1
|
Li X, Yan Y, Zhao X. Construction of hyaluronic acid/ZnO nanocubes and their pH-responsive stability in drug delivery. Colloids Surf B Biointerfaces 2025; 251:114632. [PMID: 40106960 DOI: 10.1016/j.colsurfb.2025.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/18/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Hyaluronic acid (HA), a naturally occurring polysaccharide, is extensively utilized in the biomedical field owing to its excellent biocompatibility. However, assembling HA directly into nanomaterials with tunable stability remains challenging, primarily due to its hydrophilic nature. In this study, we introduce a novel method for inducing HA assembly through in-situ formation of ZnO nanoparticles to develop HA-based nanomaterials, specifically HA/ZnO nanocubes (HA/ZnO NCs). Following doxorubicin (DOX) loading, the DOX-loaded HA/ZnO NCs exhibit remarkable structural stability under normal physiological conditions and demonstrate acid-responsive dissociation within the tumor microenvironment. In vitro results confirm that HA/ZnO NCs possess excellent biocompatibility, while the DOX-loaded HA/ZnO NCs effectively inhibit tumor cell viability. Consequently, the integration of HA and ZnO represents a promising strategy for enhancing HA-based drug delivery systems (DDSs).
Collapse
Affiliation(s)
- Xueqing Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yulong Yan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xubo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Wu M, Sheng J, Xie Q, Qi Y, Zhao Y, Zhang S. Recent advances in stimuli-responsive hyaluronic acid-based nanodelivery systems for cancer treatment: A review. Int J Biol Macromol 2025; 316:144357. [PMID: 40403810 DOI: 10.1016/j.ijbiomac.2025.144357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/09/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025]
Abstract
Cancer is a worldwide public health problem that poses a serious threat to human health. Drug therapy, as the mainstay of cancer treatment, relies on carriers for the in vivo delivery of chemotherapeutic or nucleic acid-based drugs. Traditional drug delivery carriers have shortcomings, however, including a lack of targeting, uncontrollable release of drugs, and low stability, potentially leading to toxic side effects and reducing their antitumor efficacy. Advances in nanotechnology and biomedicine have furthered the development of stimuli-responsive nanodelivery systems, which can be used to realize the accumulation and on-demand release of drugs and reduce the required drug dosage and toxicity. Hyaluronic acid (HA), as a natural anionic polysaccharide with excellent biocompatibility, an easily modified structure, and the ability to target cancer cells, is a US Food and Drug Administration-approved biomaterial that is ideal for the construction of stimuli-responsive nanodelivery systems. Herein, we review HA-based stimuli-responsive nanodelivery systems including various HA-modified structures. We summarize the feasibility and effectiveness of these systems in cancer therapy according to their roles as endogenous- (pH, redox, enzyme, and hypoxia) or exogenous- (light, temperature, ultrasound, and magnetism) stimuli-responsive systems. We also discuss the problems and challenges in the development of HA-based stimuli-responsive nanodelivery systems and the perspectives for future development. This review highlights the great potential of HA-based stimuli-responsive nanodelivery systems for use in precision cancer treatment and controlled drug release.
Collapse
Affiliation(s)
- Mengdi Wu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiabao Sheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China; Faculty of Health and Medicine, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Qihan Xie
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
3
|
Zhang G, Jiang X, Xia Y, Qi P, Li J, Wang L, Wang Z, Tian X. Hyaluronic acid-conjugated lipid nanocarriers in advancing cancer therapy: A review. Int J Biol Macromol 2025; 299:140146. [PMID: 39842601 DOI: 10.1016/j.ijbiomac.2025.140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Lipid nanoparticles are obtaining significant attention in cancer treatment because of their efficacy at delivering drugs and reducing side effects. These things are like a flexible platform for getting anticancer drugs to the tumor site, especially upon HA modification, a polymer that is known to target tumors overexpressing CD44. HA is promising in cancer therapy because it taregtes tumor cells by binding onto CD44 receptors, which are often upregulated in cancer cells. Lipid nanoparticles are not only beneficial in improving solubility and stability of drugs; they also use the EPR effect, meaning they accumulate more in tumor tissue than in healthy tissue. Adding HA to these nanoparticles expands their biocompatibility and makes them more accurate and specific towards tumor cells. Studies show that HA-modified nanoparticles carrying drugs such as paclitaxel or doxorubicin improve how well cells absorb the drugs, reduce drug resistance, and make tumor shrinking. These nanoparticles can respond to tumor microenvironment stimuli in targeted delivery. This targeted delivery diminishes side effects and improves anti-cancer activity of drugs. Thus, lipid-based nanoparticles conjugated with HA are a promising way to treat cancer by delivering drugs effectively, minimizing side effects, and giving us better therapeutic results.
Collapse
Affiliation(s)
- Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Xin Jiang
- Department of Clinical Pharmacy, Baoying People's Hospital, Affiliated Hospital of Medical School, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yitong Xia
- Department of Oral Medicine, Jining Medical College, Jining, Shandong, China
| | - Pengpeng Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jie Li
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Lizhen Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng City Hospital of Traditional Chinese Medicine, Liaocheng, Shandong, China.
| | - Xiuli Tian
- Department of Respiration, Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
4
|
Wei S, Cui X, Li T, Ma X, Liu L. Pillar[n]arene-Based Supramolecular Nanodrug Delivery Systems for Cancer Therapy. ChemMedChem 2025; 20:e202400822. [PMID: 39833508 DOI: 10.1002/cmdc.202400822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Macrocyclic supramolecular materials play an important role in encapsulating anticancer drugs to improve the anticancer efficiency and reduce the toxicity to normal tissues through host-guest interactions. Among them, pillar[n]arenes, as an emerging class of supramolecular macrocyclic compounds, have attracted increasing attention in drug delivery and drug-controlled release due to their high biocompatibility, excellent host-guest chemistry, and simplicity of modification. In this review, we summarize the research progress of pillar[n]arene-based supramolecular nanodrug delivery systems (SNDs) in recent years in the field of tumor therapy, including drug-controlled release, imaging diagnostics and therapeutic modalities. Furthermore, the opportunities and major limitations of pillar[n]arene-based SNDs for tumor therapy are discussed.
