1
|
Yang X, Chen Y, Wang X, Xu G, Wang H, Shu X, Ding H, Ma X, Guo J, Wang J, Zhao J, Fang Y, Liu H, Lu W. Ameliorative Effect of Itaconic Acid/IRG1 Against Endoplasmic Reticulum Stress-Induced Necroptosis in Granulosa Cells via PERK-ATF4-AChE Pathway in Bovine. Cells 2025; 14:419. [PMID: 40136668 PMCID: PMC11940906 DOI: 10.3390/cells14060419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
The necroptosis of granulosa cells has been proven to be one of the important triggers of follicular atresia, which is an important cause of reduced reproductive capacity in cows. The rapid growth of granulosa cells is accompanied by endoplasmic reticulum stress (ERS), leading to granulosa cell death. However, the link between ERS and necroptosis, as well as its mechanism in bovine granulosa cells is still unclear. Itaconic acid is an endogenous anti-inflammatory and antioxidant small-molecule compound that can alleviate ERS. Therefore, the aim of the current study is to evaluate the effect of ERS on necroptosis and investigate the ameliorative effect of itaconic acid against ERS-induced necroptosis in granulosa cells. Bovine granulosa cells were treated with tunicamycin (Tm) to induce ERS. After the addition of the necroptosis inhibitor Nec-1 and the detection of the necroptosis inducer acetylcholinesterase (AChE), flow cytometry, transmission electron microscopy, and mass spectrometry were used to analyze the expression of itaconic acid and IRG1 in the granulosa cells. In addition, the role of the PERK pathway downstream of ERS in ERS-induced necroptosis was also investigated. We report here that ERS can induce necroptosis in granulosa cells. Itaconic acid supplementation significantly attenuates the effect of ERS-induced damage. In summary, this research provides a scientific basis and a drug reference for treating follicular atresia and improving bovine reproductive capacity.
Collapse
Affiliation(s)
- Xiaorui Yang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yue Chen
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xinzi Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Gaoqing Xu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongjie Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xinqi Shu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - He Ding
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Ma
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Guo
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Su J, Zhao L, Fu R, Tang Z. Linking Circadian Rhythms to Gut-Brain Axis Lipid Metabolism Associated With Endoplasmic Reticulum Stress in Alzheimer's Disease. CNS Neurosci Ther 2025; 31:e70329. [PMID: 40059063 PMCID: PMC11890981 DOI: 10.1111/cns.70329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a decline in cognitive, learning, and memory abilities. Neuroinflammation is associated with the spread of tau tangles in the neocortex of AD, leading to cognitive impairment. Therefore, clarifying the pathogenesis of Neuroinflammation and finding effective treatments are the crucial issues for the clinical management of AD. METHOD We systematically review the latest research on the pathogenesis and therapeutic strategies of AD in PubMed, Web of Science, and Elsevier SD. RESULT In this review, the mechanism of the effect of gut-brain axis lipid metabolism mediated by circadian rhythm on AD was discussed, and we also analysed the effects of inflammation and endoplasmic reticulum stress (ERS) induced by lipid abnormalities on intestinal mucosal barrier and neurodegeneration; furthermore, the importance of lipid homeostasis (phospholipids, fatty acids, sterol) in maintaining the functions of endoplasmic reticulum was emphasized. Meanwhile, as lipid composition affects protein conformation, the membrane phospholipids surrounding sarcoplasmic reticulum Ca2+-ATPase (SERCA) that influence SERCA to release Ca2+ mediating inflammation were also reviewed. CONCLUSION We interpreted the mechanism of action between lipid microdomains and ER membrane proteins, reviewed the role of the new pathway of circadian rhythm, lipid metabolism, intestinal mucosa, and brain signaling in the pathogenesis of AD, and proposed strategies to prevent AD by changing the dietary lipid measures.
Collapse
Affiliation(s)
- Jianhui Su
- School of Marine and BioengineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Lanyang Zhao
- School of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Runze Fu
- School of Marine and BioengineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Zhe Tang
- School of Chemistry & Chemical EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| |
Collapse
|
3
|
Zha X, Luo S, Wei L, Li F, Li Y, Cao Y. Investigation of oral toxicity of WS 2 nanosheets to mouse intestine: Pathological injury, trace element balance, lipid profile changes, and autophagy. J Appl Toxicol 2025; 45:311-321. [PMID: 39344173 DOI: 10.1002/jat.4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
The success of graphene oxides has gained extensive research interests in developing novel 2D nanomaterials (NMs). WS2 nanosheets (NSs) are novel transition metal-based 2D NMs, but their toxicity is unclear. In this study, we investigated the oral toxicity of WS2 NSs to mouse intestines. Male mice were administrated with vehicles, 1, 10, or 100 mg/kg NSs via intragastric route, once a day, for 5 days. The results indicate that the NSs did not induce pathological or ultrastructural changes in intestines. There were minimal changes of trace elements that the exposure did not induce W accumulation, and only Co levels were dose-dependently increased. Lipid droplets were observed in all groups of mice, but lipidomics data indicate that WS2 NSs only significantly decreased four lipid species, all belonging to phosphatidylcholine (PC). The levels of proteins regulating autophagic lipolysis, namely, LC3, lysosomal associated membrane protein 2 (LAMP2) and perilipin 2 (PLIN2), were increased, but it was only statistically significantly different for LC3. The results of this study suggest that repeated intragastric exposure to WS2 NSs only induced minimal influences on pathological injury, trace element balance, autophagy, and lipid profiles in mouse intestines, indicating relatively high biocompatibility of WS2 NSs to mouse intestine via oral route.
