s)
| | | | | | - Mirella Mormin
- Généthon, Evry, France.,Integrare Research Unit (UMR_S951), Généthon, Inserm, Université Evry Val-d'Essonne, Université Paris Saclay, EPHE, Evry, France
| | | | - Anne Galy
- Généthon, Evry, France.,Integrare Research Unit (UMR_S951), Généthon, Inserm, Université Evry Val-d'Essonne, Université Paris Saclay, EPHE, Evry, France
| | | |
Collapse
|
8
|
Abstract
Exosomes are secreted by mammalian cells and are widely distributed in cellular systems. They are a medium of information and material transmission. The complexity of exosome nature and function is not thoroughly understood. Nevertheless, they are being confirmed as mediators of intercellular communication and play significant roles in many physiological and pathological processes. Significant obstacles to the efficient and robust isolation of large quantities of pure and specific exosomes still exist. These include a lack of understanding of the relationship between exosome characteristics and function, and a shortage of scalable solutions to separate specific exosomes from other large entities remain. Hence, generic production platforms are desired. While solutions suitable for exosome manufacturing under GMP are available, most have been developed for other purposes.
Collapse
|
9
|
Olgun HB, Tasyurek HM, Sanlioglu AD, Sanlioglu S. High-Grade Purification of Third-Generation HIV-Based Lentiviral Vectors by Anion Exchange Chromatography for Experimental Gene and Stem Cell Therapy Applications. Methods Mol Biol 2019; 1879:347-365. [PMID: 30006865 DOI: 10.1007/7651_2018_154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lentiviral vectors (LVs) have been increasingly used in clinical gene therapy applications particularly due to their efficient gene transfer ability, lack of interference from preexisting viral immunity, and long-term gene expression they provide. Purity of LVs is essential in in vivo applications, for a high therapeutic benefit with minimum toxicity. Accordingly, laboratory scale production of LVs frequently involves transient cotransfection of 293T cells with packaging and transfer plasmids in the presence of CaPO4. After clearance of the cellular debris by low-speed centrifugation and filtration, lentivectors are usually concentrated by high-speed ultracentrifugation in sucrose cushion. Concentrated viral samples are then purified by anion exchange chromatography (AEX) after benzonase treatment to remove the residual cellular DNA. Here, we describe an improved practical method for LV purification using AEX, useful for experimental studies concerning gene and stem cell therapy.
Collapse
Affiliation(s)
- Hazal Banu Olgun
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals and Clinics, Antalya, Turkey
| | - Hale M Tasyurek
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals and Clinics, Antalya, Turkey
| | - Ahter D Sanlioglu
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals and Clinics, Antalya, Turkey
| | - Salih Sanlioglu
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals and Clinics, Antalya, Turkey.
| |
Collapse
|
10
|
Fernandes CSM, Barbosa I, Castro R, Pina AS, Coroadinha AS, Barbas A, Roque ACA. Retroviral particles are effectively purified on an affinity matrix containing peptides selected by phage-display. Biotechnol J 2016; 11:1513-1524. [DOI: 10.1002/biot.201600025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Cláudia S. M. Fernandes
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnológia; Universidade Nova de Lisboa; Caparica Portugal
| | - Inês Barbosa
- iBET, Instituto de Biologia Experimental e Tecnológia; Oeiras Portugal
| | - Rute Castro
- iBET, Instituto de Biologia Experimental e Tecnológia; Oeiras Portugal
- Instituto de Tecnológia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
| | - Ana Sofia Pina
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnológia; Universidade Nova de Lisboa; Caparica Portugal
| | - Ana Sofia Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológia; Oeiras Portugal
- Instituto de Tecnológia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
| | - Ana Barbas
- iBET, Instituto de Biologia Experimental e Tecnológia; Oeiras Portugal
- Bayer Portugal, S.A.; Carnaxide Portugal
| | - A. Cecília A. Roque
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnológia; Universidade Nova de Lisboa; Caparica Portugal
| |
Collapse
|
11
|
Fernandes CS, Castro R, Coroadinha AS, Roque ACA. Small synthetic ligands for the enrichment of viral particles pseudotyped with amphotropic murine leukemia virus envelope. J Chromatogr A 2016; 1438:160-70. [DOI: 10.1016/j.chroma.2016.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 11/24/2022]
|
12
|
Kramberger P, Urbas L, Štrancar A. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages. Hum Vaccin Immunother 2015; 11:1010-21. [PMID: 25751122 PMCID: PMC4514237 DOI: 10.1080/21645515.2015.1009817] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 12/25/2014] [Indexed: 10/23/2022] Open
Abstract
Downstream processing of nanoplexes (viruses, virus-like particles, bacteriophages) is characterized by complexity of the starting material, number of purification methods to choose from, regulations that are setting the frame for the final product and analytical methods for upstream and downstream monitoring. This review gives an overview on the nanoplex downstream challenges and chromatography based analytical methods for efficient monitoring of the nanoplex production.
