1
|
Ishii C, Tojo Y, Iwasaki K, Fujii A, Akita T, Nagano M, Mita M, Ide T, Hamase K. Development of a two-dimensional LC-MS/MS system for the determination of proline and 4-hydroxyproline enantiomers in biological and food samples. ANAL SCI 2024; 40:881-889. [PMID: 38598049 DOI: 10.1007/s44211-024-00530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A two-dimensional LC-MS/MS system has been developed for the enantioselective determination of proline (Pro), cis-4-hydroxyproline (cis-4-Hyp) and trans-4-hydroxyproline (trans-4-Hyp) in a variety of biological samples. The amino acids were pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), and the NBD-derivatives were separated by a reversed-phase column (Singularity RP18) as their D plus L mixtures in the first dimension. The collected target fractions were then introduced into the second dimension where the enantiomers were separated by a Pirkle-type enantioselective column (Singularity CSP-001S) and determined by a tandem mass spectrometer (Triple Quad™ 5500). The method was validated by the standard amino acids and also by human plasma, and sufficient results were obtained for the calibration, precision and accuracy. The method was applied to human plasma and urine, bivalve tissues and fermented food/beverages. D-Pro was widely found in the human physiological fluids, bivalves and several fermented products. Although trans-4-D-Hyp was not found in all the tested samples, cis-4-D-Hyp was present in human urine and tissues of the ark shell, and further studies focusing on the origin and physiological significance of these D-enantiomers are expected.
Collapse
Affiliation(s)
- Chiharu Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yosuke Tojo
- MIRAI Technology Institute, Shiseido Co., Ltd., 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Komei Iwasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Fujii
- Sakamoto Kurozu, Inc., 21-15 Uenosono-cho, Kagoshima, 890-0052, Japan
| | - Takeyuki Akita
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masanobu Nagano
- Sakamoto Kurozu, Inc., 21-15 Uenosono-cho, Kagoshima, 890-0052, Japan
| | - Masashi Mita
- KAGAMI, Inc., 7-7-15, Saito-asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Tomomi Ide
- Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
2
|
Ishii C, Akita T, Kimura T, Sakai S, Mita M, Ide T, Isaka Y, Hamase K. Evaluation of Individual Variation of d-Amino Acids in Human Plasma by a Two-Dimensional LC-MS/MS System and Application to the Early Diagnosis of Chronic Kidney Disease. Anal Chem 2024; 96:4876-4883. [PMID: 38477306 DOI: 10.1021/acs.analchem.3c05309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
For the discovery of sensitive biomarkers of kidney function focusing on chiral amino acids, a multiple heart-cutting two-dimensional (2D) liquid chromatography-mass spectrometry (LC-MS)/MS system has been designed/developed. As the target analytes, alanine (Ala), aspartic acid, glutamic acid (Glu), leucine (Leu), lysine, methionine, phenylalanine (Phe), proline (Pro), serine (Ser), and valine were selected considering the presence of their d-forms in mammals. The 2D LC-MS/MS system consisted of the nonenantioselective reversed-phase separation of the target amino acids, the separations of the d- and l-enantiomers, and detection using MS/MS. Using the method, the plasma chiral amino acids, precolumn derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole, were isolated from other intrinsic substances, then determined without losing sensitivity by the fully automated whole-peak volume transfer operation from first to second dimension. In all of the tested plasma samples obtained from five healthy individuals and 15 patients with chronic kidney disease (CKD), the target chiral amino acids were determined without interference. In healthy individuals, the levels of all the tested d-amino acids were regulated in the low ranges. In contrast, the % d values of Glu, Leu, and Phe significantly increased with the progress of kidney dysfunction, besides the previously reported values of d-Ala, Pro, and Ser. Concerning Phe, the significant increase of the % d values (p < 0.05) was reported for the first time even in the mild CKD group compared to those of the healthy group; d-Phe might be a more sensitive marker than the previously reported d-forms. These results demonstrated the potential of these d-forms as the sensitive biomarkers of kidney function for the early diagnosis of CKD.
Collapse
Affiliation(s)
- Chiharu Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeyuki Akita
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomonori Kimura
- Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shinsuke Sakai
- Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masashi Mita
- KAGAMI, Inc., 7-7-15 Saito-asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tomomi Ide
- Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshitaka Isaka
- Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Katane M, Homma H. Biosynthesis and Degradation of Free D-Amino Acids and Their Physiological Roles in the Periphery and Endocrine Glands. Biol Pharm Bull 2024; 47:562-579. [PMID: 38432912 DOI: 10.1248/bpb.b23-00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
It was long believed that D-amino acids were either unnatural isomers or laboratory artifacts, and that the important functions of amino acids were exerted only by L-amino acids. However, recent investigations have revealed a variety of D-amino acids in mammals that play important roles in physiological functions, including free D-serine and D-aspartate that are crucial in the central nervous system. The functions of several D-amino acids in the periphery and endocrine glands are also receiving increasing attention. Here, we present an overview of recent advances in elucidating the physiological roles of D-amino acids, especially in the periphery and endocrine glands.
Collapse
Affiliation(s)
- Masumi Katane
- Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University
| | - Hiroshi Homma
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University
| |
Collapse
|
4
|
Miyamoto T, Fushinobu S, Saitoh Y, Sekine M, Katane M, Sakai-Kato K, Homma H. Novel tetrahydrofolate-dependent d-serine dehydratase activity of serine hydroxymethyltransferases. FEBS J 2024; 291:308-322. [PMID: 37700610 DOI: 10.1111/febs.16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
d-Serine plays vital physiological roles in the functional regulation of the mammalian brain, where it is produced from l-serine by serine racemase and degraded by d-amino acid oxidase. In the present study, we identified a new d-serine metabolizing activity of serine hydroxymethyltransferase (SHMT) in bacteria as well as mammals. SHMT is known to catalyze the conversion of l-serine and tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate, respectively. In addition, we found that human and Escherichia coli SHMTs have d-serine dehydratase activity, which degrades d-serine to pyruvate and ammonia. We characterized this enzymatic activity along with canonical SHMT activity. Intriguingly, SHMT required THF to catalyze d-serine dehydration and did not exhibit dehydratase activity toward l-serine. Furthermore, SHMT did not use d-serine as a substrate in the canonical hydroxymethyltransferase reaction. The d-serine dehydratase activities of two isozymes of human SHMT were inhibited in the presence of a high concentration of THF, whereas that of E. coli SHMT was increased. The pH and temperature profiles of d-serine dehydratase and serine hydroxymethyltransferase activities of these three SHMTs were partially distinct. The catalytic efficiency (kcat /Km ) of dehydratase activity was lower than that of hydroxymethyltransferase activity. Nevertheless, the d-serine dehydratase activity of SHMT was physiologically important because d-serine inhibited the growth of an SHMT deletion mutant of E. coli, ∆glyA, more than that of the wild-type strain. Collectively, these results suggest that SHMT is involved not only in l- but also in d-serine metabolism through the degradation of d-serine.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | - Yasuaki Saitoh
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masae Sekine
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masumi Katane
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Kumiko Sakai-Kato
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
5
|
Rabattoni V, Motta Z, Miceli M, Molla G, Fissore A, Adinolfi S, Pollegioni L, Sacchi S. On the regulation of human D-aspartate oxidase. Protein Sci 2023; 32:e4802. [PMID: 37805834 PMCID: PMC10588558 DOI: 10.1002/pro.4802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
The human flavoenzyme D-aspartate oxidase (hDASPO) controls the level of D-aspartate in the brain, a molecule acting as an agonist of NMDA receptors and modulator of AMPA and mGlu5 receptors. hDASPO-induced D-aspartate degradation prevents age-dependent deterioration of brain functions and is related to psychiatric disorders such as schizophrenia and autism. Notwithstanding this crucial role, less is known about hDASPO regulation. Here, we report that hDASPO is nitrosylated in vitro, while no evidence of sulfhydration and phosphorylation is apparent: nitrosylation affects the activity of the human flavoenzyme to a limited extent. Furthermore, hDASPO interacts with the primate-specific protein pLG72 (a well-known negative chaperone of D-amino acid oxidase, the enzyme deputed to D-serine degradation in the human brain), yielding a ~114 kDa complex, with a micromolar dissociation constant, promoting the flavoenzyme inactivation. At the cellular level, pLG72 and hDASPO generate a cytosolic complex: the expression of pLG72 negatively affects the hDASPO level by reducing its half-life. We propose that pLG72 binding may represent a protective mechanism aimed at avoiding cytotoxicity due to H2 O2 produced by the hDASPO enzymatic degradation of D-aspartate, especially before the final targeting to peroxisomes.
Collapse
Affiliation(s)
- Valentina Rabattoni
- “The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della VitaUniversità degli studi dell'InsubriaVareseItaly
| | - Zoraide Motta
- “The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della VitaUniversità degli studi dell'InsubriaVareseItaly
| | - Matteo Miceli
- “The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della VitaUniversità degli studi dell'InsubriaVareseItaly
| | - Gianluca Molla
- “The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della VitaUniversità degli studi dell'InsubriaVareseItaly
| | - Alex Fissore
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di TorinoTorinoItaly
| | - Salvatore Adinolfi
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di TorinoTorinoItaly
| | - Loredano Pollegioni
- “The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della VitaUniversità degli studi dell'InsubriaVareseItaly
| | - Silvia Sacchi
- “The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della VitaUniversità degli studi dell'InsubriaVareseItaly
| |
Collapse
|
6
|
Ishii C, Hamase K. Two-dimensional LC-MS/MS and three-dimensional LC analysis of chiral amino acids and related compounds in real-world matrices. J Pharm Biomed Anal 2023; 235:115627. [PMID: 37633168 DOI: 10.1016/j.jpba.2023.115627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/28/2023]
Abstract
Amino acids normally have a chiral carbon and d/l-enantiomers are present. Due to the homochirality features on the present Earth, l-enantiomers are predominant in the living beings and the d-enantiomers are rare. Along with the progress and development of cutting edge analytical methods, several d-amino acids were found even in the higher animals including humans, and their biological functions and diagnostic values have also been reported. However, the amounts of these d-amino acids are much lower than the l-forms, and development/utilization of highly sensitive and selective methods are practically essential to avoid the disturbance from uncountable intrinsic substances. In the present review, multi-dimensional HPLC methods for the determination of chiral amino acids, especially two-dimensional LC-MS/MS and three-dimensional LC methods, and their applications to a variety of real-world matrices are summarized.
