1
|
Li X, Huang H, Li Y, Feng Y, Wang J, Luo S, Chen Y, Zhang Y, Yan G, Nan L. Gualou Guizhi Granule inhibits microglia-mediated neuroinflammation to protect against neuronal apoptosis in vitro and in vivo. Front Immunol 2025; 15:1527986. [PMID: 39850889 PMCID: PMC11754197 DOI: 10.3389/fimmu.2024.1527986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Object Neuroinflammation mediated by microglia has emerged as a critical factor in ischemic stroke and neuronal damage. Gualou Guizhi Granule (GLGZG) has been shown to suppress inflammation in lipopolysaccharide (LPS)-activated microglia, though the underlying mechanisms and its protective effects against neuronal apoptosis remain unclear. This study aims to investigate how GLGZG regulates the Notch signaling pathway in microglia to reduce neuroinflammation and protect neurons from apoptosis. Method Using in vitro and in vivo models, we explored GLGZG's impact on microglia activation, pro-inflammatory cytokines, and neuronal apoptosis. Microglial cells were activated with LPS, and primary neuronal cells were exposed to LPS-activated microglia to simulate neuroinflammation. Additionally, we investigated the effects of GLGZG in combination with N-[N-[3,5-difluorophenacetyl]-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) or siRNA-Notch1 to further elucidate the involvement of the Notch signaling pathway. Results GLGZG significantly inhibited microglia activation and reduced neuroinflammation by de-creasing the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α in both in vitro and in vivo models. GLGZG also effectively protected against microglia-induced neuronal apoptosis. Mechanistically, GLGZG down-regulated key components of the Notch signaling pathway, in-cluding Notch-1, NICD, RBPSUH, and Hes-1, in activated microglia. Combined treatment with GLGZG and DAPT or siRNA-Notch1 demonstrated enhanced inhibition of microglial activation and neuroinflammation. Conclusion Our findings reveal that GLGZG exerts its protective effects through the suppression of the Notch signaling pathway, thereby inhibiting microglia activation, reducing neuroinflammation, and safeguarding neurons from neuroinflammation-induced damage, offering potential as a therapeutic agent for ischemic stroke-induced neuroinflammation.
Collapse
Affiliation(s)
- Xuezhen Li
- Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Han Huang
- Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yanan Li
- Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi Feng
- Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jinxuan Wang
- Pharmacy College, Fujian Medical University, Fuzhou, Fujian, China
| | - Shuping Luo
- Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yaping Chen
- Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuqin Zhang
- Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guohong Yan
- Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Lihong Nan
- Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
2
|
Shu L, Liu S, Zhang F, Qiu H, Zhang S, Qian J, Xu Y, Deng Y, Wang Y, Li Y. Rapid identification of various chemical components in Cinnamomi ramulus by UPLC-Q-Orbitrap-MS. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5069. [PMID: 38989730 DOI: 10.1002/jms.5069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Cinnamomi ramulus (CR) is a common Chinese herbal medicine with a long history. It is often used to treat exogenous wind-cold diseases in clinic, but its chemical compositions remain to be studied. In this study, CR was extracted with 75% ethanol, and UPLC-Q-Orbitrap-MS combined with data post-processing method was used to identify the chemical components in the extract. Through this technology, the components in CR can be separated and accurately identified. A total of 61 compounds were identified, including 14 simple phenylpropanoids, 3 coumarins, 5 lignans, 14 flavonoids, 10 benzoic acids, 8 organic acids, and 7 others. This study confirmed the existence of these compounds in CR and speculated the cleavage pathways of each compound, which enriched the mass spectrometry data and cleavage rules. This study can provide a reference for CR and other research.
Collapse
Affiliation(s)
- Lexin Shu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sitong Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangfang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huixin Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shumin Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Qian
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanyan Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanru Deng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuming Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Tang X, Cui Y, Feng B. The chemical constituents and metabolite profiles of Huangqin decoction in normal and ulcerative colitis rats by UHPLC-Q-TOF/MS analysis. J Pharm Biomed Anal 2024; 237:115763. [PMID: 37813075 DOI: 10.1016/j.jpba.2023.115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Ulcerative colitis (UC) is a recurrent and palliative inflammatory bowel disease (IBD) begins in distal colon and spreads proximally to the entire colon, characterized by mucosal inflammation which reduces patients' quality of life and increases the risk of bowel cancer. Huangqin decoction (HQD), a classical Chinese formula recorded in Treatise on Febrile Diseases has been widely used for the treatment of UC. Studies found that HQD has good curative effect on UC. However, the chemical constituents and metabolites of it has not been fully elucidated due to lack of in vitro and in vivo studies, which also limits the pathogenesis study and clinical application of UC. In this study, a rapid and high-throughput UHPLC-Q-TOF/MS method was established and applied to analyse the chemical constituents and metabolites of HQD. Besides, we established an UC rat model and compared the differences of metabolite profiles between normal and UC rats both in plasma and urine. A total of 139 constituents were chemically defined or tentatively identified, including 98 flavonoids, 10 triterpene saponins, 10 monoterpene glycosides, 4 phenols, 5 phenylethanoid glycosides and 12 other types of compounds. A total of 175 and 147 HQD-related xenobiotics were detected in normal and UC rats, respectively. The main metabolic pathways of HQD were methylation, hydrolysis, hydroxylation, glucuronidation and sulfation. The holistic metabolic profiles of HQD revealed that normal and UC rats had certain differences in drug absorption and metabolism. This study can provide references for the follow-up study of HQD, and provide essential data for the further study of the relationships between chemical constituents and pharmacological activities of HQD.
