1
|
Banerjee D, Vydiam K, Vangala V, Mukherjee S. Advancement of Nanomaterials- and Biomaterials-Based Technologies for Wound Healing and Tissue Regenerative Applications. ACS APPLIED BIO MATERIALS 2025; 8:1877-1899. [PMID: 40019109 DOI: 10.1021/acsabm.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Patients and healthcare systems face significant social and financial challenges due to the increasing number of individuals with chronic external and internal wounds that fail to heal. The complexity of the healing process remains a serious health concern, despite the effectiveness of conventional wound dressings in promoting healing. Recent advancements in materials science and fabrication techniques have led to the development of innovative dressings that enhance wound healing. To further expedite the healing process, novel approaches such as nanoparticles, 3D-printed wound dressings, and biomolecule-infused dressings have emerged, along with cell-based methods. Additionally, gene therapy technologies are being harnessed to generate stem cell derivatives that are more functional, selective, and responsive than their natural counterparts. This review highlights the significant potential of biomaterials, nanoparticles, 3D bioprinting, and gene- and cell-based therapies in wound healing. However, it also underscores the necessity for further research to address the existing challenges and integrate these strategies into standard clinical practice.
Collapse
Affiliation(s)
- Durba Banerjee
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Kalyan Vydiam
- United Therapeutics, Manchester, New Hampshire 0310, United States
| | - Venugopal Vangala
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
2
|
Wu Z, Lu D, Sun S, Cai M, Lin L, Zhu M. Material Design, Fabrication Strategies, and the Development of Multifunctional Hydrogel Composites Dressings for Skin Wound Management. Biomacromolecules 2025; 26:1419-1460. [PMID: 39960380 DOI: 10.1021/acs.biomac.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The skin is fragile, making it very vulnerable to damage and injury. Untreated skin wounds can pose a serious threat to human health. Three-dimensional polymer network hydrogels have broad application prospects in skin wound dressings due to their unique properties and structure. The therapeutic effect of traditional hydrogels is limited, while multifunctional composite hydrogels show greater potential. Multifunctional hydrogels can regulate wound moisture through formula adjustment. Moreover, hydrogels can be combined with bioactive ingredients to improve their performance in wound healing applications. Stimulus-responsive hydrogels can respond specifically to the wound environment and meet the needs of different wound healing stages. This review summarizes the material types, structure, properties, design considerations, and formulation strategies for multifunctional hydrogel composite dressings used in wound healing. We discuss various types of recently developed hydrogel dressings, highlights the importance of tailoring their physicochemical properties, and addresses potential challenges in preparing multifunctional hydrogel wound dressings.
Collapse
Affiliation(s)
- Ziteng Wu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Dongdong Lu
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, Guangdong 523000, PR China
| | - Shuo Sun
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Manqi Cai
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Lin Lin
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Mingning Zhu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| |
Collapse
|
3
|
Wu S, Yang S, Ou L, Zhang H, Wang L, Feng B, Bai Z, Li W, Cheng B, Toh WS, Xia J. Melatonin-Loaded Hydrogel Modulates Circadian Rhythms and Alleviates Oxidative Stress and Inflammation to Promote Wound Healing. ACS APPLIED BIO MATERIALS 2025; 8:1607-1620. [PMID: 39854437 DOI: 10.1021/acsabm.4c01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Circadian rhythm disruption, commonly caused by factors such as jet lag and shift work, is increasingly recognized as a critical factor impairing wound healing. Although melatonin is known to regulate circadian rhythms and has potential in wound repair, its clinical application is limited by low bioavailability. To address these challenges, we developed an alginate-based dual-network hydrogel as a delivery system for melatonin, ensuring its stable and sustained release at the wound site. This approach enhances the efficacy of melatonin in modulating the wound healing process. We investigated the effects of circadian rhythm disruption on the wound microenvironment under the influence of the melatonin-loaded hydrogel with a focus on its biocompatibility, hemostatic properties, and antioxidant response functions. Additionally, we elucidated the mechanisms by which the melatonin-loaded hydrogel system promotes wound healing. Our findings provide insights into the relationship between circadian rhythm disruption and wound healing, offering a promising strategy for the management of chronic wounds associated with circadian rhythm disorders.
Collapse
Affiliation(s)
- Shujie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Shiwen Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Linlin Ou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Hongjian Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Lu Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Bingyu Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Zeyu Bai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Wei Seong Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Faculty of Dentistry, National University of Singapore, Singapore 119228, Singapore
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| |
Collapse
|
4
|
Yang B, Liang H, Xu J, Liu Y, Ma S, Li Y, Wang C. Multi-drug sequential release systems: Construction and application for synergistic tumor treatment. Int J Pharm 2025; 670:125156. [PMID: 39746586 DOI: 10.1016/j.ijpharm.2024.125156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
In tumor treatment, the sequence and timing of drug action have a large influence on therapeutic efficacy. Multi-drug sequential release systems (MDSRS) enable the sequential and/or on-demand release of multiple drugs following the single administration of a therapeutic agent. Several researchers have explored MDSRS, providing fresh strategies for synergistic cancer therapy. This review article first introduces the main characteristics of MDSRS. It then elaborates on the design principles of MDSRS. Subsequently, it summarizes the various structures of carriers used for constructing MDSRS, including core-shell structure, Layer-by-layer structure, Janus structure and hydrogel. Next, through specific examples, the article emphasizes the application of MDSRS in cancer treatment, focusing on their role in remodeling the tumor microenvironment (TME) and enhancing therapeutic effects through multiple mechanisms. Finally, the article discusses the current limitations and challenges of these systems and proposes potential future solutions. Overall, this review underscores the importance of the sequence and timing of drug therapy in cancer treatment, providing valuable theoretical and technical guidance for pharmaceutical research.
Collapse
Affiliation(s)
- Boyuan Yang
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Huijuan Liang
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Jiahao Xu
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Yanchi Liu
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Sha Ma
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Yuqiu Li
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, China.
| |
Collapse
|
5
|
Zhang K, Zhu J, Sun W, Zhang Y, Li W, Wang Y, Zhou C, He Y, Qin J. Antibacterial betaine modified chitosan-based hydrogel with angiogenic property for photothermal enhanced diabetic wound repairing. Carbohydr Polym 2025; 349:123033. [PMID: 39638511 DOI: 10.1016/j.carbpol.2024.123033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/03/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
Chronic diabetes wound repairing is still a huge challenge in clinical practice. High concentration of reactive oxygen species and vascular disfunction are the main factors hindering the recovery of diabetes wounds. This research grafted betaine onto chitosan (CSBT) to enhance the antibacterial property and the CSBT was cross-linked with PEO90 dialdehyde (PEO DA) to prepare hydrogel with Ca2+ loading to promote the coagulation. The polydopamine nanoparticles (PDA NPs) with photothermal property and antioxidant property was composited to the hydrogel and deferoxamine (DFO) was loaded to fabricate the multifunctional CBPCa/PDA/DFO hydrogel to promote vascular regeneration in combination with photothermal antibacterial performance for the diabetes wounds treatment. The CBPCa/PDA/DFO hydrogel showed good mechanical strength, injectability, anti-inflammatory property and coagulation performance. Furthermore, the antibacterial effect of chitosan based hydrogel was enhanced with near infrared (NIR) stimulated photothermal treatment. Combined with the photothermal effect and the angiogenic drug DFO release, the CBPCa/PDA/DFO hydrogel significantly enhanced vascular regeneration and reduced the inflammation in the in vivo wound repairing experiment. As a result, the CBPCa/PDA/DFO hydrogel may provide a promising therapeutic platform for diabetic trauma repairing.