Collapse
|
13
|
Efficient chromatographic reduction of ovalbumin for egg-based influenza virus purification. Vaccine 2014; 32:3721-4. [DOI: 10.1016/j.vaccine.2014.04.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/27/2014] [Accepted: 04/14/2014] [Indexed: 11/21/2022]
|
14
|
McNally DJ, Darling D, Farzaneh F, Levison PR, Slater NKH. Optimised concentration and purification of retroviruses using membrane chromatography. J Chromatogr A 2014; 1340:24-32. [PMID: 24685165 PMCID: PMC4003387 DOI: 10.1016/j.chroma.2014.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/04/2014] [Accepted: 03/08/2014] [Indexed: 01/21/2023]
Abstract
An in investigation in to the use of membrane chromatography for the purification of a γ-retrovirus was undertaken. The first report of a capacity for γ-retrovirus binding to a membrane chromatography device is presented. A process that produces a large increase in concentration and purity of the studied γ-retrovirus was identified. Proteomic techniques were used to identify the protein impurities removed and co-purified with the virus containing eluate.
The ability of an anion exchange membrane to purify a γ-retrovirus was assessed and optimised with respect to different loading and wash buffers. Recoveries of infectious virus greater than 50% were consistently obtained, while specific titre was increased up to one thousand fold when compared to the material loaded. Specific proteins removed and retained by this optimised process were identified by mass spectrometry. It was possible to successfully bind and elute the equivalent of 1.27 × 108 Ifu/ml of ion exchange membrane. This could then be highly concentrated, with infectious virus concentrated to a maximum of 420-fold compared to the load.
Collapse
Affiliation(s)
- D J McNally
- Department of Chemical Engineering and Biotechnology, New Museums Site, Pembroke St, Cambridge CB2 3RA, UK.
| | - D Darling
- King's College London, 123 Coldharbour Lane, London SE5 9NU, UK
| | - F Farzaneh
- King's College London, 123 Coldharbour Lane, London SE5 9NU, UK
| | - P R Levison
- Pall Europe Limited, 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, Hampshire, UK
| | - N K H Slater
- Department of Chemical Engineering and Biotechnology, New Museums Site, Pembroke St, Cambridge CB2 3RA, UK
| |
Collapse
|
15
|
Abstract
Gastroenteritis (GE) and its associated diarrheal diseases remain as one of the top causes of death in the world. Noroviruses (NoVs) are a group of genetically diverse RNA viruses that cause the great majority of nonbacterial gastroenteritis in humans. However, there is still no vaccine licensed for human use to prevent NoV GE. The lack of a tissue culture system and a small animal model further hinders the development of NoV vaccines. Virus-like particles (VLPs) that mimic the antigenic architecture of authentic virions, however, can be produced in insect, mammalian, and plant cells by the expression of the capsid protein. The particulate nature and high-density presentation of viral structure proteins on their surface render VLPs as a premier vaccine platform with superior safety, immunogenicity, and manufacturability. Therefore, this chapter focuses on the development of effective NoV vaccines based on VLPs of capsid proteins. The expression and structure of NoV VLPs, especially VLPs of Norwalk virus, the prototype NoV, are extensively discussed. The ability of NoV VLPs in stimulating a potent systemic and mucosal anti-NoV immunity through oral and intranasal delivery in mice is presented. The advantages of plant expression systems as a novel production platform for VLP-based NoV vaccines are discussed in light of their cost-effectiveness, production speed, and scalability. Recent achievements from the first successful demonstration of NoV VLP production in plant expression system under the current Good Manufacture Practice (cGMP) regulation by the US Food and Drug Administration (FDA) are detailed. Moreover, results of human clinical trials demonstrating the safety and efficacy of insect and plant-derived NoV VLPs are also presented. Due to the diversity of capsid protein among different NoV strains and its rapid antigenic drift, we speculate that vaccine development should focus on multivalent VLP vaccines derived from capsid proteins of the most prevalent strains. With the very recent approval of the first plant-made biologics by the FDA, we also speculate that plant-based production systems will play an important role in manufacturing such multivalent VLP-based NoV vaccines.
