1
|
Tang X, Zhou F, Wang S, Wang G, Bai L, Su J. Bioinspired injectable hydrogels for bone regeneration. J Adv Res 2024:S2090-1232(24)00486-7. [PMID: 39505143 DOI: 10.1016/j.jare.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The effective regeneration of bone/cartilage defects remains a significant clinical challenge, causing irreversible damage to millions annually.Conventional therapies such as autologous or artificial bone grafting often yield unsatisfactory outcomes, emphasizing the urgent need for innovative treatment methods. Biomaterial-based strategies, including hydrogels and active scaffolds, have shown potential in promoting bone/cartilage regeneration. Among them, injectable hydrogels have garnered substantial attention in recent years on account of their minimal invasiveness, shape adaptation, and controlled spatiotemporal release. This review systematically discusses the synthesis of injectable hydrogels, bioinspired approaches-covering microenvironment, structural, compositional, and bioactive component-inspired strategies-and their applications in various bone/cartilage disease models, highlighting bone/cartilage regeneration from an innovative perspective of bioinspired design. Taken together, bioinspired injectable hydrogels offer promising and feasible solutions for promoting bone/cartilage regeneration, ultimately laying the foundations for clinical applications. Furthermore, insights into further prospective directions for AI in injectable hydrogels screening and organoid construction are provided.
Collapse
Affiliation(s)
- Xuan Tang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| | - Sicheng Wang
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 201900, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Wenzhou Institute of Shanghai University, Wenzhou 325000, China.
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Li SG, Guo ZL, Tao SY, Han T, Zhou J, Lin WY, Guo X, Li CX, Diwas S, Hu XW. In vivo study on osteogenic efficiency of nHA/ gel porous scaffold with nacre water-soluble matrix. Tissue Cell 2024; 88:102347. [PMID: 38489914 DOI: 10.1016/j.tice.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND/PURPOSE Nano-hydroxyapatite (nHA)/ gel porous scaffolds loaded with WSM carriers are promising bone replacement materials that can improve osseointegration ability. This investigation aimed to evaluate the osteoinductive activity by implanting the composition of nano-hydroxyapatite (nHA)/ Gel porous scaffolds as a carrier of WSM via an animal model. MATERIALS AND METHODS WSM was extracted and nHA was added to the matrix to construct porous composite scaffolds. The dose-effect curve of WSM concentration and alkaline phosphatase (ALP) activity was made by culturing rat osteoblasts and examining the absorbance. Three different materials were implanted into critical size defects (CSD) in the skulls of rats, which were further divided into four groups: WSM nHA /Gel group, n-WSM nHA /Gel group, HA powder group, and control group. RESULTS WSM (150 μg/mL-250μg/mL) effectively improved the activity of ALP in rat osteoblasts. All rats in each group had normal healing. WSM-loaded nHA /Gel group showed better performance on newly-formed bone tissue of rat skull and back at 4th week and 8th week, respectively. At the 4th week, the network of woven bone formed in the WSM-loaded nHA/Gel scaffold material. At 8th week, the reticular trabecular bone in the WSM-loaded scaffold material became dense lamellar bone, and the defect was mature lamellar bone. In the subcutaneous implantation experiment, WSM-loaded nHA/Gel scaffold material showed a better performance of heterotopic ossification than the pure nHA/Gel scaffold material. CONCLUSION WSM promotes osteoblast differentiation and bone mineralization. The results confirm that the nHA/ Gel Porous Scaffold with Nacre Water-Soluble Matrix has a significant bone promoting effect and can be used as a choice for tissue engineering to repair bone defects.
