1
|
Marques de Souza PR, Keenan CM, Wallace LE, Habibyan YB, Davoli-Ferreira M, Ohland C, Vicentini FA, McCoy KD, Sharkey KA. T cells regulate intestinal motility and shape enteric neuronal responses to intestinal microbiota. Gut Microbes 2025; 17:2442528. [PMID: 39704079 DOI: 10.1080/19490976.2024.2442528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
How the gut microbiota and immune system maintain intestinal homeostasis in concert with the enteric nervous system (ENS) remains incompletely understood. To address this gap, we assessed small intestinal transit, enteric neuronal density, enteric neurogenesis, intestinal microbiota, immune cell populations and cytokines in wildtype and T-cell deficient germ-free mice colonized with specific pathogen-free (SPF) microbiota, conventionally raised SPF and segmented filamentous bacteria (SFB)-monocolonized mice. SPF microbiota increased small intestinal transit in a T cell-dependent manner. SPF microbiota increased neuronal density in the myenteric and submucosal plexuses of the ileum and colon, similar to conventionally raised SPF mice, independently of T cells. SFB increased neuronal density in the ileum in a T cell-dependent manner, but independently of T cells in the colon. SPF microbiota stimulated enteric neurogenesis (Sox2 expression in enteric neurons) in the ileum in a T cell-dependent manner, but in the colon this effect was T cell-independent. T cells regulated nestin expression in the ENS. SPF colonization increased Th17 cells, RORγT+ Treg cells, and IL-1β and IL-17A levels in the ileum and colon. By neutralizing IL-1β and IL-17A, we observed that they control microbiota-mediated enteric neurogenesis but were not involved in the regulation of motility. Together, these findings provide new insights into the microbiota-neuroimmune dialog that regulates intestinal physiology.
Collapse
Affiliation(s)
- Patricia Rodrigues Marques de Souza
- Department of Health Education, Federal University of Sergipe, Aracaju, SE, Brazil
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Laurie E Wallace
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yasaman Bahojb Habibyan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcela Davoli-Ferreira
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christina Ohland
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fernando A Vicentini
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Luo D, Xu R, Jiang L, Zhu Y, Li H, Cao Y, Su Z, Chen Y. Unraveling the protective mechanisms and bioactive components of litchi polysaccharides in intestinal health. Int J Biol Macromol 2025; 310:143383. [PMID: 40268031 DOI: 10.1016/j.ijbiomac.2025.143383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/07/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
In recent years, the rise in intestinal disease has driven the hunt for safer, cost-effective alternatives to traditional, side-effect-laden medications. Litchi polysaccharide (LP), derived from litchi pulp, has emerged as a potential intestinal protector, but its efficacy has not been well-established. Our study have demonstrated LP significantly preserves the integrity of the intestinal barrier in both Caenorhabditis elegans model and antibiotic-exposed mice. Furthermore, LP regulates the gut microbiota, promoting the dominance of beneficial bacteria such as Anaerostipes and Lachnoclostridium in antibiotic-exposed mice and elevating the levels of short-chain fatty acids (SCFAs). LP2-a, a key component making up 11.13 % of LP and with a molecular weight of 72,477 Da, has been isolated and identified as the main active agent. Its molecular structure, featuring galactose and arabinose and possessing a main chain composed of specific sugar units and side chains, is crucial for its protective effects. In C. elegans, LP2-a regulates the expression of intestinal structure-related genes, including up-regulating the expression of act-5 and down-regulating the levels of ajm-1, erm-1, and zoo-1, protecting the integrity of the intestinal barrier. This study provides a theoretical foundation for the potential use of LP, particularly LP2-a, in the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Danxian Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Ruina Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Li Jiang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Yi Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Huangbo Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Zuanxian Su
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China.
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
3
|
Guarner F, Bustos Fernandez L, Cruchet S, Damião A, Maruy Saito A, Riveros Lopez JP, Rodrigues Silva L, Valdovinos Diaz MA. Gut dysbiosis mediates the association between antibiotic exposure and chronic disease. Front Med (Lausanne) 2024; 11:1477882. [PMID: 39568738 PMCID: PMC11576192 DOI: 10.3389/fmed.2024.1477882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Antibiotics are safe, effective drugs and continue to save millions of lives and prevent long-term illness worldwide. A large body of epidemiological, interventional and experimental evidence shows that exposure to antibiotics has long-term negative effects on human health. We reviewed the literature data on the links between antibiotic exposure, gut dysbiosis, and chronic disease (notably with regard to the "developmental origins of health and disease" ("DOHaD") approach). Molecular biology studies show that the systemic administration of antibiotic to infants has a rapid onset but also often a long-lasting impact on the microbial composition of the gut. Along with other environmental factors (e.g., an unhealthy "Western" diet and sedentary behavior), antibiotics induce gut dysbiosis, which can be defined as the disruption of a previously stable, functionally complete microbiota. Gut dysbiosis many harmful long-term effects on health. Associations between early-life exposure to antibiotics have been reported for chronic diseases, including inflammatory bowel disease, celiac disease, some cancers, metabolic diseases (obesity and type 2 diabetes), allergic diseases, autoimmune disorders, atherosclerosis, arthritis, and neurodevelopmental, neurodegenerative and other neurological diseases. In mechanistic terms, gut dysbiosis influences chronic disease through direct effects on mucosal immune and inflammatory pathways, plus a wide array of direct or indirect effects of short-chain fatty acids, the enteric nervous system, peristaltic motility, the production of hormones and neurotransmitters, and the loss of intestinal barrier integrity (notably with leakage of the pro-inflammatory endotoxin lipopolysaccharide into the circulation). To mitigate dysbiosis, the administration of probiotics in patients with chronic disease is often (but not always) associated with positive effects on clinical markers (e.g., disease scores) and biomarkers of inflammation and immune activation. Meta-analyses are complicated by differences in probiotic composition, dose level, and treatment duration, and large, randomized, controlled clinical trials are lacking in many disease areas. In view of the critical importance of deciding whether or not to prescribe antibiotics (especially to children), we suggest that the DOHaD concept can be logically extended to "gastrointestinal origins of health and disease" ("GOHaD") or even "microbiotic origins of health and disease" ("MOHaD").