Collapse
Affiliation(s)
- Chiharu Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
7
|
Sanei M, Kowsar R, Heidaran Ali Abadi M, Sadeghi N, Boroumand Jazi M. The relationship between bovine blastocyst formation in vitro and follicular fluid amino acids. Theriogenology 2023; 206:197-204. [PMID: 37229959 DOI: 10.1016/j.theriogenology.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Follicular fluid has been found as a possible source of metabolic predictors for oocyte competence, and it is conveniently accessible during ovum pick-up (OPU). We used the OPU procedure to recover oocytes from 41 Holstein heifers for in vitro embryo production in this study. Follicular fluid was collected during OPU in order to establish a link between follicular amino acids and blastocyst formation. Each heifer's oocytes were collected, matured in vitro for 24 h and fertilized separately. The heifers were then divided into two groups based on blastocyst formation: those that produced at least one blastocyst (the blastocyst group, n = 29) and those that did not (the failed group, n = 12). The blastocyst group had higher follicular glutamine concentrations and lower aspartate levels than the failed group. Furthermore, network and Spearman correlation analyses revealed a link between blastocyst formation and aspartate (r = -0.37, p = 0.02) or glutamine (r = 0.38, p = 0.02). The receiver operator characteristic curve revealed that glutamine (AUC = 0.75) was the greatest predictor of blastocyst formation. These findings revealed that follicular amino acid levels in bovines can be used to predict blastocyst development.
Collapse
Affiliation(s)
- Marzyieh Sanei
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mohammad Heidaran Ali Abadi
- Department of Animal Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Nima Sadeghi
- FKA, Animal Husbandry and Agriculture Co, Isfahan, Iran
| | - Masoud Boroumand Jazi
- Animal Science Research Department, Isfahan Agricultural and Natural Resources Research and Education Center., Agriculture, Research, Education and Extension Organization (AREEO), Esfahan, 8174835117, Iran
| |
Collapse
|
8
|
DFT and TD-DFT study of hydrogen bonded complexes of aspartic acid and n water (n = 1 and 2). J Mol Model 2023; 29:94. [PMID: 36905452 DOI: 10.1007/s00894-023-05500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
CONTEXT Hydrogen bonds (HB) influence the conformational preferences of biomolecules and their optical and electronic properties. The directional interaction of molecules of water can be a prototype to understand the effects of HBs on biomolecules. Among the neurotransmitters (NT), L-aspartic acid (ASP) stands out due to its importance in health and as a precursor of several biomolecules. As it presents different functional groups and readily forms inter- and intramolecular HBs, ASP can be considered a prototype for understanding the behavior of NTs when interacting by HB with other substances. Although several theoretical studies have been performed in the past on isolated ASP and its formed complexes with water, both in gas and liquid phases, using DFT and TD-DFT formalisms, these works did not perform large basis set calculations or study electronic transitions of ASP-water complexes. We investigated the HB interactions in complexes of ASP and water molecules. The results show that the interactions between the carboxylic groups of ASP with water molecules, forming cyclic structures with two HBs, lead to more stable and less polar complexes than other conformers formed between water and the NH2 group. It was observed that there is a relationship between the deviation in the UV-Vis absorption band of the ASP and the interactions of water with the HOMO and LUMO orbitals with the stabilization/destabilization of the S1 state to the S0 of the complexes. However, in some cases, such as 1:1 complex ASP-W2, this analysis may be inaccurate due to small changes in ΔE. METHODS We studied the landscapes of the ground state surface of different conformers of isolated L-ASP and the L-ASP-(H2O)n complexes (n = 1 and 2) using the DFT formalism, with the B3LYP functional, and six different basis sets: 6-31 + + G(d,p), 6-311 + + G(d,p), D95 + + (d,p), D95V + + (d,p), cc-pVDZ, and, cc-pVTZ basis sets. The cc-pVTZ basis set provides the minimum energy of all conformers, and therefore, we performed the analysis with this basis set. We evaluated the stabilization of the ASP and complexes using the minimum ground state energy, corrected by the zero point energy and the interaction energy between the ASP and the water molecules. We also calculated the vertical electronic transitions S1 ← S0, and their properties using the TD-DFT formalism at B3LYP/cc-pVTZ level with the optimized geometries for S0 state with the same basis set. For the analysis of the vertical transitions of isolated ASP and the ASP-(H2O)n complexes, we calculated the electrostatic energy in the S0 and S1 states. We performed the calculations with the Gaussian 09 software package. We used the VMD software package to visualize the geometries and shapes of the molecule and complexes.
Collapse
|
9
|
Chen S, Jiang J, Shen A, Miao Y, Cao Y, Zhang Y, Cong P, Gao P. Rewired Metabolism of Amino Acids and Its Roles in Glioma Pathology. Metabolites 2022; 12:918. [PMID: 36295820 PMCID: PMC9611130 DOI: 10.3390/metabo12100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Amino acids (AAs) are indispensable building blocks of diverse bio-macromolecules as well as functional regulators for various metabolic processes. The fact that cancer cells live with a voracious appetite for specific AAs has been widely recognized. Glioma is one of the most lethal malignancies occurring in the central nervous system. The reprogrammed metabolism of AAs benefits glioma proliferation, signal transduction, epigenetic modification, and stress tolerance. Metabolic alteration of specific AAs also contributes to glioma immune escape and chemoresistance. For clinical consideration, fluctuations in the concentrations of AAs observed in specific body fluids provides opportunities to develop new diagnosis and prognosis markers. This review aimed at providing an extra dimension to understanding glioma pathology with respect to the rewired AA metabolism. A deep insight into the relevant fields will help to pave a new way for new therapeutic target identification and valuable biomarker development.
Collapse
Affiliation(s)
- Sirui Chen
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ao Shen
- HE University, Shenyang 110163, China
| | - Ying Miao
- E&M College, Shenyang Aerospace University, Shenyang 110136, China
| | - Yunfeng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Ying Zhang
- Internal Medicine Department, Dalian Public Health Clinical Center, Dalian 116033, China
| | - Peiyu Cong
- Neurosurgery Department, Affiliated Dalian Municipal Central Hospital of Dalian Medical University, Dalian 116022, China
| | - Peng Gao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
10
|
Miyamoto T, Saitoh Y, Katane M, Sekine M, Sakai-Kato K, Homma H. Characterization of human cystathionine γ-lyase enzyme activities toward D-amino acids. Biosci Biotechnol Biochem 2022; 86:1536-1542. [PMID: 36085174 DOI: 10.1093/bbb/zbac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/14/2022]
Abstract
Various D-amino acids play important physiological roles in mammals, but the pathways of their production remain unknown except for D-serine, which is generated by serine racemase. Previously, we found that Escherichia coli cystathionine β-lyase possesses amino acid racemase activity in addition to β-lyase activity. In the present work, we evaluated the enzymatic activities of human cystathionine γ-lyase, which shares relatively high amino acid sequence identity with cystathionine β-lyase. The enzyme did not show racemase activity toward various amino acids including alanine, and lyase and dehydratase activities were highest toward L-cystathionine and L-homoserine, respectively. The enzyme also showed weak activity toward L-cysteine and L-serine but no activity toward D-amino acids. Intriguingly, the pH and temperature profiles of lyase activity were distinct from those of dehydratase activity. Catalytic efficiency was higher for lyase activity than for dehydratase activity.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Yasuaki Saitoh
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Masumi Katane
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Masae Sekine
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Kumiko Sakai-Kato
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| |
Collapse
|
11
|
Ishii C, Takizawa N, Akita T, Mita M, Ide T, Konno R, Hamase K. Off-line two-dimensional LC-MS/MS determination of tryptophan enantiomers in mammalian urine and alteration of their amounts in d-amino acid oxidase deficient mice. J Pharm Biomed Anal 2022; 219:114919. [DOI: 10.1016/j.jpba.2022.114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
|
12
|
Lombardo B, Pagani M, De Rosa A, Nunziato M, Migliarini S, Garofalo M, Terrile M, D’Argenio V, Galbusera A, Nuzzo T, Ranieri A, Vitale A, Leggiero E, Di Maio A, Barsotti N, Borello U, Napolitano F, Mandarino A, Carotenuto M, Heresco-Levy U, Pasqualetti M, Malatesta P, Gozzi A, Errico F, Salvatore F, Pastore L, Usiello A. D-aspartate oxidase gene duplication induces social recognition memory deficit in mice and intellectual disabilities in humans. Transl Psychiatry 2022; 12:305. [PMID: 35915065 PMCID: PMC9343392 DOI: 10.1038/s41398-022-02088-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
The D-aspartate oxidase (DDO) gene encodes the enzyme responsible for the catabolism of D-aspartate, an atypical amino acid enriched in the mammalian brain and acting as an endogenous NMDA receptor agonist. Considering the key role of NMDA receptors in neurodevelopmental disorders, recent findings suggest a link between D-aspartate dysmetabolism and schizophrenia. To clarify the role of D-aspartate on brain development and functioning, we used a mouse model with constitutive Ddo overexpression and D-aspartate depletion. In these mice, we found reduced number of BrdU-positive dorsal pallium neurons during corticogenesis, and decreased cortical and striatal gray matter volume at adulthood. Brain abnormalities were associated with social recognition memory deficit at juvenile phase, suggesting that early D-aspartate occurrence influences neurodevelopmental related phenotypes. We corroborated this hypothesis by reporting the first clinical case of a young patient with severe intellectual disability, thought disorders and autism spectrum disorder symptomatology, harboring a duplication of a chromosome 6 region, including the entire DDO gene.