Collapse
Affiliation(s)
- SiRi-GuLeng Li
- Department of Dentistry, Guangzhou Health Science College, Guangzhou, PR China
| | - Zhu-Ling Guo
- School of Dentistry, Hainan Medical University, Haikou, PR China; Department of Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, PR China
| | - Si-Yu Tao
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Tao Han
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Jie Zhou
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Wan-Yun Lin
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Xiang Guo
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Chu-Xing Li
- Department of Dentistry, The Second Affiliated Hospital of Hainan Medical University, Haikou, PR China
| | - Sunchuri Diwas
- School of International Education, Hainan Medical University, Haikou, PR China
| | - Xiao-Wen Hu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong provincial key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
3
|
Biomineralization-inspired mineralized hydrogel promotes the repair and regeneration of dentin/bone hard tissue. NPJ Regen Med 2023; 8:11. [PMID: 36841873 PMCID: PMC9968336 DOI: 10.1038/s41536-023-00286-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Maxillofacial hard tissue defects caused by trauma or infection often affect craniofacial function. Taking the natural hard tissue structure as a template, constructing an engineered tissue repair module is an important scheme to realize the functional regeneration and repair of maxillofacial hard tissue. Here, inspired by the biomineralization process, we constructed a composite mineral matrix hydrogel PAA-CMC-TDM containing amorphous calcium phosphates (ACPs), polyacrylic acid (PAA), carboxymethyl chitosan (CMC) and dentin matrix (TDM). The dynamic network composed of Ca2+·COO- coordination and ACPs made the hydrogel loaded with TDM, and exhibited self-repairing ability and injectability. The mechanical properties of PAA-CMC-TDM can be regulated, but the functional activity of TDM remains unaffected. Cytological studies and animal models of hard tissue defects show that the hydrogel can promote the odontogenesis or osteogenic differentiation of mesenchymal stem cells, adapt to irregular hard tissue defects, and promote in situ regeneration of defective tooth and bone tissues. In summary, this paper shows that the injectable TDM hydrogel based on biomimetic mineralization theory can induce hard tissue formation and promote dentin/bone regeneration.
Collapse
|
4
|
Arias-Betancur A, Badilla-Wenzel N, Astete-Sanhueza Á, Farfán-Beltrán N, Dias FJ. Carrier systems for bone morphogenetic proteins: An overview of biomaterials used for dentoalveolar and maxillofacial bone regeneration. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:316-327. [PMID: 36281233 PMCID: PMC9587372 DOI: 10.1016/j.jdsr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Different types of biomaterials have been used to fabricate carriers to deliver bone morphogenetic proteins (BMPs) in both dentoalveolar and maxillofacial bone regeneration procedures. Despite that absorbable collagen sponge (ACS) is considered the gold standard for BMP delivery, there is still some concerns regarding its use mainly due to its poor mechanical properties. To overcome this, novel systems are being developed, however, due to the wide variety of biomaterial combination, the heterogeneous assessment of newly formed tissue, and the intended clinical applications, there is still no consensus regarding which is more efficient in a particular clinical scenario. The combination of two or more biomaterials in different topological configurations has allowed specific controlled-release patterns for BMPs, improving their biological and mechanical properties compared with classical single-material carriers. However, more basic research is needed. Since the BMPs can be used in multiple clinical scenarios having different biological and mechanical needs, novel carriers should be developed in a context-specific manner. Thus, the purpose of this review is to gather current knowledge about biomaterials used to fabricate delivery systems for BMPs in both dentoalveolar and maxillofacial contexts. Aspects related with the biological, physical and mechanical characteristics of each biomaterial are also presented and discussed. Strategies for bone formation and regeneration are a major concern in dentistry. Topical delivery of bone morphogenetic proteins (BMPs) allows rapid bone formation. BMPs requires proper carrier system to allow controlled and sustained release. Carrier should also fulfill mechanical requirements of bone defect sites. By using complex composites, it would be possible to develop new carriers for BMPs.
Collapse
Affiliation(s)
- Alain Arias-Betancur
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Badilla-Wenzel
- Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Álvaro Astete-Sanhueza
- Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicole Farfán-Beltrán
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile.,Universidad Adventista de Chile, Chillán 3780000, Chile
| | - Fernando José Dias
- Department of Integral Adult Dentistry, Oral Biology Research Centre (CIBO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
5
|
Liu C, Wang Z, Yao X, Wang M, Huang Z, Li X. Sustained Biochemical Signaling and Contact Guidance by Electrospun Bicomponents as Promising Scaffolds for Nerve Tissue Regeneration. ACS OMEGA 2021; 6:33010-33017. [PMID: 34901652 PMCID: PMC8655927 DOI: 10.1021/acsomega.1c05117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Electrospun fibers are excellent delivery vehicles enabling a sustained release of growth factors to elicit favorable cell responses and are increasingly used in tissue engineering. Scaffolds with specific physical/topographical features can also guide cell migration and maturation. Therefore, growth factor-loaded electrospun scaffolds with a designed topography are promising for tissue regeneration. In this investigation, aligned-fiber scaffolds composed of poly(lactic-co-glycolic acid) nanofibers incorporating a glial cell line-derived growth factor and poly (d,l-lactic acid) nanofibers incorporating a nerve growth factor were produced by electrospinning. The scaffolds provided an aligned fibrous topography and a dual release of growth factors. The rat pheochromocytoma cell (PC12 cell) response to produced non-woven and aligned-fiber scaffolds with/without growth factors was studied. The dual release of growth factors and topographical cues provided by aligned-fiber bicomponent scaffolds induced significant neurite extension, neuronal differentiation, and neurite alignment in a synergistic manner. The scaffolds with predesigned biochemical/topographical cues demonstrated in this study might be promising for nerve tissue repair.