Collapse
Affiliation(s)
| | - Luis Bustos Fernandez
- Centro Medico Bustos Fernandez, Instituto de Gastroenterologia, Buenos Aires, Argentina
| | - Sylvia Cruchet
- Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Adérson Damião
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Aldo Maruy Saito
- Catedra de Pediatria, Hospital Cayetano Heredia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | |
Collapse
|
4
|
Yang K, He H, Dong W. Gut Microbiota and Neonatal Acute Kidney Injury. Am J Perinatol 2024; 41:1887-1894. [PMID: 38301724 DOI: 10.1055/a-2259-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
OBJECTIVE To characterize the relationship between gut microbiota and neonatal acute kidney injury biomarkers based on the gut-kidney axis. STUDY DESIGN The Pubmed database was primarily searched to include relevant literature on gut microbiota and neonatal acute kidney injury biomarkers, which was subsequently organized and analyzed and a manuscript was written. RESULTS Gut microbiota was associated with neonatal acute kidney injury biomarkers. These biomarkers included TIMP-2, IGFBP-7, VEGF, calbindin, GST, B2MG, ghrelin, and clusterin. CONCLUSION The gut microbiota is strongly associated with neonatal acute kidney injury biomarkers, and controlling the gut microbiota may be a potential target for ameliorating neonatal acute kidney injury. KEY POINTS · There is a bidirectional association between gut microbiota and AKI.. · Gut microbiota is closely associated with biomarkers of nAKI.. · Manipulation of gut microbiota may improve nAKI..
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Hongxia He
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| |
Collapse
|
5
|
Sadder LS, Brown LS, Roblyer L, Sanghavi R, Ortigoza EB. Antibiotic duration and gastric dysmotility in preterm neonates. J Pediatr Gastroenterol Nutr 2024; 79:533-540. [PMID: 38708837 PMCID: PMC11424269 DOI: 10.1002/jpn3.12235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVES Prolonged antibiotic use after birth is associated with neonatal feeding intolerance and functional gastrointestinal disorders (FGIDs). A gastric dysrhythmia (tachygastria) with frequencies >4-9 cycles per minute, measured by electrogastrography (EGG), is associated with FGIDs. The relationship between prolonged antibiotic use and % time spent in tachygastria is unknown in preterm infants. We aimed to compare weekly changes in % tachygastria between preterm infants receiving long (>48 h) versus short (≤48 h) courses of antibiotics for early onset sepsis evaluation (initiated at <3 days of life). METHODS This was a longitudinal, prospective cohort study of 88 preterm infants (<34 weeks' gestation) with weekly EGG recordings from the first week of life until 40 weeks' post-menstrual age, discharge, or death. We calculated % of EGG recording time in tachygastria and determined the mean across weekly sessions. A mixed effects model assessed variance in % tachygastria between the short- and long-antibiotic exposure groups across all weeks. RESULTS Baseline characteristics were similar between the two groups. There was no difference in % tachygastria between short and long antibiotic exposure groups across nine postnatal weeks (p = 0.08). CONCLUSIONS Early, prolonged antibiotic exposure among preterm infants may not lead to significant gastric dysrhythmia. Future studies including larger sample sizes and a "no antibiotic" exposure arm are essential in elucidating this potential relationship.
Collapse
Affiliation(s)
- Liane Samira Sadder
- Division of Pediatric Gastroenterology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Lindsay Roblyer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rinarani Sanghavi
- Division of Pediatric Gastroenterology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Eric Brum Ortigoza
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Llorente C. The Imperative for Innovative Enteric Nervous System-Intestinal Organoid Co-Culture Models: Transforming GI Disease Modeling and Treatment. Cells 2024; 13:820. [PMID: 38786042 PMCID: PMC11119846 DOI: 10.3390/cells13100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
This review addresses the need for innovative co-culture systems integrating the enteric nervous system (ENS) with intestinal organoids. The breakthroughs achieved through these techniques will pave the way for a transformative era in gastrointestinal (GI) disease modeling and treatment strategies. This review serves as an introduction to the companion protocol paper featured in this journal. The protocol outlines the isolation and co-culture of myenteric and submucosal neurons with small intestinal organoids. This review provides an overview of the intestinal organoid culture field to establish a solid foundation for effective protocol application. Remarkably, the ENS surpasses the number of neurons in the spinal cord. Referred to as the "second brain", the ENS orchestrates pivotal roles in GI functions, including motility, blood flow, and secretion. The ENS is organized into myenteric and submucosal plexuses. These plexuses house diverse subtypes of neurons. Due to its proximity to the gut musculature and its cell type complexity, there are methodological intricacies in studying the ENS. Diverse approaches such as primary cell cultures, three-dimensional (3D) neurospheres, and induced ENS cells offer diverse insights into the multifaceted functionality of the ENS. The ENS exhibits dynamic interactions with the intestinal epithelium, the muscle layer, and the immune system, influencing epithelial physiology, motility, immune responses, and the microbiome. Neurotransmitters, including acetylcholine (ACh), serotonin (5-HT), and vasoactive intestinal peptide (VIP), play pivotal roles in these intricate interactions. Understanding these dynamics is imperative, as the ENS is implicated in various diseases, ranging from neuropathies to GI disorders and neurodegenerative diseases. The emergence of organoid technology presents an unprecedented opportunity to study ENS interactions within the complex milieu of the small and large intestines. This manuscript underscores the urgent need for standardized protocols and advanced techniques to unravel the complexities of the ENS and its dynamic relationship with the gut ecosystem. The insights gleaned from such endeavors hold the potential to revolutionize GI disease modeling and treatment paradigms.
Collapse
Affiliation(s)
- Cristina Llorente
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Hung LY, Margolis KG. Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance. Nat Rev Gastroenterol Hepatol 2024; 21:142-163. [PMID: 38114585 DOI: 10.1038/s41575-023-00857-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
Autism spectrum disorders (ASDs) are recognized as central neurodevelopmental disorders diagnosed by impairments in social interactions, communication and repetitive behaviours. The recognition of ASD as a central nervous system (CNS)-mediated neurobehavioural disorder has led most of the research in ASD to be focused on the CNS. However, gastrointestinal function is also likely to be affected owing to the neural mechanistic nature of ASD and the nervous system in the gastrointestinal tract (enteric nervous system). Thus, it is unsurprising that gastrointestinal disorders, particularly constipation, diarrhoea and abdominal pain, are highly comorbid in individuals with ASD. Gastrointestinal problems have also been repeatedly associated with increased severity of the core symptoms diagnostic of ASD and other centrally mediated comorbid conditions, including psychiatric issues, irritability, rigid-compulsive behaviours and aggression. Despite the high prevalence of gastrointestinal dysfunction in ASD and its associated behavioural comorbidities, the specific links between these two conditions have not been clearly delineated, and current data linking ASD to gastrointestinal dysfunction have not been extensively reviewed. This Review outlines the established and emerging clinical and preclinical evidence that emphasizes the gut as a novel mechanistic and potential therapeutic target for individuals with ASD.