Collapse
Affiliation(s)
- Xianghao Zha
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Xinjiang, China
| | - Sihuan Luo
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Lianghuan Wei
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Xinjiang, China
| | - Feixing Li
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Xinjiang, China
| | - Youwen Li
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Xinjiang, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Dang G, Li J, Yin C, Wang W, Zhang K, Zhong R, Chen L, Zhang H, Schroyen M. Deciphering Pectin: A Comprehensive Overview of Its Origins, Processing, and Promising Utility. ACS OMEGA 2025; 10:1-15. [PMID: 39829568 PMCID: PMC11740133 DOI: 10.1021/acsomega.4c01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 01/22/2025]
Abstract
Pectin is an acidic heteropolysaccharide, a natural high molecular weight compound primarily found in higher plants. It consists of four major structural domains: homogalacturonan (HG), rhamnogalacturonan II (RG-II), rhamnogalacturonan I (RG-I), and xylogalacturonan (XGA). Various methods are currently employed for pectin extraction, including acid extraction, microbial fermentation, microwave-assisted extraction, and ion extraction, each with unique advantages and disadvantages. Pectin is sourced from fruits and vegetables, such as citrus fruits, apples, beets, and carrots. In terms of regulating human health, pectin enhances antioxidant activity, promotes beneficial microorganisms, and stimulates the production of short-chain fatty acids (SCFAs) through microbial metabolism. Additionally, pectin interacts directly with the mucosa, inhibits Toll-like receptor 2 (TLR2) signaling, and modifies the glycosylation of intestinal mucosal proteins. In disease models, pectin shows preventive and therapeutic effects in inflammatory bowel disease, type 2 diabetes, obesity, cardiovascular disease, and cancer. This review covers recent research, summarizing the sources and extraction methods of pectin, and emphasizes its role as a modulator of human health.
Collapse
Affiliation(s)
- Guoqi Dang
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision
Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching
and Research Centre, Liège University, Passage des Déportés
2, Gembloux 4000, Belgium
| | - Jiaheng Li
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chang Yin
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenxing Wang
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kaiyi Zhang
- Precision
Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching
and Research Centre, Liège University, Passage des Déportés
2, Gembloux 4000, Belgium
| | - Ruqing Zhong
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongfu Zhang
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Martine Schroyen
- Precision
Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching
and Research Centre, Liège University, Passage des Déportés
2, Gembloux 4000, Belgium
| |
Collapse
|
5
|
Bayoumy AB, Derijks LJJ, Oldenburg B, de Boer NKH. The Use of Tissue Concentrations of Biological and Small-Molecule Therapies in Clinical Studies of Inflammatory Bowel Diseases. Pharmaceutics 2024; 16:1497. [PMID: 39771479 PMCID: PMC11676153 DOI: 10.3390/pharmaceutics16121497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
The introduction of biological therapies has revolutionized inflammatory bowel disease (IBD) management. A critical consideration in developing these therapies is ensuring adequate drug concentrations at the site of action. While blood-based biomarkers have shown limited utility in optimizing treatment (except for TNF-alpha inhibitors and thiopurines), tissue drug concentrations may offer valuable insights. In antimicrobial therapies, tissue concentration monitoring is standard practice and could provide a new avenue for understanding the pharmacokinetics of biological and small-molecule therapies in IBD. Various methods exist for measuring tissue concentrations, including whole tissue sampling, MALDI-MSI, microdialysis, and fluorescent labeling. These techniques offer unique advantages, such as spatial drug-distribution mapping, continuous sampling, or cellular-level analysis. However, challenges remain, including sampling invasiveness, heterogeneity in tissue compartments, and a lack of standardized bioanalytical guidelines. Drug pharmacokinetics are influenced by multiple factors, including molecular properties, disease-induced changes in the gastrointestinal tract, and the timing of sample collection. For example, drug permeability, solubility, and interaction with transporters may vary between Crohn's disease and ulcerative colitis. Research into the tissue concentrations of drugs like anti-TNF agents, ustekinumab, vedolizumab, and tofacitinib has shown variable correlations with clinical outcomes, suggesting potential roles for tissue concentration monitoring in therapeutic drug management. Although routine clinical application is not yet established, exploring tissue drug concentrations may enhance understanding of IBD pharmacotherapy.
Collapse
Affiliation(s)
- Ahmed B. Bayoumy
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, 1105 AZ Amsterdam, The Netherlands
| | - Luc J. J. Derijks
- Department of Clinical Pharmacy & Pharmacology, Máxima Medical Centre, 5631 BM Eindhoven, The Netherlands
- Department of Clinical Pharmacy & Toxicology and NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nanne K. H. de Boer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Chen C, Quan J, Chen X, Yang T, Yu C, Ye S, Yang Y, Wu X, Jiang D, Weng Y. Explore key genes of Crohn's disease based on glycerophospholipid metabolism: A comprehensive analysis Utilizing Mendelian Randomization, Multi-Omics integration, Machine Learning, and SHAP methodology. Int Immunopharmacol 2024; 141:112905. [PMID: 39173401 DOI: 10.1016/j.intimp.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) is a chronic, complex inflammatory condition with increasing incidence and prevalence worldwide. However, the causes of CD remain incompletely understood. We identified CD-related metabolites, inflammatory factors, and key genes by Mendelian randomization (MR), multi-omics integration, machine learning (ML), and SHAP. METHODS We first performed a mediation MR analysis on 1400 serum metabolites, 91 inflammatory factors, and CD. We found that certain phospholipids are causally related to CD. In the scRNA-seq data, monocytes were categorized into high and low metabolism groups based on their glycerophospholipid metabolism scores. The differentially expressed genes of these two groups of cells were extracted, and transcription factor prediction, cell communication analysis, and GSEA analysis were performed. After further screening of differentially expressed genes (FDR<0.05, log2FC>1), least absolute shrinkage and selection operator (LASSO) regression was performed to obtain hub genes. Models for hub genes were built using the Catboost, XGboost, and NGboost methods. Further, we used the SHAP method to interpret the models and obtain the gene with the highest contribution to each model. Finally, qRT-PCR was used to verify the expression of these genes in the peripheral blood mononuclear cells (PBMC) of CD patients and healthy subjects. RESULT MR results showed 1-palmitoyl-2-stearoyl-gpc (16:0/18:0) levels, 1-stearoyl-2-arachidonoyl-GPI (18:0/20:4) levels, 1-arachidonoyl-gpc (20:4n6) levels, 1-palmitoyl-2-arachidonoyl-gpc (16:0/20:4n6) levels, and 1-arachidonoyl-GPE (20:4n6) levels were significantly associated with CD risk reduction (FDR<0.05), with CXCL9 acting as a mediation between these phospholipids and CD. The analysis identified 19 hub genes, with Catboost, XGboost, and NGboost achieving AUC of 0.91, 0.88, and 0.85, respectively. The SHAP methodology obtained the three genes with the highest model contribution: G0S2, S100A8, and PLAUR. The qRT-PCR results showed that the expression levels of S100A8 (p = 0.0003), G0S2 (p < 0.0001), and PLAUR (p = 0.0141) in the PBMC of CD patients were higher than healthy subjects. CONCLUSION MR findings suggest that certain phospholipids may lower CD risk. G0S2, S100A8, and PLAUR may be potential pathogenic genes in CD. These phospholipids and genes could serve as novel diagnostic and therapeutic targets for CD.