Collapse
Affiliation(s)
- Shubin Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Xinyi Cui
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Tingting Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Xin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Luzhi Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Guangxi Engineering Research Center for New Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi, 535011, PR China
| |
Collapse
|
5
|
Tang X, Li M, Guan W, Lu C. Spatial Resolution Measurement of Microviscosity Using Length-Regulated Aggregation-Induced Emission Probes. Anal Chem 2025; 97:3570-3578. [PMID: 39907690 DOI: 10.1021/acs.analchem.4c05973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The measurement of microviscosity gradients across different regions of self-assembled systems is crucial for optimizing their performance in both biological and industrial applications. However, this task has long been challenging due to the spatial barrier within the self-assembled systems, the interference from polarity gradients, and the lack of region-positioned probes. To overcome these challenges, we developed three kinds of length-regulated aggregation-induced emission (AIE) probes for the spatial resolution measurement of microviscosity. These AIE probes with varying alkyl chain lengths showed high sensitivity (0.81) over a viscosity range from 2 to 435 mPa s and unaffected luminescence to environmental polarity, ensuring accurate measurements in diverse environments. Using micelles as a model of self-assembled systems, these AIE probes were able to localize selectively in different regions ranging from the hydrophobic core to the hydrophilic shell and interface. The results indicated that microviscosity was highest in the core and gradually decreased toward the outer regions. Furthermore, these AIE probes were successfully applied for monitoring microviscosity in hydrogels and food thickeners, showing a strong correlation among fluorescence intensity, tensile strength, and thickening effects. These findings underscore the potential of length-regulated AIE probes for evaluating the microviscosity in diverse applications.
Collapse
Affiliation(s)
- Xiaofang Tang
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Zhang H, Chen C, Han J, Wang S, Jia Q, Ling P, Li S, Fang J. Hyaluronan and Glucose Dual-targeting Probe: Synthesis and Application. Bioorg Chem 2024; 153:107816. [PMID: 39276493 DOI: 10.1016/j.bioorg.2024.107816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In this work, we developed a dual-targeting probe consisted of well-defined hyaluronan (HA) oligosaccharide and glucose (Glc) labeled with Rhodamine B (HGR). The probe was designed to enhance tumor targeting both in vitro and in vivo, by simultaneously targeting CD44 and Glc transporter 1 (GLUT1). The HA oligosaccharide component was crucial for accurately assessing the impact of sugar chain structure on targeting efficacy, while its unoccupied carboxyl groups could minimize interference with HA's binding affinity to CD44. In vitro studies demonstrated that HGR possessed remarkable cytocompatibility and superior targeting abilities compared to single-targeting probes. It displayed a marked preference for CD44high/GLUT1high cells rather than CD44low/GLUT1low cells. In vivo studies using murine models further confirmed the significantly enhanced targeting efficacy and excellent biocompatibility of HGR. Therefore, this designed dual-targeting probe holds potential for clinical tumor detection.
Collapse
Affiliation(s)
- Henan Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Changsheng Chen
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Jingjun Han
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Shuaishuai Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Qingwen Jia
- Shandong Freda Pharmaceutical Group Co. Ltd, Jinan, Shandong 250101, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Shuang Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
| | - Junqiang Fang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Pan M, Fan X, Wei Z, Huang H, Lin R. The combined effect of hypoxia activation and radiosensitization by a multifunctional nanoplatform system enhances the therapeutic efficacy of chemoradiotherapy in pancreatic cancer. Pancreatology 2024; 24:1302-1313. [PMID: 39537551 DOI: 10.1016/j.pan.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Pancreatic cancer is a highly malignant tumor, which is still a major global health problem. Chemotherapy and radiotherapy are regularly used in adjuvant therapy for pancreatic cancer but their therapeutic efficacy is limited. METHODS In the present study, nanoparticle(MSN-AuNPs) was used as a drug carrier loaded with tirapazamine(TPZ) and hyaluronic acid (HA) to synthesize a multifunctional nanoplatform HA@TPZ-MSN-AuNPs (HTMA) for hypoxia activation and radiotherapy sensitization, which can be combined with radiotherapy therapy and synergistically enhance the therapeutic effect in pancreatic cancer. The anti-tumor performance of the nano platform was verified by in vivo and in vitro experiments. RESULT First, the HA@TPZ-MSN-AuNPs (HTMA) was successfully synthesized. Drug release experiments showed that acidic environment and hyaluronidase promoted drug release in the nanoplatform. In vitro experiments, CCK-8, live-dead staining, clonal formation assay and flow cytometry confirmed the combined anti-tumor effect of hypoxia activation and radiotherapy sensitization with HTMA. In the drug uptake experiment, the nanoplatform showed the function of targeting and binding pancreatic cancer cells. In vivo, HTMA demonstrated good antitumor properties and good biocompatibility. CONCLUSIONS The nanoplatform had a good targeting effect and synergistic anti-tumor effect. The combination of hypoxia activation and radiotherapy sensitization is a promising strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Maoen Pan
- Department of General Surgery, Fujian Medical University Union Hospital, No.29, Xinquan Road, Fuzhou, 350001, China
| | - Xiangqun Fan
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18, Daoshan Road, Fuzhou, 350108, China
| | - Zuwu Wei
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18, Daoshan Road, Fuzhou, 350108, China.
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, No.29, Xinquan Road, Fuzhou, 350001, China.
| | - Ronggui Lin
- Department of General Surgery, Fujian Medical University Union Hospital, No.29, Xinquan Road, Fuzhou, 350001, China.
| |
Collapse
|
8
|
Zhang M, Liang J, Liang Y, Li X, Wu W. Efficient delivery of curcumin by functional solid lipid nanoparticles with promoting endosomal escape and liver targeting properties. Colloids Surf B Biointerfaces 2024; 244:114177. [PMID: 39217729 DOI: 10.1016/j.colsurfb.2024.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
In the realm of intracellular drug delivery, overcoming the barrier of endosomal entrapment stands as a critical factor influencing the effectiveness of nanodrug delivery systems. This study focuses on the synthesis of an acid-sensitive fatty acid derivative called imidazole-stearic acid (IM-SA). Leveraging the proton sponge effect attributed to imidazole groups, IM-SA was anticipated to play a pivotal role in facilitating endosomal escape. Integrated into the lipid core of solid lipid nanoparticles (SLNs), IM-SA was paired with hyaluronic acid (HA) coating on the surface of SLNs loading with curcumin (CUR). The presence of IM-SA and HA endowed HA-IM-SLNs@CUR with dual functionalities, enabling the promotion of endosomal escape, and specifical targeting of liver cancer. HA-IM-SLNs@CUR exhibited a particle size of ∼228 nm, with impressive encapsulation efficiencies (EE) of 87.5 % ± 2.3 % for CUR. Drugs exhibit significant pH sensitive release behavior. Cellular experiments showed that HA-IM-SLN@CUR exhibits enhanced drug delivery capability. The incorporation of IM-SA significantly improved the endosomal escape of HA-IM-SLN@CUR, facilitating accelerated intracellular drug release and increasing intracellular drug concentration, exhibiting excellent growth inhibitory effects on HepG2 cells. Animal experiments revealed a 3.4-fold increase in CUR uptake at the tumor site with HA-IM-SLNs@CUR over the free CUR, demonstrating remarkable tumor homing potential with the tumor growth inhibition rate of 97.2 %. These findings indicated the significant promise of HA-IM-SLNs@CUR in the realm of cancer drug delivery.