Collapse
Affiliation(s)
- Xinmiao Tang
- School of Pharmacy, Jilin Medical University, Jilin 132013, PR China; School of Pharmacy, Yanbian University, Yanji 133002, PR China
| | - Yue Cui
- School of Pharmacy, Jilin Medical University, Jilin 132013, PR China.
| | - Bo Feng
- School of Pharmacy, Jilin Medical University, Jilin 132013, PR China.
| |
Collapse
|
4
|
Demerdash MS, Attia RT, El-Sherei MM, Aziz WM, Fahmy SA, Issa MY. Unveiling the functional components and anti-Alzheimer's activity of Koelreuteria elegans (Seem.) A.C. Sm. using UHPLC-MS/MS and molecular networking. MATERIALS ADVANCES 2024; 5:3432-3449. [DOI: 10.1039/d4ma00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The metabolomic profiles of Koelreuteria elegans leaf and fruit methanol extracts using UHPLC-MS/MS analysis aided by molecular networking were explored. Both extracts reduced all the examined markers of inflammation and neurodegeneration in the injured streptozotocin (STZ)-induced AD mice.
Collapse
Affiliation(s)
- Mohamed S. Demerdash
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Reem T. Attia
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11865, Egypt
| | - Moshera M. El-Sherei
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Wafaa M. Aziz
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, AL109AB, Cairo 11835, Egypt
| | - Marwa Y. Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
5
|
Xie YY, Luo JY, Hu H, Pan J, Jiang M, Wang SM. Chemical profiling and mechanistic studies of Zhi-Shang-Feng granules against influenza virus by high-performance liquid chromatography coupled with Q exactive focus hybrid quadrupole orbitrap high-resolution mass spectrometry in combination with network pharmacology analysis. J Sep Sci 2023; 46:e2200839. [PMID: 37574722 DOI: 10.1002/jssc.202200839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Zhi-Shang-Feng Granules are used in the clinical treatment of influenza to relieve headaches, chills and fever, bronchitis, nasal congestion, neuralgia and other symptoms. To decipher the components responsible for therapeutic effects of Zhi-Shang-Feng g ranules against influenza virus, an analytical method based on high-performance liquid chromatography coupled with Q exactive focus hybrid quadrupole orbitrap high resolution mass spectrometry was developed and the chemical profile of Zhi-Shang-Feng granules was characterized. Then, the identified components were used to conduct network pharmacological analysis and determine the potential mechanism of Zhi-Shang-Feng Granules. As a result, 177 compounds were putatively identified through comprehensive analysis by liquid chromatography coupled with high-resolution mass spectrometry, of which 23 compounds were unambiguously confirmed with reference standards. Components in Zhi-Shang-Feng Granules were found to specifically act on different enzymes, G-protein-coupled receptors, ion channels and transporters in the immune, endocrine, nervous, and circulatory systems. The potential mechanism was related to several biological processes, including cell growth and death, pattern recognition receptor signalling, signalling by interleukins, and lipid metabolism. The combination of chemical profile characterization and network construction provided useful insight into the overall chemical composition of Zhi-Shang-Feng granules and revealed their potential anti-infection, anti-inflammatory and immunoregulatory mechanisms against influenza virus infected disease.
Collapse
Affiliation(s)
- Yuan-Yuan Xie
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
- Guangdong Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Guangzhou, P. R. China
- Key Laboratory of Digitalized Quality Evaluation Technology of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Guangzhou, P. R. China
| | - Jia-Yi Luo
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
- Guangdong Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Guangzhou, P. R. China
- Key Laboratory of Digitalized Quality Evaluation Technology of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Guangzhou, P. R. China
| | - Hong Hu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
- Guangdong Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Guangzhou, P. R. China
- Key Laboratory of Digitalized Quality Evaluation Technology of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Guangzhou, P. R. China
| | - Juan Pan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
- Guangdong Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Guangzhou, P. R. China
- Key Laboratory of Digitalized Quality Evaluation Technology of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Guangzhou, P. R. China
| | - Meng Jiang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
- Guangdong Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Guangzhou, P. R. China
- Key Laboratory of Digitalized Quality Evaluation Technology of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Guangzhou, P. R. China
| | - Shu-Mei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
- Guangdong Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Guangzhou, P. R. China
- Key Laboratory of Digitalized Quality Evaluation Technology of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Guangzhou, P. R. China
| |
Collapse
|
6
|
Zhang L, Qin S, Tang S, E S, Li K, Li J, Cai W, Sun L, Li H. Qualitative Analysis of Multiple Phytochemical Compounds in Tojapride Based on UHPLC Q-Exactive Orbitrap Mass Spectrometry. Molecules 2022; 27:6639. [PMID: 36235176 PMCID: PMC9571116 DOI: 10.3390/molecules27196639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Tojapride is composed of Caulis Perillae, Rhizoma Cyperi, Radix Glycyrrhizae, Citrus aurantium L., Coptis chinensis Franch, Pericarpium Citri Reticulatae, Reynoutria japonica Houtt, Tetradium ruticarpum, and Cleistocactus sepium. It has the effects of inhibiting gastric acid and relieving pain. It is clinically used for treating gastroesophageal reflux disease. To further study the pharmacodynamic properties of Tojapride, the systematic characterization of the chemical constituents in Tojapride was investigated using ultra-performance liquid chromatography with Q-Exactive Orbitrap mass spectrometry combined with parallel reaction monitoring for the first time. Eventually, a total of 222 compounds, including flavonoids, alkaloids, and glycyrrhizic acid derivatives, were identified based on the chromatographic retention times, MS/MS2 information, and bibliography data; a total of 218 of these were reported for the first time as being present in Tojapride. This newly developed approach provides a powerful tool for extending our understanding of chemical constituents of Tojapride, which can be further extended to other TCMP composition research.
