1
|
Liu YM, Wang S, Dickenson A, Mao J, Bai X, Liao X. An on-line SPE-LC-MS/MS method for quantification of nucleobases and nucleosides present in biological fluids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2505-2512. [PMID: 38584507 PMCID: PMC11151739 DOI: 10.1039/d4ay00100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Solid phase extraction (SPE) and liquid chromatographic (LC) separation of nucleobases and nucleosides are challenging due to the high hydrophilicity of these compounds. Herein we report a novel on-line SPE-LC-MS/MS method for their quantification after pre-column derivatization with chloroacetaldehyde (CAA). The method proposed is selective and sensitive with limits of detection at the nano-molar level. Analysis of urine and saliva samples by using this method is demonstrated. Adenine, guanine, cytosine, adenosine, guanosine, and cytidine were found in the range from 0.19 (guanosine) to 1.83 μM (cytidine) in urine and from 0.015 (guanosine) to 0.79 μM (adenine) in saliva. Interestingly, methylation of cytidine was found to be significantly different in urine from that in saliva. While 5-hydroxymethylcytidine was detected at a very low level (<0.05 μM) in saliva, it was found to be the most prominent methylated cytidine in urine at a high level of 3.33 μM. Since on-line SPE is deployed, the proposed LC-MS/MS quantitative assay is convenient to carry out and offers good assay accuracy and repeatability.
Collapse
Affiliation(s)
- Yi-Ming Liu
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
| | - Shuguan Wang
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
| | - Amani Dickenson
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
| | - Jinghe Mao
- Department of Biology, Tougaloo College, Tougaloo, MS 39174, USA
| | - Xiaolin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
2
|
Pontikos MA, Leija C, Zhao Z, Wang X, Kilgore J, Tornesi B, Adenmatten N, Phillips MA, Williams NS. Development of a biomarker to monitor target engagement after treatment with dihydroorotate dehydrogenase inhibitors. Biochem Pharmacol 2022; 204:115237. [PMID: 36055381 PMCID: PMC9547971 DOI: 10.1016/j.bcp.2022.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022]
Abstract
Dihydroorotate dehydrogenase (DHODH) catalyzes a key step in pyrimidine biosynthesis and has recently been validated as a therapeutic target for malaria through clinical studies on the triazolopyrimidine-based Plasmodium DHODH inhibitor DSM265. Selective toxicity towards Plasmodium species could be achieved because malaria parasites lack pyrimidine salvage pathways, and DSM265 selectively inhibits Plasmodium DHODH over the human enzyme. However, while DSM265 does not inhibit human DHODH, it inhibits DHODH from several preclinical species, including mice, suggesting that toxicity could result from on-target DHODH inhibition in those species. We describe here the use of dihydroorotate (DHO) as a biomarker of DHODH inhibition. Treatment of mammalian cells with DSM265 or the mammalian DHODH inhibitor teriflunomide led to increases in DHO where the extent of biomarker buildup correlated with both dose and inhibitor potency on DHODH. Treatment of mice with leflunomide (teriflunomide prodrug) caused a large dose-dependent buildup of DHO in blood (up to 16-fold) and urine (up to 5,400-fold) that was not observed for mice treated with DSM265. Unbound plasma teriflunomide levels reached 20-85-fold above the mouse DHODH IC50, while free DSM265 levels were only 1.6-4.2-fold above, barely achieving ∼ IC90 concentrations, suggesting that unbound DSM265 plasma levels are not sufficient to block the pathway in vivo. Thus, any toxicity associated with DSM265 treatment in mice is likely caused by off-target mechanisms. The identification of a robust biomarker for mammalian DHODH inhibition represents an important advance to generally monitor for on-target effects in preclinical and clinical applications of DHODH inhibitors used to treat human disease.
Collapse
Affiliation(s)
- Michael A Pontikos
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9135, United States
| | - Christopher Leija
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9135, United States
| | - Zhiyu Zhao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Xiaoyu Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9135, United States
| | - Jessica Kilgore
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9135, United States
| | - Belen Tornesi
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | - Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9135, United States.