Collapse
Affiliation(s)
- Changan Chen
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Juanhua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Xintian Chen
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Tingmei Yang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Caiyuan Yu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Yuping Yang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Xiu Wu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Danxian Jiang
- Department of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China.
| | - Yijie Weng
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China.
| |
Collapse
|
7
|
Wang D, Chen W, Cao J, Si L, Chen Z. Establishment and Evaluation of a Mouse Model of Experimental Ulcerative Colitis Induced by the Gavage Administration of Dextran Sulfate Sodium. Biomedicines 2024; 12:1764. [PMID: 39200228 PMCID: PMC11352140 DOI: 10.3390/biomedicines12081764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Given the critical role of dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse models in the appraisal of associated therapeutic drugs, the optimization of the administration method and dosages is of paramount importance. Therefore, UC was induced in mice through the gavage administration of a DSS solution instead of free drinking water. The effects of varying daily dosages (2, 4, 6, and 8 g/kg) and frequencies (once or twice) of administration on the body weight and survival rate of the model mice were evaluated. Concurrently, the inflammatory indicators and tissue sections of the model mice were thoroughly evaluated. The results revealed that when the daily dosage reached 8 g/kg, the dosage exhibited a high level of toxicity, resulting in a high mortality rate among the mice. The DSS administration of 6 g/kg*2 not only elicited conspicuous symptoms, significant weight loss, substantial shortening of the colon, and significant changes in various inflammatory indicators, such as myeloperoxidase (MPO), nitric oxide (NO), reactive oxygen species (ROS), and glutathione (GSH), but it also maintained a high survival rate in the UC mice. The findings from this experiment lay a solid experimental foundation for future research on drugs intended for the treatment of UC.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.W.); (W.C.); (J.C.)
| | - Wei Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.W.); (W.C.); (J.C.)
| | - Jie Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.W.); (W.C.); (J.C.)
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.W.); (W.C.); (J.C.)
| |
Collapse
|
8
|
Zhao Y, Zhan J, Sun C, Zhu S, Zhai Y, Dai Y, Wang X, Gao X. Sishen Wan enhances intestinal barrier function via regulating endoplasmic reticulum stress to improve mice with diarrheal irritable bowel syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155541. [PMID: 38579640 DOI: 10.1016/j.phymed.2024.155541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Diarrheal irritable bowel syndrome (IBS-D), characterized primarily by the presence of diarrhea and abdominal pain, is a clinical manifestation resulting from a multitude of causative factors. Furthermore, Sishen Wan (SSW) has demonstrated efficacy in treating IBS-D. Nevertheless, its mechanism of action remains unclear. METHODS A model of IBS-D was induced by a diet containing 45 % lactose and chronic unpredictable mild stress. Additionally, the impact of SSW was assessed by measuring body weight, visceral sensitivity, defecation parameters, intestinal transport velocity, intestinal neurotransmitter levels, immunohistochemistry, and transmission electron microscopy analysis. Immunofluorescent staining was used to detect the expression of Mucin 2 (MUC2) and Occludin in the colon. Western blotting was used to detect changes in proteins related to tight junction (TJ), autophagy, and endoplasmic reticulum (ER) stress in the colon. Finally, 16S rRNA amplicon sequencing was used to monitor the alteration of gut microbiota after SSW treatment. RESULTS Our study revealed that SSW administration resulted in reduced visceral sensitivity, improved defecation parameters, decreased intestinal transport velocity, and reduced intestinal permeability in IBS-D mice. Furthermore, SSW promotes the secretion of colonic mucus by enhancing autophagy and inhibiting ER stress. SSW treatment caused remodeling of the gut microbiome by increasing the abundance of Blautia, Muribaculum and Ruminococcus torques group. CONCLUSION SSW can improve intestinal barrier function by promoting autophagy and inhibiting ER stress, thus exerting a therapeutic effect on IBS-D.