Collapse
Affiliation(s)
- Barbara Lombardo
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Marco Pagani
- grid.25786.3e0000 0004 1764 2907Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Arianna De Rosa
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Marcella Nunziato
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Sara Migliarini
- grid.5395.a0000 0004 1757 3729Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy
| | - Martina Garofalo
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.9841.40000 0001 2200 8888Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Marta Terrile
- grid.5606.50000 0001 2151 3065Dipartimento di Oncologia, Biologia e Genetica, Università di Genova, 16132 Genoa, Italy ,grid.496862.70000 0004 0544 6263Present Address: Novartis Ireland ltd, D04A9N6 Dublin 4, Ireland
| | - Valeria D’Argenio
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, Università San Raffaele, 00166 Rome, Italy
| | - Alberto Galbusera
- grid.25786.3e0000 0004 1764 2907Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Tommaso Nuzzo
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.9841.40000 0001 2200 8888Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Annaluisa Ranieri
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Andrea Vitale
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Eleonora Leggiero
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Anna Di Maio
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Noemi Barsotti
- grid.5395.a0000 0004 1757 3729Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy
| | - Ugo Borello
- grid.5395.a0000 0004 1757 3729Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy
| | - Francesco Napolitano
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Alessandra Mandarino
- grid.9841.40000 0001 2200 8888Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy
| | - Marco Carotenuto
- grid.9841.40000 0001 2200 8888Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy
| | - Uriel Heresco-Levy
- grid.414060.70000 0004 0470 6676Research and Psychiatry Departments, Ezrath Nashim-Herzog Memorial Hospital, 9190501 Jerusalem, Israel ,grid.9619.70000 0004 1937 0538Hadassah Medical School, Hebrew University, 9190501 Jerusalem, Israel
| | - Massimo Pasqualetti
- grid.25786.3e0000 0004 1764 2907Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy ,grid.5395.a0000 0004 1757 3729Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy
| | - Paolo Malatesta
- grid.5606.50000 0001 2151 3065Dipartimento di Medicina Sperimentale, Università di Genova, 16132 Genoa, Italy ,grid.410345.70000 0004 1756 7871Ospedale Policlinico San Martino IRCCS, 16132 Genoa, Italy
| | - Alessandro Gozzi
- grid.25786.3e0000 0004 1764 2907Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Francesco Errico
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Francesco Salvatore
- CEINGE Biotecnologie Avanzate, 80145, Naples, Italy. .,Centro Interuniversitario per Malattie Multigeniche e Multifattoriali e loro modelli animali (Federico II, 80131, Naples; Tor Vergata, Rome and "G. D'Annunzio", Chieti-Pescara), Naples, Italy.
| | - Lucio Pastore
- CEINGE Biotecnologie Avanzate, 80145, Naples, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Naples, Italy.
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate, 80145, Naples, Italy. .,Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
13
|
Mechanism of high D-aspartate production in the lactic acid bacterium Latilactobacillus sp. strain WDN19. Appl Microbiol Biotechnol 2022; 106:2651-2663. [PMID: 35305124 DOI: 10.1007/s00253-022-11870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 11/02/2022]
Abstract
D-Aspartate (D-Asp) is a useful compound for a semisynthetic antibiotic and has potentially beneficial effects on humans. Several lactic acid bacteria (LAB) species produce D-Asp as a component of cell wall peptidoglycan. We previously isolated a LAB strain (named strain WDN19) that can extracellularly produce a large amount of D-Asp. Here, we show the factors that contribute to high D-Asp production ability. Strain WDN19 was most closely related to Latilactobacillus curvatus. The D-Asp production ability of strain WDN19 in a rich medium was 13.7-fold higher than that of L. curvatus DSM 20019. A major part of D-Asp was synthesized from L-Asp contained in the medium by aspartate racemase (RacD). During their cultivation, the RacD activity in strain WDN19 was higher than in strain DSM 20019, especially much higher in the early exponential growth phase because of the higher racD transcription and the higher activity of RacD itself of strain WDN19. In a synthetic medium, the extracellular production of D,L-Asp was observed in strain WDN19 but not in strain DSM 20019. The addition of L-asparagine (L-Asn) to the medium increased and gave D,L-Asp production in strains WDN19 and DSM 20019, respectively, suggesting L-Asp synthesis by L-asparaginase (AsnA). The L-Asn uptake ability of the strains was similar, but the AsnA activity in the middle exponential and early stationary growth phases and intracellular D,L-Asp was much higher in strain WDN19. In their genome sequences, only an aspartate aminotransferase gene was found among L-Asp-metabolizing enzymes, except for RacD, but was disrupted in strain WDN19 by transposon insertion. These observations indicated that the high D-Asp production ability of strain WDN19 was mainly based on high RacD and AnsA activities and L-Asp supply. KEY POINTS: • Strain WDN19 was suggested to be a strain of Latilactobacillus curvatus. • Extracellular high d-Asp production ability was not a common feature of L. curvatus. • High d-Asp production was due to high RacD and AnsA activities and l-Asp supply.
Collapse
|
14
|
FURUSHO A, IKEJIRI KA, ISHII C, AKITA T, MITA M, NAGANO M, IDE T, HAMASE K. Two-Dimensional High-Performance Liquid Chromatographic Determination of Chiral Amino Acids in Food Samples and Human Physiological Fluids Using Fluorescence Derivatization with 4-(<i>N</i>,<i>N</i>-Dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole. CHROMATOGRAPHY 2022. [DOI: 10.15583/jpchrom.2021.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Aogu FURUSHO
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | - Chiharu ISHII
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Takeyuki AKITA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | - Tomomi IDE
- Graduate School of Medical Sciences, Kyushu University
| | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
15
|
Sekine T, Nagai H, Hamada-Sato N. Antihypertensive and Probiotic Effects of Hidakakombu ( Saccharina angustata) Fermented by Lacticaseibacillus casei 001. Foods 2021; 10:2048. [PMID: 34574158 PMCID: PMC8470367 DOI: 10.3390/foods10092048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/14/2023] Open
Abstract
Hidakakombu (Saccharina angustata), commonly known as kelp, is an edible macroalgae mainly grown in the Hidaka region of Hokkaido. Hidakakombu is graded based on its shape and color. Low-grade Hidakakombu has low value and is distributed at a low price. It is desired to establish a method to add value to low-grade Hidakakombu. In this study, low-grade Hidakakombu was fermented by Lacticaseibacillus casei 001 to add value. Fermentation of Hidakaombu enhanced the inhibition of blood pressure elevation due to ACE inhibition. L. casei 001 in fermented Hidakakombu remained viable in simulated gastric and intestinal juices. The ACE inhibitory component in L. casei 001-fermented Hidakakombu was isolated from the fraction below 3 kDa using high-performance liquid chromatography. The purified amino acid was identified as D-Trp using nuclear magnetic resonance, mass spectroscopy, and optical rotation measurements. This is the first report on the ACE inhibitory activity of D-Trp in L. casei 001-fermented Hidakakombu. Hidakakombu fermented by L. casei 001 was shown to be a source of probiotics and functional components against hypertension. Therefore, fermentation by L. casei 001 was found to be an effective means of adding high value to low-grade Hidakombu.
Collapse
Affiliation(s)
- Tetsuya Sekine
- Course of Safety Management in Food Supply Chain, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan;
| | - Hiroshi Nagai
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan;
| | - Naoko Hamada-Sato
- Course of Safety Management in Food Supply Chain, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan;
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
16
|
Katane M, Matsuda S, Saitoh Y, Miyamoto T, Sekine M, Sakai-Kato K, Homma H. Glyoxylate reductase/hydroxypyruvate reductase regulates the free d-aspartate level in mammalian cells. J Cell Biochem 2021; 122:1639-1652. [PMID: 34289161 DOI: 10.1002/jcb.30110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022]
Abstract
Multiple d-amino acids are present in mammalian cells, and these compounds have distinctive physiological functions. Among the free d-amino acids identified in mammals, d-aspartate plays critical roles in the neuroendocrine and endocrine systems, as well as in the central nervous system. Mammalian cells have the molecular apparatus necessary to take up, degrade, synthesize, and release d-aspartate. In particular, d-aspartate is degraded by d-aspartate oxidase (DDO), a peroxisome-localized enzyme that catalyzes the oxidative deamination of d-aspartate to generate oxaloacetate, hydrogen peroxide, and ammonia. However, little is known about the molecular mechanisms underlying d-aspartate homeostasis in cells. In this study, we established a cell line that overexpresses cytoplasm-localized DDO; this cell line cannot survive in the presence of high concentrations of d-aspartate, presumably because high levels of toxic hydrogen peroxide are produced by metabolism of abundant d-aspartate by DDO in the cytoplasm, where hydrogen peroxide cannot be removed due to the absence of catalase. Next, we transfected these cells with a complementary DNA library derived from the human brain and screened for clones that affected d-aspartate metabolism and improved cell survival, even when the cells were challenged with high concentrations of d-aspartate. The screen identified a clone of glyoxylate reductase/hydroxypyruvate reductase (GRHPR). Moreover, the GRHPR metabolites glyoxylate and hydroxypyruvate inhibited the enzymatic activity of DDO. Furthermore, we evaluated the effects of GRHPR and peroxisome-localized DDO on d- and l-aspartate levels in cultured mammalian cells. Our findings show that GRHPR contributes to the homeostasis of these amino acids in mammalian cells.