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9135, United States.
| |
Collapse
|
3
|
Campanella B, Lomonaco T, Benedetti E, Onor M, Nieri R, Marmorino F, Cremolini C, Bramanti E. Fast, Direct Dihydrouracil Quantitation in Human Saliva: Method Development, Validation, and Application. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6033. [PMID: 35627569 PMCID: PMC9140617 DOI: 10.3390/ijerph19106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 12/04/2022]
Abstract
Background. Salivary metabolomics is garnering increasing attention in the health field because of easy, minimally invasive saliva sampling. Dihydrouracil (DHU) is a metabolite of pyrimidine metabolism present in urine, plasma, and saliva and of fluoropyrimidines-based chemotherapeutics. Its fast quantification would help in the identification of patients with higher risk of fluoropyrimidine-induced toxicity and inborn errors of pyrimidine metabolism. Few studies consider DHU as the main salivary metabolite, but reports of its concentration levels in saliva are scarce. We propose the direct determination of DHU in saliva by reversed-phase high-performance liquid chromatography (RP-HPLC-UV detector) as a simple, rapid procedure for non-invasive screening. Methods. The method used was validated and applied to 176 saliva samples collected from 21 nominally healthy volunteers and 4 saliva samples from metastatic colorectal cancer patients before and after receiving 5-fluorouracil chemotherapy. Results. DHU levels in all samples analyzed were in the μmol L-1 range or below proving that DHU is not the main metabolite in saliva and confirming the results found in the literature with LC-MS/MS instrumentation. Any increase of DHU due to metabolism dysfunctions can be suggestive of disease and easily monitored in saliva using common, low-cost instrumentation available also for population screening.
Collapse
Affiliation(s)
- Beatrice Campanella
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds—ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 15, 56124 Pisa, Italy;
| | - Edoardo Benedetti
- Hematology Unit, Department of Oncology, Azienda Ospedaliero Universitaria Pisana, Via Roma 67, 56127 Pisa, Italy;
| | - Massimo Onor
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds—ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| | - Riccardo Nieri
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds—ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| | - Federica Marmorino
- Unity of Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Via Roma 67, 56127 Pisa, Italy; (F.M.); (C.C.)
| | - Chiara Cremolini
- Unity of Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Via Roma 67, 56127 Pisa, Italy; (F.M.); (C.C.)
| | - Emilia Bramanti
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds—ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| |
Collapse
|
4
|
Cheema AS, Trevenen ML, Turlach BA, Furst AJ, Roman AS, Bode L, Gridneva Z, Lai CT, Stinson LF, Payne MS, Geddes DT. Exclusively Breastfed Infant Microbiota Develops over Time and Is Associated with Human Milk Oligosaccharide Intakes. Int J Mol Sci 2022; 23:2804. [PMID: 35269946 PMCID: PMC8910998 DOI: 10.3390/ijms23052804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Temporal development of maternal and infant microbiomes during early life impacts short- and long-term infant health. This study aimed to characterize bacterial dynamics within maternal faecal, human milk (HM), infant oral, and infant faecal samples during the exclusive breastfeeding period and to document associations between human milk oligosaccharide (HMO) intakes and infant oral and faecal bacterial profiles. Maternal and infant samples (n = 10) were collected at 2−5, 30, 60, 90 and 120 days postpartum and the full-length 16S ribosomal RNA (rRNA) gene was sequenced. Nineteen HMOs were quantitated using high-performance liquid chromatography. Bacterial profiles were unique to each sample type and changed significantly over time, with a large degree of intra- and inter-individual variation in all sample types. Beta diversity was stable over time within infant faecal, maternal faecal and HM samples, however, the infant oral microbiota at day 2−5 significantly differed from all other time points (all p < 0.02). HMO concentrations and intakes significantly differed over time, and HMO intakes showed differential associations with taxa observed in infant oral and faecal samples. The direct clinical relevance of this, however, is unknown. Regardless, future studies should account for intakes of HMOs when modelling the impact of HM on infant growth, as it may have implications for infant microbiota development.