Collapse
Affiliation(s)
- Chaoyu Liu
- Department
of Research and Development, Shenzhen Shiningbiotek
Company Limited, Shenzhen 518055, China
| | - Zhiping Wang
- Department
of Research and Development, Shenzhen Anlv
Medical Technology Company Limited, Shenzhen 518055, China
| | - Xumei Yao
- Department
of Research and Development, Shenzhen Shiningbiotek
Company Limited, Shenzhen 518055, China
| | - Min Wang
- Department
of Mechanical Engineering, The University
of Hong Kong, Pokfulam
Road, Hong Kong 999077, China
| | - Zhigang Huang
- Department
of General Practice, Peking University Shenzhen
Hospital, Shenzhen 518036, China
| | - Xiaohua Li
- Department
of Research and Development, Shenzhen Shiningbiotek
Company Limited, Shenzhen 518055, China
| |
Collapse
|
6
|
Munir MU, Salman S, Javed I, Bukhari SNA, Ahmad N, Shad NA, Aziz F. Nano-hydroxyapatite as a delivery system: overview and advancements. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:717-727. [PMID: 34907839 DOI: 10.1080/21691401.2021.2016785] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nano-hydroxyapatite is being investigated as vital components of implants and dental and tissue engineering devices. It is found as a bone replacement due to its non-toxicity and cytocompatibility with dental tissues and bone. The reality that nanocrystalline hydroxyapatite can be made of porous granules and scaffolds. Additionally, it has a massive loading potential indicating its use as a transporter for drugs or a regulated drug release mechanism in pharmaceutical research. This review aims to present existing nano-hydroxyapatite research developments as a drug carrier employed in bone tissue disorders locally and deliver poorly soluble drugs with reduced bioavailability. We have discussed the nano-hydroxyapatite role in the delivery of drugs (i.e. anti-resorptive, anti-cancer, and antibiotics), proteins, genetic material, and radionuclides.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Naveed Akhter Shad
- National Institute of Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Farooq Aziz
- Department of Physics, University of Sahiwal, Sahiwal, Pakistan
| |
Collapse
|
7
|
Kim YS, Mikos AG. Emerging strategies in reprogramming and enhancing the fate of mesenchymal stem cells for bone and cartilage tissue engineering. J Control Release 2021; 330:565-574. [DOI: 10.1016/j.jconrel.2020.12.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
|
8
|
Fayed O, van Griensven M, Tahmasebi Birgani Z, Plank C, Balmayor ER. Transcript-Activated Coatings on Titanium Mediate Cellular Osteogenesis for Enhanced Osteointegration. Mol Pharm 2021; 18:1121-1137. [PMID: 33492959 PMCID: PMC7927143 DOI: 10.1021/acs.molpharmaceut.0c01042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteointegration is one of the most important factors for implant success. Several biomolecules have been used as part of drug delivery systems to improve implant integration into the surrounding bone tissue. Chemically modified mRNA (cmRNA) is a new form of therapeutic that has been used to induce bone healing. Combined with biomaterials, cmRNA can be used to develop transcript-activated matrices for local protein production with osteoinductive potential. In this study, we aimed to utilize this technology to create bone morphogenetic protein 2 (BMP2) transcript-activated coatings for titanium (Ti) implants. Therefore, different coating methodologies as well as cmRNA incorporation strategies were evaluated. Three different biocompatible biomaterials were used for the coating of Ti, namely, poly-d,l-lactic acid (PDLLA), fibrin, and fibrinogen. cmRNA-coated Ti disks were assayed for transfection efficiency, cmRNA release, cell viability and proliferation, and osteogenic activity in vitro. We found that cmRNA release was significantly delayed in Ti surfaces previously coated with biomaterials. Consequently, the transfection efficiency was greatly improved. PDLLA coating improved the transfection efficiency in a concentration-dependent manner. Lower PDLLA concentration used for the coating of Ti resulted