Collapse
Affiliation(s)
- Yucui Zhao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaguo Zhan
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congying Sun
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixiao Zhu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Zhai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongna Dai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xiaoying Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xiumei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
9
|
Akinsuyi OS, Xhumari J, Ojeda A, Roesch LFW. Gut permeability among Astronauts during Space missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:171-180. [PMID: 38670644 DOI: 10.1016/j.lssr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
The space environment poses substantial challenges to human physiology, including potential disruptions in gastrointestinal health. Gut permeability has only recently become widely acknowledged for its potential to cause adverse effects on a systemic level, rendering it a critical factor to investigate in the context of spaceflight. Here, we propose that astronauts experience the onset of leaky gut during space missions supported by transcriptomic and metagenomic analysis of human and murine samples. A genetic map contributing to intestinal permeability was constructed from a systematic review of current literature. This was referenced against our re-analysis of three independent transcriptomic datasets which revealed significant changes in gene expression patterns associated with the gut barrier. Specifically, in astronauts during flight, we observed a substantial reduction in the expression genes that are crucial for intestinal barrier function, goblet cell development, gut microbiota modulation, and immune responses. Among rodent spaceflight studies, differential expression of cytokines, chemokines, and genes which regulate mucin production and post-translational modifications suggest a similar dysfunction of intestinal permeability. Metagenomic analysis of feces from two murine studies revealed a notable reduction probiotic, short chain fatty acid-producing bacteria and an increase in the Gram-negative pathogens, including Citrobacter rodentium, Enterobacter cloacea, Klebsiella aerogenes, and Proteus hauseri which promote LPS circulation, a recipe for barrier disruption and systemic inflammatory activation. These findings emphasize the critical need to understand the underlying mechanisms and develop interventions to maintain gastrointestinal health in space.
Collapse
Affiliation(s)
- Oluwamayowa S Akinsuyi
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Jessica Xhumari
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Amanda Ojeda
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Luiz F W Roesch
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
10
|
Wang N, Wang C, Qi M, Lin X, Zha A, Tan B, Yin Y, Wang J. Phosphatidylethanolamine Improves Postnatal Growth Retardation by Regulating Mucus Secretion of Intestinal Goblet Cells in Piglets. Animals (Basel) 2024; 14:1193. [PMID: 38672341 PMCID: PMC11047706 DOI: 10.3390/ani14081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Phosphatidylethanolamine (PE), a multifunctional phospholipid, is necessary for neonate development. This study aimed to explore the impact of the regulation of exogenous PE on postnatal growth retardation (PGR) by improving intestinal barrier function. Thirty-two neonatal pigs were divided into four groups according to their body weight (BW 2.79 ± 0.50 kg or 1.88 ± 0.40 kg) at 7 days old, CON-NBW, PE-NBW, CON-PGR, and PE-PGR. PE was supplemented to NBW piglets and PGR piglets during lactation and post-weaning periods. Compared with the NBW piglets, the growth performance of PGR piglets was lower, while PE improved the poor growth performance. PGR piglets showed injured intestinal morphology, as evidenced by the reduced ratio of villus height to crypt depth (VH/CD) and goblet cell numbers in the jejunum and ileum. PE recovered the intestinal barrier injury by increasing VH/CD and goblet cell numbers. The decreased MUC2 mRNA and protein expressions were observed in the small intestine of PGR piglets, and PE remarkably increased the expression of MUC2. Mechanistically, PE increased the goblet cell differentiation promoting gene spdef mRNA levels and reduced the mRNA expressions involved in endoplasmic reticulum stress in the jejunal and ileal mucosa of PGR piglets. Overall, we found that PE alleviated growth retardation by regulating intestinal health and generalized its application in neonates.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Chengming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Ming Qi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Xingtong Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Andong Zha
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Yulong Yin
- Yuelushan Laboratory, Changsha 410128, China;
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| |
Collapse
|
11
|
Monno M, Ogiri M, Seishima R, Suzuki Y, Hattori K, Matsui S, Shigeta K, Okabayashi K, Kitagawa Y. POFUT1 and PLAGL2 are characteristic markers of mucinous colorectal cancer associated with MUC2 expression. Cell Biochem Funct 2024; 42:e3989. [PMID: 38500386 DOI: 10.1002/cbf.3989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
Colorectal mucinous adenocarcinoma (MAC) is one of the most lethal histological types of colorectal cancer, and its mechanism of development is not well understood. In this study, we aimed to clarify the molecular characteristics of MAC via in silico analysis using The Cancer Genome Atlas database. The expression of genes on chromosome 20q (Chr20q) was negatively associated with the expression of MUC2, which is a key molecule that can be used to distinguish between MAC and nonmucinous adenocarcinoma (NMAC). This was consistent with a significant difference in copy number alteration of Chr20q between the two histological types. We further identified 475 differentially expressed genes (DEGs) between MAC and NMAC, and some of the Chr20q genes among the DEGs are considered to be pivotal genes used to define MAC. Both in vitro and in vivo analysis showed that simultaneous knockdown of POFUT1 and PLAGL2, both of which are located on Chr20q, promoted MUC2 expression. Moreover, these genes were highly expressed in NMAC but not in MAC according to the results of immunohistological studies using human samples. In conclusion, POFUT1 and PLAGL2 are considered to be important for defining MAC, and these genes are associated with MUC2 expression.
Collapse
Affiliation(s)
- Masayoshi Monno
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masayo Ogiri
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Seishima
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suzuki
- Department of Surgery, Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Kaoru Hattori
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shimpei Matsui
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Shigeta
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Fan C, Xu J, Tong H, Fang Y, Chen Y, Lin Y, Chen R, Chen F, Wu G. Gut-brain communication mediates the impact of dietary lipids on cognitive capacity. Food Funct 2024; 15:1803-1824. [PMID: 38314832 DOI: 10.1039/d3fo05288e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cognitive impairment, as a prevalent symptom of nervous system disorders, poses one of the most challenging aspects in the management of brain diseases. Lipids present in the cell membranes of all neurons within the brain and dietary lipids can regulate the cognition and memory function. In recent years, the advancements in gut microbiome research have enabled the exploration of dietary lipids targeting the gut-brain axis as a strategy for regulating cognition. This present review provides an in-depth overview of how lipids modulate cognition via the gut-brain axis depending on metabolic, immune, neural and endocrine pathways. It also comprehensively analyzes the effects of diverse lipids on the gut microbiota and intestinal barrier function, thereby affecting the central nervous system and cognitive capacity. Moreover, comparative analysis of the positive and negative effects is presented between beneficial and detrimental lipids. The former encompass monounsaturated fatty acids, short-chain fatty acids, omega-3 polyunsaturated fatty acids, phospholipids, phytosterols, fungal sterols and bioactive lipid-soluble vitamins, as well as lipid-derived gut metabolites, whereas the latter (detrimental lipids) include medium- or long-chain fatty acids, excessive proportions of n-6 polyunsaturated fatty acids, industrial trans fatty acids, and zoosterols. To sum up, the focus of this review is on how gut-brain communication mediates the impact of dietary lipids on cognitive capacity, providing a novel theoretical foundation for promoting brain cognitive health and scientific lipid consumption patterns.