Collapse
Affiliation(s)
- Liying Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Shihan Qin
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Sunv Tang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shuai E
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Jing Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Lei Sun
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Hui Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|
7
|
LC–ESI–MS/MS analysis, biological effects of phenolic compounds extracted by microwave method from Algerian Zizyphus lotus fruits. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Identification of Chemical Components of Qi-Fu-Yin and Its Prototype Components and Metabolites in Rat Plasma and Cerebrospinal Fluid via UPLC-Q-TOF-MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1995766. [PMID: 34992662 PMCID: PMC8727097 DOI: 10.1155/2021/1995766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
Qi-Fu-Yin, a traditional Chinese medicine formula, has been used to treat Alzheimer's disease (AD, a neurodegenerative disorder) in clinical setting. In this study, the chemical components of Qi-Fu-Yin and its prototype components and metabolites in rat plasma and cerebrospinal fluid, after oral administration, were preliminarily characterized via ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS). A total of 180 compounds, including saponins, flavonoids, organic acids, sucrose esters, oligosaccharide esters, phthalides, phenylethanoid glycosides, alkaloids, xanthones, terpene lactones, ionones, and iridoid glycoside, were tentatively characterized. For the first time, 51 prototypical components and 26 metabolites, including saponins, phthalides, flavonoids, sucrose esters, organic acids, alkaloids, ionones, terpene lactones, iridoid glycoside, and their derivatives, have been tentatively identified in the plasma. Furthermore, 10 prototypical components (including butylidenephthalide, butylphthalide, 20(S)-ginsenoside Rh1, 20(R)-ginsenoside Rh1, and zingibroside R1) and 6 metabolites were preliminarily characterized in cerebrospinal fluid. These results were beneficial to the discovery of the active components of Qi-Fu-Yin anti-AD.
Collapse
|
9
|
Li J, Li W, Deng Z, Li H, Yu Y, Zhang B. Comparison of free, conjugated, and insoluble-bound phenolics and their antioxidant activities in oven-drying and freeze-drying bamboo (Phyllostachys edulis) shoot tips. J Food Sci 2021; 86:4223-4243. [PMID: 34383327 DOI: 10.1111/1750-3841.15881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/28/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Bamboo(Phyllostachys edulis) shoot was reported to be rich in phenolics. In the present study, free phenolics, conjugated phenolics, and insoluble-bound phenolics of oven-drying and freeze-drying bamboo shoot tips were extracted and separated, of which total phenolic content (TPC), total flavonoid content (TFC), and their antioxidant activities were determined. Phenolics of different binding forms were qualitatively analyzed using HPLC-ESI-QqQ-MS. A total of 22, 41, and 28 compounds were confirmed or tentatively identified in free, conjugated, and insoluble-bound phenolic extraction, respectively. The majority of the identified compounds were organic acids and phenolic acids. Oven-drying samples exhibited higher TPC (10.53-24.92 mg GAE/100 g DW) and TFC (5.80-33.27 mg CE/100 g DW) values, and stronger antioxidant activities (DPPH, ABTS, and FRAP) than freeze-drying (TPC: 1.67-15.28 mg GAE/100 g DW, TFC: 1.43-29.05 mg CE/100 g DW). Insoluble-bound phenolics were the major contributor to the total antioxidant activity. The present study investigated the phenolics composition and antioxidant activities of different binding forms in bamboo shoot tip comprehensively, and provided available information for their high-value deep-processing.