Collapse
Affiliation(s)
- Ali Sadiq Cheema
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Michelle Louise Trevenen
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Berwin Ashoka Turlach
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Annalee June Furst
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Sophia Roman
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Lisa Faye Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Matthew Scott Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia;
- Women and Infants Research Foundation, Subiaco, WA 6008, Australia
| | - Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| |
Collapse
|
5
|
Said R, Arafat B, Arafat T, Mallah E. An LC-MS/MS Method for Determination of Triple Drugs Combination of Valsartan, Amlodipine and Hydrochlorothiazide in Human Plasma for Bioequivalence Study. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666191111125807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Current guidelines for the treatment of hypertension recommend combination
therapy, which intends to control blood pressure and enhance cardiovascular protection.
Materials and Methods:
A sensitive, reliable and selective tandem mass spectrometry (LC-MS/MS)
method has been developed for simultaneous quantification of amlodipine (AML), valsartan (VAL)
and hydrochlorothiazide (HCTZ) in human plasma. The chromatographic system was equipped with
ACE 5 C8 (50 X 2.1 mm) column and utilized a mobile phase composition of 0.5 mM Ammonium
Chloride & 0.04% FA-Methanol (45:55% v/v). The method used three internal standards; AML-D4,
HCTZ-D2 C13 and VAL-D3 with 10% intra- and inter-day precision, and 6% bias for all the analytes.
Results:
The assay was found to be linear with R-2 > 0.998, and the limits of quantification for AML,
VAL and HCTZ were 0.2, 50.0 and 2.0 ng/mL, respectively. The analytes were found to be stable in
plasma samples over short and long term storage.
:
The developed method is rapid with a run time of 3.5 min and cost-effective since the simple sample
preparation method is adopted. This method was successfully applied for the bioequivalence study of
AML, VAL, and HCTZ in human plasma after administration of the fixed-dose combination tablet of
(10/160/25 mg). Pharmacokinetic parameters (Cmax and AUC0-72) for AML and (Cmax, AUC0-t, AUC0-∞)
for VAL and HCTZ were used for bioequivalence assessment. These were determined by noncompartmental
analysis of concentration data.
Conclusion:
The result showed 90% confidence intervals (obtained by ANOVA) which were within
the predefined ranges. As a consequence, this method can be successfully applied for measuring and
quantifying a large number of samples.
Collapse
Affiliation(s)
- Rana Said
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Basel Arafat
- Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Cambridge, United Kingdom
| | - Tawfiq Arafat
- Jordan Center for Pharmaceutical Research (JCPR), Amman, Jordan
| | - Eyad Mallah
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
6
|
Abstract
Introduction: Saliva is an ideal biofluid that can be collected in a noninvasive manner, enabling safe and frequent screening of various diseases. Recent studies have revealed that salivary metabolomics analysis has the potential to detect both oral and systemic cancers. Area covered: We reviewed the technical aspects, as well as applications, of salivary metabolomics for cancer detection. The topics include the effects of preconditioning and the method of sample collection, sample storage, processing, measurement, data analysis, and validation of the results. We also examined the rational relationship between salivary biomarkers and tumors distant from the oral cavity. A strategy to establish standard operating protocols for obtaining reproducible quantification data is also discussed Expert opinion: Salivary metabolomics reflects oral and systematic health status, which potently enables cancer detection. The sensitivity and specificity of each marker and their combinations have been well evaluated, but a validation study is required. Further, the standard operating protocol for each procedure should be established to obtain reproducible data before clinical usage.