Collapse
Affiliation(s)
- Mengyi Zhang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ju Liang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Ying Liang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xuening Li
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenlan Wu
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
9
|
Yang W, Yan K, Feng Y, Zhao X. Charge reversible hyaluronic acid-based drug delivery system with pH-responsive dissociation for enhanced drug delivery. Eur J Pharm Biopharm 2024:114560. [PMID: 39447775 DOI: 10.1016/j.ejpb.2024.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Improving the efficiency of drug delivery is one of the most important goals in the field of drug delivery. One strategy for drug delivery efficiency is to make the drug delivery system capable of charge reversal. In this study, we used hyaluronic acid (HA) as the skeleton to anchor dimethylmaleic anhydride-modified polylysine (PLL-DMMA) and N-(3-Aminopropyl)-imidazole (IMI) to construct a pH-sensitive (IMI/Zn2+)-HA-PLL-DMMA system via Zn coordination. The (IMI/Zn2+)-HA-PLL-DMMA system can detach DMMA moieties and expose PLL with a positive charge in the acidic tumor microenvironment (TME), which enhances cellular uptake in cancer cells through charge reversal. Once the drug-loaded (IMI/Zn2+)-HA-PLL-DMMA enters cancer cells, it specifically responds and disassembles in the acidic TME, resulting in drug release and inhibition of cancer cell viability. The (IMI/Zn2+)-HA-PLL-DMMA system is designed to regulate drug release behavior with Zn2+ and IMI groups as control units. The HA-based system shows synergistic selective drug delivery in suppressing tumor cells and has potential in cancer therapy.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Ke Yan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yecheng Feng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xubo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Zhang X, Wang P, Wang X, Xu Y, Cheng T, Zhang C, Ding J, Shi Y, Ma W, Yu CY, Wei H. Stabilized, ROS-sensitive β-cyclodextrin-grafted hyaluronic supramolecular nanocontainers for CD44-targeted anticancer drug delivery. Colloids Surf B Biointerfaces 2024; 242:114081. [PMID: 39003850 DOI: 10.1016/j.colsurfb.2024.114081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Hyaluronic acid (HA)-based tumor microenvironment-responsive nanocontainers are attractive candidates for anticancer drug delivery due to HA's excellent biocompatibility, biodegradability, and CD44-targeting properties. Nevertheless, the consecutive synthesis of stabilized, stealthy, responsive HA-based multicomponent nanomedicines generally requires multi-step preparation and purification procedures, leading to batch-to-batch variation and scale-up difficulties. To develop a facile yet robust strategy for promoted translations, a silica monomer containing a cross-linkable diethoxysilyl unit was prepared to enable in situ crosslinking without any additives. Further combined with the host-guest inclusion complexation between β-cyclodextrin-grafted HA (HA-CD) and ferrocene-functionalized polymers, ferrocene-terminated poly(oligo(ethylene glycol) methyl ether methacrylate (Fc-POEGMA) and Fc-terminated poly(ε-caprolactone)-b-poly(3-(diethoxymethylsilyl)propyl(2-(methacryloyloxy)ethyl) carbamate) (Fc-PCL-b-PDESPMA), a reactive oxygen species (ROS)-sensitive supramolecular polymer construct, Fc-POEGMA/Fc-PCL-b-PDESPMA@HA-CD was readily fabricated to integrate stealthy POEGMA, tumor active targeting HA, and an in situ cross-linkable PDESPMA sequence. Supramolecular amphiphilic copolymers with two different POEGMA contents of 25 wt% (P1) and 20 wt% (P2) were prepared via a simple physical mixing process, affording two core-crosslinked (CCL) micelles via an in situ sol-gel process of ethoxysilyl groups. The P1-based CCL micelles show not only desired colloidal stability against high dilution, but also an intracellular ROS-mimicking environment-induced particulate aggregation that is beneficial for promoted intracellular release of the loaded cargoes. Most importantly, P1-based nanomedicines exhibited greater cytotoxicity in CD44 receptor-positive HeLa cells than that in CD44 receptor-negative MCF-7 cells. Overall, this work developed HA-based nanomedicines with sufficient extracellular colloidal stability and efficient intracellular destabilization properties for enhanced anticancer drug delivery via smart integration of in situ crosslinking and supramolecular complexation.
Collapse
Affiliation(s)
- Xianshuo Zhang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Peipei Wang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Xinsheng Wang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yaoyu Xu
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Taolin Cheng
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Chengjie Zhang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Jiaying Ding
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yunfeng Shi
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China.
| | - Wei Ma
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study& School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study& School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study& School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
11
|
Oroojalian F, Azizollahi F, Kesharwani P, Sahebkar A. Stimuli-responsive nanotheranostic systems conjugated with AIEgens for advanced cancer bio-imaging and treatment. J Control Release 2024; 373:766-802. [PMID: 39047871 DOI: 10.1016/j.jconrel.2024.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Aggregation-induced emission (AIE) is a unique phenomenon observed in various materials such as organic luminophores, carbon dots (CDs), organic-inorganic nanocomposites, fluorescent dye molecules, and nanoparticles (NPs). These AIE-active materials, or AIEgens, are ideal for balancing multifunctional phototheranostics and energy dissipation. AIE properties can manifest in organic fluorescent probes, rendering them effective for cancer treatment due to their ability to penetrate deeply and provide high therapeutic efficacy. This efficacy is attributed to their high photobleaching thresholds, ability to induce Stokes shifts, and capacity to activate fluorophores. Therefore, the development of innovative AIE-based materials for disease diagnosis and treatment, particularly for cancer, is both important and promising. Recent years have seen successful demonstrations of nanoparticles with AIE properties being used for photodynamic therapy (PDT) and multimodal imaging of tumor cells. These fluorophores have been shown to impact mitochondria and lysosomes, generate reactive oxygen species (ROS), activate the immune system, load and release drugs, and ultimately induce apoptosis in tumor cells. In this review, we examine previous studies on the manufacturing methods and effects of AIEgens on cancer cells, with a theranostic strategy of simultaneous treatment and imaging. We also investigate the factors affecting drug delivery on different cancer cells, including internal stimuli such as pH, ROS, enzymes, and external stimuli like near-infrared (NIR) light and ultrasound waves.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Fatemeh Azizollahi
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Cao Z, Zuo X, Liu X, Xu G, Yong KT. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv Colloid Interface Sci 2024; 330:103206. [PMID: 38823215 DOI: 10.1016/j.cis.2024.103206] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm. Concluding, we present an insight into the current research landscape, addressing the challenges at hand, and envisioning the future trajectory in this burgeoning domain. Join us as we navigate the exciting confluence of polymer science and nanotechnology in reshaping biomedical solutions.