Collapse
Affiliation(s)
- Lin Y Hung
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA.
- Department of Cell Biology, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
- Department of Pediatrics, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Bai X, De Palma G, Boschetti E, Nishiharo Y, Lu J, Shimbori C, Costanzini A, Saqib Z, Kraimi N, Sidani S, Hapfelmeier S, Macpherson AJ, Verdu EF, De Giorgio R, Collins SM, Bercik P. Vasoactive Intestinal Polypeptide Plays a Key Role in the Microbial-Neuroimmune Control of Intestinal Motility. Cell Mol Gastroenterol Hepatol 2023; 17:383-398. [PMID: 38061549 PMCID: PMC10825443 DOI: 10.1016/j.jcmgh.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND & AIMS Although chronic diarrhea and constipation are common, the treatment is symptomatic because their pathophysiology is poorly understood. Accumulating evidence suggests that the microbiota modulates gut function, but the underlying mechanisms are unknown. We therefore investigated the pathways by which microbiota modulates gastrointestinal motility in different sections of the alimentary tract. METHODS Gastric emptying, intestinal transit, muscle contractility, acetylcholine release, gene expression, and vasoactive intestinal polypeptide (VIP) immunoreactivity were assessed in wild-type and Myd88-/-Trif-/- mice in germ-free, gnotobiotic, and specific pathogen-free conditions. Effects of transient colonization and antimicrobials as well as immune cell blockade were investigated. VIP levels were assessed in human full-thickness biopsies by Western blot. RESULTS Germ-free mice had similar gastric emptying but slower intestinal transit compared with specific pathogen-free mice or mice monocolonized with Lactobacillus rhamnosus or Escherichia coli, the latter having stronger effects. Although muscle contractility was unaffected, its neural control was modulated by microbiota by up-regulating jejunal VIP, which co-localized with and controlled cholinergic nerve function. This process was responsive to changes in the microbial composition and load and mediated through toll-like receptor signaling, with enteric glia cells playing a key role. Jejunal VIP was lower in patients with chronic intestinal pseudo-obstruction compared with control subjects. CONCLUSIONS Microbial control of gastrointestinal motility is both region- and bacteria-specific; it reacts to environmental changes and is mediated by innate immunity-neural system interactions. By regulating cholinergic nerves, small intestinal VIP plays a key role in this process, thus providing a new therapeutic target for patients with motility disorders.
Collapse
Affiliation(s)
- Xiaopeng Bai
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Elisa Boschetti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Yuichiro Nishiharo
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jun Lu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Chiko Shimbori
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Costanzini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zarwa Saqib
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Narjis Kraimi
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sacha Sidani
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Andrew J Macpherson
- Department of Biomedical Research, University Hospital of Bern, Bern, Switzerland
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
9
|
Schill EM, Joyce EL, Floyd AN, Udayan S, Rusconi B, Gaddipati S, Barrios BE, John V, Kaye ME, Kulkarni DH, Pauta JT, McDonald KG, Newberry RD. Vancomycin-induced gut microbial dysbiosis alters enteric neuron-macrophage interactions during a critical period of postnatal development. Front Immunol 2023; 14:1268909. [PMID: 37901245 PMCID: PMC10602895 DOI: 10.3389/fimmu.2023.1268909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Vancomycin is a broad-spectrum antibiotic widely used in cases of suspected sepsis in premature neonates. While appropriate and potentially lifesaving in this setting, early-life antibiotic exposure alters the developing microbiome and is associated with an increased risk of deadly complications, including late-onset sepsis (LOS) and necrotizing enterocolitis (NEC). Recent studies show that neonatal vancomycin treatment disrupts postnatal enteric nervous system (ENS) development in mouse pups, which is in part dependent upon neuroimmune interactions. This suggests that early-life antibiotic exposure could disrupt these interactions in the neonatal gut. Notably, a subset of tissue-resident intestinal macrophages, muscularis macrophages, has been identified as important contributors to the development of postnatal ENS. We hypothesized that vancomycin-induced neonatal dysbiosis impacts postnatal ENS development through its effects on macrophages. Using a mouse model, we found that exposure to vancomycin in the first 10 days of life, but not in adult mice, resulted in an expansion of pro-inflammatory colonic macrophages by increasing the recruitment of bone-marrow-derived macrophages. Single-cell RNA sequencing of neonatal colonic macrophages revealed that early-life vancomycin exposure was associated with an increase in immature and inflammatory macrophages, consistent with an influx of circulating monocytes differentiating into macrophages. Lineage tracing confirmed that vancomycin significantly increased the non-yolk-sac-derived macrophage population. Consistent with these results, early-life vancomycin exposure did not expand the colonic macrophage population nor decrease enteric neuron density in CCR2-deficient mice. Collectively, these findings demonstrate that early-life vancomycin exposure alters macrophage number and phenotypes in distinct ways compared with vancomycin exposure in adult mice and results in altered ENS development.