Collapse
Affiliation(s)
- Masumi Katane
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Satsuki Matsuda
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yasuaki Saitoh
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Tetsuya Miyamoto
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Masae Sekine
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Kumiko Sakai-Kato
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hiroshi Homma
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
17
|
Pollegioni L, Molla G, Sacchi S, Murtas G. Human D-aspartate Oxidase: A Key Player in D-aspartate Metabolism. Front Mol Biosci 2021; 8:689719. [PMID: 34250021 PMCID: PMC8260693 DOI: 10.3389/fmolb.2021.689719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
In recent years, the D-enantiomers of amino acids have been recognized as natural molecules present in all kingdoms, playing a variety of biological roles. In humans, d-serine and d-aspartate attracted attention for their presence in the central nervous system. Here, we focus on d-aspartate, which is involved in glutamatergic neurotransmission and the synthesis of various hormones. The biosynthesis of d-aspartate is still obscure, while its degradation is due to the peroxisomal flavin adenine dinucleotide (FAD)-containing enzyme d-aspartate oxidase. d-Aspartate emergence is strictly controlled: levels decrease in brain within the first days of life while increasing in endocrine glands postnatally and through adulthood. The human d-aspartate oxidase (hDASPO) belongs to the d-amino acid oxidase-like family: its tertiary structure closely resembles that of human d-amino acid oxidase (hDAAO), the enzyme that degrades neutral and basic d-amino acids. The structure-function relationships of the physiological isoform of hDASPO (named hDASPO_341) and the regulation of gene expression and distribution and properties of the longer isoform hDASPO_369 have all been recently elucidated. Beyond the substrate preference, hDASPO and hDAAO also differ in kinetic efficiency, FAD-binding affinity, pH profile, and oligomeric state. Such differences suggest that evolution diverged to create two different ways to modulate d-aspartate and d-serine levels in the human brain. Current knowledge about hDASPO is shedding light on the molecular mechanisms underlying the modulation of d-aspartate levels in human tissues and is pushing novel, targeted therapeutic strategies. Now, it has been proposed that dysfunction in NMDA receptor-mediated neurotransmission is caused by disrupted d-aspartate metabolism in the nervous system during the onset of various disorders (such as schizophrenia): the design of suitable hDASPO inhibitors aimed at increasing d-aspartate levels thus represents a novel and useful form of therapy.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
18
|
Kajitani K, Ishikawa T, Shibata K, Kouya T, Kera Y, Takahashi S. Development of an enzymatic screening method for d-aspartate-producing lactic acid bacteria. Enzyme Microb Technol 2021; 149:109835. [PMID: 34311880 DOI: 10.1016/j.enzmictec.2021.109835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
d-Aspartate (d-Asp) is an important intermediate for synthetic penicillin and an endogenous amino acid that plays important roles in the endocrine and nervous systems in animals including humans. Lactic acid bacteria (LABs) have been used as probiotics in humans, and some LAB species produce d-Asp as a component of cell wall peptidoglycan. LAB strains with greater d-Asp production would therefore be valuable for industrial d-Asp production. In this study, we developed an enzymatic screening method for d-Asp-producing LABs and isolated a strain with high d-Asp production. The d-Asp concentration in the culture medium was colorimetrically estimated up to 4 mM using d-aspartate oxidase (ChDDO) from the yeast Cryptococcus humicola strain UJ1 coupled with horseradish peroxidase, although a more accurate determination required correction because of interference by the medium component Mn2+. We isolated 628 LAB strains from various foods and screened them for d-Asp production using the enzymatic d-Asp assay method. The screening identified 13 d-Asp-producing LAB strains, which were suggested to belong to the genera Latilactobacillus, Levilactobacillus, Lactococcus, and Enterococcus. d-Asp production ability was likely to widely differ among the strains in the same genera and species. One strain, named strain WDN19, produced much higher d-Asp levels (1.84 mM), and it was closely related to Latilactobacillus curvatus. These results indicated that the enzymatic screening method was useful for identifying and isolating d-Asp-producing LABs rapidly and easily, and it might provide novel findings regarding d-Asp production by LABs.
Collapse
Affiliation(s)
- Kengo Kajitani
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Takumi Ishikawa
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Kimihiko Shibata
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima, 970-8034, Japan
| | - Tomoaki Kouya
- Department of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, Tochigi, 323-0806, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
19
|
Tomaszewska E, Burmańczuk N, Dobrowolski P, Świątkiewicz M, Donaldson J, Burmańczuk A, Mielnik-Błaszczak M, Kuc D, Milewski S, Muszyński S. The Protective Role of Alpha-Ketoglutaric Acid on the Growth and Bone Development of Experimentally Induced Perinatal Growth-Retarded Piglets. Animals (Basel) 2021; 11:E137. [PMID: 33435211 PMCID: PMC7826854 DOI: 10.3390/ani11010137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/01/2023] Open
Abstract
The effect of alpha-ketoglutaric acid (AKG) supplementation to experimentally-induced, perinatal growth-retarded piglets was examined. Sows were treated with a synthetic glucocorticoid (Gc) during the last 25 days of pregnancy, and after the birth, piglets were randomly divided into three groups depending on the treatment. The Gc/Gc + AKG and Gc/AKG groups born by Gc-treated sows after the birth were treated with Gc or Gc + AKG for 35 days. Significantly lower serum growth hormone, IGF-I, osteocalcin, leptin, and cortisol concentrations were observed in the Gc/Gc + AKG group, while the bone alkaline phosphatase activity was significantly higher. Serum insulin concentration was higher in the control group. Serum alanine, lysine, histidine, and tryptophan concentrations were higher in the Gc/Gc + AKG and Gc/AKG groups. The perinatal action of Gc significantly affects histomorphometry of articular cartilage and trabecular bone and bone mechanics. The results clearly showed that dietary AKG had positive effects with regards to the profile of free amino acids. Taking into account the function of AKG as an energy donor and stimulator of collagen synthesis, it can be concluded that the anabolic role of AKG may be the main mechanism responsible for its protective effect against the GC-induced perinatal intensified catabolic state.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Natalia Burmańczuk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland;
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland;
| | - Janine Donaldson
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Artur Burmańczuk
- Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Maria Mielnik-Błaszczak
- Department of Developmental Dentistry, Medical University of Lublin, 7 Karmelicka St., 20-081 Lublin, Poland; (M.M.-B.); (D.K.)
| | - Damian Kuc
- Department of Developmental Dentistry, Medical University of Lublin, 7 Karmelicka St., 20-081 Lublin, Poland; (M.M.-B.); (D.K.)
| | - Szymon Milewski
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (S.M.); (S.M.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (S.M.); (S.M.)
| |
Collapse
|
20
|
Identification of an l-serine/l-threonine dehydratase with glutamate racemase activity in mammals. Biochem J 2020; 477:4221-4241. [DOI: 10.1042/bcj20200721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 02/02/2023]
Abstract
Recent investigations have shown that multiple d-amino acids are present in mammals and these compounds have distinctive physiological functions. Free d-glutamate is present in various mammalian tissues and cells and in particular, it is presumably correlated with cardiac function, and much interest is growing in its unique metabolic pathways. Recently, we first identified d-glutamate cyclase as its degradative enzyme in mammals, whereas its biosynthetic pathway in mammals is unclear. Glutamate racemase is a most probable candidate, which catalyzes interconversion between d-glutamate and l-glutamate. Here, we identified the cDNA encoding l-serine dehydratase-like (SDHL) as the first mammalian clone with glutamate racemase activity. This rat SDHL had been deposited in mammalian databases as a protein of unknown function and its amino acid sequence shares ∼60% identity with that of l-serine dehydratase. Rat SDHL was expressed in Escherichia coli, and the enzymatic properties of the recombinant were characterized. The results indicated that rat SDHL is a multifunctional enzyme with glutamate racemase activity in addition to l-serine/l-threonine dehydratase activity. This clone is hence abbreviated as STDHgr. Further experiments using cultured mammalian cells confirmed that d-glutamate was synthesized and l-serine and l-threonine were decomposed. It was also found that SDHL (STDHgr) contributes to the homeostasis of several other amino acids.
Collapse
|
21
|
FURUSHO A, OBROMSUK M, AKITA T, MITA M, NAGANO M, ROJSITTHISAK P, HAMASE K. High-Performance Liquid Chromatographic Determination of Chiral Amino Acids Using Pre-Column Derivatization with o-Phthalaldehyde and N- tert-Butyloxycarbonyl-D-cysteine and Application to Vinegar Samples. CHROMATOGRAPHY 2020. [DOI: 10.15583/jpchrom.2020.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Aogu FURUSHO
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | - Takeyuki AKITA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | | | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
22
|
Hsiao SW, Ishii C, Furusho A, Hsieh CL, Shimizu Y, Akita T, Mita M, Okamura T, Konno R, Ide T, Lee CK, Hamase K. Determination of phenylalanine enantiomers in the plasma and urine of mammals and ᴅ-amino acid oxidase deficient rodents using two-dimensional high-performance liquid chromatography. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140540. [PMID: 32971287 DOI: 10.1016/j.bbapap.2020.140540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
A two-dimensional (2D) HPLC system focusing on the determination of phenylalanine (Phe) enantiomers in mammalian physiological fluids has been developed. ᴅ-Phe is indicated to have potential values as a disease biomarker and therapeutic molecule in several neuronal and metabolic disorders, thus the regulation of ᴅ-Phe in mammals is a matter of interest. However, the precise determination of amino acid enantiomers is difficult in complex biological samples, and the development of an analytical method with practically acceptable sensitivity, selectivity and throughput is expected. In the present study, a 2D-HPLC system equipped with a reversed-phase column in the 1st dimension and an enantioselective column in the 2nd dimension has been designed, following the fluorescence derivatization of the target amino acid enantiomers with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F). The analytical method was validated using both plasma and urine samples, and successfully applied to human, rat and mouse fluids. Trace levels of ᴅ-Phe were determined in the plasma, and the %ᴅ values were around 0.1% for all species. In the urine, relatively large amounts of ᴅ-Phe were observed, and the %ᴅ values for humans, rats and mice were 3.99, 1.76 and 5.25%, respectively. The relationships between the enzymatic activity of ᴅ-amino acid oxidase (DAO) and the amounts of intrinsic ᴅ-Phe have also been clarified, and high ᴅ-Phe amounts were observed (around 0.3% in the plasma and around 50% in the urine) in the DAO deficient rats and mice.