Collapse
Affiliation(s)
- Zhonglin Cao
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaoling Zuo
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
13
|
Ma W, Wang X, Zhang D, Mu X. Research Progress of Disulfide Bond Based Tumor Microenvironment Targeted Drug Delivery System. Int J Nanomedicine 2024; 19:7547-7566. [PMID: 39071505 PMCID: PMC11283832 DOI: 10.2147/ijn.s471734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer poses a significant threat to human life and health. Chemotherapy is currently one of the effective cancer treatments, but many chemotherapy drugs have cell toxicity, low solubility, poor stability, a narrow therapeutic window, and unfavorable pharmacokinetic properties. To solve the above problems, target drug delivery to tumor cells, and reduce the side effects of drugs, an anti-tumor drug delivery system based on tumor microenvironment has become a focus of research in recent years. The construction of a reduction-sensitive nanomedicine delivery system based on disulfide bonds has attracted much attention. Disulfide bonds have good reductive responsiveness and can effectively target the high glutathione (GSH) levels in the tumor environment, enabling precise drug delivery. To further enhance targeting and accelerate drug release, disulfide bonds are often combined with pH-responsive nanocarriers and highly expressed ligands in tumor cells to construct drug delivery systems. Disulfide bonds can connect drug molecules and polymer molecules in the drug delivery system, as well as between different drug molecules and carrier molecules. This article summarized the drug delivery systems (DDS) that researchers have constructed in recent years based on disulfide bond drug delivery systems targeting the tumor microenvironment, disulfide bond cleavage-triggering conditions, various drug loading strategies, and carrier design. In this review, we also discuss the controlled release mechanisms and effects of these DDS and further discuss the clinical applicability of delivery systems based on disulfide bonds and the challenges faced in clinical translation.
Collapse
Affiliation(s)
- Weiran Ma
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
- Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People’s Republic of China
| | - Xiaoying Wang
- Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People’s Republic of China
| | - Dongqi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
14
|
Geng H, Chen M, Guo C, Wang W, Chen D. Marine polysaccharides: Biological activities and applications in drug delivery systems. Carbohydr Res 2024; 538:109071. [PMID: 38471432 DOI: 10.1016/j.carres.2024.109071] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The ocean is the common home of a large number of marine organisms, including plants, animals, and microorganisms. Researchers can extract thousands of important bioactive components from the oceans and use them extensively to treat and prevent diseases. In contrast, marine polysaccharide macromolecules such as alginate, carrageenan, Laminarin, fucoidan, chitosan, and hyaluronic acid have excellent physicochemical properties, good biocompatibility, and high bioactivity, which ensures their wide applications and strong therapeutic potentials in drug delivery. Drug delivery systems (DDS) based on marine polysaccharides and modified marine polysaccharide molecules have emerged as an innovative technology for controlling drug distribution on temporal, spatial, and dosage scales. They can detect and respond to external stimuli such as pH, temperature, and electric fields. These properties have led to their wide application in the design of novel drug delivery systems such as hydrogels, polymeric micelles, liposomes, microneedles, microspheres, etc. In addition, marine polysaccharide-based DDS not only have smart response properties but also can combine with the unique biological properties of the marine polysaccharide base to exert synergistic therapeutic effects. The biological activities of marine polysaccharides and the design of marine polysaccharide-based DDS are reviewed. Marine polysaccharide-based responsive DDS are expected to provide new strategies and solutions for disease treatment.
Collapse
Affiliation(s)
- Hongxu Geng
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| | - Meijun Chen
- Yantai Muping District Hospital of Traditional Chinese Medicine, No.505, Government Street, Muping District, Yantai, 264110, PR China.
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao, 266003, PR China.
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
15
|
Kuna K, Baddam SR, Kalagara S, Akkiraju PC, Tade RS, Enaganti S. Emerging natural polymer-based architectured nanotherapeutics for the treatment of cancer. Int J Biol Macromol 2024; 262:129434. [PMID: 38232877 DOI: 10.1016/j.ijbiomac.2024.129434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
The field of cancer therapy is advancing rapidly, placing a crucial emphasis on innovative drug delivery systems. The increasing global impact of cancer highlights the need for creative therapeutic strategies. Natural polymer-based nanotherapeutics have emerged as a captivating avenue in this pursuit, drawing substantial attention due to their inherent attributes. These attributes include biodegradability, biocompatibility, negligible toxicity, extended circulation time, and a wide range of therapeutic payloads. The unique size, shape, and morphological characteristics of these systems facilitate profound tissue penetration, complementing active and passive targeting strategies. Moreover, these nanotherapeutics exploit specific cellular and subcellular trafficking pathways, providing precise control over drug release kinetics. This comprehensive review emphasizes the utilization of naturally occurring polymers such as polysaccharides (e.g., chitosan, hyaluronic acid, alginates, dextran, and cyclodextrin) and protein-based polymers (e.g., ferritin, gelatin, albumin) as the foundation for nanoparticle development. The paper meticulously examines their in vitro characteristics alongside in vivo efficacy, particularly focusing on their pivotal role in ameliorating diverse types of solid tumors within cancer therapy. The amalgamation of material science ingenuity and biological insight has led to the formulation of these nanoparticles, showcasing their potential to reshape the landscape of cancer treatment.