Collapse
|
16
|
Chen Q, Lai H. Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother 2013; 9:26-49. [PMID: 22995837 PMCID: PMC3667944 DOI: 10.4161/hv.22218] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/06/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023] Open
Abstract
Virus-like particles (VLPs) are self-assembled structures derived from viral antigens that mimic the native architecture of viruses but lack the viral genome. VLPs have emerged as a premier vaccine platform due to their advantages in safety, immunogenicity, and manufacturing. The particulate nature and high-density presentation of viral structure proteins on their surface also render VLPs as attractive carriers for displaying foreign epitopes. Consequently, several VLP-based vaccines have been licensed for human use and achieved significant clinical and economical success. The major challenge, however, is to develop novel production platforms that can deliver VLP-based vaccines while significantly reducing production times and costs. Therefore, this review focuses on the essential role of plants as a novel, speedy and economical production platform for VLP-based vaccines. The advantages of plant expression systems are discussed in light of their distinctive posttranslational modifications, cost-effectiveness, production speed, and scalability. Recent achievements in the expression and assembly of VLPs and their chimeric derivatives in plant systems as well as their immunogenicity in animal models are presented. Results of human clinical trials demonstrating the safety and efficacy of plant-derived VLPs are also detailed. Moreover, the promising implications of the recent creation of "humanized" glycosylation plant lines as well as the very recent approval of the first plant-made biologics by the U. S. Food and Drug Administration (FDA) for plant production and commercialization of VLP-based vaccines are discussed. It is speculated that the combined potential of plant expression systems and VLP technology will lead to the emergence of successful vaccines and novel applications of VLPs in the near future.
Collapse
Affiliation(s)
- Qiang Chen
- Center for Infectious Diseases and Vaccinology, Biodesign Institute at Arizona State University, Tempe, AZ USA.
| | | |
Collapse
|
17
|
Bandeira VS, Peixoto C, Rodrigues AF, Cruz P, Alves P, Coroadinha AS, Carrondo M. Downstream Processing of Lentiviral Vectors: releasing bottlenecks. Hum Gene Ther Methods 2012. [DOI: 10.1089/hum.2012.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
18
|
Bandeira V, Peixoto C, Rodrigues AF, Cruz PE, Alves PM, Coroadinha AS, Carrondo MJT. Downstream Processing of Lentiviral Vectors: Releasing Bottlenecks. Hum Gene Ther Methods 2012; 23:255-63. [DOI: 10.1089/hgtb.2012.059] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Vanessa Bandeira
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
| | - Cristina Peixoto
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
| | - Ana F. Rodrigues
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB-UNL), 2780-157 Oeiras, Portugal
| | - Pedro E. Cruz
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
| | - Paula M. Alves
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB-UNL), 2780-157 Oeiras, Portugal
| | - Ana S. Coroadinha
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB-UNL), 2780-157 Oeiras, Portugal
| | - Manuel J. T. Carrondo
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT-UNL), 2829-516 Caparica, Portugal
| |
Collapse
|
19
|
Vicente T, Mota JP, Peixoto C, Alves PM, Carrondo MJ. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: Current advances. Biotechnol Adv 2011; 29:869-78. [DOI: 10.1016/j.biotechadv.2011.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 12/11/2022]
|
20
|
Abstract
Manufacturing of cell culture-derived virus particles for vaccination and gene therapy is a rapidly growing field in the biopharmaceutical industry. The process involves a number of complex tasks and unit operations ranging from selection of host cells and virus strains for the cultivation in bioreactors to the purification and formulation of the final product. For the majority of cell culture-derived products, efforts focused on maximization of bioreactor yields, whereas design and optimization of downstream processes were often neglected. Owing to this biased focus, downstream procedures today often constitute a bottleneck in various manufacturing processes and account for the majority of the overall production costs. For efficient production methods, particularly in sight of constantly increasing economic pressure within human healthcare systems, highly productive downstream schemes have to be developed. Here, we discuss unit operations and downstream trains to purify virus particles for use as vaccines and vectors for gene therapy.