Collapse
Affiliation(s)
- Sui-Wen Hsiao
- Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, 250 WuXing Street, Taipei 11031, Taiwan
| | - Chiharu Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Aogu Furusho
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chin-Ling Hsieh
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Takeyuki Akita
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masashi Mita
- KAGAMI, Inc., 7-7-15, Saito-asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Ryuichi Konno
- Department of Pharmacological Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Tomomi Ide
- Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ching-Kuo Lee
- College of Pharmacy, Taipei Medical University, 250 WuXing Street, Taipei 11031, Taiwan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; College of Pharmacy, Taipei Medical University, 250 WuXing Street, Taipei 11031, Taiwan.
| |
Collapse
|
23
|
Katane M, Motoda R, Ariyoshi M, Tateishi S, Nakayama K, Saitoh Y, Miyamoto T, Sekine M, Mita M, Hamase K, Matoba S, Sakai-Kato K, Homma H. A colorimetric assay method for measuring d-glutamate cyclase activity. Anal Biochem 2020; 605:113838. [PMID: 32702438 DOI: 10.1016/j.ab.2020.113838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/19/2022]
Abstract
In mammals, metabolism of free d-glutamate is regulated by d-glutamate cyclase (DGLUCY), which reversibly converts d-glutamate to 5-oxo-d-proline and H2O. Metabolism of these d-amino acids by DGLUCY is thought to regulate cardiac function. In this study, we established a simple, accurate, and sensitive colorimetric assay method for measuring DGLUCY activity. To this end, we optimized experimental procedures for derivatizing 5-oxo-d-proline with 2-nitrophenylhydrazine hydrochloride. 5-Oxo-d-proline was derivatized with 2-nitrophenylhydrazine hydrochloride in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide as a catalyst to generate the acid hydrazides, whose levels were then determined using a colorimetric method. Under optimized conditions, we examined the sensitivity and accuracy of the colorimetric method and compared our technique with other methods by high-performance liquid chromatography with ultraviolet-visible or fluorescence detection. Moreover, we assessed the suitability of this colorimetric method for measuring DGLUCY activity in biological samples. Our colorimetric method could determine DGLUCY activity with adequate validity and reliability. This method will help to elucidate the relationship among DGLUCY activity, the physiological and pathological roles of d-glutamate and 5-oxo-d-proline, and cardiac function.
Collapse
Affiliation(s)
- Masumi Katane
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Risa Motoda
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Makoto Ariyoshi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shuhei Tateishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuki Nakayama
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yasuaki Saitoh
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tetsuya Miyamoto
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masae Sekine
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masashi Mita
- Shiseido Co., Ltd, 1-1-16 Higashi-shimbashi, Minato-ku, Tokyo, 105-0021, Japan
| | - Kenji Hamase
- Department of Drug Discovery and Evolution, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kumiko Sakai-Kato
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
24
|
Gu SX, Wang HF, Zhu YY, Chen FE. Natural Occurrence, Biological Functions, and Analysis of D-Amino Acids. PHARMACEUTICAL FRONTS 2020. [DOI: 10.1055/s-0040-1713820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractThis review covers the recent development on the natural occurrence, functional elucidations, and analysis of amino acids of the D (dextro) configuration. In the pharmaceutical field, amino acids are not only used directly as clinical drugs and nutriments, but also widely applied as starting materials, catalysts, or chiral ligands for the synthesis of active pharmaceutical ingredients. Earler belief hold that only L-amino acids exist in nature and D-amino acids were artificial products. However, increasing evidence indicates that D-amino acids are naturally occurring in living organisms including human beings, plants, and microorganisms, playing important roles in biological processes. While D-amino acids have similar physical and chemical characteristics with their respective L-enantiomers in an achiral measurement, the biological functions of D-amino acids are remarkably different from those of L-ones. With the rapid development of chiral analytical techniques for D-amino acids, studies on the existence, formation mechanisms, biological functions as well as relevant physiology and pathology of D-amino acids have achieved great progress; however, they are far from being sufficiently explored.
Collapse
Affiliation(s)
- Shuang-Xi Gu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, People's Republic of China
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Hai-Feng Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, People's Republic of China
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Yuan-Yuan Zhu
- School of Chemistry & Environmental Engineering, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, People's Republic of China
- Department of Chemistry, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Biochemical characterization of d-aspartate oxidase from Caenorhabditis elegans: its potential use in the determination of free d-glutamate in biological samples. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140442. [PMID: 32376478 DOI: 10.1016/j.bbapap.2020.140442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/26/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
d-Aspartate oxidase (DDO) is a flavin adenine dinucleotide (FAD)-containing flavoprotein that stereospecifically acts on acidic d-amino acids (i.e., free d-aspartate and d-glutamate). Mammalian DDO, which exhibits higher activity toward d-aspartate than d-glutamate, is presumed to regulate levels of d-aspartate in the body and is not thought to degrade d-glutamate in vivo. By contrast, three DDO isoforms are present in the nematode Caenorhabditis elegans, DDO-1, DDO-2, and DDO-3, all of which exhibit substantial activity toward d-glutamate as well as d-aspartate. In this study, we optimized the Escherichia coli culture conditions for production of recombinant C. elegans DDO-1, purified the protein, and showed that it is a flavoprotein with a noncovalently but tightly attached FAD. Furthermore, C. elegans DDO-1, but not mammalian (rat) DDO, efficiently and selectively degraded d-glutamate in addition to d-aspartate, even in the presence of various other amino acids. Thus, C. elegans DDO-1 might be a useful tool for determining these acidic d-amino acids in biological samples.
Collapse
|
26
|
Kimura T, Hesaka A, Isaka Y. D-Amino acids and kidney diseases. Clin Exp Nephrol 2020; 24:404-410. [PMID: 32112266 PMCID: PMC7174270 DOI: 10.1007/s10157-020-01862-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022]
Abstract
d-Amino acids are the recently detected enantiomers of l-amino acids. Accumulating evidence points their potential in solving the long-standing critical problems associated with the management of both chronic and acute kidney diseases. This includes estimating kidney function, early diagnosis and prognosis of chronic kidney disease, and disease monitoring. Among the d-amino acids, d-serine levels in the blood are strongly correlated with the glomerular filtration rate and are useful for estimating the function of the kidney. Urinary d-serine also reflects other conditions. The kidney proximal tubule reabsorbs serine with chiral-selectivity, with d-serine being reabsorbed much less efficiently than l-serine, and urinary excretion of d-serine is sensitive to the presence of kidney diseases. Therefore, assessing the intra-body dynamics of d-serine by measuring its level in blood and urinary excretion can be used to detect kidney diseases and assess pathophysiology. This new concept, the intra-body dynamics of d-serine, can be useful in the comprehensive management of kidney disease.
Collapse
Affiliation(s)
- Tomonori Kimura
- KAGAMI Project, National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan. .,Reverse Translational Research Project, Center for Rare Disease Research, National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan. .,Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Atsushi Hesaka
- KAGAMI Project, National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Reverse Translational Research Project, Center for Rare Disease Research, National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
27
|
ISHII C, FURUSHO A, HSIEH CL, HAMASE K. Multi-Dimensional High-Performance Liquid Chromatographic Determination of Chiral Amino Acids and Related Compounds in Real World Samples. CHROMATOGRAPHY 2020. [DOI: 10.15583/jpchrom.2020.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Chiharu ISHII
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Aogu FURUSHO
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Chin-Ling HSIEH
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
28
|
d-Aspartate oxidase: distribution, functions, properties, and biotechnological applications. Appl Microbiol Biotechnol 2020; 104:2883-2895. [DOI: 10.1007/s00253-020-10439-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
|
29
|
Shibata K, Sugaya N, Kuboki Y, Matsuda H, Abe K, Takahashi S, Kera Y. Aspartate racemase and d-aspartate in starfish; possible involvement in testicular maturation. Biosci Biotechnol Biochem 2020; 84:95-102. [DOI: 10.1080/09168451.2019.1660614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ABSTRACT
d-Aspartate, aspartate racemase activity, and d-aspartate oxidase activity were detected in tissues from several types of starfish. Aspartate racemase activity in male testes of Patiria pectinifera was significantly elevated in the summer months of the breeding season compared with spring months. We also compared aspartate racemase activity with the gonad index and found that activity in individuals with a gonad index ≥6% was four-fold higher than that of individuals with a gonad index <6%. The ratio of the D-form of aspartate to total aspartate was approximately 25% in testes with a gonad index <6% and this increased to approximately 40% in testes with a gonad index ≥6%. However, such changes were not observed in female ovaries. Administration of d-aspartate into male starfish caused testicular growth. These results indicate the possible involvement of aspartate racemase and d-aspartate in testicular maturation in echinoderm starfish.