Collapse
Affiliation(s)
- Ellen Merrick Schill
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Elisabeth L. Joyce
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexandria N. Floyd
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sreeram Udayan
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brigida Rusconi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Shreya Gaddipati
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Bibiana E. Barrios
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Vini John
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Mitchell E. Kaye
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Devesha H. Kulkarni
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jocelyn T. Pauta
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Keely G. McDonald
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Rodney D. Newberry
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
10
|
Bernabè G, Shalata MEM, Zatta V, Bellato M, Porzionato A, Castagliuolo I, Brun P. Antibiotic Treatment Induces Long-Lasting Effects on Gut Microbiota and the Enteric Nervous System in Mice. Antibiotics (Basel) 2023; 12:1000. [PMID: 37370319 DOI: 10.3390/antibiotics12061000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The side effects of antibiotic treatment directly correlate with intestinal dysbiosis. However, a balanced gut microbiota supports the integrity of the enteric nervous system (ENS), which controls gastrointestinal neuromuscular functions. In this study, we investigated the long-term effects of antibiotic-induced microbial dysbiosis on the ENS and the impact of the spontaneous re-establishment of the gut microbiota on gastrointestinal functions. C57BL/6J mice were treated daily for two weeks with antibiotics. After 0-6 weeks of antibiotics wash-out, we determined (a) gut microbiota composition, (b) gastrointestinal motility, (c) integrity of the ENS, (d) neurochemical code, and (e) inflammation. Two weeks of antibiotic treatment significantly altered gut microbial composition; the genera Clostridium, Lachnoclostridium, and Akkermansia did not regain their relative abundance following six weeks of antibiotic discontinuation. Mice treated with antibiotics experienced delayed gastrointestinal transit and altered expression of neuronal markers. The anomalies of the ENS persisted for up to 4 weeks after the antibiotic interruption; the expression of neuronal HuC/D, glial-derived neurotrophic factor (Gdnf), and nerve growth factor (Ngf) mRNA transcripts did not recover. In this study, we strengthened the idea that antibiotic-induced gastrointestinal dysmotility directly correlates with gut dysbiosis as well as structural and functional damage to the ENS.
Collapse
Affiliation(s)
- Giulia Bernabè
- Department of Molecular Medicine, University of Padova, Via A. Gabelli, 63-35127 Padova, Italy
| | | | - Veronica Zatta
- Department of Molecular Medicine, University of Padova, Via A. Gabelli, 63-35127 Padova, Italy
| | - Massimo Bellato
- Department of Information Engineering, University of Padova, Via G. Gradenigo, 6-35131 Padova, Italy
| | - Andrea Porzionato
- Department of Neuroscience, University of Padova, Via A. Gabelli, 61-35127 Padova, Italy
| | - Ignazio Castagliuolo
- Department of Molecular Medicine, University of Padova, Via A. Gabelli, 63-35127 Padova, Italy
- Microbiology and Virology Unit of Padua University Hospital, School of Medicine, Via Ospedale, 1-35127 Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via A. Gabelli, 63-35127 Padova, Italy
| |
Collapse
|
11
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
12
|
Ganz J, Ratcliffe EM. Who's talking to whom: microbiome-enteric nervous system interactions in early life. Am J Physiol Gastrointest Liver Physiol 2023; 324:G196-G206. [PMID: 36625480 PMCID: PMC9988524 DOI: 10.1152/ajpgi.00166.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
The enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal tract (GI) and regulates important GI functions, including motility, nutrient uptake, and immune response. The development of the ENS begins during early organogenesis and continues to develop once feeding begins, with ongoing plasticity into adulthood. There has been increasing recognition that the intestinal microbiota and ENS interact during critical periods, with implications for normal development and potential disease pathogenesis. In this review, we focus on insights from mouse and zebrafish model systems to compare and contrast how each model can serve in elucidating the bidirectional communication between the ENS and the microbiome. At the end of this review, we further outline implications for human disease and highlight research innovations that can lead the field forward.
Collapse
Affiliation(s)
- Julia Ganz
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, United States
| | | |
Collapse
|
13
|
Schill EM, Floyd AN, Newberry RD. Neonatal development of intestinal neuroimmune interactions. Trends Neurosci 2022; 45:928-941. [PMID: 36404456 PMCID: PMC9683521 DOI: 10.1016/j.tins.2022.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
Interactions between the enteric nervous system (ENS), immune system, and gut microbiota regulate intestinal homeostasis in adults, but their development and role(s) in early life are relatively underexplored. In early life, these interactions are dynamic, because the mucosal immune system, microbiota, and the ENS are developing and influencing each other. Moreover, disrupting gut microbiota and gut immune system development, and potentially ENS development, by early-life antibiotic exposure increases the risk of diseases affecting the gut. Here, we review the development of the ENS and immune/epithelial cells, and identify potential critical periods for their interactions and development. We also highlight knowledge gaps that, when addressed, may help promote intestinal homeostasis, including in the settings of early-life antibiotic exposure.
Collapse
Affiliation(s)
- Ellen Merrick Schill
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Alexandria N Floyd
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rodney D Newberry
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
14
|
Enteric Neuromics: How High-Throughput "Omics" Deepens Our Understanding of Enteric Nervous System Genetic Architecture. Cell Mol Gastroenterol Hepatol 2022; 15:487-504. [PMID: 36368612 PMCID: PMC9792566 DOI: 10.1016/j.jcmgh.2022.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Recent accessibility to specialized high-throughput "omics" technologies including single cell RNA sequencing allows researchers to capture cell type- and subtype-specific expression signatures. These omics methods are used in the enteric nervous system (ENS) to identify potential subtypes of enteric neurons and glia. ENS omics data support the known gene and/or protein expression of functional neuronal and glial cell subtypes and suggest expression patterns of novel subtypes. Gene and protein expression patterns can be further used to infer cellular function and implications in human disease. In this review we discuss how high-throughput "omics" data add additional depth to the understanding of established functional subtypes of ENS cells and raise new questions by suggesting novel ENS cell subtypes with unique gene and protein expression patterns. Then we investigate the changes in these expression patterns during pathology observed by omics research. Although current ENS omics studies provide a plethora of novel data and therefore answers, they equally create new questions and routes for future study.