Collapse
Affiliation(s)
- Michael W Wolf
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | | |
Collapse
|
21
|
Iyer G, Ramaswamy S, Asher D, Mehta U, Leahy A, Chung F, Cheng KS. Reduced surface area chromatography for flow-through purification of viruses and virus like particles. J Chromatogr A 2011; 1218:3973-81. [DOI: 10.1016/j.chroma.2011.04.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 11/26/2022]
|
22
|
Zimmermann K, Scheibe O, Kocourek A, Muelich J, Jurkiewicz E, Pfeifer A. Highly efficient concentration of lenti- and retroviral vector preparations by membrane adsorbers and ultrafiltration. BMC Biotechnol 2011; 11:55. [PMID: 21599966 PMCID: PMC3118112 DOI: 10.1186/1472-6750-11-55] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/20/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lentiviral vectors (LVs) can efficiently transduce a broad spectrum of cells and tissues, including dividing and non-dividing cells. So far the most widely used method for concentration of lentiviral particles is ultracentrifugation (UC).An important feature of vectors derived from lentiviruses and prototypic gamma-retroviruses is that the host range can be altered by pseudotypisation. The most commonly used envelope protein for pseudotyping is the glycoprotein of the Vesicular Stomatitis Virus (VSV.G), which is also essential for successful concentration using UC. RESULTS Here, we describe a purification method that is based on membrane adsorbers (MAs). Viral particles are efficiently retained by the anionic exchange MAs and can be eluted with a high-salt buffer. Buffer exchange and concentration is then performed by utilizing ultrafiltration (UF) units of distinct molecular weight cut off (MWCO). With this combined approach similar biological titers as UC can be achieved (2 to 5×10⁹ infectious particles (IP)/ml). Lentiviral particles from small starting volumes (e.g. 40 ml) as well as large volumes (up to 1,000 ml) cell culture supernatant (SN) can be purified. Apart from LVs, vectors derived from oncoretroviruses can be efficiently concentrated as well. Importantly, the use of the system is not confined to VSV.G pseudotyped lenti- and retroviral particles and other pseudotypes can also be purified. CONCLUSIONS Taken together the method presented here offers an efficient alternative for the concentration of lenti- as well as retroviral vectors with different pseudotypes that needs no expensive equipment, is easy to handle and can be used to purify large quantities of viral vectors within a short time.
Collapse
Affiliation(s)
- Katrin Zimmermann
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Vicente T, Fáber R, Alves PM, Carrondo MJT, Mota JPB. Impact of ligand density on the optimization of ion-exchange membrane chromatography for viral vector purification. Biotechnol Bioeng 2011; 108:1347-59. [PMID: 21294110 DOI: 10.1002/bit.23058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/04/2010] [Accepted: 12/23/2010] [Indexed: 12/12/2022]
Abstract
The effect of ligand density on anion-exchange membrane chromatography (AEXmc) for the purification of recombinant baculoviruses (rBVs), potential viral vectors in clinical applications, is studied by surface plasmon resonance on customized AEX surfaces and gradient elution experiments on Sartobind D membrane prototypes with different diethylamine ligand densities, complemented by dynamic light scattering analysis for estimation of the hydrodynamic particle size of the various biologics. A chromatographic-column model based on the steric mass action model of ion exchange is employed to analyze the gradient-elution AEXmc experiments, extrapolate the results to other operating conditions, and provide directions for process improvement. Although counterintuitively, the experimental evidence provided in this study shows that the lowering of ligand density is beneficial for rBV purification by AEXmc in bind-and-elute-mode, because it decreases the residual concentrations of host cell protein, dsDNA, and non-infective rBVs in the eluted product cut, and increases the overall yield by roughly 20% over current standard values. Overall, we present a case study on how rational design can streamline downstream process development.