Collapse
Affiliation(s)
- Kimihiko Shibata
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Noriko Sugaya
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Yuko Kuboki
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Hiroko Matsuda
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Katsumasa Abe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
30
|
Uda K, Edashige Y, Nishimura R, Shikano Y, Matsui T, Radkov AD, Moe LA. Distribution and evolution of the serine/aspartate racemase family in plants. PHYTOCHEMISTRY 2020; 169:112164. [PMID: 31622858 DOI: 10.1016/j.phytochem.2019.112164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have shown that several d-amino acids are widely present in plants, and serine racemase (SerR), which synthesizes d-serine in vivo, has already been identified from three plant species. However, the full picture of the d-amino acid synthesis pathway in plants is not well understood. To clarify the distribution of amino acid racemases in plants, we have cloned, expressed and characterized eight SerR homologous genes from five plant species, including green alga. These SerR homologs exhibited racemase activity towards serine or aspartate and were identified on the basis of their maximum activity as SerR or aspartate racemase (AspR). The plant AspR gene is identified for the first time from Medicago truncatula, Manihot esculenta, Solanum lycopersicum, Sphagnum girgensohnii and Spirogyra pratensis. In addition to the AspR gene, three SerR genes are identified in the former three species. Phylogenetic tree analysis showed that SerR and AspR are widely distributed in plants and form a serine/aspartate racemase family cluster. The catalytic efficiency (kcat/Km) of plant AspRs was more than 100 times higher than that of plant SerRs, suggesting that d-aspartate, as well as d-serine, can be synthesized in vivo by AspR. The amino acid sequence alignment and comparison of the chromosomal gene arrangement have revealed that plant AspR genes independently evolved from SerR in each ancestral lineage of plant species by gene duplication and acquisition of two serine residues at position 150 to 152.
Collapse
Affiliation(s)
- Kouji Uda
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan.
| | - Yumika Edashige
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Rie Nishimura
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Yuuna Shikano
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Tohru Matsui
- Laboratory of Plant Taxonomy, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Atanas D Radkov
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Luke A Moe
- Department of Plant and Soil Sciences, 311 Plant Science Building, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
31
|
Selective demethylation of two CpG sites causes postnatal activation of the Dao gene and consequent removal of D-serine within the mouse cerebellum. Clin Epigenetics 2019; 11:149. [PMID: 31661019 PMCID: PMC6819446 DOI: 10.1186/s13148-019-0732-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Programmed epigenetic modifications occurring at early postnatal brain developmental stages may have a long-lasting impact on brain function and complex behavior throughout life. Notably, it is now emerging that several genes that undergo perinatal changes in DNA methylation are associated with neuropsychiatric disorders. In this context, we envisaged that epigenetic modifications during the perinatal period may potentially drive essential changes in the genes regulating brain levels of critical neuromodulators such as D-serine and D-aspartate. Dysfunction of this fine regulation may contribute to the genesis of schizophrenia or other mental disorders, in which altered levels of D-amino acids are found. We recently demonstrated that Ddo, the D-aspartate degradation gene, is actively demethylated to ultimately reduce D-aspartate levels. However, the role of epigenetics as a mechanism driving the regulation of appropriate D-ser levels during brain development has been poorly investigated to date. METHODS We performed comprehensive ultradeep DNA methylation and hydroxymethylation profiling along with mRNA expression and HPLC-based D-amino acids level analyses of genes controlling the mammalian brain levels of D-serine and D-aspartate. DNA methylation changes occurring in specific cerebellar cell types were also investigated. We conducted high coverage targeted bisulfite sequencing by next-generation sequencing and single-molecule bioinformatic analysis. RESULTS We report consistent spatiotemporal modifications occurring at the Dao gene during neonatal development in a specific brain region (the cerebellum) and within specific cell types (astrocytes) for the first time. Dynamic demethylation at two specific CpG sites located just downstream of the transcription start site was sufficient to strongly activate the Dao gene, ultimately promoting the complete physiological degradation of cerebellar D-serine a few days after mouse birth. High amount of 5'-hydroxymethylcytosine, exclusively detected at relevant CpG sites, strongly evoked the occurrence of an active demethylation process. CONCLUSION The present investigation demonstrates that robust and selective demethylation of two CpG sites is associated with postnatal activation of the Dao gene and consequent removal of D-serine within the mouse cerebellum. A single-molecule methylation approach applied at the Dao locus promises to identify different cell-type compositions and functions in different brain areas and developmental stages.
Collapse
|
32
|
Kuncha SK, Kruparani SP, Sankaranarayanan R. Chiral checkpoints during protein biosynthesis. J Biol Chem 2019; 294:16535-16548. [PMID: 31591268 DOI: 10.1074/jbc.rev119.008166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein chains contain only l-amino acids, with the exception of the achiral glycine, making the chains homochiral. This homochirality is a prerequisite for proper protein folding and, hence, normal cellular function. The importance of d-amino acids as a component of the bacterial cell wall and their roles in neurotransmission in higher eukaryotes are well-established. However, the wider presence and the corresponding physiological roles of these specific amino acid stereoisomers have been appreciated only recently. Therefore, it is expected that enantiomeric fidelity has to be a key component of all of the steps in translation. Cells employ various molecular mechanisms for keeping d-amino acids away from the synthesis of nascent polypeptide chains. The major factors involved in this exclusion are aminoacyl-tRNA synthetases (aaRSs), elongation factor thermo-unstable (EF-Tu), the ribosome, and d-aminoacyl-tRNA deacylase (DTD). aaRS, EF-Tu, and the ribosome act as "chiral checkpoints" by preferentially binding to l-amino acids or l-aminoacyl-tRNAs, thereby excluding d-amino acids. Interestingly, DTD, which is conserved across all life forms, performs "chiral proofreading," as it removes d-amino acids erroneously added to tRNA. Here, we comprehensively review d-amino acids with respect to their occurrence and physiological roles, implications for chiral checkpoints required for translation fidelity, and potential use in synthetic biology.
Collapse
Affiliation(s)
- Santosh Kumar Kuncha
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India.,Academy of Scientific and Innovative Research, CSIR-CCMB Campus, Hyderabad, Telangana 500007, India
| | - Shobha P Kruparani
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| | - Rajan Sankaranarayanan
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| |
Collapse
|
33
|
Bastings JJ, van Eijk HM, Olde Damink SW, Rensen SS. d-amino Acids in Health and Disease: A Focus on Cancer. Nutrients 2019; 11:nu11092205. [PMID: 31547425 PMCID: PMC6770864 DOI: 10.3390/nu11092205] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023] Open
Abstract
d-amino acids, the enantiomeric counterparts of l-amino acids, were long considered to be non-functional or not even present in living organisms. Nowadays, d-amino acids are acknowledged to play important roles in numerous physiological processes in the human body. The most commonly studied link between d-amino acids and human physiology concerns the contribution of d-serine and d-aspartate to neurotransmission. These d-amino acids and several others have also been implicated in regulating innate immunity and gut barrier function. Importantly, the presence of certain d-amino acids in the human body has been linked to several diseases including schizophrenia, amyotrophic lateral sclerosis, and age-related disorders such as cataract and atherosclerosis. Furthermore, increasing evidence supports a role for d-amino acids in the development, pathophysiology, and treatment of cancer. In this review, we aim to provide an overview of the various sources of d-amino acids, their metabolism, as well as their contribution to physiological processes and diseases in man, with a focus on cancer.
Collapse
Affiliation(s)
- Jacco J.A.J. Bastings
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Hans M. van Eijk
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
| | - Steven W. Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Sander S. Rensen
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Correspondence:
| |
Collapse
|
34
|
Furusho A, Koga R, Akita T, Mita M, Kimura T, Hamase K. Three-Dimensional High-Performance Liquid Chromatographic Determination of Asn, Ser, Ala, and Pro Enantiomers in the Plasma of Patients with Chronic Kidney Disease. Anal Chem 2019; 91:11569-11575. [DOI: 10.1021/acs.analchem.9b01615] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Aogu Furusho
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Reiko Koga
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Takeyuki Akita
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masashi Mita
- Shiseido Co., Ltd., 1-6-2 Higashi-shimbashi, Minato-ku, Tokyo 105-8310, Japan
| | - Tomonori Kimura
- National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saitoasagi, Ibaraki 567-0085, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
35
|
ISHII C, AKITA T, NAGANO M, MITA M, HAMASE K. Determination of Chiral Amino Acids in Various Fermented Products Using a Two-Dimensional HPLC-MS/MS System. CHROMATOGRAPHY 2019. [DOI: 10.15583/jpchrom.2019.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Chiharu ISHII
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Takeyuki AKITA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
36
|
Uda K, Ishizuka N, Edashige Y, Kikuchi A, Radkov AD, Moe LA. Cloning and characterization of a novel aspartate/glutamate racemase from the acorn worm Saccoglossus kowalevskii. Comp Biochem Physiol B Biochem Mol Biol 2019; 232:87-92. [DOI: 10.1016/j.cbpb.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 02/02/2023]
|
37
|
Arkhipova V, Trinco G, Ettema TW, Jensen S, Slotboom DJ, Guskov A. Binding and transport of D-aspartate by the glutamate transporter homolog Glt Tk. eLife 2019; 8:45286. [PMID: 30969168 PMCID: PMC6482001 DOI: 10.7554/elife.45286] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/09/2019] [Indexed: 01/31/2023] Open
Abstract
Mammalian glutamate transporters are crucial players in neuronal communication as they perform neurotransmitter reuptake from the synaptic cleft. Besides L-glutamate and L-aspartate, they also recognize D-aspartate, which might participate in mammalian neurotransmission and/or neuromodulation. Much of the mechanistic insight in glutamate transport comes from studies of the archeal homologs GltPh from Pyrococcus horikoshii and GltTk from Thermococcus kodakarensis. Here, we show that GltTk transports D-aspartate with identical Na+: substrate coupling stoichiometry as L-aspartate, and that the affinities (Kd and Km) for the two substrates are similar. We determined a crystal structure of GltTk with bound D-aspartate at 2.8 Å resolution. Comparison of the L- and D-aspartate bound GltTk structures revealed that D-aspartate is accommodated with only minor rearrangements in the structure of the binding site. The structure explains how the geometrically different molecules L- and D-aspartate are recognized and transported by the protein in the same way.