Collapse
Affiliation(s)
- Krishna Kuna
- Department of Chemistry, University College of Science, Saifabad, Osmania University, Hyderabad, Telangana, India.
| | - Sudhakar Reddy Baddam
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, MA 01655, United States of America
| | - Sudhakar Kalagara
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States of America
| | - Pavan C Akkiraju
- Department of Biotechnology, School of Allied Healthcare Sciences, Malla Reddy University, Hyderabad, India
| | - Rahul S Tade
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India
| | - Sreenivas Enaganti
- Department of Bioinformatics, Averinbiotech Laboratories, Nallakunta, Hyderabad, Telangana, India
| |
Collapse
|
16
|
Tang L, Fu C, Liu H, Yin Y, Cao Y, Feng J, Zhang A, Wang W. Chemoimmunotherapeutic Nanogel for Pre- and Postsurgical Treatment of Malignant Melanoma by Reprogramming Tumor-Associated Macrophages. NANO LETTERS 2024; 24:1717-1728. [PMID: 38270376 DOI: 10.1021/acs.nanolett.3c04563] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Surgery is the primary method to treat malignant melanoma; however, the residual microtumors that cannot be resected completely often trigger tumor recurrence, causing tumor-related mortality following melanoma resection. Herein, we developed a feasible strategy based on the combinational chemoimmunotherapy by cross-linking carboxymethyl chitosan (CMCS)-originated polymetformin (PolyMetCMCS) with cystamine to prepare stimuli-responsive nanogel (PMNG) owing to the disulfide bond in cystamine that can be cleaved by the massive glutathione (GSH) in tumor sites. Then, chemotherapeutic agent doxorubicin (DOX) was loaded in PMNG, which was followed by a hyaluronic acid coating to improve the overall biocompatibility and targeting ability of the prepared nanogel (D@HPMNG). Notably, PMNG effectively reshaped the tumor immune microenvironment by reprogramming tumor-associated macrophage phenotypes and recruiting intratumoral CD8+ T cells owing to the inherited immunomodulatory capability of metformin. Consequently, D@HPMNG treatment remarkably suppressed melanoma growth and inhibited its recurrence after surgical resection, proposing a promising solution for overcoming lethal melanoma recurrence.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Cong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuqi Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jingwen Feng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aining Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
17
|
Wang M, Huang H, Sun Y, Wang M, Yang Z, Shi Y, Liu L. PEI functionalized cell membrane for tumor targeted and glutathione responsive gene delivery. Int J Biol Macromol 2024; 255:128354. [PMID: 37995795 DOI: 10.1016/j.ijbiomac.2023.128354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Polyethylenimine (PEI) is a broadly exploited cationic polymer due to its remarkable gene-loading capacity. However, the high cytotoxicity caused by its high surface charge density has been reported in many cell lines, limiting its application significantly. In this study, two different molecular weights of PEI (PEI10k and PEI25k) were crosslinked with red blood cell membranes (RBCm) via disulfide bonds to form PEI derivatives (RMPs) with lower charge density. Furthermore, the targeting molecule folic acid (FA) molecules were further grafted onto the polymers to obtain FA-modified PEI-RBCm copolymers (FA-RMP25k) with tumor cell targeting and glutathione response. In vitro experiments showed that the FA-RMP25k/DNA complex had satisfactory uptake efficiency in both HeLa and 293T cells, and did not cause significant cytotoxicity. Furthermore, the uptake and transfection efficiency of the FA-RMP25k/DNA complex was significantly higher than that of the PEI25k/DNA complex, indicating that FA grafting can increase transfection efficiency by 15 %. These results suggest that FA-RMP25k may be a promising non-viral gene vector with potential applications in gene therapy.
Collapse
Affiliation(s)
- Mengying Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haoxiang Huang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanlin Sun
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhaojun Yang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yong Shi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liang Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
18
|
Feng Y, Yang W, Shi X, Zhao X. ZnO-incorporated alginate assemblies: Tunable pH-responsiveness and improved drug delivery for cancer therapy. Int J Biol Macromol 2024; 255:128189. [PMID: 37979766 DOI: 10.1016/j.ijbiomac.2023.128189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Delivering drugs selectively to tumor tissues is a significant challenge in cancer therapy, and pH-responsive polymeric assemblies have shown great potential in achieving this goal. In this study, we developed a pH-responsive alginate-based assemblies, called (amine-modified ZnO)-oxidized alginate-PEG ((ZnO-N)-OAl-PEG), for selective drug delivery in cancer treatment. The incorporation of ZnO-N nanoparticles into the alginate-based assemblies enables pH-responsiveness and maintains stability under physiological conditions. At an acidic pH, (ZnO-N)-OAl-PEG disassembles due to the conversion of ZnO to Zn2+, which triggers the unloading of doxorubicin (DOX) from the imine bond between DOX and alginate. This unloading results in the death of cancer cells and inhibition of tumor growth. The anticancer efficacy of (DOX/ZnO-N)-OAl-PEG was demonstrated in vitro and in vivo, providing promising prospects for cancer treatment based on ZnO-induced pH-responsiveness. These findings may also inspire the development of advanced drug delivery systems (DDSs) for cancer therapy.
Collapse
Affiliation(s)
- Yecheng Feng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wenjing Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450002, PR China
| | - Xiaojing Shi
- Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of medical sciences, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Xubo Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
19
|
Construction of a new dual-drug delivery system based on stimuli-responsive co-polymer functionalized D-mannose for chemotherapy of breast cancer. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
20
|
Preparation and characterization of
pH
and thermally responsive perfluoropolyether acrylate copolymer micelles and investigation its drug‐loading properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
21
|
Feng Y, Bai J, Du X, Zhao X. Shell-Cross-Linking of polymeric micelles by Zn coordination for Photo- and pH Dual-Sensitive drug delivery. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
22
|
Wang X, Liu Y, Wu T, Gu B, Sun H, He H, Gong H, Zhu H. A win-win scenario for antibacterial activity and skin mildness of cationic surfactants based on the modulation of host-guest supramolecular conformation. Bioorg Chem 2023; 134:106448. [PMID: 36868128 DOI: 10.1016/j.bioorg.2023.106448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
The commercial cationic surfactants (CSAa) with quaternary ammonium (QA) groups have proved to be broad-spectrum bactericide against bacteria, fungi, and viruses. Nevertheless, they inevitably exhibit potent irritation on the skin. In this work, we systematically investigated the regulatory mechanism of the host-guest supramolecular conformation with β-cyclodextrin (β-CD) on the bactericidal performance and skin irritation of CSAa with different head groups and chain lengths. When the ratio of incorporated β-CD is not greater than 1:1, the bactericidal efficiency of CSAa@β-CD (n > 12) remained above 90 % due to the free QA groups and hydrophobic fraction that can act on negatively charged bacterial membranes. And once the ratio of β-CD exceeded 1:1, the β-CD attracted to the bacterial surface by hydrogen bonding might prevent CSAa@β-CD from acting on bacteria, resulting in a decrement in antibacterial performance. Even so, the antibacterial activity of CSAa with long alkyl chains (n = 16, 18) was independent from the complexation of β-CD. Accordingly, both the zein solubilization assay and the neutrophil migration assay on zebrafish skin evidenced that β-CD attenuated the interaction of surfactant with skin model proteins and the inflammatory effect on zebrafish, thereby enhancing skin mildness. In this way, we hope to create a simple but effective brainpower using the host-guest approach to guarantee both bactericidal efficiency and skin mildness without modifying the chemical structure of these commercial biocides.