in higher transfection efficiency. Fibrin and fibrinogen coatings showed even higher transfection efficiencies compared to all PDLLA concentrations. In those disks, not only the expression was up to 24-fold higher but also the peak of maximal expression was delayed from 24 h to 5 days, and the duration of expression was also extended until 7 days post-transfection. For fibrin, higher transfection efficiencies were obtained in the coatings with the lowest thrombin amounts. Accordingly, fibrinogen coatings gave the best results in terms of cmRNA transfection. All biomaterial-coated Ti surfaces showed improved cell viability and proliferation, though this was more noticeable in the fibrinogen-coated disks. The latter was also the only coating to support significant amounts of BMP2 produced by C2C12 cells in vitro. Osteogenesis was confirmed using BMP2 cmRNA fibrinogen-coated Ti disks, and it was dependent of the cmRNA amount present. Alkaline phosphatase (ALP) activity of C2C12 increased when using fibrinogen coatings containing 250 ng of cmRNA or more. Similarly, mineralization was also observed that increased with increasing cmRNA concentration. Overall, our results support fibrinogen as an optimal material to deliver cmRNA from titanium-coated surfaces.
Collapse
Affiliation(s)
- Omnia Fayed
- Institute of Molecular Immunology and Experimental Oncology-Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Ethris GmbH, 82152 Planegg, Germany
| | - Martijn van Griensven
- cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands.,Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Zeinab Tahmasebi Birgani
- IBE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Christian Plank
- Institute of Molecular Immunology and Experimental Oncology-Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Ethris GmbH, 82152 Planegg, Germany
| | - Elizabeth R Balmayor
- IBE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands.,Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
9
|
Liu C, Li X, Zhao Q, Xie Y, Yao X, Wang M, Cao F. Nanofibrous bicomponent scaffolds for the dual delivery of NGF and GDNF: controlled release of growth factors and their biological effects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:9. [PMID: 33471206 PMCID: PMC7817556 DOI: 10.1007/s10856-020-06479-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/18/2020] [Indexed: 06/01/2023]
Abstract
Electrospun fibrous scaffolds capable of providing dual growth factor delivery in a controlled manner have distinctive advantages for tissue engineering. In this study, we have investigated the formation, structure, and characteristics/properties of fibrous bicomponent scaffolds for the dual delivery of glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) for peripheral nerve tissue regeneration. GDNF and NGF were incorporated into core-shell structured poly(lactic-co-glycolic acid) (PLGA) and poly (D,L-lactic acid) (PDLLA) nanofibers, respectively, through emulsion electrospinning. Using dual-source dual-power electrospinning, bicomponent scaffolds composed of GDNF/PLGA fibers and NGF/PDLLA fibers with different fiber component ratios were produced. The structure, properties, and in vitro release behavior of mono- and bicomponent scaffolds were systematically investigated. Concurrent and sustained release of GDNF and NGF from bicomponent scaffolds was achieved and their release profiles could be tuned. In vitro biological investigations were conducted. Rat pheochromocytoma cells were found to attach, spread, and proliferate on all scaffolds. The release of growth factors from scaffolds could induce much improved neurite outgrowth and neural differentiation. GDNF and NGF released from GDNF/PLGA scaffolds and NGF/PDLLA scaffolds, respectively, could induce dose-dependent neural differentiation separately. GDNF and NGF released from bicomponent scaffolds exerted a synergistic effect on promoting neural differentiation.
Collapse
Affiliation(s)
- Chaoyu Liu
- Department of Research and Development, Shenzhen Shiningbiotek Co., Ltd, Shenzhen, 518055, P. R. China.