Collapse
Affiliation(s)
- Kaiyue Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jingjing Zhu
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Weichen Sun
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yu Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Wenjuan Li
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding, Hebei Province, China.
| | - Yong Wang
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding, Hebei Province, China.
| | - Chengyan Zhou
- College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei Province 071002, China
| | - Yingna He
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding, Hebei Province, China.
| |
Collapse
|
6
|
Maghsoudian S, Sajjadi E, Hadavi N, Soltani M, Karami Z, Abed Hamadi Al Qushawi A, Akrami M, Kalantari F. Biomedical applications of peptide-gold nanoarchitectonics. Int J Pharm 2024; 667:124920. [PMID: 39515674 DOI: 10.1016/j.ijpharm.2024.124920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Gold nanoparticles (AuNPs) have become a focus of interest in biomedicine due to their unique properties. By attaching peptides to these nanoparticles (NPs), they can be utilized for a wide range of applications. Peptides, which are short chains of amino acids, can be customized for specific molecular interactions, making them ideal for delivering AuNPs to particular cells or tissues. One of the peptide-AuNP-based bio-nano technological approaches involves targeted drug delivery. Including peptides as targeting agents, these NPs can be designed to bind to specific cell receptors or biomarkers. This allows for the direct delivery of therapeutic agents to diseased cells while minimizing unwanted side effects, improving the effectiveness of treatments. Additionally, peptide-functionalized AuNPs (PAuNPs) are crucial for imaging and diagnostics. By functionalizing the NPs with peptides that bind to specific molecular targets, such as cancer biomarkers, these NPs can be used to visualize diseased tissues. This enables the early detection of diseases and helps in determining the severity of conditions for better diagnosis and treatment outcomes. Moreover, PAuNPs have displayed promising potential in photothermal therapy. Once PAuNPs uptake and penetrate target cancer cells effectively, these NPs generate heat when exposed to specific wavelengths of light, efficiently eliminating tumors while preserving healthy surrounding tissues. Therefore, in this paper, we systematically review the potential of PAuNPs in various biomedical applications, including therapy and diagnosis, providing a future perspective.
Collapse
Affiliation(s)
- Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmat Sajjadi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Hadavi
- Institute of Biomaterials, Tehran University and Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Mobina Soltani
- Institute of Biomaterials, Tehran University and Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Zahra Karami
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farid Kalantari
- SIE Department, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Hao ZW, Zhang ZY, Wang ZP, Wang Y, Chen JY, Chen TH, Shi G, Li HK, Wang JW, Dong MC, Hong L, Li JF. Bioactive peptides and proteins for tissue repair: microenvironment modulation, rational delivery, and clinical potential. Mil Med Res 2024; 11:75. [PMID: 39639374 PMCID: PMC11619216 DOI: 10.1186/s40779-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Bioactive peptides and proteins (BAPPs) are promising therapeutic agents for tissue repair with considerable advantages, including multifunctionality, specificity, biocompatibility, and biodegradability. However, the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation, adversely affect their therapeutic efficacy and clinical applications. Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation. This review initially focuses on the mechanisms through which BAPPs influence the microenvironment for tissue repair via reactive oxygen species, blood and lymphatic vessels, immune cells, and repair cells. Then, a variety of delivery platforms, including scaffolds and hydrogels, electrospun fibers, surface coatings, assisted particles, nanotubes, two-dimensional nanomaterials, and nanoparticles engineered cells, are summarized to incorporate BAPPs for effective tissue repair, modification strategies aimed at enhancing loading efficiencies and release kinetics are also reviewed. Additionally, the delivery of BAPPs can be precisely regulated by endogenous stimuli (glucose, reactive oxygen species, enzymes, pH) or exogenous stimuli (ultrasound, heat, light, magnetic field, and electric field) to achieve on-demand release tailored for specific tissue repair needs. Furthermore, this review focuses on the clinical potential of BAPPs in facilitating tissue repair across various types, including bone, cartilage, intervertebral discs, muscle, tendons, periodontal tissues, skin, myocardium, nervous system (encompassing brain, spinal cord, and peripheral nerve), endometrium, as well as ear and ocular tissue. Finally, current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Zhuo-Wen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe-Yuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ze-Pu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jia-Yao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tian-Hong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han-Ke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun-Wu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Min-Chao Dong
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing-Feng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
8
|
Wang W, Li Z, Liu C, Yu H, Sun Y. Application of Drug Delivery System Based on Nanozyme Cascade Technology in Chronic Wound. Adv Healthc Mater 2024; 13:e2402559. [PMID: 39400523 DOI: 10.1002/adhm.202402559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/02/2024] [Indexed: 10/15/2024]
Abstract
Chronic wounds are characterized by long-term inflammation, including diabetic ulcers, traumatic ulcers, etc., which provide an optimal environment for bacterial proliferation. At present, antibiotics are the main clinical treatment method for chronic wound infections. However, the overuse of antibiotics may accelerate the emergence of drug-resistant bacteria, which poses a significant threat to human health. Therefore, there is an urgent need to develop new therapeutic strategies for bacterial infections. Nanozyme-based antimicrobial therapy (NABT) is an emerging antimicrobial strategy with broad-spectrum activity and low drug resistance compared to traditional antibiotics. NABT has shown great potential as an emerging antimicrobial strategy by catalyzing the generation of reactive oxygen species (ROS) with its enzyme-like catalytic properties, producing a powerful bactericidal effect without developing drug resistance. Nanozyme-based cascade antimicrobial technology offers a new approach to infection control, effectively improving antimicrobial efficacy by activating cascades against bacterial cell membranes and intracellular DNA while minimizing potential side effects. However, it is worth noting that this technology is still in the early stages of research. This article comprehensively reviews wound classification, current methods for the treatment of wound infection, different types of nanozymes, the application of nanozyme cascade reaction technology in antimicrobial therapy, and future challenges and prospects.