Collapse
Affiliation(s)
- Jiaqiao Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China.,School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenting Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Gualou Guizhi Granule Suppresses LPS-Induced Inflammatory Response of Microglia and Protects against Microglia-Mediated Neurotoxicity in HT-22 via Akt/NF- κB Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9957459. [PMID: 34335849 PMCID: PMC8321734 DOI: 10.1155/2021/9957459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
Neuroinflammation plays a crucial part in the commencement and advancement of ischemic stroke. Gualou Guizhi granule (GLGZG) is known to well exhibit neuroprotective effect, but it is not known whether GLGZG can regulate the inflammatory process at the cellular level in BV2 microglia cells and protect against microglia-mediated neurotoxicity in neurons. Herein, we aimed to investigate the anti-inflammatory effects of GLGZG on BV2 microglia cells and protection against microglia-mediated neurotoxicity in neurons. Methods. The cell model of neuroinflammation was constructed by lipopolysaccharide (LPS) to observe the effect of GLGZG in the presence or absence of GLGZG. The production of nitric oxide (NO), inflammatory mediators, was detected. Moreover, potential mechanisms associated with the anti-inflammatory effect, such as inhibition of microglial activation and nuclear factor kappa B (NF-κB), were also investigated. In addition, to prove whether GLGZG protects against microglia-mediated neurotoxicity, neuronal HT-22 cells were cultured in the conditioned medium. And cell survivability and neuronal apoptosis of HT-22 were evaluated. Results. It was found that a main regulator of inflammation, NO, is suppressed by GLGZG in BV2 microglial cells. Moreover, GLGZG dose dependently decreased the mRNA and protein levels of inducible NO synthase (iNOS) in LPS-stimulated BV2 cells. Additionally, GLGZG inhibited the expression and secretion of proinflammatory cytokines in BV2 microglial cells. Also, GLGZG inhibited LPS-activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in BV2 microglial cells at the intracellular level. GLGZG significantly affected Akt phosphorylation: phosphorylated forms of Akt increased. To check whether GLGZG protects against microglia-mediated neurotoxicity, neuronal HT-22 cells were incubated in the conditioned medium. GLGZG showed a neuroprotective effect by promoting cell survivability and suppressing neuronal apoptosis. Conclusions. GLGZG exerted its potential effects on suppressing inflammatory responses in LPS-induced BV2 cells by regulating NF-κB and Akt pathways. In addition, GLGZG could protect against microglia-mediated neurotoxicity in HT-22.
Collapse
|
11
|
Zhang Y, Wang H, Li H, Nan L, Xu W, Lin Y, Chu K. Gualou Guizhi Granule Protects against OGD/R-Induced Injury by Inhibiting Cell Pyroptosis via the PI3K/Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6613572. [PMID: 33747105 PMCID: PMC7960020 DOI: 10.1155/2021/6613572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/05/2021] [Accepted: 02/28/2021] [Indexed: 01/30/2023]
Abstract
Pyroptosis is a proinflammatory form of regulated cell death that plays an important role in ischemic stroke. Gualou Guizhi granule (GLGZG) is a classic prescription that has been shown to exert neuroprotective effects against cerebral ischemia reperfusion injury. In the present study, we examined the involvement of pyroptosis and its associated mechanism in protecting nerve function. Methods. Primary neurons were exposed to oxygen-glucose deprivation and reperfusion (OGD/R) conditions in the presence or absence of GLGZG. Cellular viability was measured by the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT) assay. The number of apoptoic cells was detected by NeuN and NSE protein expression. The expression levels of the pyroptosis markers, namely, NOD-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, interleukin-18 (IL-18), and IL-1β were determined by quantitative real-time PCR analysis, western blot, and ELISA analyses as appropriate. Moreover, the expression levels of the PI3K/Akt pathway key proteins were determined by quantitative real-time PCR analysis and western blot assays. To determine the PI3K/Akt pathway involvement in GLGZG-mediated neuroprotection, the PI3K inhibitor LY294002 (LY, 10 μM) was added. The expression levels of NeuN, Akt, and p-Akt were evaluated. Results. It was found that GLGZG could inhibit OGD/R-induced cell apoptosis, increase neuronal cell viability, decrease the production of IL-18 and IL-1β, and downregulate the expression levels of pyroptosis markers (NLRP3, ASC, and caspase-1). Furthermore, GLGZG could modulate the PI3K/Akt signaling pathway. Pharmacological inhibition of the PI3K pathway not only abrogated the effects of GLGZG on Akt but also neutralized its prosurvival and antipyroptotic actions. Conclusions. The findings indicated that GLGZG pretreatment effectively reduced OGD/R-induced injury by inhibiting cell pyroptosis and activating the PI3K/Akt pathway. These data provide important evidence for the therapeutic applications of this regimen in ischemic stroke.