Collapse
|
24
|
Wong S, Kwon YJ. Synthetically Functionalized Retroviruses Produced from the Bioorthogonally Engineered Cell Surface. Bioconjug Chem 2011; 22:151-5. [DOI: 10.1021/bc100516h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shirley Wong
- Medicinal Chemistry and Pharmacology Program, ‡Department of Pharmaceutical Sciences, §Department of Chemical Engineering and Materials Science, and ∥Department of Biomedical Engineering, University of California, Irvine, California 92697, United States
| | - Young Jik Kwon
- Medicinal Chemistry and Pharmacology Program, ‡Department of Pharmaceutical Sciences, §Department of Chemical Engineering and Materials Science, and ∥Department of Biomedical Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
25
|
Segura MM, Kamen AA, Garnier A. Overview of current scalable methods for purification of viral vectors. Methods Mol Biol 2011; 737:89-116. [PMID: 21590394 DOI: 10.1007/978-1-61779-095-9_4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As a result of the growing interest in the use of viruses for gene therapy and vaccines, many virus-based products are being developed. The manufacturing of viruses poses new challenges for process developers and regulating authorities that need to be addressed to ensure quality, efficacy, and safety of the final product. The design of suitable purification strategies will depend on a multitude of variables including the vector production system and the nature of the virus. In this chapter, we provide an overview of the most commonly used purification methods for viral gene therapy vectors. Current chromatography options available for large-scale purification of γ-retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes simplex virus, baculovirus, and poxvirus vectors are presented.
Collapse
Affiliation(s)
- María Mercedes Segura
- Department of Biochemistry and Molecular Biology, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|
26
|
Vicente T, Mota JPB, Peixoto C, Alves PM, Carrondo MJT. Modeling protein binding and elution over a chromatographic surface probed by surface plasmon resonance. J Chromatogr A 2010; 1217:2032-41. [PMID: 20171645 DOI: 10.1016/j.chroma.2010.01.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/14/2009] [Accepted: 01/22/2010] [Indexed: 01/09/2023]
Abstract
Surface plasmon resonance (SPR) spectroscopy is used as a scaled-down, analytical, pseudo-chromatography tool for analyzing protein binding and elution over an ion-exchange surface under cyclic sorption conditions. A micrometric-scale adsorption surface was produced by immobilizing a typical ion exchange ligand--diethylaminoethyl (DEAE)--onto commercially available planar gold sensor chip surfaces pre-derivatized with a self-assembled monolayer of 11-mercaptoundecanoic acid with known density. An explicit mathematical formulation is provided for the deconvolution and interpretation of the SPR sensorgrams. An adsorption rate model is proposed to describe the SPR sensorgrams for bovine serum albumin, used here as model protein, when the DEAE surface is subjected to a cyclic series of binding and elution steps. Overall, we demonstrate that the adsorption rate model is capable of quantitatively describing BSA binding and elution for protein titers from dilute conditions up to overloaded conditions and a broad range of salt concentrations.
Collapse
|
27
|
Understanding the mechanism of virus removal by Q sepharose fast flow chromatography during the purification of CHO-cell derived biotherapeutics. Biotechnol Bioeng 2009; 104:371-80. [DOI: 10.1002/bit.22416] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Rapid screening of purification strategies for the capture of a human recombinant F(ab′)2 expressed in baculovirus-infected cells using a micro-plate approach and SELDI-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2428-34. [DOI: 10.1016/j.jchromb.2009.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 04/20/2009] [Accepted: 04/22/2009] [Indexed: 11/17/2022]
|
29
|
Denard J, Rundwasser S, Laroudie N, Gonnet F, Naldini L, Radrizzani M, Galy A, Merten OW, Danos O, Svinartchouk F. Quantitative proteomic analysis of lentiviral vectors using 2-DE. Proteomics 2009; 9:3666-76. [DOI: 10.1002/pmic.200800747] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Strauss DM, Gorrell J, Plancarte M, Blank GS, Chen Q, Yang B. Anion exchange chromatography provides a robust, predictable process to ensure viral safety of biotechnology products. Biotechnol Bioeng 2009; 102:168-75. [DOI: 10.1002/bit.22051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Comparative evaluation of different cell disruption methods for the release of recombinant hepatitis B core antigen from Escherichia coli. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0020-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Rodrigues T, Alves A, Lopes A, Carrondo MJT, Alves PM, Cruz PE. Removal of envelope protein-free retroviral vectors by anion-exchange chromatography to improve product quality. J Sep Sci 2008; 31:3509-18. [DOI: 10.1002/jssc.200800195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Pedro L, Soares S, Ferreira G. Purification of Bionanoparticles. Chem Eng Technol 2008; 31:815-825. [PMID: 32313384 PMCID: PMC7162033 DOI: 10.1002/ceat.200800176] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 11/11/2022]
Abstract
The recent demand for nanoparticulate products such as viruses, plasmids, protein nanoparticles, and drug delivery systems have resulted in the requirement for predictable and controllable production processes. Protein nanoparticles are an attractive candidate for gene and molecular therapy due to their relatively easy production and manipulation. These particles combine the advantages of both viral and non-viral vectors while minimizing the disadvantages. However, their successful application depends on the availability of selective and scalable methodologies for product recovery and purification. Downstream processing of nanoparticles depends on the production process, producer system, culture media and on the structural nature of the assembled nanoparticle, i.e., mainly size, shape and architecture. In this paper, the most common processes currently used for the purification of nanoparticles, are reviewed.