Collapse
Affiliation(s)
- Wenyu Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Hongli Yu
- Qingdao Women's and Children's Hospital, Qingdao, 266034, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
9
|
Khattak S, Ullah I, Sohail M, Akbar MU, Rauf MA, Ullah S, Shen J, Xu H. Endogenous/exogenous stimuli‐responsive smart hydrogels for diabetic wound healing. AGGREGATE 2024. [DOI: 10.1002/agt2.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractDiabetes significantly impairs the body's wound‐healing capabilities, leading to chronic, infection‐prone wounds. These wounds are characterized by hyperglycemia, inflammation, hypoxia, variable pH levels, increased matrix metalloproteinase activity, oxidative stress, and bacterial colonization. These complex conditions complicate effective wound management, prompting the development of advanced diabetic wound care strategies that exploit specific wound characteristics such as acidic pH, high glucose levels, and oxidative stress to trigger controlled drug release, thereby enhancing the therapeutic effects of the dressings. Among the solutions, hydrogels emerge as promising due to their stimuli‐responsive nature, making them highly effective for managing these wounds. The latest advancements in mono/multi‐stimuli‐responsive smart hydrogels showcase their superiority and potential as healthcare materials, as highlighted by relevant case studies. However, traditional wound dressings fall short of meeting the nuanced needs of these wounds, such as adjustable adhesion, easy removal, real‐time wound status monitoring, and dynamic drug release adjustment according to the wound's specific conditions. Responsive hydrogels represent a significant leap forward as advanced dressings proficient in sensing and responding to the wound environment, offering a more targeted approach to diabetic wound treatment. This review highlights recent advancements in smart hydrogels for wound dressing, monitoring, and drug delivery, emphasizing their role in improving diabetic wound healing. It addresses ongoing challenges and future directions, aiming to guide their clinical adoption.
Collapse
Affiliation(s)
- Saadullah Khattak
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Ihsan Ullah
- Zhejiang Engineering Research Center for Tissue Repair Materials Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Mohammad Sohail
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Muhammad Usman Akbar
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou China
| | - Mohd Ahmar Rauf
- Department of Internal Medicine, Heme Oncology Unit, University of Michigan Ann Arbor Michigan USA
| | - Salim Ullah
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry Eye Hospital Wenzhou Medical University Wenzhou China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Hong‐Tao Xu
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| |
Collapse
|
10
|
Zhang X, Guan M, Yi W, Li X, Ding X, He Y, Han W, Wang Z, Tang Q, Liao B, Shen J, Han X, Bai D. Smart Response Biomaterials for Pain Management. Adv Healthc Mater 2024; 13:e2401555. [PMID: 39039990 DOI: 10.1002/adhm.202401555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/12/2024] [Indexed: 07/24/2024]
Abstract
The intricate nature of pain classification and mechanism constantly affects the recovery of diseases and the well-being of patients. Key medical challenges persist in devising effective pain management strategies. Therefore, a comprehensive review of relevant methods and research advancements in pain management is conducted. This overview covers the main categorization of pain and its developmental mechanism, followed by a review of pertinent research and techniques for managing pain. These techniques include commonly prescribed medications, invasive procedures, and noninvasive physical therapy methods used in rehabilitation medicine. Additionally, for the first time, a systematic summary of the utilization of responsive biomaterials in pain management is provided, encompassing their response to physical stimuli such as ultrasound, magnetic fields, electric fields, light, and temperature, as well as changes in the physiological environment like reactive oxygen species (ROS) and pH. Even though the application of responsive biomaterials in pain management remains limited and at a fundamental level, recent years have seen the examination and debate of relevant research findings. These profound discussions aim to provide trends and directions for future research in pain management.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Mengtong Guan
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weiwei Yi
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xinhe Li
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xiaoqian Ding
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Yi He
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Wang Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zijie Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Qiuyu Tang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Bo Liao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jieliang Shen
- Department of Rehabilitation Medicine, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, 402760, P. R. China
| | - Xiaoyu Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
11
|
Tang Y, Qin Z, Yan X, Song Y, Zhang L, Li B, Sun H, Wang G. A Shape-Restorable hierarchical polymer membrane composite system for enhanced antibacterial and antiadhesive efficiency. J Colloid Interface Sci 2024; 672:161-169. [PMID: 38838625 DOI: 10.1016/j.jcis.2024.05.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Intelligent shape memory polymer can be potentially used in manufacturing implantable devices that enables a benign variation of implant dimensions with the external stimuli, thus effectively lowering insertion forces and evading associated risks. However, in surgical implantation, biomaterials-associated infection has imposed a huge burden to healthcare system that urgently requires an efficacious replacement of antibiotic usages. Preventing the initial attachment and harvesting a biocidal function upon native surfaces may be deemed as a preferable strategy to tackle the issues of bacterial infection. Herein, a functionalized polylactic acid (PLA) composite membrane assembled with graphene (GE, a widely used photothermal agent) was fabricated through a blending process and then polydimethylsiloxane utilized as binders to pack hydrophobic SiO2 tightly onto polymer surface (denoted as PLA-GE/SiO2). Such an active platform exhibited a moderate shape-memory performance upon near-infrared (NIR) light stimulation, which was feasible for programmed deformation and shape recovery. Particularly stirring was that PLA-GE/SiO2 exerted a pronounced bacteria-killing effect under NIR illumination, 99.9 % of E. coli and 99.8 % of S. aureus were effectively eradicated in a lean period of 5 min. Furthermore, the obtained composite membrane manifested excellent antiadhesive properties, resulting in a bacteria-repelling efficacy of up to 99 % for both E. coli and S. aureus species. These findings demonstrated the potential value of PLA-GE/SiO2 as a shape-restorable platform in "kill&repel" integration strategy, further expanding its applications for clinical anti-infective treatment.
Collapse
Affiliation(s)
- Yanan Tang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin, 130022, China; Institute of Advanced Electrical Materials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhen Qin
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin, 130022, China
| | - Xianqiang Yan
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin, 130022, China
| | - Yudong Song
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin, 130022, China
| | - Lan Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin, 130022, China
| | - Bingqian Li
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin, 130022, China
| | - Hang Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin, 130022, China.
| | - Guangbin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
12
|
Gao Y, Huo S, Chen C, Du S, Xia R, Liu J, Chen D, Diao Z, Han X, Yin Z. Gold nanorods as biocompatible nano-agents for the enhanced photothermal therapy in skin disorders. J Biomed Res 2024; 39:1-17. [PMID: 39375931 PMCID: PMC11873593 DOI: 10.7555/jbr.38.20240119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Rod-shaped gold nanomaterials, known as gold nanorods (GNRs), may undergo specific surface modification, because of their straightforward surface chemistry. This feature makes them appropriate for use as functional and biocompatible nano-formulations. By optimizing the absorption of longitudinally localized surface plasmon resonance in the near-infrared region, which corresponds to the near-infrared bio-tissue window, GNRs with appropriate modifications may improve the results of photothermal treatment (PTT). In dermatology, potential noninvasive uses of GNRs to enhance wound healing, manage infections, combat cutaneous malignancies, and remodel skin tissues via PTT have attracted research attention in recent years. The review discussed the basic properties of GNRs, such as their shape, size, optical performance, photothermal efficiency, and metabolism. Then, the disadvantages of using these particles in photodynamic therapy are highlighted. Next, biological applications of GNRs-based PTT are explored in detail. Finally, the limitations and future perspectives of this research are addressed, providing a comprehensive perspective on the potential GNRs with PTT.