Collapse
Affiliation(s)
- Xuejiao Wang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China.
| | - Yuting Liu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Tongyue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Biaofeng Gu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Hao Sun
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Huanling He
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Haiqin Gong
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China.
| |
Collapse
|
23
|
Gautam S, Marwaha D, Singh N, Rai N, Sharma M, Tiwari P, Urandur S, Shukla RP, Banala VT, Mishra PR. Self-Assembled Redox-Sensitive Polymeric Nanostructures Facilitate the Intracellular Delivery of Paclitaxel for Improved Breast Cancer Therapy. Mol Pharm 2023; 20:1914-1932. [PMID: 36848489 DOI: 10.1021/acs.molpharmaceut.2c00673] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A two-tier approach has been proposed for targeted and synergistic combination therapy against metastatic breast cancer. First, it comprises the development of a paclitaxel (PX)-loaded redox-sensitive self-assembled micellar system using betulinic acid-disulfide-d-α-tocopheryl poly(ethylene glycol) succinate (BA-Cys-T) through carbonyl diimidazole (CDI) coupling chemistry. Second, hyaluronic acid is anchored to TPGS (HA-Cys-T) chemically through a cystamine spacer to achieve CD44 receptor-mediated targeting. We have established that there is significant synergy between PX and BA with a combination index of 0.27 at a molar ratio of 1:5. An integrated system comprising both BA-Cys-T and HA-Cys-T (PX/BA-Cys-T-HA) exhibited significantly higher uptake than PX/BA-Cys-T, indicating preferential CD44-mediated uptake along with the rapid release of drugs in response to higher glutathione concentrations. Significantly higher apoptosis (42.89%) was observed with PX/BA-Cys-T-HA than those with BA-Cys-T (12.78%) and PX/BA-Cys-T (33.38%). In addition, PX/BA-Cys-T-HA showed remarkable enhancement in the cell cycle arrest, improved depolarization of the mitochondrial membrane potential, and induced excessive generation of ROS when tested in the MDA-MB-231 cell line. An in vivo administration of targeted micelles showed improved pharmacokinetic parameters and significant tumor growth inhibition in 4T1-induced tumor-bearing BALB/c mice. Overall, the study indicates a potential role of PX/BA-Cys-T-HA in achieving both temporal and spatial targeting against metastatic breast cancer.
Collapse
Affiliation(s)
- Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India.,Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, UP, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Neha Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Sandeep Urandur
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Venkatesh Teja Banala
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India.,Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, UP, India
| |
Collapse
|
24
|
Sukhavattanakul P, Pisitsak P, Ummartyotin S, Narain R. Polysaccharides for Medical Technology: Properties and Applications. Macromol Biosci 2023; 23:e2200372. [PMID: 36353915 DOI: 10.1002/mabi.202200372] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Indexed: 11/12/2022]
Abstract
Over the past decade, the use of polysaccharides has gained tremendous attention in the field of medical technology. They have been applied in various sectors such as tissue engineering, drug delivery system, face mask, and bio-sensing. This review article provides an overview and background of polysaccharides for biomedical uses. Different types of polysaccharides, for example, cellulose and its derivatives, chitin and chitosan, hyaluronic acid, alginate, and pectin are presented. They are fabricated in various forms such as hydrogels, nanoparticles, membranes, and as porous mediums. Successful development and improvement of polysaccharide-based materials will effectively help users to enhance their quality of personal health, decrease cost, and eventually increase the quality of life with respect to sustainability.
Collapse
Affiliation(s)
- Pongpat Sukhavattanakul
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Penwisa Pisitsak
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G1H9, Canada
| |
Collapse
|
25
|
Nordin AH, Ahmad Z, Husna SMN, Ilyas RA, Azemi AK, Ismail N, Nordin ML, Ngadi N, Siti NH, Nabgan W, Norfarhana AS, Azami MSM. The State of the Art of Natural Polymer Functionalized Fe 3O 4 Magnetic Nanoparticle Composites for Drug Delivery Applications: A Review. Gels 2023; 9:121. [PMID: 36826291 PMCID: PMC9957034 DOI: 10.3390/gels9020121] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Natural polymers have received a great deal of interest for their potential use in the encapsulation and transportation of pharmaceuticals and other bioactive compounds for disease treatment. In this perspective, the drug delivery systems (DDS) constructed by representative natural polymers from animals (gelatin and hyaluronic acid), plants (pectin and starch), and microbes (Xanthan gum and Dextran) are provided. In order to enhance the efficiency of polymers in DDS by delivering the medicine to the right location, reducing the medication's adverse effects on neighboring organs or tissues, and controlling the medication's release to stop the cycle of over- and under-dosing, the incorporation of Fe3O4 magnetic nanoparticles with the polymers has engaged the most consideration due to their rare characteristics, such as easy separation, superparamagnetism, and high surface area. This review is designed to report the recent progress of natural polymeric Fe3O4 magnetic nanoparticles in drug delivery applications, based on different polymers' origins.
Collapse
Affiliation(s)
- Abu Hassan Nordin
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| | - Zuliahani Ahmad
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| | - Siti Muhamad Nur Husna
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| | - Rushdan Ahmad Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia;
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia;
| | - Muhammad Luqman Nordin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia;
- Centre for Nanotechnology in Veterinary Medicine (NanoVet), Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
| | - Nordin Hawa Siti
- Pharmacology Unit, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia;
| | - Walid Nabgan
- Departament d’Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Abd Samad Norfarhana
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
- Department of Petrochemical Engineering, Politeknik Tun Syed Nasir Syed Ismail, Pagoh Education Hub, Pagoh Muar 84600, Johor, Malaysia
| | - Mohammad Saifulddin Mohd Azami
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| |
Collapse
|
26
|
Zhang L, Oudeng G, Wen F, Liao G. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment. Biomater Res 2022; 26:61. [PMID: 36348441 PMCID: PMC9641873 DOI: 10.1186/s40824-022-00308-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/16/2022] [Indexed: 11/10/2022] Open
Abstract
Near-infrared-II (NIR-II, 1000–1700 nm) light-triggered photothermal therapy (PTT) has been regarded as a promising candidate for cancer treatment, but PTT alone often fails to achieve satisfactory curative outcomes. Hollow nanoplatforms prove to be attractive in the biomedical field owing to the merits including good biocompatibility, intrinsic physical-chemical nature and unique hollow structures, etc. On one hand, hollow nanoplatforms themselves can be NIR-II photothermal agents (PTAs), the cavities of which are able to carry diverse therapeutic units to realize multi-modal therapies. On the other hand, NIR-II PTAs are capable of decorating on the surface to combine with the functions of components encapsulated inside the hollow nanoplatforms for synergistic cancer treatment. Notably, PTAs generally can serve as good photoacoustic imaging (PAI) contrast agents (CAs), which means such kind of hollow nanoplatforms are also expected to be multifunctional all-in-one nanotheranostics. In this review, the recent advances of NIR-II hollow nanoplatforms for single-modal PTT, dual-modal PTT/photodynamic therapy (PDT), PTT/chemotherapy, PTT/catalytic therapy and PTT/gas therapy as well as multi-modal PTT/chemodynamic therapy (CDT)/chemotherapy, PTT/chemo/gene therapy and PTT/PDT/CDT/starvation therapy (ST)/immunotherapy are summarized for the first time. Before these, the typical synthetic strategies for hollow structures are presented, and lastly, potential challenges and perspectives related to these novel paradigms for future research and clinical translation are discussed.