Collapse
Affiliation(s)
- Valentina Arkhipova
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Gianluca Trinco
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Thijs W Ettema
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Sonja Jensen
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Albert Guskov
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Takahashi S, Osugi K, Shimekake Y, Shinbo A, Abe K, Kera Y. Characterization and improvement of substrate-binding affinity of D-aspartate oxidase of the thermophilic fungus Thermomyces dupontii. Appl Microbiol Biotechnol 2019; 103:4053-4064. [PMID: 30937498 DOI: 10.1007/s00253-019-09787-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022]
Abstract
D-Aspartate oxidase (DDO) is a valuable enzyme that can be utilized in the determination of acidic D-amino acids and the optical resolution of a racemic mixture of acidic amino acids, which require its higher stability, higher catalytic activity, and higher substrate-binding affinity. In the present study, we identified DDO gene (TdDDO) of a thermophilic fungus, Thermomyces dupontii, and characterized the recombinant enzyme expressed in Escherichia coli. In addition, we generated a variant that has a higher substrate-binding affinity. The recombinant TdDDO expressed in E. coli exhibited oxidase activity toward acidic D-amino acids and a neutral D-amino acid, D-Gln, with the highest activity toward D-Glu. The Km and kcat values for D-Glu were 2.16 mM and 217 s-1, respectively. The enzyme had an optimum pH and temperature 8.0 and 60 °C, respectively, and was stable between pH 5.0 and 10.0, with a T50 of ca. 51 °C, which was much higher than that in DDOs from other origins. Enzyme stability decreased following a decrease in protein concentration, and externally added FAD could not repress the destabilization. The mutation of Phe248, potentially located in the active site of TdDDO, to Tyr residue, conserved in DDOs and D-amino acid oxidases, markedly increased substrate-binding affinity. The results showed the great potential of TdDDO and the variant for practical applications.
Collapse
Affiliation(s)
- Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.
| | - Kohei Osugi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Yuya Shimekake
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Akira Shinbo
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Katsumasa Abe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| |
Collapse
|
39
|
KOGA R, YOSHIDA H, NOHTA H, HAMASE K. Multi-Dimensional HPLC Analysis of Metabolic Related Chiral Amino Acids -Method Development and Biological/Clinical Applications-. CHROMATOGRAPHY 2019. [DOI: 10.15583/jpchrom.2019.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Reiko KOGA
- Faculty of Pharmaceutical Sciences, Fukuoka University
| | | | - Hitoshi NOHTA
- Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
40
|
Suarez J, Hener C, Lehnhardt VA, Hummel S, Stahl M, Kolukisaoglu Ü. AtDAT1 Is a Key Enzyme of D-Amino Acid Stimulated Ethylene Production in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:1609. [PMID: 31921255 PMCID: PMC6921899 DOI: 10.3389/fpls.2019.01609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/15/2019] [Indexed: 05/22/2023]
Abstract
D-Enantiomers of proteinogenic amino acids (D-AAs) are found ubiquitously, but the knowledge about their metabolism and functions in plants is scarce. A long forgotten phenomenon in this regard is the D-AA-stimulated ethylene production in plants. As a starting point to investigate this effect, the Arabidopsis accession Landsberg erecta (Ler) got into focus as it was found defective in metabolizing D-AAs. Combining genetics and molecular biology of T-DNA insertion lines and natural variants together with biochemical and physiological approaches, we could identify AtDAT1 as a major D-AA transaminase in Arabidopsis. Atdat1 loss-of-function mutants and Arabidopsis accessions with defective AtDAT1 alleles were unable to produce the metabolites of D-Met, D-Ala, D-Glu, and L-Met. This result corroborates the biochemical characterization, which showed highest activity of AtDAT1 using D-Met as a substrate. Germination of seedlings in light and dark led to enhanced growth inhibition of atdat1 mutants on D-Met. Ethylene measurements revealed an increased D-AA stimulated ethylene production in these mutants. According to initial working models of this phenomenon, D-Met is preferentially malonylated instead of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). This decrease of ACC degradation should then lead to the increase of ethylene production. We could observe a reciprocal relation of malonylated methionine and ACC upon D-Met application and significantly more malonyl-methionine in atdat1 mutants. Unexpectedly, the malonyl-ACC levels did not differ between mutants and wild type. With AtDAT1, the first central enzyme of plant D-AA metabolism was characterized biochemically and physiologically. The specific effects of D-Met on ACC metabolism, ethylene production, and plant development of dat1 mutants unraveled the impact of AtDAT1 on these processes; however, they are not in full accordance to previous working models. Instead, our results imply the influence of additional factors or processes on D-AA-stimulated ethylene production, which await to be uncovered.
Collapse
|
41
|
Saitoh Y, Katane M, Miyamoto T, Sekine M, Sakamoto T, Imai H, Homma H. Secreted d-aspartate oxidase functions in C. elegans reproduction and development. FEBS J 2018; 286:124-138. [PMID: 30387556 DOI: 10.1111/febs.14691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/20/2018] [Accepted: 10/31/2018] [Indexed: 11/30/2022]
Abstract
d-Aspartate oxidase (DDO) is a degradative enzyme that acts stereospecifically on free acidic D-amino acids such as d-aspartate and d-glutamate. d-Aspartate plays an important role in regulating neurotransmission, developmental processes, hormone secretion, and reproductive functions in mammals. In contrast, the physiological role of d-glutamate in mammals remains unclear. In Caenorhabditis elegans, the enzyme responsible for in vivo metabolism of d-glutamate is DDO-3, one of the three DDO isoforms, which is also required for normal self-fertility, hatching, and lifespan. In general, eukaryotic DDOs localize to subcellular peroxisomes in a peroxisomal targeting signal type 1 (PTS1)-dependent manner. However, DDO-3 does not contain a PTS1, but instead has a putative N-terminal signal peptide (SP). In this study, we found that DDO-3 is a secreted DDO, the first such enzyme to be described in eukaryotes. In hermaphrodites, DDO-3 was secreted from the proximal gonadal sheath cells in a SP-dependent manner and transferred to the oocyte surface. In males, DDO-3 was secreted from the seminal vesicle into the seminal fluid in a SP-dependent manner during mating with hermaphrodites. In both sexes, DDO-3 was secreted from the cells where it was produced into the body fluid and taken up by scavenger coelomocytes. Full-length DDO-3 transgene rescued all phenotypes elicited by the deletion of ddo-3, whereas a DDO-3 transgene lacking the putative SP did not. Together, these results indicate that secretion of DDO-3 is essential for its physiological functions.
Collapse
Affiliation(s)
- Yasuaki Saitoh
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Masumi Katane
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Tetsuya Miyamoto
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Masae Sekine
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Taro Sakamoto
- Laboratory of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Hirotaka Imai
- Laboratory of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| |
Collapse
|
42
|
HAMASE K, IKEDA T, ISHII C, ISHIGO S, MASUYAMA K, AKITA T, FURUSHO A, TAKAHASHI M, IDE T, MITA M. Determination of Trace Amounts of Chiral Amino Acids in Complicated Biological Samples Using Two-Dimensional High-Performance Liquid Chromatography with an Innovative “Shape-Fitting” Peak Identification/Quantification Method. CHROMATOGRAPHY 2018. [DOI: 10.15583/jpchrom.2018.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | - Chiharu ISHII
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | - Takeyuki AKITA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Aogu FURUSHO
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Miho TAKAHASHI
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Tomomi IDE
- Graduate School of Medical Sciences, Kyushu University
| | | |
Collapse
|
43
|
Ishii C, Akita T, Mita M, Ide T, Hamase K. Development of an online two-dimensional high-performance liquid chromatographic system in combination with tandem mass spectrometric detection for enantiomeric analysis of free amino acids in human physiological fluid. J Chromatogr A 2018; 1570:91-98. [DOI: 10.1016/j.chroma.2018.07.076] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
|
44
|
Akita H, Hayashi J, Sakuraba H, Ohshima T. Artificial Thermostable D-Amino Acid Dehydrogenase: Creation and Application. Front Microbiol 2018; 9:1760. [PMID: 30123202 PMCID: PMC6085447 DOI: 10.3389/fmicb.2018.01760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/13/2018] [Indexed: 01/06/2023] Open
Abstract
Many kinds of NAD(P)+-dependent L-amino acid dehydrogenases have been so far found and effectively used for synthesis of L-amino acids and their analogs, and for their sensing. By contrast, similar biotechnological use of D-amino acid dehydrogenase (D-AADH) has not been achieved because useful D-AADH has not been found from natural resources. Recently, using protein engineering methods, an NADP+-dependent D-AADH was created from meso-diaminopimelate dehydrogenase (meso-DAPDH). The artificially created D-AADH catalyzed the reversible NADP+-dependent oxidative deamination of D-amino acids to 2-oxo acids. The enzyme, especially thermostable one from thermophiles, was efficiently applicable to synthesis of D-branched-chain amino acids (D-BCAAs), with high yields and optical purity, and was useful for the practical synthesis of 13C- and/or 15N-labeled D-BCAAs. The enzyme also made it possible to assay D-isoleucine selectively in a mixture of isoleucine isomers. Analyses of the three-dimensional structures of meso-DAPDH and D-AADH, and designed mutations based on the information obtained made it possible to markedly enhance enzyme activity and to create D-AADH homologs with desired reactivity profiles. The methods described here may be an effective approach to artificial creation of biotechnologically useful enzymes.