Collapse
Affiliation(s)
- Yuqin Zhang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- State Key Laboratory of Chinese Pharmacies, Fujian Provincial Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hongyun Wang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- State Key Laboratory of Chinese Pharmacies, Fujian Provincial Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Huang Li
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- State Key Laboratory of Chinese Pharmacies, Fujian Provincial Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Lihong Nan
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- State Key Laboratory of Chinese Pharmacies, Fujian Provincial Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- State Key Laboratory of Chinese Pharmacies, Fujian Provincial Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yu Lin
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- State Key Laboratory of Chinese Pharmacies, Fujian Provincial Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Kedan Chu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- State Key Laboratory of Chinese Pharmacies, Fujian Provincial Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Fast dereplication of xanthine oxidase-inhibiting compounds in alfalfa using comparative metabolomics. Food Res Int 2021; 141:110170. [DOI: 10.1016/j.foodres.2021.110170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
|
13
|
Recovery and analysis of phenolic extracts from Oudemansiella radicata using ultrasonic-assisted extraction. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00464-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Saien J, Marzban V, Karamian R. Saponin-rich extract from Glycyrrhiza glabra plant, a safe matter for low interfacial tension oil/water extraction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-019-01844-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Cui Y, Yang H, Jing J, Liu T, Wang R, Di F, Han F, Zhao Y, Yu Z. Rapid characterization of chemical constituents of Gansuibanxia decoction by UHPLC-FT-ICR-MS analysis. J Pharm Biomed Anal 2019; 179:113029. [PMID: 31835125 DOI: 10.1016/j.jpba.2019.113029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Gansuibanxia decoction (GSBXD) is one of the most famous traditional Chinese medicine (TCM). It is a herbal formula used for treating hydrops, such as cancerous ascites, pleural effusion, pericardial effusion, etc. However, the chemical constituents of GSBXD were still unclear. In this study, an UHPLC-FT-ICR-MS method was established and applied to the separation and characterization of the chemical constituents of GSBXD. A total of 62 components were chemically defined or tentatively identified, including diterpenoids, triterpenoids, flavonoids, monoterpene glycosides and alkaloids. The results is meaningful for a better understanding of the material basis of GSBXD and can be the basis for its further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Yue Cui
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Huanhuan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jixue Jing
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ting Liu
- School of Pharmacy, Shenyang Medical College, No. 146, North Huanghe Street, Huanggu District, Shenyang 110034, China
| | - Roujia Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Fuyu Di
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yunli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Zhiguo Yu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
16
|
Xu L, Li M, Zhou H, Zhang B, Zhang Z, Han N, Wu T. Rapid characterization of the chemical constituents and rat metabolites of the Wen‐Jing decoction by ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry. J Sep Sci 2019; 42:1174-1193. [DOI: 10.1002/jssc.201801020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Liu Xu
- Department of PharmacognosySchool of PharmacyFudan University Shanghai P. R. China
- Innovation Center of Chinese MedicineChina State Institute of Pharmaceutical Industry Shanghai P. R. China
| | - Moying Li
- Innovation Center of Chinese MedicineChina State Institute of Pharmaceutical Industry Shanghai P. R. China
| | - Haifeng Zhou
- Innovation Center of Chinese MedicineChina State Institute of Pharmaceutical Industry Shanghai P. R. China
| | - Bei Zhang
- Innovation Center of Chinese MedicineChina State Institute of Pharmaceutical Industry Shanghai P. R. China
| | | | - Nina Han
- Beijing Tcmages Pharmaceutical Co., Ltd
| | - Tong Wu
- Innovation Center of Chinese MedicineChina State Institute of Pharmaceutical Industry Shanghai P. R. China
| |
Collapse
|
17
|
Fan YC, Yue SJ, Guo ZL, Xin LT, Wang CY, Zhao DL, Guan HS, Wang CY. Phytochemical Composition, Hepatoprotective, and Antioxidant Activities of Phyllodium pulchellum (L.) Desv. Molecules 2018; 23:molecules23061361. [PMID: 29874868 PMCID: PMC6100508 DOI: 10.3390/molecules23061361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 01/18/2023] Open
Abstract
Phyllodiumpulchellum has been traditionally used as a medicinal herb because of its health-promoting effects, such as its hepatoprotective and antioxidant activities. In the present study, the petroleum ether fraction, ethyl acetate fraction, n-butanol fraction, and aqueous fraction were successively obtained from the ethanol extract of P. pulchellum. Two fractions, ethyl acetate fraction and n-butanol fraction, were found to display hepatoprotective and antioxidant activities. Further chemical investigation of the active fractions led to the isolation of its main constituents, including 11 flavonoids (1⁻11) and 8 indole alkaloids (12⁻19). There were 9 flavonoids (1⁻9) that were obtained from the ethyl acetate fraction, and 2 flavonoids (10 and 11) and 8 alkaloids (12⁻19) from the n-butanol fraction. Compounds 1⁻11 and 16⁻19 were isolated for the first time from P. pulchellum, and 1, 2, 8, 11, and 18 were obtained from the genus Phyllodium initially. Subsequently, the isolated compounds were evaluated for their in vitro hepatoprotective effects on the human normal hepatocyte cell line L-O2 injured by d-galactosamine and radical scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH). The flavonoids (-)-epigallocatechin (5) and (-)-epicatechin (6) exhibited prominent hepatoprotective activities with higher cell viability values (65.53% and 62.40% at 10 μM·mL-1, respectively) than the positive control, silymarin (61.85% at 10 μM·mL-1). In addition, compared with the positive control of vitamin C (IC50: 5.14 μg·mL-1), (-)-gallocatechin (3) and (-)-epigallocatechin (5) exhibited stronger antioxidant activities with IC50 values of 3.80 and 3.97 μg·mL-1, respectively. Furthermore, the total flavonoids from P. pulchellum were characterized using a high-performance liquid chromatography-linear ion trap quadrupole-Orbitrap-mass spectrometry (HPLC-LTQ-Orbitrap-MS). In total, 34 flavonoids were tentatively identified, which had not been previously reported from P. pulchellum. In addition, we performed a semi-quantitative analysis of the isolated flavonoids. The contents of compounds 1⁻11 were 3.88, 17.73, 140.35, 41.93, 27.80, 4.34, 0.01, 0.20, 9.67, 795.85, and 5.23 μg·g-1, respectively. In conclusion, this study revealed that the flavonoids that were isolated from P. pulchellum showed hepatoprotective and antioxidant activities, indicating that, besides alkaloids, the flavonoids should be the potential pharmacodynamic ingredients that are responsible for the hepatoprotective and antioxidant activities of P. pulchellum.