Collapse
Affiliation(s)
- Yamei Gao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shaohu Huo
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Chao Chen
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Shiyu Du
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Ruiyuan Xia
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Liu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dandan Chen
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ziyue Diao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Han
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Zhiqiang Yin
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
13
|
Liu J, Yu J, Chen H, Zou Y, Wang Y, Zhou C, Tong L, Wang P, Liu T, Liang J, Sun Y, Zhang X, Fan Y. Porous gradient hydrogel promotes skin regeneration by angiogenesis. J Colloid Interface Sci 2024; 671:312-324. [PMID: 38815368 DOI: 10.1016/j.jcis.2024.05.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
The skin has a multilayered structure, and deep-seated injuries are exposed to external microbial invasion and in vivo microenvironmental destabilization. Here, a bilayer bionic skin scaffold (Bilayer SF) was developed based on methacrylated sericin protein to mimic the skin's multilayered structure and corresponding functions. The outer layer (SF@TA), which mimics the epidermal layer, was endowed with the function of resisting external bacterial and microbial invasion using a small pore structure and bio-crosslinking with tannic acid (TA). The inner layer (SF@DA@Gel), which mimics the dermal layer, was used to promote cellular growth using a large pore structure and introducing dopamine (DA) to regulate the wound microenvironment. This Bilayer SF showed good mechanical properties and structural stability, satisfactory antioxidant and promote cell proliferation and migration abilities. In vitro studies confirmed the antimicrobial properties of the outer layer and the pro-angiogenic ability of the inner layer. In vivo animal studies demonstrated that the bilayer scaffolds promoted collagen deposition, neovascularization, and marginal hair follicle formation, which might be a promising new bionic skin scaffold.
Collapse
Affiliation(s)
- Jingyi Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Jingwen Yu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Huiling Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Yaping Zou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Chen Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Lei Tong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Peilei Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Tangjinhai Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
14
|
Sang F, Liu C, Yan J, Su J, Niu S, Wang S, Zhao Y, Dang Q. Polysaccharide- and protein-based hydrogel dressings that enhance wound healing: A review. Int J Biol Macromol 2024; 280:135482. [PMID: 39278437 DOI: 10.1016/j.ijbiomac.2024.135482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Hydrogels can possess desired biochemical and mechanical properties, excellent biocompatibility, satisfactory biodegradability, and biological capabilities that promote skin repair, making them ideal candidates for skin healing dressings. Polysaccharides, such as chitosan, hyaluronic acid and sodium alginate as well as proteins, including gelatin, collagen and fibroin proteins, are biological macromolecules celebrated for their biocompatibility and biodegradability, are at the forefront of innovative hydrogel dressing development. This work first summarizes the skin wound healing process and its influencing factors, and then systematically articulates the multifunctional roles of hydrogels based on biological macromolecules (polysaccharides and proteins) as dressing in addressing bacterial infection, hemorrhage and inflammation during wound healing. Furthermore, this review explores the potential of these hydrogels as vehicles for combination therapy, by incorporating growth factors or stem cells. Finally, the article offers insights into future directions of such hydrogels in wound repair field.
Collapse
Affiliation(s)
- Feng Sang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Jingquan Yan
- National Engineering Technology Research Center for Marine Drugs, Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266003, PR China
| | - Jieyu Su
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Siyu Niu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Shiyun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yan Zhao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
15
|
Pramanik S, Alhomrani M, Alamri AS, Alsanie WF, Nainwal P, Kimothi V, Deepak A, Sargsyan AS. Unveiling the versatility of gelatin methacryloyl hydrogels: a comprehensive journey into biomedical applications. Biomed Mater 2024; 19:042008. [PMID: 38768611 DOI: 10.1088/1748-605x/ad4df7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Gelatin methacryloyl (GelMA) hydrogels have gained significant recognition as versatile biomaterials in the biomedical domain. GelMA hydrogels emulate vital characteristics of the innate extracellular matrix by integrating cell-adhering and matrix metalloproteinase-responsive peptide motifs. These features enable cellular proliferation and spreading within GelMA-based hydrogel scaffolds. Moreover, GelMA displays flexibility in processing, as it experiences crosslinking when exposed to light irradiation, supporting the development of hydrogels with adjustable mechanical characteristics. The drug delivery landscape has been reshaped by GelMA hydrogels, offering a favorable platform for the controlled and sustained release of therapeutic actives. The tunable physicochemical characteristics of GelMA enable precise modulation of the kinetics of drug release, ensuring optimal therapeutic effectiveness. In tissue engineering, GelMA hydrogels perform an essential role in the design of the scaffold, providing a biomimetic environment conducive to cell adhesion, proliferation, and differentiation. Incorporating GelMA in three-dimensional printing further improves its applicability in drug delivery and developing complicated tissue constructs with spatial precision. Wound healing applications showcase GelMA hydrogels as bioactive dressings, fostering a conducive microenvironment for tissue regeneration. The inherent biocompatibility and tunable mechanical characteristics of GelMA provide its efficiency in the closure of wounds and tissue repair. GelMA hydrogels stand at the forefront of biomedical innovation, offering a versatile platform for addressing diverse challenges in drug delivery, tissue engineering, and wound healing. This review provides a comprehensive overview, fostering an in-depth understanding of GelMA hydrogel's potential impact on progressing biomedical sciences.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University, Dehradun 248001, India
| | - Vishwadeepak Kimothi
- Himalayan Institute of Pharmacy and Research, Rajawala, Dehradun, Uttrakhand, India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Armen S Sargsyan
- Scientific and Production Center 'Armbiotechnology' NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
| |
Collapse
|
16
|
Jia B, Hao T, Chen Y, Deng Y, Qi X, Zhou C, Liu Y, Guo S, Qin J. Mussel-inspired tissue adhesive composite hydrogel with photothermal and antioxidant properties prepared from pectin for burn wound healing. Int J Biol Macromol 2024; 270:132436. [PMID: 38761908 DOI: 10.1016/j.ijbiomac.2024.132436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Biodegradable self-healing hydrogels with antibacterial property attracted growing attentions in biomedication as wound dressings since they can prevent bacterial infection and promote wound healing process. In this research, a biodegradable self-healing hydrogel with ROS scavenging performance and enhanced tissue adhesion was fabricated from dopamine grafted oxidized pectin (OPD) and naphthoate hydrazide terminated PEO (PEO NH). At the same time, Fe3+ ions were incorporated to endow the hydrogel with near-infrared (NIR) triggered photothermal property to obtain antibacterial activity. The composite hydrogel showed good hemostasis performance based on mussel inspired tissue adhesion with biocompatibility well preserved. As expected, the composition of FeCl3 improved conductivity and endowed photothermal property to the hydrogel. The in vivo wound repairing experiment revealed the 808 nm NIR light triggered photothermal behavior of the hydrogel reduced the inflammation response and promoted wound repairing rate. As a result, this composite FeCl3/hydrogel shows great potential to be an excellent wound dressing for the treatment of infection prong wounds with NIR triggers.