Collapse
|
15
|
Yip JLK, Balasuriya GK, Spencer SJ, Hill-Yardin EL. Examining enteric nervous system function in rat and mouse: an interspecies comparison of colonic motility. Am J Physiol Gastrointest Liver Physiol 2022; 323:G477-G487. [PMID: 36126271 DOI: 10.1152/ajpgi.00175.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrointestinal motility is crucial to gut health and has been associated with different disorders such as inflammatory bowel diseases and postoperative ileus. Despite rat and mouse being the two animal models most widely used in gastrointestinal research, minimal studies in rats have investigated gastrointestinal motility. Therefore, our study provides a comparison of colonic motility in the mouse and rat to clarify species differences and assess the relative effectiveness of each animal model for colonic motility research. We describe the protocol modifications and optimization undertaken to enable video imaging of colonic motility in the rat. Apart from the broad difference in terms of gastrointestinal diameter and length, we identified differences in the fundamental histology of the proximal colon such that the rat had larger villus height-to-width and villus height-to-crypt depth ratios compared with mouse. Since gut motility is tightly regulated by the enteric nervous system (ENS), we investigated how colonic contractile activity within each rodent species responds to modulation of the ENS inhibitory neuronal network. Here we used Nω-nitro-l-arginine (l-NNA), an inhibitor of nitric oxide synthase (NOS) to assess proximal colon responses to the stimulatory effect of blocking the major inhibitory neurotransmitter, nitric oxide (NO). In rats, the frequency of proximal colonic contractions increased in the presence of l-NNA (vs. control levels) to a greater extent than in mice. This is despite a similar number of NOS-expressing neurons in the myenteric plexus across species. Given this increase in colonic contraction frequency, the rat represents another relevant animal model for investigating how gastrointestinal motility is regulated by the inhibitory neuronal network of the ENS.NEW & NOTEWORTHY Mice and rats are widely used in gastrointestinal research but have fundamental differences that make them important as different models for different questions. We found that mice have a higher villi length-to-width and villi length-to-crypt depth ratio than rat in proximal colon. Using the ex vivo video imaging technique, we observed that rat colon has more prominent response to blockade of major inhibitory neurotransmitter (nitric oxide) in myenteric plexus than mouse colon.
Collapse
Affiliation(s)
- Jackson L K Yip
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Gayathri K Balasuriya
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.,ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, Victoria, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
16
|
Poon SSB, Hung LY, Wu Q, Parathan P, Yalcinkaya N, Haag A, Luna RA, Bornstein JC, Savidge TC, Foong JPP. Neonatal antibiotics have long term sex-dependent effects on the enteric nervous system. J Physiol 2022; 600:4303-4323. [PMID: 36082768 PMCID: PMC9826436 DOI: 10.1113/jp282939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 01/12/2023] Open
Abstract
Infants and young children receive the highest exposures to antibiotics globally. Although there is building evidence that early life exposure to antibiotics increases susceptibility to various diseases including gut disorders later in life, the lasting impact of early life antibiotics on the physiology of the gut and its enteric nervous system (ENS) remains unclear. We treated neonatal mice with the antibiotic vancomycin during their first 10 postnatal days, then examined potential lasting effects of the antibiotic treatment on their colons during young adulthood (6 weeks old). We found that neonatal vancomycin treatment disrupted the gut functions of young adult female and male mice differently. Antibiotic-exposed females had significantly longer whole gut transit while antibiotic-treated males had significantly lower faecal weights compared to controls. Both male and female antibiotic-treated mice had greater percentages of faecal water content. Neonatal vancomycin treatment also had sexually dimorphic impacts on the neurochemistry and Ca2+ activity of young adult myenteric and submucosal neurons. Myenteric neurons of male mice were more disrupted than those of females, while opposing changes in submucosal neurons were seen in each sex. Neonatal vancomycin also induced sustained changes in colonic microbiota and lasting depletion of mucosal serotonin (5-HT) levels. Antibiotic impacts on microbiota and mucosal 5-HT were not sex-dependent, but we propose that the responses of the host to these changes are sex-specific. This first demonstration of long-term impacts of neonatal antibiotics on the ENS, gut microbiota and mucosal 5-HT has important implications for gut function and other physiological systems of the host. KEY POINTS: Early life exposure to antibiotics can increase susceptibility to diseases including functional gastrointestinal (GI) disorders later in life. Yet, the lasting impact of this common therapy on the gut and its enteric nervous system (ENS) remains unclear. We investigated the long-term impact of neonatal antibiotic treatment by treating mice with the antibiotic vancomycin during their neonatal period, then examining their colons during young adulthood. Adolescent female mice given neonatal vancomycin treatment had significantly longer whole gut transit times, while adolescent male and female mice treated with neonatal antibiotics had significantly wetter stools. Effects of neonatal vancomycin treatment on the neurochemistry and Ca2+ activity of myenteric and submucosal neurons were sexually dimorphic. Neonatal vancomycin also had lasting effects on the colonic microbiome and mucosal serotonin biosynthesis that were not sex-dependent. Different male and female responses to antibiotic-induced disruptions of the ENS, microbiota and mucosal serotonin biosynthesis can lead to sex-specific impacts on gut function.
Collapse
Affiliation(s)
- Sabrina S. B. Poon
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Lin Y. Hung
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Qinglong Wu
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Pavitha Parathan
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Nazli Yalcinkaya
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Anthony Haag
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Ruth Ann Luna
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Joel C. Bornstein
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Tor C. Savidge
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Jaime P. P. Foong
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
17
|
Yang L, Hung LY, Zhu Y, Ding S, Margolis KG, Leong KW. Material Engineering in Gut Microbiome and Human Health. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9804014. [PMID: 35958108 PMCID: PMC9343081 DOI: 10.34133/2022/9804014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the past decade regarding our understanding of the gut microbiome's role in human health. Currently, however, a comprehensive and focused review marrying the two distinct fields of gut microbiome and material research is lacking. To bridge the gap, the current paper discusses critical aspects of the rapidly emerging research topic of "material engineering in the gut microbiome and human health." By engaging scientists with diverse backgrounds in biomaterials, gut-microbiome axis, neuroscience, synthetic biology, tissue engineering, and biosensing in a dialogue, our goal is to accelerate the development of research tools for gut microbiome research and the development of therapeutics that target the gut microbiome. For this purpose, state-of-the-art knowledge is presented here on biomaterial technologies that facilitate the study, analysis, and manipulation of the gut microbiome, including intestinal organoids, gut-on-chip models, hydrogels for spatial mapping of gut microbiome compositions, microbiome biosensors, and oral bacteria delivery systems. In addition, a discussion is provided regarding the microbiome-gut-brain axis and the critical roles that biomaterials can play to investigate and regulate the axis. Lastly, perspectives are provided regarding future directions on how to develop and use novel biomaterials in gut microbiome research, as well as essential regulatory rules in clinical translation. In this way, we hope to inspire research into future biomaterial technologies to advance gut microbiome research and gut microbiome-based theragnostics.