Collapse
|
27
|
Redox-responsive waterborne polyurethane nanocarriers for targeted doxorubicin delivery. Int J Pharm 2022; 628:122275. [DOI: 10.1016/j.ijpharm.2022.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
|
28
|
AIE-Featured Redox-Sensitive Micelles for Bioimaging and Efficient Anticancer Drug Delivery. Int J Mol Sci 2022; 23:ijms231810801. [PMID: 36142713 PMCID: PMC9505945 DOI: 10.3390/ijms231810801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
In the present study, an amphiphilic polymer was prepared by conjugating methoxy poly(ethylene glycol) (mPEG) with tetraphenylethene (TPE) via disulfide bonds (Bi(mPEG-S-S)-TPE). The polymer could self-assemble into micelles and solubilize hydrophobic anticancer drugs such as paclitaxel (PTX) in the core. Combining the effect of TPE, mPEG, and disulfide bonds, the Bi(mPEG-S-S)-TPE micelles exhibited excellent AIE feature, reduced protein adsorption, and redox-sensitive drug release behavior. An in vitro intracellular uptake study demonstrated the great imaging ability and efficient internalization of Bi(mPEG-S-S)-TPE micelles. The excellent anticancer effect and low systemic toxicity were further evidenced by the in vivo anticancer experiment. The Bi(mPEG-S-S)-TPE micelles were promising drug carriers for chemotherapy and bioimaging.
Collapse
|
29
|
Buckley C, Murphy EJ, Montgomery TR, Major I. Hyaluronic Acid: A Review of the Drug Delivery Capabilities of This Naturally Occurring Polysaccharide. Polymers (Basel) 2022; 14:polym14173442. [PMID: 36080515 PMCID: PMC9460006 DOI: 10.3390/polym14173442] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The inclusion of physiologically active molecules into a naturally occurring polymer matrix can improve the degradation, absorption, and release profile of the drug, thus boosting the therapeutic impact and potentially even reducing the frequency of administration. The human body produces significant amounts of polysaccharide hyaluronic acid, which boasts exceptional biocompatibility, biodegradability, and one-of-a-kind physicochemical features. In this review, we will examine the clinical trials currently utilizing hyaluronic acid and address the bright future of this versatile polymer, as well as summarize the numerous applications of hyaluronic acid in drug delivery and immunomodulation.
Collapse
Affiliation(s)
- Ciara Buckley
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Biosciences Research Institute, Technological University of the Shannon, V94 EC5T Limerick, Ireland
| | - Emma J. Murphy
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- LIFE Research Institute, Technological University of the Shannon, V94 EC5T Limerick, Ireland
| | - Therese R. Montgomery
- School of Science and Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Ian Major
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Correspondence:
| |
Collapse
|
30
|
Curcio M, Vittorio O, Bell JL, Iemma F, Nicoletta FP, Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162851. [PMID: 36014715 PMCID: PMC9413373 DOI: 10.3390/nano12162851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Self-assembling nanoparticles (SANPs) based on hyaluronic acid (HA) represent unique tools in cancer therapy because they combine the HA targeting activity towards cancer cells with the advantageous features of the self-assembling nanosystems, i.e., chemical versatility and ease of preparation and scalability. This review describes the key outcomes arising from the combination of HA and SANPs, focusing on nanomaterials where HA and/or HA-derivatives are inserted within the self-assembling nanostructure. We elucidate the different HA derivatization strategies proposed for this scope, as well as the preparation methods used for the fabrication of the delivery device. After showing the biological results in the employed in vivo and in vitro models, we discussed the pros and cons of each nanosystem, opening a discussion on which approach represents the most promising strategy for further investigation and effective therapeutic protocol development.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jessica Lilian Bell
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
31
|
Pooresmaeil M, Namazi H. D-mannose functionalized MgAl-LDH/Fe-MOF nanocomposite as a new intelligent nanoplatform for MTX and DOX co-drug delivery. Int J Pharm 2022; 625:122112. [PMID: 35970281 DOI: 10.1016/j.ijpharm.2022.122112] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Commonly the directly administered chemotherapy drugs lack targeting in tumor treatment. Thus, trying to improve cancer treatment efficiency led us to design a new intelligent system for cancer treatment. Considering these, in the current work, at first, the 2-aminoterephthalic acid (NH2-BDC) intercalated layered double hydroxides (MgAl-(NH2-BDC) LDH) were synthesized simply. Afterward, the in situ growth of the iron-based metal-organic frameworks in the presence of MgAl-(NH2-BDC) LDH occurred (MgAl-LDH/Fe-MOF). In the end, the reaction of MgAl-LDH/Fe-MOF with D-mannose (D-Man) achieved the MgAl-LDH/Fe-MOF/D-Man ternary hybrid nanostructure. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis confirmed the formation of the monodisperse Fe-MOF with nanosize in the presence of MgAl-LDH. Importantly, methotrexate (MTX) and doxorubicin (DOX) entrapment efficiency reached respectively about 28 wt% and 21% for MgAl-LDH/Fe-MOF/D-Man. The in vitro drug release experiments revealed a higher drug release at pH 5.0 in comparison with pH 7.4 which revealed its promising potential for anticancer drug delivery applications. Bioassay results revealed that the co-drug-loaded MgAl-LDH/Fe-MOF/D-Man has higher cytotoxicity on MDA-MB 231 cells. At last, fluorescence microscopy and flow cytometric analysis confirmed the successful uptake of MgAl-LDH/Fe-MOF/D-Man into MDA-MB 231 cell lines, as well as its bioimaging potential. A survey in the published literature approved that this work is the first report on the evaluation of the MgAl-LDH/Fe-MOF/D-Man for targeted co-delivery of both MTX and DOX. Finally, results collectively demonstrate the importance of the biocompatible MgAl-LDH/Fe-MOF/D-Man as a hopeful candidate for biomedicinal applications from the targeted co-drug delivery and bioimaging potential viewpoints.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
32
|
Liu T, Lang M. Preparation and characterization of novel functional tri-block copolymer for constructing temperature/redox dual-stimuli responsive micelles. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2092409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Tianyue Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
33
|