Collapse
Affiliation(s)
- Boyang Jia
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Tingting Hao
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yanai Chen
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yawen Deng
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Xingzhong Qi
- Hebei Zhitong Biological Pharmaceutical Co., Ltd., Baoding 071002, China
| | - Chengyan Zhou
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yanfang Liu
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
17
|
Duan Y, Jiang F, Li Q, McDowell A, Li Y, Wang Y, Liu S, Zhang C, Pan X. Multifunctional polysaccharide/metal/polyphenol double-crosslinked hydrogel for infected wound. Carbohydr Polym 2024; 332:121912. [PMID: 38431415 DOI: 10.1016/j.carbpol.2024.121912] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Bacterial-infected wounds present a significant challenge in the medical field, posing a severe threat to public health. Traditional wound dressings have limited efficacy in treating bacterial-infected wounds, and antibiotics suffer from cytotoxicity and drug resistance. Consequently, an urgent requirement exists for developing multifunctional wound dressings capable of providing superior antimicrobial activity and expediting wound repair. In recent years, chitosan-based natural polysaccharide hydrogels have garnered attention for their biocompatibility, antimicrobial properties, and ability to aid in hemostasis. This study presents the development of a multi-functional, bi-dynamic network hydrogel for the treatment of wounds infected with bacteria. The hydrogel consists of a backbone of chitosan grafted with chlorogenic acid (CA-ECS), oxidized pullulan polysaccharides (OP), and zinc ions (Zn2+). The CA-ECS/OP/Zn2+ hydrogel displayed strong adhesion, good injectability, and high mechanical strength and was biodegradable and biocompatible. Furthermore, adding Zn2+ and CA enhanced the hydrogel's mechanical properties and antioxidant and antimicrobial activities. In a rat model of full-thickness skin wounds infected with S. aureus, the CA-ECS/OP/Zn2+ hydrogel demonstrated great anti-inflammatory, angiogenic, and folliculogenic properties, resulting in accelerated wound healing. The CA-ECS/OP/Zn2+ hydrogel has great potential for treating bacterial-infected wounds.
Collapse
Affiliation(s)
- Yun Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Fuchen Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Qing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Yingxi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ying Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Shuang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Xiaoli Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
18
|
Xue Y, Lai X, Wang L, Shi H, Liu G, Liu X, Chen X. A stimuli-responsive hydrogel for reversible information storage, encryption and decryption. J Colloid Interface Sci 2024; 662:231-241. [PMID: 38350346 DOI: 10.1016/j.jcis.2024.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Smart hydrogel materials, known for their sensitivity to external stimuli, exhibit a reversible dynamic response and find applications in diverse fields, particularly in information storage. Despite significant efforts in this domain, developing a hydrogel with high-resolution, repeatable recording, and robust information encryption/decryption capabilities still remains a challenge. In this study, we synthesized a polymer hydrogel, namely polyvinyl alcohol-n-isopropylacrylamide-octadecyl polyoxyethylene ether acrylate hydrogel (PPNS), which features multiple hydrogen bonds through copolymerization, by using N-isopropylacrylamide, polyvinyl alcohol, and octadecyl polyoxyethylene ether acrylate (SGA15) as raw materials. The PPNS hydrogel demonstrated outstanding high-resolution, repeatable recording capabilities, enabling reversible recording, encryption, and decryption of information using anhydrous ethanol as the inducer. Varying the SGA15 monomer concentration revealed that the PPNS-2% hydrogel, prepared with 2% SGA15, outperformed the other hydrogels in terms of information recording and encryption/decryption when immersed in anhydrous ethanol and deionized water. Furthermore, the PPNS-2% hydrogel exhibited the ability to undergo multiple information cycles while maintaining excellent mechanical properties even after 25 cycles. Notably, ethanol served as a specialized ink for inscribing different patterns on the hydrogel surface for information recording. The recorded information could be erased through water wiping or ethanol volatilization, enabling reversible information recording, encryption, and decryption. Due to their responsive and dynamic nature of PPNS hydrogels are positions them as promising candidates for use as innovative information storage platforms.
Collapse
Affiliation(s)
- Yuyu Xue
- Key Laboratory of Auxiliary Chemistry &Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science &Technology, Weiyang district, Xi'an 710021, PR China
| | - Xiaojuan Lai
- Key Laboratory of Auxiliary Chemistry &Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science &Technology, Weiyang district, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Weiyang district, Xi'an 710021, PR China.
| | - Lei Wang
- Key Laboratory of Auxiliary Chemistry &Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science &Technology, Weiyang district, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Weiyang district, Xi'an 710021, PR China.
| | - Huaqiang Shi
- Research Institute of Oil & Gas Technology, Changqing Oilfield Branch Company, Xi'an 710021, PR China
| | - Guiru Liu
- Key Laboratory of Auxiliary Chemistry &Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science &Technology, Weiyang district, Xi'an 710021, PR China
| | - Xuan Liu
- Key Laboratory of Auxiliary Chemistry &Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science &Technology, Weiyang district, Xi'an 710021, PR China
| | - XiangLi Chen
- Key Laboratory of Auxiliary Chemistry &Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science &Technology, Weiyang district, Xi'an 710021, PR China
| |
Collapse
|
19
|
Yang AL, Sun SB, Qu LY, Li XY, Liu JL, Zhou F, Xu YJ. Polysaccharide hydrogel containing silver nanoparticle@catechol microspheres with photothermal, antibacterial and anti-inflammatory activities for infected-wounds repair. Int J Biol Macromol 2024; 265:130898. [PMID: 38508556 DOI: 10.1016/j.ijbiomac.2024.130898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Anti-infection hydrogels have recently aroused enormous attraction, particularly in the treatment of chronic wounds. Herein, silver nanoparticle@catechol formaldehyde resin microspheres (Ag@CFRs) were fabricated by one-step hydrothermal method and subsequently encapsulated in hydrogels which were developed by Schiff base reaction between aldehyde groups in oxidized hyaluronic acid and amino groups in carboxymethyl chitosan. The developed polysaccharide hydrogel exhibited microporous structure, high swelling capacity, favorable mechanical strength, enhanced tissue adhesion and photothermal activities. Additionally, the hydrogel not only ensured long-term and high-efficiency antibacterial performance (99.9 %) toward E. coli and S. aureus, but also realized superior cytocompatibility in vitro. Moreover, based on the triple antibacterial strategies endowed by chitosan, silver nanoparticles and the photothermal properties of catechol microspheres, the composite hydrogel exhibited excellent anti-infection function, significantly downregulated inflammatory factors (TNF-α and IL-1β) and promoted in vivo infected-wound healing. These results demonstrated that the polysaccharide hydrogel containing Ag@CFRs has great potential for infected-wounds repair.