Collapse
Affiliation(s)
- Letao Yang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lin Y. Hung
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kara G. Margolis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
18
|
Geng ZH, Zhu Y, Li QL, Zhao C, Zhou PH. Enteric Nervous System: The Bridge Between the Gut Microbiota and Neurological Disorders. Front Aging Neurosci 2022; 14:810483. [PMID: 35517052 PMCID: PMC9063565 DOI: 10.3389/fnagi.2022.810483] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract plays an essential role in food digestion, absorption, and the mucosal immune system; it is also inhabited by a huge range of microbes. The GI tract is densely innervated by a network of 200-600 million neurons that comprise the enteric nervous system (ENS). This system cooperates with intestinal microbes, the intestinal immune system, and endocrine systems; it forms a complex network that is required to maintain a stable intestinal microenvironment. Understanding how gut microbes influence the ENS and central nervous system (CNS) has been a significant research subject over the past decade. Moreover, accumulating evidence from animal and clinical studies has revealed that gut microbiota play important roles in various neurological diseases. However, the causal relationship between microbial changes and neurological disorders currently remains unproven. This review aims to summarize the possible contributions of GI microbiota to the ENS and CNS. It also provides new insights into furthering our current understanding of neurological disorders.
Collapse
Affiliation(s)
- Zi-Han Geng
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Zhu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quan-Lin Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Chao Zhao
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping-Hong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| |
Collapse
|
19
|
Interaction of the Microbiota and the Enteric Nervous System During Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:157-163. [PMID: 36587155 DOI: 10.1007/978-3-031-05843-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The gastrointestinal tract contains the enteric nervous system within its walls and a large community of microbial symbionts (microbiota) in its lumen. In recent years, studies have shown that these two systems that lie adjacent to each other interact. This review will summarize new data using mouse models demonstrating the concurrent development of the enteric nervous system and microbiota during key pre- and postnatal stages. It will also discuss the possible roles that microbiota play on influencing enteric nervous system development and implications of antibiotic exposure during developmental windows.
Collapse
|
20
|
Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Mucosal Immunol 2022; 15:27-39. [PMID: 34471248 PMCID: PMC8732275 DOI: 10.1038/s41385-021-00443-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/04/2023]
Abstract
The enteric nervous system (ENS) of the gastrointestinal (GI) tract interacts with the local immune system bidirectionally. Recent publications have demonstrated that such interactions can maintain normal GI functions during homeostasis and contribute to pathological symptoms during infection and inflammation. Infection can also induce long-term changes of the ENS resulting in the development of post-infectious GI disturbances. In this review, we discuss how the ENS can regulate and be regulated by immune responses and how such interactions control whole tissue physiology. We also address the requirements for the proper regeneration of the ENS and restoration of GI function following the resolution of infection.
Collapse
|
21
|
Vicentini FA, Keenan CM, Wallace LE, Woods C, Cavin JB, Flockton AR, Macklin WB, Belkind-Gerson J, Hirota SA, Sharkey KA. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. MICROBIOME 2021; 9:210. [PMID: 34702353 PMCID: PMC8549243 DOI: 10.1186/s40168-021-01165-z] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/15/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND The intestinal microbiota plays an important role in regulating gastrointestinal (GI) physiology in part through interactions with the enteric nervous system (ENS). Alterations in the gut microbiome frequently occur together with disturbances in enteric neural control in pathophysiological conditions. However, the mechanisms by which the microbiota regulates GI function and the structure of the ENS are incompletely understood. Using a mouse model of antibiotic (Abx)-induced bacterial depletion, we sought to determine the molecular mechanisms of microbial regulation of intestinal function and the integrity of the ENS. Spontaneous reconstitution of the Abx-depleted microbiota was used to assess the plasticity of structure and function of the GI tract and ENS. Microbiota-dependent molecular mechanisms of ENS neuronal survival and neurogenesis were also assessed. RESULTS Adult male and female Abx-treated mice exhibited alterations in GI structure and function, including a longer small intestine, slower transit time, increased carbachol-stimulated ion secretion, and increased intestinal permeability. These alterations were accompanied by the loss of enteric neurons in the ileum and proximal colon in both submucosal and myenteric plexuses. A reduction in the number of enteric glia was only observed in the ileal myenteric plexus. Recovery of the microbiota restored intestinal function and stimulated enteric neurogenesis leading to increases in the number of enteric glia and neurons. Lipopolysaccharide (LPS) supplementation enhanced neuronal survival alongside bacterial depletion, but had no effect on neuronal recovery once the Abx-induced neuronal loss was established. In contrast, short-chain fatty acids (SCFA) were able to restore neuronal numbers after Abx-induced neuronal loss, demonstrating that SCFA stimulate enteric neurogenesis in vivo. CONCLUSIONS Our results demonstrate a role for the gut microbiota in regulating the structure and function of the GI tract in a sex-independent manner. Moreover, the microbiota is essential for the maintenance of ENS integrity, by regulating enteric neuronal survival and promoting neurogenesis. Molecular determinants of the microbiota, LPS and SCFA, regulate enteric neuronal survival, while SCFA also stimulates neurogenesis. Our data reveal new insights into the role of the gut microbiota that could lead to therapeutic developments for the treatment of enteric neuropathies. Video abstract.
Collapse
Affiliation(s)
- Fernando A. Vicentini
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Catherine M. Keenan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Laurie E. Wallace
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Crystal Woods
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045 USA
| | - Jean-Baptiste Cavin
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Amanda R. Flockton
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045 USA
| | - Wendy B. Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Jaime Belkind-Gerson
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045 USA
- Neurogastroenterology and Motility Program, Digestive Health Institute, Children’s Hospital Colorado, Aurora, CO 80045 USA
| | - Simon A. Hirota
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Keith A. Sharkey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
22
|
Wang YJ, Jia QL, Li L, Wang XX, Ling JH. Progress in understanding of relationship between gut microbiota and gastrointestinal motility. Shijie Huaren Xiaohua Zazhi 2021; 29:1020-1025. [DOI: 10.11569/wcjd.v29.i17.1020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal motility disorders are a group of common clinical disorders in which abnormal gastrointestinal motility is the major pathogenesis, including irritable bowel syndrome, functional dyspepsia, and diabetic gastroparesis. With the rapid development of microbial sequencing technology in the past 10 years, the understanding of the gut microbiota has greatly improved, and it is generally found that patients with gastrointestinal motility diseases have gut microbiota disorders. Some progress has been made on the correlation between gut microbiota and gastrointestinal motility. This review aims to elucidate the relationship between gut microbiota and gastrointestinal motility and the mechanism of their interaction.