Collapse
Affiliation(s)
- Hironaga Akita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| | - Junji Hayashi
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University Biwako-Kusatsu Campus, Shiga, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan
| |
Collapse
|
45
|
Katane M, Ariyoshi M, Tateishi S, Koiwai S, Takaku K, Nagai K, Nakayama K, Saitoh Y, Miyamoto T, Sekine M, Mita M, Hamase K, Matoba S, Homma H. Structural and enzymatic properties of mammalian d-glutamate cyclase. Arch Biochem Biophys 2018; 654:10-18. [PMID: 30003876 DOI: 10.1016/j.abb.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/20/2018] [Accepted: 07/08/2018] [Indexed: 01/12/2023]
Abstract
d-Glutamate cyclase (DGLUCY) is a unique enzyme that reversibly converts free d-glutamate to 5-oxo-d-proline and H2O. Mammalian DGLUCY is highly expressed in the mitochondrial matrix in the heart, and its downregulation disrupts d-glutamate and/or 5-oxo-d-proline levels, contributing to the onset and/or exacerbation of heart failure. However, detailed characterisation of DGLUCY has not yet been performed. Herein, the structural and enzymatic properties of purified recombinant mouse DGLUCY were examined. The results revealed a dimeric oligomerisation state, and both d-glutamate-to-5-oxo-d-proline and 5-oxo-d-proline-to-d-glutamate reactions were catalysed in a stereospecific manner. Catalytic activity is modulated by divalent cations and nucleotides including ATP and ADP. Interestingly, the presence of Mn2+ completely abolished the 5-oxo-d-proline-to-d-glutamate reaction but stimulated the d-glutamate-to-5-oxo-d-proline reaction. The optimum pH is ∼8.0, similar to that in the mitochondrial matrix, and the catalytic efficiency for d-glutamate is markedly higher than that for 5-oxo-d-proline. These findings suggest that DGLUCY functions as a metalloenzyme that degrades d-glutamate in the mitochondrial matrix in mammalian cells. The results also provide insight into the correlation between DGLUCY enzyme activity and the physiological and pathological roles of d-glutamate and 5-oxo-d-proline in cardiac function, which is of relevance to the risk of onset of heart failure.
Collapse
Affiliation(s)
- Masumi Katane
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Makoto Ariyoshi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shuhei Tateishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Sachi Koiwai
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kaoruko Takaku
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenichiro Nagai
- Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuki Nakayama
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasuaki Saitoh
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tetsuya Miyamoto
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masae Sekine
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masashi Mita
- Shiseido Co., Ltd, 1-1-16 Higashi-shimbashi, Minato-ku, Tokyo 105-0021, Japan
| | - Kenji Hamase
- Department of Drug Discovery and Evolution, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
46
|
Prior A, van de Nieuwenhuijzen E, de Jong GJ, Somsen GW. Enantioselective micellar electrokinetic chromatography of dl-amino acids using (+)-1-(9-fluorenyl)-ethyl chloroformate derivatization and UV-induced fluorescence detection. J Sep Sci 2018; 41:2983-2992. [PMID: 29785784 PMCID: PMC6099287 DOI: 10.1002/jssc.201800204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 01/24/2023]
Abstract
Chiral analysis of dl-amino acids was achieved by micellar electrokinetic chromatography coupled with UV-excited fluorescence detection. The fluorescent reagent (+)-1-(9-fluorenyl)ethyl chloroformate was employed as chiral amino acid derivatizing agent and sodium dodecyl sulfate served as pseudo-stationary phase for separating the formed amino acid diastereomers. Sensitive analysis of (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids was achieved applying a xenon-mercury lamp for ultraviolet excitation, and a spectrograph and charge-coupled device for wavelength-resolved emission detection. Applying signal integration over a 30 nm emission wavelength interval, signal-to-noise ratios for derivatized amino acids were up to 23 times higher as obtained using a standard photomultiplier for detection. The background electrolyte composition (electrolyte, pH, sodium dodecyl sulfate concentration, and organic solvent) was studied in order to attain optimal chemo- and enantioseparation. Enantioseparation of 12 proteinogenic dl-amino acids was achieved with chiral resolutions between 1.2 and 7.9, and detection limits for most derivatized amino acids in the 13-60 nM range (injected concentration). Linearity (coefficients of determination > 0.985) and peak-area and migration-time repeatabilities (relative standard deviations lower than 2.6 and 1.9%, respectively) were satisfactory. The employed fluorescence detection system provided up to 100-times better signal-to-noise ratios for (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids than ultraviolet absorbance detection, showing good potential for d-amino acid analysis.
Collapse
Affiliation(s)
- Amir Prior
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules, Medicines and SystemsVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Erik van de Nieuwenhuijzen
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules, Medicines and SystemsVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Govert W. Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules, Medicines and SystemsVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
47
|
Li Y, Han H, Yin J, Li T, Yin Y. Role of D-aspartate on biosynthesis, racemization, and potential functions: A mini-review. ACTA ACUST UNITED AC 2018; 4:311-315. [PMID: 30175260 PMCID: PMC6116324 DOI: 10.1016/j.aninu.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022]
Abstract
D-aspartate, a natural and endogenous amino acid, widely exists in animal tissues and can be synthesized through aspartate racemase and transformed by D-aspartate oxidase (DDO). D-aspartate mainly serves as a neurotransmitter and has been demonstrated to exhibit various physiological functions, including nutritional potential, regulation on reproduction and hormone biology, and neuron protection. This article mainly reviews the synthesis, racemization, and physiological functions of D-aspartate with emphasis on the potential in diseases.
Collapse
Affiliation(s)
- Yuying Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hui Han
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jie Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Tiejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Corresponding authors.
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Corresponding authors.
| |
Collapse
|
48
|
Sugahara H, Meinert C, Nahon L, Jones NC, Hoffmann SV, Hamase K, Takano Y, Meierhenrich UJ. d-Amino acids in molecular evolution in space - Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:743-758. [PMID: 29357311 DOI: 10.1016/j.bbapap.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 02/02/2023]
Abstract
Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.
Collapse
Affiliation(s)
- Haruna Sugahara
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France
| | - Cornelia Meinert
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France
| | - Laurent Nahon
- L'Orme des Merisiers, Synchrotron SOLEIL, BP 48 Saint Aubin, 91192 Gif-sur-Yvette, France
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinori Takano
- Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
| | - Uwe J Meierhenrich
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
| |
Collapse
|
49
|
Errico F, Nuzzo T, Carella M, Bertolino A, Usiello A. The Emerging Role of Altered d-Aspartate Metabolism in Schizophrenia: New Insights From Preclinical Models and Human Studies. Front Psychiatry 2018; 9:559. [PMID: 30459655 PMCID: PMC6232865 DOI: 10.3389/fpsyt.2018.00559] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023] Open
Abstract
Besides d-serine, another d-amino acid with endogenous occurrence in the mammalian brain, d-aspartate, has been recently shown to influence NMDA receptor (NMDAR)-mediated transmission. d-aspartate is present in the brain at extracellular level in nanomolar concentrations, binds to the agonist site of NMDARs and activates this subclass of glutamate receptors. Along with its direct effect on NMDARs, d-aspartate can also evoke considerable l-glutamate release in specific brain areas through the presynaptic activation of NMDA, AMPA/kainate and mGlu5 receptors. d-aspartate is enriched in the embryonic brain of rodents and humans and its concentration strongly decreases after birth, due to the post-natal expression of the catabolising enzyme d-aspartate oxidase (DDO). Based on the hypothesis of NMDAR hypofunction in schizophrenia pathogenesis, recent preclinical and clinical studies suggested a relationship between perturbation of d-aspartate metabolism and this psychiatric disorder. Consistently, neurophysiological and behavioral characterization of Ddo knockout (Ddo -/-) and d-aspartate-treated mice highlighted that abnormally higher endogenous d-aspartate levels significantly increase NMDAR-mediated synaptic plasticity, neuronal spine density and memory. Remarkably, increased d-aspartate levels influence schizophrenia-like phenotypes in rodents, as indicated by improved fronto-hippocampal connectivity, attenuated prepulse inhibition deficits and reduced activation of neuronal circuitry induced by phencyclidine exposure. In healthy humans, a genetic polymorphism associated with reduced prefrontal DDO gene expression predicts changes in prefrontal phenotypes including greater gray matter volume and enhanced functional activity during working memory. Moreover, neurochemical detections in post-mortem brain of schizophrenia-affected patients have shown significantly reduced d-aspartate content in prefrontal regions, associated with increased DDO mRNA expression or DDO enzymatic activity. Overall, these findings suggest a possible involvement of dysregulated embryonic d-aspartate metabolism in schizophrenia pathophysiology and, in turn, highlight the potential use of free d-aspartate supplementation as a new add-on therapy for treating the cognitive symptoms of this mental illness.
Collapse
Affiliation(s)
- Francesco Errico
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Tommaso Nuzzo
- Translational Neuroscience Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Translational Neuroscience Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Alessandro Usiello
- Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
50
|
Miyamoto T, Homma H. Detection and quantification of d-amino acid residues in peptides and proteins using acid hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:775-782. [PMID: 29292238 DOI: 10.1016/j.bbapap.2017.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/04/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Biomolecular homochirality refers to the assumption that amino acids in all living organisms were believed to be of the l-configuration. However, free d-amino acids are present in a wide variety of organisms and d-amino acid residues are also found in various peptides and proteins, being generated by enzymatic or non-enzymatic isomerization. In mammals, peptides and proteins containing d-amino acids have been linked to various diseases, and they act as novel disease biomarkers. Analytical methods capable of precisely detecting and quantifying d-amino acids in peptides and proteins are therefore important and useful, albeit their difficulty and complexity. Herein, we reviewed conventional analytical methods, especially 0h extrapolating method, and the problems of this method. For the solution of these problems, we furthermore described our recently developed, sensitive method, deuterium-hydrogen exchange method, to detect innate d-amino acid residues in peptides and proteins, and its applications to sample ovalbumin. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|