Collapse
Affiliation(s)
- An-Le Yang
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Shi-Bin Sun
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Lian-Yi Qu
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Xue-Yan Li
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Jiang-Long Liu
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Fang Zhou
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Ying-Jun Xu
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
20
|
Alishahi M, Aboelkheir M, Chowdhury R, Altier C, Shen H, Uyar T. Functionalization of cotton nonwoven with cyclodextrin/lawsone inclusion complex nanofibrous coating for antibacterial wound dressing. Int J Pharm 2024; 652:123815. [PMID: 38242260 DOI: 10.1016/j.ijpharm.2024.123815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Functionalizing cotton to induce biological activity is a viable approach for developing wound dressing. This study explores the development of cotton-based wound dressing through coating with biologically active nanofibers. Bioactive compounds like lawsone offer dual benefits of wound healing and infection prevention, however, their limited solubility and viability hinder their applications. To address this, Hydroxypropyl-beta-cyclodextrin (HP-β-CD) and Hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) were employed. Inclusion complexations of CD/lawsone were achieved at 2:1 and 4:1 M ratios, followed by the fabrication of CD/lawsone nanofibrous systems via electrospinning. Phase solubility studies indicated a twofold increase in lawsone water-solubility with HP-β-CD. Electrospinning yielded smooth and uniform nanofibers with an average diameter of ∼300-700 nm. The results showed that while specific crystalline peaks of lawsone are apparent in the samples with a 2:1 M ratio, they disappeared in 4:1, indicating complete complexation. The nanofibers exhibited ∼100 % loading efficiency of lawsone and its rapid release upon dissolution. Notably, antibacterial assays demonstrated the complete elimination of Escherichia coli and Staphylococcus aureus colonies. The CD/lawsone nanofibers also showed suitable antioxidant activity ranging from 50 % to 70 %. This integrated approach effectively enhances lawsone's solubility through CD complexation and offers promise for bilayer cotton-based wound dressings.
Collapse
Affiliation(s)
- Mohsen Alishahi
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States
| | - Mahmoud Aboelkheir
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States
| | - Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | | | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
21
|
Cui Y, Zhang W, Shan J, He J, Niu Q, Zhu C, Wang W, Chen XL, Wang X. Copper Nanodots-Based Hybrid Hydrogels with Multiple Enzyme Activities for Acute and Infected Wound Repair. Adv Healthc Mater 2024; 13:e2302566. [PMID: 37931140 DOI: 10.1002/adhm.202302566] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Effectively controlling bacterial infection, reducing the inflammation and promoting vascular regeneration are all essential strategies for wound repair. Nanozyme technology has potential applications in the treatment of infections because its non-antibiotic dependent, topical and noninvasive nature. In wound management, copper-based nanozymes have emerged as viable alternatives to antibiotics. In this study, an ultrasmall cupric enzyme with high enzymatic activity is synthesized and added to a nontoxic, self-healing, injectable cationic guar gum (CG) hydrogel network. The nanozyme exhibits remarkable antioxidant properties under neutral conditions, effectively scavenging reactive nitrogen and oxygen species (RNOS). Under acidic conditions, Cu NDs have peroxide (POD) enzyme-like activity, which allows them to eliminate hydrogen peroxides and produce free radicals locally. Antibacterial experiments show that they can kill bacteria and remove biofilms. It reveals that low concentrations of Cu ND/CG decrease the expression of the inflammatory factors in cells and tissues, effectively controlling inflammatory responses. Cu ND/CG hydrogels also inhibit HIF-1α and promote VEGF expression in the wound with the ability to promote vascular regeneration. In vivo safety assessments reveal a favorable biosafety profile. Cu ND/CG hydrogels offer a promising solution for treating acute and infected wounds, highlighting the potential of innovative nanomaterials in wound healing.
Collapse
Affiliation(s)
- Yuyu Cui
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Wei Zhang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jia He
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qiang Niu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China
| | - Can Zhu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China
| | - Wenqi Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
- College and Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
22
|
Wang X, Yang Y, Zhao W, Zhu Z, Pei X. Recent advances of hydrogels as smart dressings for diabetic wounds. J Mater Chem B 2024; 12:1126-1148. [PMID: 38205636 DOI: 10.1039/d3tb02355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Chronic diabetic wounds have been an urgent clinical problem, and wound dressings play an important role in their management. Due to the design of traditional dressings, it is difficult to achieve adaptive adhesion and on-demand removal of complex diabetic wounds, real-time monitoring of wound status, and dynamic adjustment of drug release behavior according to the wound microenvironment. Smart hydrogels, as smart dressings, can respond to environmental stimuli and achieve more precise local treatment. Here, we review the latest progress of smart hydrogels in wound bandaging, dynamic monitoring, and drug delivery for treatment of diabetic wounds. It is worth noting that we have summarized the most important properties of smart hydrogels for diabetic wound healing. In addition, we discuss the unresolved challenges and future prospects in this field. We hope that this review will contribute to furthering progress on smart hydrogels as improved dressing for diabetic wound healing and practical clinical application.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, The State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
23
|
Nqoro X, Taziwa R. Polymer-Based Functional Materials Loaded with Metal-Based Nanoparticles as Potential Scaffolds for the Management of Infected Wounds. Pharmaceutics 2024; 16:155. [PMID: 38399218 PMCID: PMC10892860 DOI: 10.3390/pharmaceutics16020155] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Wound infection due to bacterial invasion at the wound site is one of the primary challenges associated with delayed wound healing. Microorganisms tend to form biofilms that protect them from harm, leading to their multidrug resistance. The alarming increase in antibiotic resistance poses a threat to wound healing. Hence, the urgent need for novel wound dressing materials capable of managing bacterial infection is crucial for expediting wound recovery. There is considerable interest in polymeric wound dressings embedded with bioactive substances, such as metal-based nanoparticles, as potential solutions for treating microbially infected wounds. Metal-based nanoparticles have been widely used for the management of infected wounds due to their broad antimicrobial efficacy. This review focuses on polymer-based and bioactive wound dressings loaded with metal-based nanoparticles like silver, gold, magnesium oxide, or zinc oxide. When compared, zinc oxide-loaded dressings exhibited higher antibacterial activity against Gram-positive strains and silver nanoparticle-loaded dressings against gram-negative strains. However, wound dressings infused with both nanoparticles displayed a synergistic effect against both strains of bacteria. Furthermore, these dressings displayed antibiofilm activity and the generation of reactive oxygen species while accelerating wound closure both in vitro and in vivo.