Collapse
Affiliation(s)
- Masahiro Sugimoto
- Research and Development Centre for Minimally Invasive Therapies, Medical Research Institute, Tokyo Medical University , Tokyo, Japan.,Institute for Advanced Biosciences, Keio University , Yamagata, Japan
| |
Collapse
|
7
|
Al-Shehri SS, Duley JA, Bansal N. Xanthine oxidase-lactoperoxidase system and innate immunity: Biochemical actions and physiological roles. Redox Biol 2020; 34:101524. [PMID: 32334145 PMCID: PMC7183230 DOI: 10.1016/j.redox.2020.101524] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023] Open
Abstract
The innate immune system in mammals is the first-line defense that plays an important protective role against a wide spectrum of pathogens, especially during early life before the adaptive immune system develops. The enzymes xanthine oxidase (XO) and lactoperoxidase (LPO) are widely distributed in mammalian tissues and secretions, and have a variety of biological functions including in innate immunity, provoking much interest for both in vitro and in vivo applications. The enzymes are characterized by their generation of reactive oxygen and nitrogen species, including hydrogen peroxide, hypothiocyanite, nitric oxide, and peroxynitrite. XO is a major generator of hydrogen peroxide and superoxide that subsequently trigger a cascade of oxidative radical pathways, including those produced by LPO, which have bactericidal and bacteriostatic effects against pathogens including opportunistic bacteria. In addition to their role in host microbial defense, reactive oxygen and nitrogen species play important physiological roles as second messenger cell signaling molecules, including cellular proliferation, differentiation and gene expression. There are several indications that the reactive species generated by peroxide have positive effects on human health, particularly in neonates; however, some important in vivo aspects of this system remain obscure. The primary dependence of the system on hydrogen peroxide has led us to propose it is particularly relevant to neonate mammals during milk feeding.
Collapse
Affiliation(s)
- Saad S Al-Shehri
- College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia.
| | - John A Duley
- School of Pharmacy, The University of Queensland, St Lucia, 4102, Australia
| | - Nidhi Bansal
- School of Pharmacy, The University of Queensland, St Lucia, 4102, Australia; School of Agriculture and Food Science, The University of Queensland, St Lucia, 4102, Australia
| |
Collapse
|
8
|
Arthur KL, Wilson LS, Turner MA, Lindley MR, Reynolds JC, Creaser CS. The determination of salivary oxypurines before and after exercise by combined liquid chromatography-field asymmetric waveform ion mobility spectrometry-time-of-flight mass spectrometry. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s12127-018-0232-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Deep sequencing of the 16S ribosomal RNA of the neonatal oral microbiome: a comparison of breast-fed and formula-fed infants. Sci Rep 2016; 6:38309. [PMID: 27922070 PMCID: PMC5138828 DOI: 10.1038/srep38309] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/08/2016] [Indexed: 12/28/2022] Open
Abstract
In utero and upon delivery, neonates are exposed to a wide array of microorganisms from various sources, including maternal bacteria. Prior studies have proposed that the mode of feeding shapes the gut microbiota and, subsequently the child’s health. However, the effect of the mode of feeding and its influence on the development of the neonatal oral microbiota in early infancy has not yet been reported. The aim of this study was to compare the oral microbiota of healthy infants that were exclusively breast-fed or formula-fed using 16S-rRNA gene sequencing. We demonstrated that the oral bacterial communities were dominated by the phylum Firmicutes, in both groups. There was a higher prevalence of the phylum Bacteroidetes in the mouths of formula-fed infants than in breast-fed infants (p = 0.01), but in contrast Actinobacteria were more prevalent in breast-fed babies; Proteobacteria was more prevalent in saliva of breast-fed babies than in formula-fed neonates (p = 0.04). We also found evidence suggesting that the oral microbiota composition changed over time, particularly Streptococcus species, which had an increasing trend between 4–8 weeks in both groups. This study findings confirmed that the mode of feeding influences the development of oral microbiota, and this may have implications for long-term human health.