Collapse
Affiliation(s)
- Ya-Chu Fan
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Shi-Jun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Zhong-Long Guo
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Lan-Ting Xin
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Chao-Yi Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Dong-Lin Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Hua-Shi Guan
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
18
|
Gualou Guizhi Granule Protects Against Oxidative Injury by Activating Nrf2/ARE Pathway in Rats and PC12 Cells. Neurochem Res 2018; 43:1003-1009. [PMID: 29564698 DOI: 10.1007/s11064-018-2507-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 01/29/2023]
Abstract
Stroke involves numerous pathophysiological processes and oxidative stress is considered as a main cellular event in its pathogenesis. The nuclear factor erythroid-2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway plays a key role in inducing phase II detoxifying enzymes and antioxidant proteins and is now considered as a interesting therapeutic target for the treatment of stroke. The objective of this study is to investigate the protective effect of Gualou Guizhi granule (GLGZG) against oxidative stress and explore the protective mechanism of the Nrf2/ARE pathway. In vivo, administration of GLGZG in a rat model of focal cerebral ischemia significantly suppressed oxidative injury by increasing the activity of superoxide dismutase and glutathione level and decreasing reactive oxygen species and malondialdehyde levels. Western blot analysis showed that GLGZG induced nuclear translocation of Nrf2, and combined with real-time PCR results, which indicated that GLGZG up-regulated the Nrf2/ARE pathway. In addition, in cultured PC12 cells, GLGZG protected against H2O2 induced oxidative injury and activated the Nrf2/ARE pathway. All the results demonstrated that GLGZG in the management of cerebral ischemia and H2O2 induced oxidative injury may be associated with activation of Nrf2/ARE signaling pathway.
Collapse
|
19
|
Han J, Zhang JZ, Zhong ZF, Li ZF, Pang WS, Hu J, Chen LD. Gualou Guizhi decoction promotes neurological functional recovery and neurogenesis following focal cerebral ischemia/reperfusion. Neural Regen Res 2018; 13:1408-1416. [PMID: 30106053 PMCID: PMC6108212 DOI: 10.4103/1673-5374.235296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recovery following stroke involves neurogenesis and axonal remodeling within the ischemic brain. Gualou Guizhi decoction (GLGZD) is a Chinese traditional medicine used for the treatment of post-stroke limb spasm. GLGZD has been reported to have neuroprotective effects in cerebral ischemic injury. However, the effects of GLGZD on neurogenesis and axonal remodeling following cerebral ischemia remain unknown. In this study, a rat model of focal cerebral ischemia/reperfusion was established by middle cerebral artery occlusion. Neurological function was assessed immediately after reperfusion using Longa's 5-point scoring system. The rats were randomly divided into vehicle and GLGZD groups. Rats in the sham group were given sham operation. The rats in the GLGZD group were intragastrically administered GLGZD, once daily, for 14 consecutive days. The rats in the vehicle and sham groups were intragastrically administered distilled water. Modified neurological severity score test, balance beam test and foot fault test were used to assess motor functional changes. Nissl staining was performed to evaluate histopathological changes in the brain. Immunofluorescence staining was used to examine cell proliferation using the marker 5-bromo-2′-deoxyuridine (BrdU) as well as expression of the neural precursor marker doublecortin (DCX), the astrocyte marker glial fibrillary acidic protein (GFAP) and the axon regeneration marker growth associated protein-43 (GAP-43). GLGZD substantially mitigated pathological injury, increased the number of BrdU, DCX and GFAP-immunoreactive cells in the subventricular zone of the ischemic hemisphere, increased GAP-43 expression in the cortical peri-infarct region, and improved motor function. These findings suggest that GLGZD promotes neurological functional recovery by increasing cell proliferation, enhancing axonal regeneration, and increasing the numbers of neuronal precursors and astrocytes in the peri-infarct area.