Collapse
Affiliation(s)
- Xhamla Nqoro
- Department of Applied Science, Faculty of Natural Sciences, Walter Sisulu University, Old King William’s Town Road, Potsdam Site, East London 5200, South Africa;
| | | |
Collapse
|
24
|
Shen L, Hu J, Yuan Y, Wang X, Jiang Q. Photothermal-promoted multi-functional gallic acid grafted chitosan hydrogel containing tannic acid miniaturized particles for peri-implantitis. Int J Biol Macromol 2023; 253:127366. [PMID: 37827419 DOI: 10.1016/j.ijbiomac.2023.127366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Peri-implantitis, a leading cause of implant failure, currently lacks effective therapeutic strategies. Given that bacterial infection and reactive oxygen species overabundance serve as primary pathogenic and triggering factors, respectively, an adhesive hydrogel has been created for in-situ injection. The hydrogel is a gallic acid-grafted chitosan (CS-GA) hydrogel containing tannic acid miniaturized particles (TAMP). This provides antibacterial and antioxidant properties. Therefore, this study aims to evaluate the potential role of this hydrogel in preventing and treating peri-implantitis via several experiments. It undergoes rapid formation within a span of over 20 s via an oxidative crosslinking reaction catalyzed by horseradish peroxidase and hydrogen peroxide, demonstrating robust adhesion, superior cell compatibility, and a sealing effect. Furthermore, the incorporation of TAMP offer photothermal properties to the hydrogel, enabling it to enhance the viability, migration, and antioxidant activity of co-cultured human gingival fibroblasts when subjected 0.5 W/cm2 808 nm near-infrared (NIR) irradiation. At higher irradiation power, the hydrogel exhibits progressive improvements in its antibacterial efficacy against Porphyromonas gingivalis and Fusobacterium nucleatum. It attains rates of 83.11 ± 5.42 % and 83.48 ± 6.855 %, respectively, under 1 W/cm2 NIR irradiation. In summary, the NIR-controlled CS-GA/TAMP hydrogel, exhibiting antibacterial and antioxidant properties, represents a promising approach for the prophylaxis and management of peri-implantitis.
Collapse
Affiliation(s)
- Lipei Shen
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jiangqi Hu
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yafei Yuan
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Xiaoyu Wang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
25
|
Li S, Zhang Y, Jin H, Gao H, Liu S, Shi W, Sun W, Liu Y, Zhang H. Biomimetic dual-nanozymes with catalytic cascade reactions against diabetic wound infection. J Colloid Interface Sci 2023; 651:319-333. [PMID: 37544221 DOI: 10.1016/j.jcis.2023.07.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Diabetes-related chronic wounds characterized by hyperglycemia and weak alkaline milieu provide numerous advantages for bacteria growth and biofilm formation, setting a myriad of stumbling blocks for wound healing. Therefore, reshaping the spatially and temporally pathological wound microenvironment against bacterial infection is critical to rescue stalled healing progress in diabetes-related chronic wounds. Herein, we demonstrate on the room-temperature construction of a glucose oxidase (GOx)-mimicking and peroxidase (POD)-mimicking dual-nanozymes catalytic cascade system upon the partial reduction of Fe3+ to Fe2+ and the deposition of Au nanoparticles, simultaneously. The as-prepared dual-nanozymes catalytic cascade system possesses the capabilities of reshaping the pathological microenvironments of diabetic wound via glucose consumption and acidification, leading to amplified catalytic cascade activities for sterilization. On the one hand, the GOx-mimicking enzymatic activity of the catalytic cascade system can not only deplete glucose and acidize wound milieu to inhibit bacteria growth, but also utilize the weak alkaline milieu of diabetic wound to provide sufficient H2O2 and a favorable pH for subsequent OH generation. On the other hand, the POD-mimicking enzymatic activity of the catalytic cascade system can continuously produce OH for sterilization under the weak acidic milieu in the presence of abundant H2O2. Benefiting from the simply and mild preparation process and the excellent dual-nanozymes catalytic cascade activities under the deliberate evolved milieus of diabetes-related chronic wounds, our catalytic cascade system exhibits the promising healing effect and clinical translation potential against diabetic wound infection.
Collapse
Affiliation(s)
- Siyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Hao Jin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Hang Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Shuwei Liu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Wanrui Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Wei Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China; Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
26
|
Qian Y, Lu S, Meng J, Chen W, Li J. Thermo-Responsive Hydrogels Coupled with Photothermal Agents for Biomedical Applications. Macromol Biosci 2023; 23:e2300214. [PMID: 37526220 DOI: 10.1002/mabi.202300214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/04/2023] [Indexed: 08/02/2023]
Abstract
Intelligent hydrogels are materials with abilities to change their chemical nature or physical structure in response to external stimuli showing promising potential in multitudinous applications. Especially, photo-thermo coupled responsive hydrogels that are prepared by encapsulating photothermal agents into thermo-responsive hydrogel matrix exhibit more attractive advantages in biomedical applications owing to their spatiotemporal control and precise therapy. This work summarizes the latest progress of the photo-thermo coupled responsive hydrogel in biomedical applications. Three major elements of the photo-thermo coupled responsive hydrogel, i.e., thermo-responsive hydrogel matrix, photothermal agents, and construction methods are introduced. Furthermore, the recent developments of these hydrogels for biomedical applications are described with some selected examples. Finally, the challenges and future perspectives for photo-thermo coupled responsive hydrogels are outlined.
Collapse
Affiliation(s)
- Yafei Qian
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| | - Sha Lu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| | - Jianqiang Meng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| | - Juan Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| |
Collapse
|
27
|
Tehrany PM, Rahmanian P, Rezaee A, Ranjbarpazuki G, Sohrabi Fard F, Asadollah Salmanpour Y, Zandieh MA, Ranjbarpazuki A, Asghari S, Javani N, Nabavi N, Aref AR, Hashemi M, Rashidi M, Taheriazam A, Motahari A, Hushmandi K. Multifunctional and theranostic hydrogels for wound healing acceleration: An emphasis on diabetic-related chronic wounds. ENVIRONMENTAL RESEARCH 2023; 238:117087. [PMID: 37716390 DOI: 10.1016/j.envres.2023.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.
Collapse
Affiliation(s)
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabi Fard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajedeh Asghari
- Faculty of Veterinary Medicine, Islamic Azad University, Babol Branch, Babol, Iran
| | - Nazanin Javani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alireza Motahari
- Board-Certified in Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
28
|
Li W, Wu S, Ren L, Feng B, Chen Z, Li Z, Cheng B, Xia J. Development of an Antiswelling Hydrogel System Incorporating M2-Exosomes and Photothermal Effect for Diabetic Wound Healing. ACS NANO 2023; 17:22106-22120. [PMID: 37902250 DOI: 10.1021/acsnano.3c09220] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Diabetic wounds represent a persistent global health challenge with a substantial impact on patients' health and overall well-being. Herein, a hydrogel system that integrates functionalized gold nanorods (AuNRs) and M2 macrophage-derived exosomes (M2-Exos) was developed to achieve an efficient and synergistic therapy for diabetic wounds. We introduced an ion-cross-linked dissipative network into a prefabricated covalent cross-linked network (long-chain polymer network), which was prepared using AuNRs as a specific cross-linker. The ion network was then cross-linked with the long-chain polymer in situ to form a specific network structure, imparting antiswelling and photothermal effects to the hydrogel. This integrated hydrogel system effectively scavenged reactive oxygen species levels, inhibited inflammation, promoted angiogenesis, and stimulated photothermal antibacterial activity through near-infrared (NIR) irradiation. To demonstrate the potential of the hydrogel, we established experimental animal models of oral mucosa ulceration and full-thickness skin defects. In vivo results confirmed that M2-Exos released from the hydrogels played a crucial role in wound closure. Furthermore, the synergistic effect of AuNRs and NIR photothermal effects eradicated bacterial infections in the wound area. Overall, our integrated hydrogel system is a promising tool for accelerating chronic diabetic wound healing and tissue regeneration. This study highlights the potential benefits of combining bioactive M2-Exos and the photothermal effect of AuNRs into an antiswelling hydrogel platform to achieve satisfactory wound healing in patients with diabetes.