Collapse
Affiliation(s)
- Chenhan Fan
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jingxuan Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Haoxiang Tong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yucheng Fang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yiming Chen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yangzhuo Lin
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Rui Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fuhao Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Guoqing Wu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
13
|
Bai X, Zhang F, Zhou C, Yan J, Liang H, Zhu R, Gong M, Song H, Niu J, Miao Y. Identification of cuproptosis-related molecular classification and characteristic genes in ulcerative colitis. Heliyon 2024; 10:e24875. [PMID: 38312708 PMCID: PMC10835364 DOI: 10.1016/j.heliyon.2024.e24875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Ulcerative colitis (UC) is a refractory inflammatory disease with imbalances in intestinal mucosal homeostasis. Cuproptosis serves as newly identified programmed cell death (PCD) form involved in UC. In the study, UC-related datasets were extracted from the Gene Expression Omnibus (GEO) database. A comparison of UC patients and healthy controls identified 11 differentially expressed cuproptosis-related genes (DE-CRGs), where FDX1, LIAS, and DLAT were differentially expressed in UC groups from the mouse models and clinical samples, with their expression correlating with disease severity. By comprehending weighted gene co-expression network analysis (WGCNA) and differential expression analysis, the key genes common to the module genes relevant to different cuproptosis-related clusters and differentially expressed genes (DEGs) both in different clusters and patients with and without UC were identified using several bioinformatic analysis. Furthermore, the mRNA levels of four characteristic genes with diagnostic potential demonstrated significant decrease in both mouse models and clinical UC samples. Our discoveries offer a theoretical foundation for cuproptosis effect in UC.
Collapse
Affiliation(s)
- Xinyu Bai
- Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Fengrui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Chan Zhou
- Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Jingxian Yan
- Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Hao Liang
- Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Rui Zhu
- Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Min Gong
- Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Huixian Song
- Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| |
Collapse
|
14
|
Kohler A, Kohler V. Better Together: Interorganellar Communication in the Regulation of Proteostasis. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241272245. [PMID: 39385949 PMCID: PMC11462569 DOI: 10.1177/25152564241272245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 10/12/2024]
Abstract
An extensive network of chaperones and folding factors is responsible for maintaining a functional proteome, which is the basis for cellular life. The underlying proteostatic mechanisms are not isolated within organelles, rather they are connected over organellar borders via signalling processes or direct association via contact sites. This review aims to provide a conceptual understanding of proteostatic mechanisms across organelle borders, not focussing on individual organelles. This discussion highlights the precision of these finely tuned systems, emphasising the complicated balance between cellular protection and adaptation to stress. In this review, we discuss widely accepted aspects while shedding light on newly discovered perspectives.
Collapse
Affiliation(s)
- Andreas Kohler
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Verena Kohler
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
15
|
Li G, Gao M, Zhang S, Dai T, Wang F, Geng J, Rao J, Qin X, Qian J, Zuo L, Zhou M, Liu L, Zhou H. Sleep Deprivation Impairs Intestinal Mucosal Barrier by Activating Endoplasmic Reticulum Stress in Goblet Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:85-100. [PMID: 37918798 DOI: 10.1016/j.ajpath.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Sleep deficiency is associated with intestinal inflammatory conditions and is increasingly recognized as a public health concern worldwide. However, the effects of sleep deficiency on intestinal goblet cells (GCs), which play a major role in intestinal barrier formation, remain elusive. Herein, the effects of sleep deprivation on intestinal GCs were determined using a sleep-deprivation mouse model. Sleep deprivation impaired the intestinal mucosal barrier and decreased the expression of tight junction proteins. According to single-cell RNA sequencing and histologic assessments, sleep deprivation significantly reduced GC numbers and mucin protein levels in intestinal tissues. Furthermore, sleep deprivation initiated endoplasmic reticulum stress by activating transcription factor 6 and binding Ig protein. Treatment with melatonin, an endoplasmic reticulum stress regulator, significantly alleviated endoplasmic reticulum stress responses in intestinal GCs. In addition, melatonin increased the villus length, reduced the crypt depth, and restored intestinal barrier function in mice with sleep deprivation. Overall, the findings revealed that sleep deprivation could impair intestinal mucosal barrier integrity and GC function. Targeting endoplasmic reticulum stress could represent an ideal strategy for treating sleep deficiency-induced gastrointestinal disorders.