Khan MI, Hossain MI, Hossain MK, Rubel MHK, Hossain KM, Mahfuz AMUB, Anik MI. Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS APPLIED BIO MATERIALS 2022; 5:971-1012. [PMID: 35226465 DOI: 10.1021/acsabm.2c00002] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
Collapse
Affiliation(s)
- Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - M Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71270, United States
| | - M Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan.,Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M H K Rubel
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - K M Hossain
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - A M U B Mahfuz
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, South Kingston, Rhode Island 02881, United States
| |
Collapse
|
34
|
Mitra S, Mateti T, Ramakrishna S, Laha A. A Review on Curcumin-Loaded Electrospun Nanofibers and their Application in Modern Medicine. JOM (WARRENDALE, PA. : 1989) 2022; 74:3392-3407. [PMID: 35228788 PMCID: PMC8867693 DOI: 10.1007/s11837-022-05180-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/23/2022] [Indexed: 05/04/2023]
Abstract
Herbal drugs are safe and show significantly fewer side effects than their synthetic counterparts. Curcumin (an active ingredient primarily found in turmeric) shows therapeutic properties, but its commercial use as a medication is unrealized, because of doubts about its potency. The literature reveals that electrospun nanofibers show simplicity, efficiency, cost, and reproducibility compared to other fabricating techniques. Forcespinning is a new technique that minimizes limitations and provides additional advantages to electrospinning. Polymer-based nanofibers-whose advantages lie in stability, solubility, and drug storage-overcome problems related to drug delivery, like instability and hydrophobicity. Curcumin-loaded polymer nanofibers show potency in healing diabetic wounds in vitro and in vivo. The release profiles, cell viability, and proliferation assays substantiate their efficacy in bone tissue repair and drug delivery against lung, breast, colorectal, squamous, glioma, and endometrial cancer cells. This review mainly discusses how polymer nanofibers interact with curcumin and its medical efficacy.
Collapse
Affiliation(s)
- Souradeep Mitra
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal - 576104 Udupi, Karnataka India
| | - Tarun Mateti
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal - 576104 Udupi, Karnataka India
| | - Seeram Ramakrishna
- Center of Nanofibers and Nanotechnology, National University of Singapore, Singapore, 117581 Singapore
| | - Anindita Laha
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal - 576104 Udupi, Karnataka India
| |
Collapse
|
35
|
Xiao HF, Yu H, Wang DQ, Liu XZ, Sun WR, Li YJ, Sun GB, Liang Y, Sun HF, Wang PY, Xie SY, Wang RR. Dual-Targeted Fe₃O₄@MnO₂ Nanoflowers for Magnetic Resonance Imaging-Guided Photothermal-Enhanced Chemodynamic/Chemotherapy for Tumor. J Biomed Nanotechnol 2022; 18:352-368. [PMID: 35484752 DOI: 10.1166/jbn.2022.3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The construction of high-efficiency tumor theranostic platform will be of great interest in the treatment of cancer patients; however, significant challenges are associated with developing such a platform. In this study, we developed high-efficiency nanotheranostic agent based on ferroferric oxide, manganese dioxide, hyaluronic acid and doxorubicin (FMDH-D NPs) for dual targeting and imaging guided synergetic photothermal-enhanced chemodynamic/chemotherapy for cancer, which improved the specific uptake of drugs at tumor site by the dual action of CD44 ligand hyaluronic acid and magnetic nanoparticles guided by magnetic force. Under the acidic microenvironment of cancer cells, FMDH-D could be decomposed into Mn2+ and Fe2+ to generate •OH radicals by triggering a Fenton-like reaction and responsively releasing doxorubicin to kill cancer cells. Meanwhile, alleviating tumor hypoxia improved the efficacy of chemotherapy in tumors. The photothermal properties of FMDH generated high temperatures, which further accelerated the generation of reactive oxygen species, and enhanced effects of chemodynamic therapy. Furthermore, FMDH-D NPs proved to be excellent T1/T₂-weighted magnetic resonance imaging contrast agents for monitoring the tumor location. These results confirmed the considerable potential of FMDH-D NPs in a highly efficient synergistic therapy platform for cancer treatment.
Collapse
Affiliation(s)
- Hui-Fang Xiao
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - Hui Yu
- Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - De-Qiang Wang
- Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Xin-Zheng Liu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - Wan-Ru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - You-Jie Li
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Guang-Bin Sun
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Yan Liang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Hong-Fang Sun
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Ran-Ran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| |
Collapse
|
36
|
Zalmi GA, Jadhav RW, Mirgane HA, Bhosale SV. Recent Advances in Aggregation-Induced Emission Active Materials for Sensing of Biologically Important Molecules and Drug Delivery System. Molecules 2021; 27:150. [PMID: 35011382 PMCID: PMC8746362 DOI: 10.3390/molecules27010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
The emergence and development of aggregation induced emission (AIE) have attracted worldwide attention due to its unique photophysical phenomenon and for removing the obstacle of aggregation-caused quenching (ACQ) which is the most detrimental process thereby making AIE an important and promising aspect in various fields of fluorescent material, sensing, bioimaging, optoelectronics, drug delivery system, and theranostics. In this review, we have discussed insights and explored recent advances that are being made in AIE active materials and their application in sensing, biological cell imaging, and drug delivery systems, and, furthermore, we explored AIE active fluorescent material as a building block in supramolecular chemistry. Herein, we focus on various AIE active molecules such as tetraphenylethylene, AIE-active polymer, quantum dots, AIE active metal-organic framework and triphenylamine, not only in terms of their synthetic routes but also we outline their applications. Finally, we summarize our view of the construction and application of AIE-active molecules, which thus inspiring young researchers to explore new ideas, innovations, and develop the field of supramolecular chemistry in years to come.
Collapse
Affiliation(s)
| | | | | | - Sheshanath V. Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, India; (G.A.Z.); (R.W.J.); (H.A.M.)
| |
Collapse
|