Collapse
Affiliation(s)
- Jing Han
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Ji-Zhou Zhang
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Zhi-Feng Zhong
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Zuan-Fang Li
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Wen-Sheng Pang
- Fujian University of Traditional Chinese Medicine; The Second People's Hospital of Fujian Province, Fuzhou, Fujian Province, China
| | - Juan Hu
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine; Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Li-Dian Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| |
Collapse
|
20
|
Chemical profiling and antioxidant evaluation of Yangxinshi Tablet by HPLC–ESI-Q-TOF-MS/MS combined with DPPH assay. J Chromatogr B Analyt Technol Biomed Life Sci 2017. [DOI: 10.1016/j.jchromb.2017.06.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Shi X, Zhu H, Zhang Y, Zhou M, Tang D, Zhang H. XuefuZhuyu decoction protected cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28629357 PMCID: PMC5477241 DOI: 10.1186/s12906-017-1822-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background XuefuZhuyu decoction (XFZY) is a well-known traditional Chinese herbal medicine for the treatment of various cardiovascular diseases, such as unstable angina pectoris and myocardial ischemia-reperfusion injury. However, the mechanism by which XFZY contributes to the amelioration of cardiac injury remains unclear. Methods H9C2 cells were cultured under the hypoxic condition for 10 h and reoxygenated for 2 h. In the presence of various concentrations of XFZY for 12 h, the cell viability was measured by MTT assay. The protective effect of XFZY in hypoxia/reoxygenation (H/R) cell model was confirmed by measuring the amount of LDH released into the extracellular fluid. Cell apoptosis was measured by western blotting. The autophagy level of H9C2 cells and the correlative pathway were determined by transmission electron microscopy, Cyto-ID® Autophagy Detection Kit, and western blotting. Results In this study, we investigated the effects of XFZY on H/R induced cardiac injury. The results showed that treatment with XFZY significantly inhibited autophagy induced by H/R, with decreased formation of autophagosomes as well as the expression of LC3-II/LC3-I ratio and Beclin 1 after H/R. Importantly, inhibition of autophagy by XFZY resulted in enhanced cell viability and decreased apoptosis. XFZY also inhibited the activation of AMPK and upregulated the phosphorylation of mammalian target of Rapamycin (mTOR). Conclusions The cardioprotective effects of XFZY during H/R were mediated by inhibiting autophagy via regulating AMPK-mTOR signaling pathways.
Collapse
|
22
|
Zhong WF, Tong WS, Zhou SS, Yip KM, Li SL, Zhao ZZ, Xu J, Chen HB. Qualitative and quantitative characterization of secondary metabolites and carbohydrates in Bai-Hu-Tang using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultraperformance liquid chromatography coupled with photodiode array detector. J Food Drug Anal 2017; 25:946-959. [PMID: 28987372 PMCID: PMC9328867 DOI: 10.1016/j.jfda.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 11/29/2022] Open
Abstract
Bai-Hu-Tang (BHT), a classic traditional Chinese medicine (TCM) formula used for clearing heat and promoting body fluid, consists of four traditional Chinese medicines, i.e., Gypsum Fibrosum (Shigao), Anemarrhenae Rhizoma (Zhimu), Glycyrrhizae Radix et Rhizoma Praeparata cum Melle (Zhigancao), and nonglutinous rice (Jingmi). The chemical composition of BHT still remains largely elusive thus far. To qualitatively and quantitatively characterize secondary metabolites and carbohydrates in BHT, here a combination of analytical approaches using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultraperformance liquid chromatography coupled with photodiode array detector was developed and validated. A total of 42 secondary metabolites in BHT were tentatively or definitely identified, of which 10 major chemicals were quantified by the extracting ion mode of quadrupole time-of-flight mass spectrometry. Meanwhile, polysaccharides, oligosaccharides, and monosaccharides in BHT were also characterized via sample pretreatment followed by sugar composition analysis. The quantitative results indicated that the determined chemicals accounted for 35.76% of the total extract of BHT, which demonstrated that the study could be instrumental in chemical dissection and quality control of BHT. The research deliverables not only laid the root for further chemical and biological evaluation of BHT, but also provided a comprehensive analytical strategy for chemical characterization of secondary metabolites and carbohydrates in traditional Chinese medicine formulas.
Collapse
Affiliation(s)
- Wei-Fang Zhong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong; Ocean College, Agricultural University of Hebei, Qinhuangdao, China
| | - Wing-Sum Tong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Shan-Shan Zhou
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong; Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, China
| | - Ka-Man Yip
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Song-Lin Li
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, China
| | - Zhong-Zhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
23
|
Identification and quantification of the anti-inflammatory constituents in Pian-Tze-Huang by liquid chromatography combined with quadrupole time-of-flight and triple quadrupole mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1027:27-39. [DOI: 10.1016/j.jchromb.2016.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/10/2016] [Accepted: 05/14/2016] [Indexed: 02/06/2023]
|
24
|
Zhou G, Wang M, Li Y, Xu R, Li X. Comprehensive analysis of 61 characteristic constituents from Siraitiae fructus using ultrahigh-pressure liquid chromatography with time-of-flight mass spectrometry. J Pharm Biomed Anal 2016; 125:1-14. [DOI: 10.1016/j.jpba.2016.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/27/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
|
25
|
Yan X, Zhang Q, Feng F. Chemical profiling approach to evaluate the influence of traditional and simplified decoction methods on the holistic quality of Da-Huang-Xiao-Shi decoction using high-performance liquid chromatography coupled with diode-array detection and time-of-flight mass spectrometry. J Sep Sci 2016; 39:1442-53. [PMID: 26914461 DOI: 10.1002/jssc.201501326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 01/12/2023]
Abstract
Da-Huang-Xiao-Shi decoction, consisting of Rheum officinale Baill, Mirabilitum, Phellodendron amurense Rupr. and Gardenia jasminoides Ellis, is a traditional Chinese medicine used for the treatment of jaundice. As described in "Jin Kui Yao Lue", a traditional multistep decoction of Da-Huang-Xiao-Shi decoction was required while simplified one-step decoction was used in recent repsorts. To investigate the chemical difference between the decoctions obtained by the traditional and simplified preparations, a sensitive and reliable approach of high-performance liquid chromatography coupled with diode-array detection and electrospray ionization time-of-flight mass spectrometry was established. As a result, a total of 105 compounds were detected and identified. Analysis of the chromatogram profiles of the two decoctions showed that many compounds in the decoction of simplified preparation had changed obviously compared with those in traditional preparation. The changes of constituents would be bound to cause the differences in the therapeutic effects of the two decoctions. The present study demonstrated that certain preparation methods significantly affect the holistic quality of traditional Chinese medicines and the use of a suitable preparation method is crucial for these medicines to produce special clinical curative effect. This research results elucidated the scientific basis of traditional preparation methods in Chinese medicines.