Collapse
Affiliation(s)
- Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| | - Shujie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| | - Lin Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| | - Bingyu Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| | - Zhipei Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| | - Zongtai Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| |
Collapse
|
29
|
He L, Di D, Chu X, Liu X, Wang Z, Lu J, Wang S, Zhao Q. Photothermal antibacterial materials to promote wound healing. J Control Release 2023; 363:180-200. [PMID: 37739014 DOI: 10.1016/j.jconrel.2023.09.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Wound healing is a crucial process that restores the integrity and function of the skin and other tissues after injury. However, external factors, such as infection and inflammation, can impair wound healing and cause severe tissue damage. Therefore, developing new drugs or methods to promote wound healing is of great significance. Photothermal therapy (PTT) is a promising technique that uses photothermal agents (PTAs) to convert near-infrared radiation into heat, which can eliminate bacteria and stimulate tissue regeneration. PTT has the advantages of high efficiency, controllability, and low drug resistance. Hence, nanomaterial-based PTT and its related strategies have been widely explored for wound healing applications. However, a comprehensive review of PTT-related strategies for wound healing is still lacking. In this review, we introduce the physiological mechanisms and influencing factors of wound healing, and summarize the types of PTAs commonly used for wound healing. Then, we discuss the strategies for designing nanocomposites for multimodal combination treatment of wounds. Moreover, we review methods to improve the therapeutic efficacy of PTT for wound healing, such as selecting the appropriate wound dressing form, controlling drug release, and changing the infrared irradiation window. Finally, we address the challenges of PTT in wound healing and suggest future directions.
Collapse
Affiliation(s)
- Luning He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Donghua Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinhui Chu
- Wuya College of innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinlin Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
30
|
Alshangiti DM, Ghobashy MM, Alqahtani HA, El-Damhougy TK, Madani M. The energetic and physical concept of gold nanorod-dependent fluorescence in cancer treatment and development of new photonic compounds|review. RSC Adv 2023; 13:32223-32265. [PMID: 37928851 PMCID: PMC10620648 DOI: 10.1039/d3ra05487j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
The optical features of gold nanorods (GNR) may be precisely controlled by manipulating their size, shape, and aspect ratio. This review explores the impact of these parameters on the optical tuning of (GNR). By altering the experimental conditions, like the addition of silver ions during the seed-mediated growth process, the aspect ratio of (GNR) may be regulated. The shape is trans from spherical to rod-like structures resulting in noticeable changes in the nanoparticles surface plasmons resonance (SPR) bands. The longitudinal SPR band, associated with electron oscillations along the long axis, exhibits a pronounced red shift into the (NIR) region as the aspect ratio increases. In contrast, the transverse SPR band remains relate unchanged. Using computational methods like the discrete dipole approximation (DDA) allows for analyzing absorption, scattering, and total extinction features of gold (G) nanoparticles. Studies have shown that increasing the aspect ratio enhances the scattering efficiency, indicating a higher scattering quantum yield (QY). These findings highlight the importance of size, shape, and aspect ratio in controlling the optical features of (GNR) providing valuable insights for various uses in nanophotonics and plasmonic-dependent fluorescence in cancer treatment and developing new photonic compound NRs.
Collapse
Affiliation(s)
- Dalal Mohamed Alshangiti
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority P.O. Box 29, Nasr City Cairo Egypt
| | - Haifa A Alqahtani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Tasneam K El-Damhougy
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University P.O. Box 11754, Yousef Abbas Str., Nasr City Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| |
Collapse
|
31
|
Tan M, Zeng J, Zhang FZ, Zhang YT, Li H, Fan ST, Wang JX, Yuan M, Li BJ, Zhang S. Double-Layer Hydrogel with Glucose-Activated Two-Stage ROS Regulating Properties for Programmed Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37889121 DOI: 10.1021/acsami.3c10607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Slow healing of wounds induces great pain in diabetic patients. However, developing new approaches to promote diabetic wound healing is still one of the toughest challenges in the medical field. Here, we constructed a new double-layer hydrogel to effectively regulate reactive oxygen species (ROS) on the wound and promote diabetic wound healing. The inner layer contains glucose oxidase (Gox), ferrocene-modified quaternary ammonium chitosan (Fc-QCs), and poly(β-cyclodextrin) (Pβ-CD), which is used to generate hydroxyl radicals (•OH) for antibacterial in the early stage of wound healing and collapses gradually. The outer layer is composed of gelatin and dopamine. In the later stage of wound healing, the outer layer contacts the skin, which is beneficial for ROS clearance on the wound. Antibacterial, ROS scavenging, and wound healing experiments have shown that the double-layer hydrogel possesses two-stage ROS regulating properties for programmed diabetic wound healing. In conclusion, it will be one of the most potential dressings for treating diabetic wounds in the future.
Collapse
Affiliation(s)
- Min Tan
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zeng
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu-Zhong Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye-Tao Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongli Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| | - Shu-Ting Fan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Jia-Xin Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Minglong Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| | - Bang-Jing Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| |
Collapse
|
32
|
Hao M, Wang D, Duan M, Kan S, Li S, Wu H, Xiang J, Liu W. Functional drug-delivery hydrogels for oral and maxillofacial wound healing. Front Bioeng Biotechnol 2023; 11:1241660. [PMID: 37600316 PMCID: PMC10434880 DOI: 10.3389/fbioe.2023.1241660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The repair process for oral and maxillofacial injuries involves hemostasis, inflammation, proliferation, and remodeling. Injury repair involves a variety of cells, including platelets, immune cells, fibroblasts, and various cytokines. Rapid and adequate healing of oral and maxillofacial trauma is a major concern to patients. Functional drug-delivery hydrogels play an active role in promoting wound healing and have shown unique advantages in wound dressings. Functional hydrogels promote wound healing through their adhesive, anti-inflammatory, antioxidant, antibacterial, hemostatic, angiogenic, and re-epithelialization-promoting properties, effectively sealing wounds and reducing inflammation. In addition, functional hydrogels can respond to changes in temperature, light, magnetic fields, pH, and reactive oxygen species to release drugs, enabling precise treatment. Furthermore, hydrogels can deliver various cargos that promote healing, including nucleic acids, cytokines, small-molecule drugs, stem cells, exosomes, and nanomaterials. Therefore, functional drug-delivery hydrogels have a positive impact on the healing of oral and maxillofacial injuries. This review describes the oral mucosal structure and healing process and summarizes the currently available responsive hydrogels used to promote wound healing.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Mengna Duan
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|