Collapse
|
10
|
Duley JA, Henman MG, Carpenter KH, Bamshad MJ, Marshall GA, Ooi CY, Wilcken B, Pinner JR. Elevated plasma dihydroorotate in Miller syndrome: Biochemical, diagnostic and clinical implications, and treatment with uridine. Mol Genet Metab 2016; 119:83-90. [PMID: 27370710 DOI: 10.1016/j.ymgme.2016.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Miller syndrome (post-axial acrofacial dysostosis) arises from gene mutations for the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH). Nonetheless, despite demonstrated loss of enzyme activity dihydroorotate (DHO) has not been shown to accumulate, but paradoxically urine orotate has been reported to be raised, confusing the metabolic diagnosis. METHODS We analysed plasma and urine from a 4-year-old male Miller syndrome patient. DHODH mutations were determined by PCR and Sanger sequencing. Analysis of DHO and orotic acid (OA) in urine, plasma and blood-spot cards was performed using liquid chromatography-tandem mass spectrometry. In vitro stability of DHO in distilled water and control urine was assessed for up to 60h. The patient received a 3-month trial of oral uridine for behavioural problems. RESULTS The patient had early liver complications that are atypical of Miller syndrome. DHODH genotyping demonstrated compound-heterozygosity for frameshift and missense mutations. DHO was grossly raised in urine and plasma, and was detectable in dried spots of blood and plasma. OA was raised in urine but undetectable in plasma. DHO did not spontaneously degrade to OA. Uridine therapy did not appear to resolve behavioural problems during treatment, but it lowered plasma DHO. CONCLUSION This case with grossly raised plasma DHO represents the first biochemical confirmation of functional DHODH deficiency. DHO was also easily detectable in dried plasma and blood spots. We concluded that DHO oxidation to OA must occur enzymatically during renal secretion. This case resolved the biochemical conundrum in previous reports of Miller syndrome patients, and opened the possibility of rapid biochemical screening.
Collapse
Affiliation(s)
- John A Duley
- School of Pharmacy and Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Michael G Henman
- Department of Pathology, Mater Health Services, Brisbane, QLD 4101, Australia.
| | - Kevin H Carpenter
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Disciplines of Genetic Medicine & Child and Adolescent Health, The University of Sydney, NSW 2145, Australia.
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Division of Genetic Medicine at Seattle Children's Hospital, Seattle, WA 98195, USA.
| | - George A Marshall
- Department of Pathology, Mater Health Services, Brisbane, QLD 4101, Australia.
| | - Chee Y Ooi
- School of Women's and Children's Health, University of NSW, Sydney Children's Hospital, Sydney, NSW 2031, Australia; School of Medicine, University of NSW, Sydney Children's Hospital, Sydney, NSW, 2031, Australia.
| | - Bridget Wilcken
- Department of Medical Genetics, Sydney Children's Hospital, University of Sydney, NSW 2031, Australia.
| | - Jason R Pinner
- Department of Medical Genomics, Royal Prince Alfred Hospital, The University of Sydney, NSW 2050, Australia.
| |
Collapse
|
11
|
Al-Shehri SS, Knox CL, Liley HG, Cowley DM, Wright JR, Henman MG, Hewavitharana AK, Charles BG, Shaw PN, Sweeney EL, Duley JA. Breastmilk-Saliva Interactions Boost Innate Immunity by Regulating the Oral Microbiome in Early Infancy. PLoS One 2015; 10:e0135047. [PMID: 26325665 PMCID: PMC4556682 DOI: 10.1371/journal.pone.0135047] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/16/2015] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Xanthine oxidase (XO) is distributed in mammals largely in the liver and small intestine, but also is highly active in milk where it generates hydrogen peroxide (H2O2). Adult human saliva is low in hypoxanthine and xanthine, the substrates of XO, and high in the lactoperoxidase substrate thiocyanate, but saliva of neonates has not been examined. RESULTS Median concentrations of hypoxanthine and xanthine in neonatal saliva (27 and 19 μM respectively) were ten-fold higher than in adult saliva (2.1 and 1.7 μM). Fresh breastmilk contained 27.3 ± 12.2 μM H2O2 but mixing baby saliva with breastmilk additionally generated >40 μM H2O2, sufficient to inhibit growth of the opportunistic pathogens Staphylococcus aureus and Salmonella spp. Oral peroxidase activity in neonatal saliva was variable but low (median 7 U/L, range 2-449) compared to adults (620 U/L, 48-1348), while peroxidase substrate thiocyanate in neonatal saliva was surprisingly high. Baby but not adult saliva also contained nucleosides and nucleobases that encouraged growth of the commensal bacteria Lactobacillus, but inhibited opportunistic pathogens; these nucleosides/bases may also promote growth of immature gut cells. Transition from neonatal to adult saliva pattern occurred during the weaning period. A survey of saliva from domesticated mammals revealed wide variation in nucleoside/base patterns. DISCUSSION AND CONCLUSION During breast-feeding, baby saliva reacts with breastmilk to produce reactive oxygen species, while simultaneously providing growth-promoting nucleotide precursors. Milk thus plays more than a simply nutritional role in mammals, interacting with infant saliva to produce a potent combination of stimulatory and inhibitory metabolites that regulate early oral-and hence gut-microbiota. Consequently, milk-saliva mixing appears to represent unique biochemical synergism which boosts early innate immunity.