Collapse
Affiliation(s)
- Xuemei Yan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Qianying Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Fang Feng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
26
|
Pollio A, Zarrelli A, Romanucci V, Di Mauro A, Barra F, Pinto G, Crescenzi E, Roscetto E, Palumbo G. Polyphenolic Profile and Targeted Bioactivity of Methanolic Extracts from Mediterranean Ethnomedicinal Plants on Human Cancer Cell Lines. Molecules 2016; 21:395. [PMID: 27023497 PMCID: PMC6274438 DOI: 10.3390/molecules21040395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/03/2016] [Accepted: 03/16/2016] [Indexed: 12/16/2022] Open
Abstract
The methanol extracts of the aerial part of four ethnomedicinal plants of Mediterranean region, two non-seed vascular plants, Equisetum hyemale L. and Phyllitis scolopendrium (L.) Newman, and two Spermatophyta, Juniperus communis L. (J. communis) and Cotinus coggygria Scop. (C. coggygria), were screened against four human cells lines (A549, MCF7, TK6 and U937). Only the extracts of J. communis and C. coggygria showed marked cytotoxic effects, affecting both cell morphology and growth. A dose-dependent effect of these two extracts was also observed on the cell cycle distribution. Incubation of all the cell lines in a medium containing J. communis extract determined a remarkable accumulation of cells in the G2/M phase, whereas the C. coggygria extract induced a significant increase in the percentage of G1 cells. The novelty of our findings stands on the observation that the two extracts, consistently, elicited coherent effects on the cell cycle in four cell lines, independently from their phenotype, as two of them have epithelial origin and grow adherent and two are lymphoblastoid and grow in suspension. Even the expression profiles of several proteins regulating cell cycle progression and cell death were affected by both extracts. LC-MS investigation of methanol extract of C. coggygria led to the identification of twelve flavonoids (compounds 1–11, 19) and eight polyphenols derivatives (12–18, 20), while in J. communis extract, eight flavonoids (21–28), a α-ionone glycoside (29) and a lignin (30) were found. Although many of these compounds have interesting individual biological activities, their natural blends seem to exert specific effects on the proliferation of cell lines either growing adherent or in suspension, suggesting potential use in fighting cancer.
Collapse
Affiliation(s)
- Antonino Pollio
- Department of Biology, University of Naples "Federico II", Complesso di MS Angelo, 80126 Naples, Italy.
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples "Federico II", Complesso di MS Angelo, 80126 Naples, Italy.
| | - Valeria Romanucci
- Consorzio Interuniversitario Sannio Tech, P.zza San G. Moscati 8, SS Appia km 256, 82030 Apollosa (BN), Italy.
| | - Alfredo Di Mauro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131 Naples, Italy.
| | - Federica Barra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131 Naples, Italy.
| | - Gabriele Pinto
- Department of Biology, University of Naples "Federico II", Complesso di MS Angelo, 80126 Naples, Italy.
| | - Elvira Crescenzi
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy.
| | - Emanuela Roscetto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131 Naples, Italy.
| | - Giuseppe Palumbo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
27
|
Chen D, Lin S, Xu W, Huang M, Chu J, Xiao F, Lin J, Peng J. Qualitative and Quantitative Analysis of the Major Constituents in Shexiang Tongxin Dropping Pill by HPLC-Q-TOF-MS/MS and UPLC-QqQ-MS/MS. Molecules 2015; 20:18597-18619. [PMID: 26473821 PMCID: PMC6331871 DOI: 10.3390/molecules201018597] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/23/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022] Open
Abstract
Shexiang Tongxin dropping pill (STP) is a traditional Chinese medicine formula that consists of total saponins of ginseng, synthetic Calculus bovis, bear gall, Venenum bufonis, borneol and Salvia miltiorrhiza. STP has been widely used in China and Southeast Asia for the treatment of cardiovascular diseases. In this study, a qualitative analytical method using high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed for identification of the major constituents in STP. Based on the retention time and MS spectra, 41 components were identified by comparison with reference compounds and literature data. Moreover, using ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry in multiple-reaction monitoring mode, we quantified 13 of the identified constituents (ginsenoside Rg1, ginsenoside Rk3, cinobufagin, arenobufagin, bufalin, resibufogenin, tanshinone IIA, taurine, tauroursodeoxycholic acid, taurocholic acid, cholic acid, deoxycholic acid, and chenodeoxycholic acid). These results suggest that this new approach is applicable for the routine analysis and quality control of STP products and provides fundamental data for further in vivo pharmacokinetical studies.
Collapse
Affiliation(s)
- Daxin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
| | - Fei Xiao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
| |
Collapse
|