Collapse
Affiliation(s)
- Yu-Jiao Wang
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Qing-Ling Jia
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Li Li
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xiang-Xiang Wang
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Jiang-Hong Ling
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| |
Collapse
|
23
|
Kang YN, Fung C, Vanden Berghe P. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force. Development 2021; 148:148/3/dev182543. [PMID: 33558316 DOI: 10.1242/dev.182543] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the gut is innervated by intrinsic (enteric) and extrinsic nerves. Focusing on mammalian ENS development, in this Review we highlight how important the different compartments of this innervation are to assure proper gut function. We specifically address the three-dimensional architecture of the innervation, paying special attention to the differences in development along the longitudinal and circumferential axes of the gut. We review recent information about the formation of both intrinsic innervation, which is fairly well-known, as well as the establishment of the extrinsic innervation, which, despite its importance in gut-brain signaling, has received much less attention. We further discuss how external microbial and nutritional cues or neuroimmune interactions may influence development of gut innervation. Finally, we provide summary tables, describing the location and function of several well-known molecules, along with some newer factors that have more recently been implicated in the development of gut innervation.
Collapse
Affiliation(s)
- Yi-Ning Kang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
24
|
Joly A, Leulier F, De Vadder F. Microbial Modulation of the Development and Physiology of the Enteric Nervous System. Trends Microbiol 2020; 29:686-699. [PMID: 33309188 DOI: 10.1016/j.tim.2020.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Abstract
The gastrointestinal tract harbors an intrinsic neuronal network, the enteric nervous system (ENS). The ENS controls motility, fluid homeostasis, and blood flow, but also interacts with other components of the intestine such as epithelial and immune cells. Recent studies indicate that gut microbiota diversification, which occurs alongside postnatal ENS maturation, could be critical for the development and function of the ENS. Here we discuss the possibility that this functional relationship starts in utero, whereby the maternal microbiota would prime the developing ENS and shape its physiology. We review ENS/microbiota interactions and their modulation in physiological and pathophysiological contexts. While microbial modulation of the ENS physiology is now well established, further studies are required to understand the contribution of the gut microbiota to the development and pathology of the ENS and to reveal the precise mechanisms underlying microbiota-to-ENS communications.
Collapse
Affiliation(s)
- Amélie Joly
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - Filipe De Vadder
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France.
| |
Collapse
|
25
|
Foong JPP, Hung LY, Poon S, Savidge TC, Bornstein JC. Early life interaction between the microbiota and the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2020; 319:G541-G548. [PMID: 32902314 PMCID: PMC8087348 DOI: 10.1152/ajpgi.00288.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent studies on humans and their key experimental model, the mouse, have begun to uncover the importance of gastrointestinal (GI) microbiota and enteric nervous system (ENS) interactions during developmental windows spanning from conception to adolescence. Disruptions in GI microbiota and ENS during these windows by environmental factors, particularly antibiotic exposure, have been linked to increased susceptibility of the host to several diseases. Mouse models have provided new insights to potential signaling factors between the microbiota and ENS. We review very recent work on maturation of GI microbiota and ENS during three key developmental windows: embryogenesis, early postnatal, and postweaning periods. We discuss advances in understanding of interactions between the two systems and highlight research avenues for future studies.
Collapse
Affiliation(s)
- Jaime P. P. Foong
- 1Department of Physiology, The University of Melbourne, Parkville, Melbourne, Australia
| | - Lin Y. Hung
- 1Department of Physiology, The University of Melbourne, Parkville, Melbourne, Australia
| | - Sabrina Poon
- 1Department of Physiology, The University of Melbourne, Parkville, Melbourne, Australia
| | - Tor C. Savidge
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Joel C. Bornstein
- 1Department of Physiology, The University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
26
|
Yarandi SS, Kulkarni S, Saha M, Sylvia KE, Sears CL, Pasricha PJ. Intestinal Bacteria Maintain Adult Enteric Nervous System and Nitrergic Neurons via Toll-like Receptor 2-induced Neurogenesis in Mice. Gastroenterology 2020; 159:200-213.e8. [PMID: 32234538 PMCID: PMC7387157 DOI: 10.1053/j.gastro.2020.03.050] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/01/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The enteric nervous system (ENS) exists in close proximity to luminal bacteria. Intestinal microbes regulate ENS development, but little is known about their effects on adult enteric neurons. We investigated whether intestinal bacteria or their products affect the adult ENS via toll-like receptors (TLRs) in mice. METHODS We performed studies with conventional C57/BL6, germ-free C57/BL6, Nestin-creERT2:tdTomato, Nestin-GFP, and ChAT-cre:tdTomato. Mice were given drinking water with ampicillin or without (controls). Germ-free mice were given drinking water with TLR2 agonist or without (controls). Some mice were given a blocking antibody against TLR2 or a TLR4 inhibitor. We performed whole gut transit, bead latency, and geometric center studies. Feces were collected and analyzed by 16S ribosomal RNA gene sequencing. Longitudinal muscle myenteric plexus (LMMP) tissues were collected, analyzed by immunohistochemistry, and levels of nitric oxide were measured. Cells were isolated from colonic LMMP of Nestin-creERT2:tdTomato mice and incubated with agonists of TLR2 (receptor for gram-positive bacteria), TLR4 (receptor for gram-negative bacteria), or distilled water (control) and analyzed by flow cytometry. RESULTS Stool from mice given ampicillin had altered composition of gut microbiota with reduced abundance of gram-positive bacteria and increased abundance of gram-negative bacteria, compared with mice given only water. Mice given ampicillin had reduced colon motility compared with mice given only water, and their colonic LMMP had reduced numbers of nitrergic neurons, reduced neuronal nitric oxide synthase production, and reduced colonic neurogenesis. Numbers of colonic myenteric neurons increased after mice were switched from ampicillin to plain water, with increased markers of neurogenesis. Nestin-positive enteric neural precursor cells expressed TLR2 and TLR4. In cells isolated from the colonic LMMP, incubation with the TLR2 agonist increased the percentage of neurons originating from enteric neural precursor cells to approximately 10%, compared with approximately 0.01% in cells incubated with the TLR4 agonist or distilled water. Mice given an antibody against TLR2 had prolonged whole gut transit times; their colonic LMMP had reduced total neurons and a smaller proportion of nitrergic neurons per ganglion, and reduced markers of neurogenesis compared with mice given saline. Colonic LMMP of mice given the TLR4 inhibitor did not have reduced markers of neurogenesis. Colonic LMMP of germ-free mice given TLR2 agonist had increased neuronal numbers compared with control germ-free mice. CONCLUSIONS In the adult mouse colon, TLR2 promotes colonic neurogenesis, regulated by intestinal bacteria. Our findings indicate that colonic microbiota help maintain the adult ENS via a specific signaling pathway. Pharmacologic and probiotic approaches directed towards specific TLR2 signaling processes might be developed for treatment of colonic motility disorders related to use of antibiotics or other factors.