Collapse
Affiliation(s)
- Gaoxiang Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; School of Life Sciences, Anhui Medical University, Hefei, China
| | - Mengru Gao
- Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Clinical Pathology Center, Anhui Public Health Clinical Center, Hefei, China
| | - Shuangshuang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tianliang Dai
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Fei Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jinke Geng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jia Rao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xuejia Qin
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Jizhao Qian
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Li Zuo
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Meng Zhou
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hong Zhou
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; School of Life Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Kayama H, Takeda K. Emerging roles of host and microbial bioactive lipids in inflammatory bowel diseases. Eur J Immunol 2023; 53:e2249866. [PMID: 37191284 DOI: 10.1002/eji.202249866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
The intestinal tract harbors diverse microorganisms, host- and microbiota-derived metabolites, and potentially harmful dietary antigens. The epithelial barrier separates the mucosa, where diverse immune cells exist, from the lumen to avoid excessive immune reactions against microbes and dietary antigens. Inflammatory bowel disease (IBD), such as ulcerative colitis and Crohn's disease, is characterized by a chronic and relapsing disorder of the gastrointestinal tract. Although the precise etiology of IBD is still largely unknown, accumulating evidence suggests that IBD is multifactorial, involving host genetics and microbiota. Alterations in the metabolomic profiles and microbial community are features of IBD. Advances in mass spectrometry-based lipidomic technologies enable the identification of changes in the composition of intestinal lipid species in IBD. Because lipids have a wide range of functions, including signal transduction and cell membrane formation, the dysregulation of lipid metabolism drastically affects the physiology of the host and microorganisms. Therefore, a better understanding of the intimate interactions of intestinal lipids with host cells that are implicated in the pathogenesis of intestinal inflammation might aid in the identification of novel biomarkers and therapeutic targets for IBD. This review summarizes the current knowledge on the mechanisms by which host and microbial lipids control and maintain intestinal health and diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infection Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
17
|
Patankar JV, Bubeck M, Acera MG, Becker C. Breaking bad: necroptosis in the pathogenesis of gastrointestinal diseases. Front Immunol 2023; 14:1203903. [PMID: 37409125 PMCID: PMC10318896 DOI: 10.3389/fimmu.2023.1203903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023] Open
Abstract
A delicate balance between programmed cell death and proliferation of intestinal epithelial cells (IEC) exists in the gut to maintain homeostasis. Homeostatic cell death programs such as anoikis and apoptosis ensure the replacement of dead epithelia without overt immune activation. In infectious and chronic inflammatory diseases of the gut, this balance is invariably disturbed by increased levels of pathologic cell death. Pathological forms of cell death such as necroptosis trigger immune activation barrier dysfunction, and perpetuation of inflammation. A leaky and inflamed gut can thus become a cause of persistent low-grade inflammation and cell death in other organs of the gastrointestinal (GI) tract, such as the liver and the pancreas. In this review, we focus on the advances in the molecular and cellular understanding of programmed necrosis (necroptosis) in tissues of the GI tract. In this review, we will first introduce the reader to the basic molecular aspects of the necroptosis machinery and discuss the pathways leading to necroptosis in the GI system. We then highlight the clinical significance of the preclinical findings and finally evaluate the different therapeutic approaches that attempt to target necroptosis against various GI diseases. Finally, we review the recent advances in understanding the biological functions of the molecules involved in necroptosis and the potential side effects that may occur due to their systemic inhibition. This review is intended to introduce the reader to the core concepts of pathological necroptotic cell death, the signaling pathways involved, its immuno-pathological implications, and its relevance to GI diseases. Further advances in our ability to control the extent of pathological necroptosis will provide better therapeutic opportunities against currently intractable GI and other diseases.
Collapse
Affiliation(s)
- Jay V. Patankar
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Marvin Bubeck
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Miguel Gonzalez Acera
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
18
|
Pradhan AJ, Atilla-Gokcumen GE. Omics approaches to better understand the molecular mechanism of necroptosis and their translational implications. Mol Omics 2023; 19:205-217. [PMID: 36655911 DOI: 10.1039/d2mo00318j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Necroptosis is a type of programed cell death characterized by an inflammatory phenotype due to extensive membrane permeabilization and rupture. Initiation of necroptosis involves activation of tumor necrosis factor receptors by tumor necrosis factor alpha (TNFα) followed by coordinated activities of receptor-interacting protein kinases and mixed lineage kinase-like protein (MLKL). Subsequently, MLKL undergoes phosphorylation and translocates to the plasma membrane, leading to permeabilization. Such permeabilization results in the release of various cytokines and causes extensive inflammatory activity at the organismal level. This inflammatory activity is one of the major differences between apoptosis and necroptosis and links necroptosis to several human pathologies that exhibit inflammation, in addition to the ultimate cell death phenotype. Given the crosstalk between the activation of cell death pathway and inflammatory activity, approaches that provide insights on the regulation of transcripts, proteins and their processing at the global level have substantially improved our understanding of necroptosis and its involvement in different disease states. In this review, we highlight recent omic studies probing the transcriptome, proteome and lipidome which elucidate potential new mechanisms and signaling pathways during necroptosis and the necroptosis-associated inflammatory activity observed in various diseases. We specifically focus on studies investigating the transcriptome and intracellular and released proteome that contribute to inflammatory nature of necroptotic cells. We also highlight different lipids that have been implicated in necroptosis and lipidomic studies identifying lipid players in necroptosis. Finally, we review studies which suggest certain necroptosis-related genes as potential prognosis markers for different cancers and discuss their translational implications.
Collapse
Affiliation(s)
- Apoorva J Pradhan
- Department of Chemistry, College of Arts and Sciences, University at Buffalo, Buffalo, NY, USA.
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, College of Arts and Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
19
|
Analysis of Intestinal Metabolites in SR-B1 Knockout Mice via Ultra-Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020610. [PMID: 36677669 PMCID: PMC9866485 DOI: 10.3390/molecules28020610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Scavenger receptor class B type 1 (SR-B1), a multiligand membrane receptor, is expressed in a gradient along the gastrocolic axis. SR-B1 deficiency enhances lymphocyte proliferation and elevates inflammatory cytokine production in macrophages. However, whether SR-B1 affects intestinal metabolites is unclear. In this study, we detected metabolite changes in the intestinal tissue of SR-B1-/- mice, including amino acids and neurotransmitters, by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) and HPLC. We found that SR-B1-/- mice exhibited changes in intestinal lipid metabolites and metabolic pathways, including the glycerophospholipid, sphingolipid, linoleic acid, taurine, and hypotaurine metabolic pathways. SR-B1 deficiency influenced the contents of amino acids and neurotransmitters in all parts of the intestine; the contents of leucine (LEU), phenylalanine (PHE), tryptophan (TRP), and tyrosine (TYR) were affected in all parts of the intestine; and the contents of 3,4-dihydroxyphenylacetic acid (DOPAC) and dopamine (DA) were significantly decreased in both the colon and rectum. In summary, SR-B1 deficiency regulated intestinal lipids, amino acids, and neurotransmitter metabolism in mice.