Collapse
Affiliation(s)
- Saad S Al-Shehri
- School of Pharmacy, The University of Queensland, Brisbane, Australia; College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Christine L Knox
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Helen G Liley
- Mater Research Institute, Mater Health Services, Brisbane, Australia
| | - David M Cowley
- Mater Research Institute, Mater Health Services, Brisbane, Australia
| | - John R Wright
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Michael G Henman
- Mater Research Institute, Mater Health Services, Brisbane, Australia
| | | | - Bruce G Charles
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Paul N Shaw
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Emma L Sweeney
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - John A Duley
- School of Pharmacy, The University of Queensland, Brisbane, Australia; Mater Research Institute, Mater Health Services, Brisbane, Australia
| |
Collapse
|
12
|
Caetano Júnior PC, Strixino JF, Raniero L. Analysis of saliva by Fourier transform infrared spectroscopy for diagnosis of physiological stress in athletes. ACTA ACUST UNITED AC 2015. [DOI: 10.1590/2446-4740.0664] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Iyengar A, Maron JL. Detecting infection in neonates: promises and challenges of a salivary approach. Clin Ther 2015; 37:523-8. [PMID: 25754877 DOI: 10.1016/j.clinthera.2015.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/16/2022]
Abstract
Premature newborns present unique challenges for the caregiver. Their clinical fragility and immature immune system places them at increased risk for bacterial and viral infections. Current clinical standard of care mandates invasive phlebotomy to assess an infant for an infection. However, serial blood draws can lead to blood transfusions and the infliction of noxious stimuli to this vulnerable population. Salivary screening for common neonatal morbidities, such as infections, could vastly improve the care for these infants and positively affect their long-term clinical outcomes. Recent technological advancements have improved our ability to detect thousands of proteins and/or microbes from a single salivary sample, making noninvasive assessment in neonates a possibility. This article reviews the clinical applications and challenges associated with integrating salivary analysis for infectious surveillance into the neonatal population.
Collapse
Affiliation(s)
| | - Jill L Maron
- Mother Infant Research Institute at Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
14
|
Challenges of analyzing different classes of metabolites by a single analytical method. Bioanalysis 2014; 6:3393-416. [DOI: 10.4155/bio.14.236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Complex biological samples include thousands of metabolites that range widely in both physiochemical properties and concentration. Simultaneously analyzing metabolites with different properties using a single analytical method is very challenging. The analytical process for metabolites comprises multiple steps including sampling, quenching, sample preparation, separation and detection. Each step can have a significant effect on the reliability and precision of ultimate analytic results. The aim of review is a discussion of considerations and challenges for the simultaneous analysis of metabolites using LC– and GC–MS systems. The review discusses available methodology for each analytical step, and presents the limitations and advantages of each method for the large-scale targeted metabolomics analysis of human and animal biological samples.
Collapse
|