Collapse
Affiliation(s)
- Shadi S Yarandi
- Center for Neurogastroenterology and Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Subhash Kulkarni
- Center for Neurogastroenterology and Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Monalee Saha
- Center for Neurogastroenterology and Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kristyn E Sylvia
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Cynthia L Sears
- Departments of Medicine, Oncology and Molecular Microbiology & Immunology, the Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, Maryland
| | - Pankaj J Pasricha
- Center for Neurogastroenterology and Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
27
|
Hung LY, Parathan P, Boonma P, Wu Q, Wang Y, Haag A, Luna RA, Bornstein JC, Savidge TC, Foong JPP. Antibiotic exposure postweaning disrupts the neurochemistry and function of enteric neurons mediating colonic motor activity. Am J Physiol Gastrointest Liver Physiol 2020; 318:G1042-G1053. [PMID: 32390463 PMCID: PMC7311661 DOI: 10.1152/ajpgi.00088.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The period during and immediately after weaning is an important developmental window when marked shifts in gut microbiota can regulate the maturation of the enteric nervous system (ENS). Because microbiota-derived signals that modulate ENS development are poorly understood, we examined the physiological impact of the broad spectrum of antibiotic, vancomycin-administered postweaning on colonic motility, neurochemistry of enteric neurons, and neuronal excitability. The functional impact of vancomycin on enteric neurons was investigated by Ca2+ imaging in Wnt1-Cre;R26R-GCaMP3 reporter mice to characterize alterations in the submucosal and the myenteric plexus, which contains the neuronal circuitry controlling gut motility. 16S rDNA sequencing of fecal specimens after oral vancomycin demonstrated significant deviations in microbiota abundance, diversity, and community composition. Vancomycin significantly increased the relative family rank abundance of Akkermansiaceae, Lactobacillaceae, and Enterobacteriaceae at the expense of Lachnospiraceae and Bacteroidaceae. In sharp contrast to neonatal vancomycin exposure, microbiota compositional shifts in weaned animals were associated with slower colonic migrating motor complexes (CMMCs) without mucosal serotonin biosynthesis being altered. The slowing of CMMCs is linked to disruptions in the neurochemistry of the underlying enteric circuitry. This included significant reductions in cholinergic and calbindin+ myenteric neurons, neuronal nitric oxide synthase+ submucosal neurons, neurofilament M+ enteric neurons, and increased proportions of cholinergic submucosal neurons. The antibiotic treatment also increased transmission and responsiveness in myenteric and submucosal neurons that may enhance inhibitory motor pathways, leading to slower CMMCs. Differential vancomycin responses during neonatal and weaning periods in mice highlight the developmental-specific impact of antibiotics on colonic enteric circuitry and motility.
Collapse
Affiliation(s)
- Lin Y. Hung
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Pavitha Parathan
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Prapaporn Boonma
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas,4Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Qinglong Wu
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Yi Wang
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony Haag
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Ruth Ann Luna
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Joel C. Bornstein
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Tor C. Savidge
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Jaime P. P. Foong
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
28
|
The role of the gut microbiota in the pathophysiology of mental and neurological disorders. Psychiatr Genet 2020; 30:87-100. [DOI: 10.1097/ypg.0000000000000255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Parathan P, Wang Y, Leembruggen AJL, Bornstein JC, Foong JPP. The enteric nervous system undergoes significant chemical and synaptic maturation during adolescence in mice. Dev Biol 2020; 458:75-87. [DOI: 10.1016/j.ydbio.2019.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
|
30
|
Hao MM, Fung C, Boesmans W, Lowette K, Tack J, Vanden Berghe P. Development of the intrinsic innervation of the small bowel mucosa and villi. Am J Physiol Gastrointest Liver Physiol 2020; 318:G53-G65. [PMID: 31682159 DOI: 10.1152/ajpgi.00264.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Detection of nutritional and noxious food components in the gut is a crucial component of gastrointestinal function. Contents in the gut lumen interact with enteroendocrine cells dispersed throughout the gut epithelium. Enteroendocrine cells release many different hormones, neuropeptides, and neurotransmitters that communicate either directly or indirectly with the central nervous system and the enteric nervous system, a network of neurons and glia located within the gut wall. Several populations of enteric neurons extend processes that innervate the gastrointestinal lamina propria; however, how these processes develop and begin to transmit information from the mucosa is not fully understood. In this study, we found that Tuj1-immunoreactive neurites begin to project out of the myenteric plexus at embryonic day (E)13.5 in the mouse small intestine, even before the formation of villi. Using live calcium imaging, we discovered that neurites were capable of transmitting electrical information from stimulated villi to the plexus by E15.5. In unpeeled gut preparations where all layers were left intact, we also mimicked the basolateral release of 5-HT from enteroendocrine cells, which triggered responses in myenteric cell bodies at postnatal day (P)0. Altogether, our results show that enteric neurons extend neurites out of the myenteric plexus early during mouse enteric nervous system development, innervating the gastrointestinal mucosa, even before villus formation in mice of either sex. Neurites are already able to conduct electrical information at E15.5, and responses to 5-HT develop postnatally.NEW & NOTEWORTHY How enteric neurons project into the gut mucosa and begin to communicate with the epithelium during development is not known. Our study shows that enteric neurites project into the lamina propria as early as E13.5 in the mouse, before development of the submucous plexus and before formation of intestinal villi. These neurites are capable of transmitting electrical signals back to their cell bodies by E15.5 and respond to serotonin applied to neurite terminals by birth.
Collapse
Affiliation(s)
- Marlene M Hao
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium.,Department of Anatomy and Neuroscience, the University of Melbourne, Australia
| | - Candice Fung
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium.,Department of Pathology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands.,Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Katrien Lowette
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Jan Tack
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| |
Collapse
|