Collapse
|
20
|
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89:101198. [PMID: 36379317 DOI: 10.1016/j.plipres.2022.101198] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
21
|
Kayani MUR, Yu K, Qiu Y, Yu X, Chen L, Huang L. Longitudinal analysis of exposure to a low concentration of oxytetracycline on the zebrafish gut microbiome. Front Microbiol 2022; 13:985065. [PMID: 36212820 PMCID: PMC9536460 DOI: 10.3389/fmicb.2022.985065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Oxytetracycline, a widely produced and administered antibiotic, is uncontrollably released in low concentrations in various types of environments. However, the impact of exposure to such low concentrations of antibiotics on the host remains poorly understood. In this study, we exposed zebrafish to a low concentration (5,000 ng/L) of oxytetracycline for 1 month, collected samples longitudinally (Baseline, and Days 3, 6, 9, 12, 24, and 30), and elucidated the impact of exposure on microbial composition, antibiotic resistance genes, mobile genetic elements, and phospholipid metabolism pathway through comparison of the sequenced data with respective sequence databases. We identified Pseudomonas aeruginosa, a well-known pathogen, to be significantly positively associated with the duration of oxytetracycline exposure (Adjusted P = 5.829e-03). Several tetracycline resistance genes (e.g., tetE) not only showed significantly higher abundance in the exposed samples but were also positively associated with the duration of exposure (Adjusted P = 1.114e-02). Furthermore, in the exposed group, the relative abundance of genes involved in phospholipid metabolism had also decreased. Lastly, we characterized the impact of exposure on zebrafish intestinal structure and found that the goblet cell counts were decreased (~82%) after exposure. Overall, our results show that a low concentration of oxytetracycline can increase the abundance of pathogenic bacteria and lower the abundance of key metabolic pathways in the zebrafish gut microbiome that can render them prone to bacterial infections and health-associated complications.
Collapse
Affiliation(s)
- Masood ur Rehman Kayani
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kan Yu
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yushu Qiu
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaogang Yu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisu Huang
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Yu T, Zhou Z, Liu S, Li C, Zhang ZW, Zhang Y, Jin W, Liu K, Mao S, Zhu L, Xie L, Wang G, Liang Y. The role of phosphatidylcholine 34:1 in the occurrence, development and treatment of ulcerative colitis. Acta Pharm Sin B 2022; 13:1231-1245. [PMID: 36970218 PMCID: PMC10031229 DOI: 10.1016/j.apsb.2022.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lipid homeostasis is considered to be related to intestinal metabolic balance, while its role in the pathogenesis and treatment of ulcerative colitis (UC) remains largely unexplored. The present study aimed to identify the target lipids related to the occurrence, development and treatment of UC by comparing the lipidomics of UC patients, mice and colonic organoids with the corresponding healthy controls. Here, multi-dimensional lipidomics based on LC-QTOF/MS, LC-MS/MS and iMScope systems were constructed and used to decipher the alteration of lipidomic profiles. The results indicated that UC patients and mice were often accompanied by dysregulation of lipid homeostasis, in which triglycerides and phosphatidylcholines were significantly reduced. Notably, phosphatidylcholine 34:1 (PC34:1) was characterized by high abundance and closely correlation with UC disease. Our results also revealed that down-regulation of PC synthase PCYT1α and Pemt caused by UC modeling was the main factor leading to the reduction of PC34:1, and exogenous PC34:1 could greatly enhance the fumarate level via inhibiting the transformation of glutamate to N-acetylglutamate, thus exerting an anti-UC effect. Collectively, our study not only supplies common technologies and strategies for exploring lipid metabolism in mammals, but also provides opportunities for the discovery of therapeutic agents and biomarkers of UC.
Collapse
Affiliation(s)
- Tengjie Yu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Zhou
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shijia Liu
- Affliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Changjian Li
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Wei Zhang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, China
| | - Yong Zhang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, China
| | - Wei Jin
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Keanqi Liu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shuying Mao
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Zhu
- Affliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271060.
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271060.
| |
Collapse
|
23
|
Xia B, Zhong R, Meng Q, Wu W, Chen L, Zhao X, Zhang H. Multi-omics unravel the compromised mucosal barrier function linked to aberrant mucin O-glycans in a pig model. Int J Biol Macromol 2022; 207:952-964. [PMID: 35364208 DOI: 10.1016/j.ijbiomac.2022.03.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
Early weaning stress (EWS) in piglets is associated with intestinal dysfunction. Here, utilizing a pig EWS model to mimic early-life stress (ELS) in humans, we investigated the mechanism of ELS-induced intestinal diseases through integrated multi-omics analyses of proteome, glycome, and microbiome. Our results demonstrated that EWS resulted in disrupted the ileal barrier integrity by reducing tight junction-related gene expression and interfering with cell-cell adhesion paralleled the increased proportion of pathogens such as Escherichia_Shigella and Helicobacter. Furthermore, Proteome data revealed that the accumulation of unfolded proteins and insufficient unfolded protein response (UPR) process caused by EWS led to ER stress. Data from proteome and glycome found that EWS induced aberrant mucin O-glycans, including truncated glycans, reduction in acidic glycans, and increased in fucosylated glycans. In addition, correlation test by taking fucose and inflammatory response into account suggested that enhancement of fucose expression might be a compensatory host response. Taken together, these results extend the comprehensive knowledge of the detrimental impacts and pathogenesis of EWS and help to provide intervention targets for ELS-induced intestinal diseases in the future.