Collapse
Affiliation(s)
- L. Pedro
- IBB‐Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| | - S. S. Soares
- IBB‐Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| | - G. N. M. Ferreira
- IBB‐Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| |
Collapse
|
34
|
|
35
|
Rodrigues T, Carvalho A, Carmo M, Carrondo MJT, Alves PM, Cruz PE. Scaleable purification process for gene therapy retroviral vectors. J Gene Med 2007; 9:233-43. [PMID: 17428003 DOI: 10.1002/jgm.1021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Retroviral vectors (RVs) constitute one of the preferred gene therapy tools against inherited and acquired diseases. Development of scaleable downstream processes allowing purification under mild conditions and yielding viral preparations with high titer, potency and purity is critical for the success of clinical trials and subsequent clinical use of this technology. METHODS A purification process for murine leukaemia virus (MLV)-derived vector supernatants was developed based on membrane separation and anion-exchange chromatography (AEXc). Initial clarification of the vector stocks was performed using 0.45 microm membranes followed by concentration with 500 kDa molecular weight cut-off (MWCO) membranes; further purification was performed by AEXc using a tentacle matrix bearing DEAE functional ligands. Finally, concentration/diafiltration was performed by 500 kDa MWCO membranes. To validate final product quality the process was scaled up 16-fold. RESULTS Optimization of microfiltration membrane pore size and ultrafiltration transmembrane pressure allowed the recovery of nearly 100% infectious particles. Further purification of the RVs by AEXc resulted in high removal of protein contaminants while maintaining high recoveries of infectious vectors (77+/-11%). Up-scaling of the process resulted in high titer vector preparations, 3.2x10(8) infectious particles (IP)/ml (85-fold concentration), with an overall recovery reaching 26%. The process yielded vectors with transduction efficiencies higher than the starting material and more than 99% pure, relative to protein contamination. CONCLUSIONS The combination of membrane separation and AEXc processes results in a feasible and scaleable purification strategy for MLV-derived vectors, allowing the removal of inhibitory contaminants thus yielding pure vectors with increased transduction efficiencies.
Collapse
|
36
|
Rodrigues T, Carrondo MJT, Alves PM, Cruz PE. Purification of retroviral vectors for clinical application: Biological implications and technological challenges. J Biotechnol 2007; 127:520-41. [PMID: 16950534 DOI: 10.1016/j.jbiotec.2006.07.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 07/12/2006] [Accepted: 07/25/2006] [Indexed: 11/16/2022]
Abstract
For centuries mankind led a difficult battle against viruses, the smallest infectious agents at the surface of the earth. Nowadays it is possible to use viruses for our benefit, both at a prophylactic level in the production of vaccines and at a therapeutic level in the promising field of gene therapy. Retroviruses were discovered at the end of the 19th century and constitute one of the most effective entities for gene transfer and insertion into the genome of mammalian cells. This attractive feature has intensified research in retroviral vectors development and production over the past years, mainly due to the expectations raised by the concept of gene therapy. The demand for high quality retroviral vectors that meet standard requisites from the regulatory agencies (FDA and EMEA) is therefore increasing, as the technology has moved into clinical trials. The development of safer producer cell lines that can be used in large-scale production will result in the production of large quantities of retroviral stocks. Cost-efficient and scalable purification processes are essential for production of injectable-grade preparations to achieve final implementation of these vectors as therapeutics. Several preparative purification steps already established for proteins can certainly be applied to retroviral vectors, in particular membrane filtration and chromatographic methods. Nevertheless, the special properties of these complex products require technological improvement of the existing purification steps and/or development of particular purification steps to increase productivity and throughput, while maintaining biological activity of the final product. This review focuses on downstream process development in relation to the retroviral vectors characteristics and quality assessment of retroviral stocks for intended use in gene therapy.
Collapse
Affiliation(s)
- Teresa Rodrigues
- IBET/ITQB, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|