Collapse
Affiliation(s)
- Bing Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Animal Science, McGill University, Montreal, Quebec H9X3V9, Canada.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
24
|
BPA exposure aggravates necroptosis of myocardial tissue in selenium deficient broilers through NO-dependent endoplasmic reticulum stress. Toxicology 2022; 472:153190. [DOI: 10.1016/j.tox.2022.153190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|
25
|
Lin R, Li D, Xu Y, Wei M, Chen Q, Deng Y, Wen J. Chronic cereulide exposure causes intestinal inflammation and gut microbiota dysbiosis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117814. [PMID: 34329069 DOI: 10.1016/j.envpol.2021.117814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/21/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Known as a cause of food poisoning, Bacillus cereus (B. cereus) is widespread in nature. Cereulide, the heat-stable and acid-resistant emetic toxin which is produced by some B. cereus strains, is often associated with foodborne outbreaks, and causes acute emetic toxicity at high dosage exposure. However, the toxicological effect and underlying mechanism caused by chronic low-dose cereulide exposure require to be further addressed. In the study, based on mouse model, cereulide exposure (50 μg/kg body weight) for 28 days induced intestinal inflammation, gut microbiota dysbiosis and food intake reduction. According to the cell models, low dose cereulide exposure disrupted the intestinal barrier function and caused intestinal inflammation, which were resulted from endoplasmic reticulum (ER) stress IRE1/XBP1/CHOP pathway activation to induce cell apoptosis and inflammatory cytokines production. For gut microbiota, cereulide decreased the abundances of Lactobacillus and Oscillospira. Furthermore, cereulide disordered the metabolisms of gut microbiota, which exhibited the inhibitions of butyrate and tryptophan. Interestingly, cereulide exposure also inhibited the tryptophan hydroxylase to produce the serotonin in the gut and brain, which might lead to depression-like food intake reduction. Butyrate supplementation (100 mg/kg body weight) significantly reduced intestinal inflammation and serotonin biosynthesis suppression caused by cereulide in mice. In conclusion, chronic cereulide exposure induced ER stress to cause intestinal inflammation, gut microbiota dysbiosis and serotonin biosynthesis suppression. IRE1 could be the therapeutic target and butyrate supplementation is the potential prevention strategy.
Collapse
Affiliation(s)
- Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Danyang Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Yangyang Xu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Mengyao Wei
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Qingmei Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| |
Collapse
|
26
|
Fat of the Gut: Epithelial Phospholipids in Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms222111682. [PMID: 34769112 PMCID: PMC8584226 DOI: 10.3390/ijms222111682] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel diseases (IBD) comprise a distinct set of clinical symptoms resulting from chronic inflammation within the gastrointestinal (GI) tract. Despite the significant progress in understanding the etiology and development of treatment strategies, IBD remain incurable for thousands of patients. Metabolic deregulation is indicative of IBD, including substantial shifts in lipid metabolism. Recent data showed that changes in some phospholipids are very common in IBD patients. For instance, phosphatidylcholine (PC)/phosphatidylethanolamine (PE) and lysophosphatidylcholine (LPC)/PC ratios are associated with the severity of the inflammatory process. Composition of phospholipids also changes upon IBD towards an increase in arachidonic acid and a decrease in linoleic and a-linolenic acid levels. Moreover, an increase in certain phospholipid metabolites, such as lysophosphatidylcholine, sphingosine-1-phosphate and ceramide, can result in enhanced intestinal inflammation, malignancy, apoptosis or necroptosis. Because some phospholipids are associated with pathogenesis of IBD, they may provide a basis for new strategies to treat IBD. Current attempts are aimed at controlling phospholipid and fatty acid levels through the diet or via pharmacological manipulation of lipid metabolism.
Collapse
|
27
|
Liu L, Liang L, Yang C, Zhou Y, Chen Y. Extracellular vesicles of Fusobacterium nucleatum compromise intestinal barrier through targeting RIPK1-mediated cell death pathway. Gut Microbes 2021; 13:1-20. [PMID: 33769187 PMCID: PMC8007154 DOI: 10.1080/19490976.2021.1902718] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/04/2023] Open
Abstract
Microbial factors that mediate microbes-host interaction in ulcerative colitis (UC), a chronic disease seriously affecting human health, are not fully known. The emerging oncobacterium Fusobacterium nucleatum (Fn) secretes extracellular vesicles carrying several types of harmful molecules in the intestine which can alter microbes-host interaction, especially the epithelial homeostasis in UC. However, the mechanism is not yet clear. Previously, we isolated EVs by the ultracentrifugation of Fn culture media and characterized them as the potent inducer of pro-inflammatory cytokines. Here, we examined the mechanism in detail. We found that in macrophage/Caco-2 co-cultures, FnEVs significantly promoted epithelial barrier loss and oxidative stress damage, which are related to epithelial necroptosis caused by the activation of receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3). Furthermore, FnEVs promoted the migration of RIPK1 and RIPK3 into necrosome in Caco2 cells. Notably, these effects were reversed by TNF-α neutralizing antibody or Necrostatin-1 (Nec-1), a RIPK1 inhibitor. This suggested that FADD-RIPK1-caspase-3 signaling is involved in the process. Moreover, the observed effects were verified in the murine colitis model treated with FnEVs or by adoptive transfer of FnEVs-trained macrophages. In conclusion, we propose that RIPK1-mediated epithelial cell death promotes FnEVs-induced gut barrier disruption in UC and the findings can be used as the basis to further investigate this disease.
Collapse
Affiliation(s)
- Le Liu
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Liang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenghai Yang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youlian Zhou
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|