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | - Xiaohua Li
- Department of Research and Development, Shenzhen Shiningbiotek Co., Ltd, Shenzhen, 518055, P. R. China
- Oncology Center, Hubei University of Medicine, Shiyan, 442000, P. R. China
| | - Qilong Zhao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, P. R. China
| | - Yuancai Xie
- Department of Thoracic, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Xumei Yao
- Department of Research and Development, Shenzhen Shiningbiotek Co., Ltd, Shenzhen, 518055, P. R. China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Fengjun Cao
- Oncology Center, Hubei University of Medicine, Shiyan, 442000, P. R. China.
| |
Collapse
|
10
|
Zhang N, Lo CW, Utsunomiya T, Maruyama M, Huang E, Rhee C, Gao Q, Yao Z, Goodman SB. PDGF-BB and IL-4 co-overexpression is a potential strategy to enhance mesenchymal stem cell-based bone regeneration. Stem Cell Res Ther 2021; 12:40. [PMID: 33413614 PMCID: PMC7792350 DOI: 10.1186/s13287-020-02086-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based therapy has the potential for immunomodulation and enhancement of tissue regeneration. Genetically modified MSCs that over-express specific cytokines, growth factors, or chemokines have shown great promise in pre-clinical studies. In this regard, the anti-inflammatory cytokine interleukin (IL)-4 converts pro-inflammatory M1 macrophages into an anti-inflammatory M2 phenotype; M2 macrophages mitigate chronic inflammation and enhance osteogenesis by MSC lineage cells. However, exposure to IL-4 prematurely inhibits osteogenesis of MSCs in vitro; furthermore, IL-4 overexpressing MSCs inhibit osteogenesis in vivo during the acute inflammatory period. Platelet-derived growth factor (PDGF)-BB has been shown to enhance osteogenesis of MSCs with a dose-dependent effect. METHODS In this study, we generated a lentiviral vector that produces PDGF-BB under a weak promoter (phosphoglycerate kinase, PGK) and lentiviral vector producing IL-4 under a strong promoter (cytomegalovirus, CMV). We infected MSCs with PDGF-BB and IL-4-producing lentiviral vectors separately or in combination to investigate cell proliferation and viability, protein expression, and the capability for osteogenesis. RESULTS PDGF-BB and IL-4 co-overexpression was observed in the co-infected MSCs and shown to enhance cell proliferation and viability, and osteogenesis compared to IL-4 overexpressing MSCs alone. CONCLUSIONS Overexpression of PDGF-BB together with IL-4 mitigates the inhibitory effect of IL-4 on osteogenesis by IL-4 overexpressing MSCS. PDGF-BB and IL-4 overexpressing MSCs may be a potential strategy to facilitate osteogenesis in scenarios of both acute and chronic inflammation.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Chi-Wen Lo
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Claire Rhee
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Adjei IM, Yang H, Plumton G, Maldonado-Camargo L, Dobson J, Rinaldi C, Jiang H, Sharma B. Multifunctional nanoparticles for intracellular drug delivery and photoacoustic imaging of mesenchymal stem cells. Drug Deliv Transl Res 2020; 9:652-666. [PMID: 30784022 DOI: 10.1007/s13346-019-00621-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Strategies that control the differentiation of mesenchymal stem cells (MSC) and enable image-guided cell implantation and longitudinal monitoring could advance MSC-based therapies for bone defects and injuries. Here we demonstrate a multifunctional nanoparticle system that delivers resveratrol (RESV) intracellularly to improve osteogenesis and enables photoacoustic imaging of MSCs. RESV-loaded nanoparticles (RESV-NPs), formulated from poly (lactic-co-glycolic) acid and iron oxide, enhanced the stability of RESV by 18-fold and served as photoacoustic tomography (PAT) contrast for MSCs. Pre-loading MSCs with RESV-NP upregulated RUNX2 expression with a resultant increase in mineralization by 27% and 45% compared to supplementation with RESV-NP and free RESV, respectively, in 2-dimensional cultures. When grown in polyethylene glycol-based hydrogels, MSCs pre-loaded with RESV-NPs increased the overall level and homogeneity of mineralization compared to those supplemented with free RESV or RESV-NP. The PAT detected RESV-NP-loaded MSCs with a resolution of 1500 cells/μL, which ensured imaging of MSCs upon encapsulation in a PEG-based hydrogel and implantation within the rodent cranium. Significantly, RESV-NP-loaded MSCs in hydrogels did not show PAT signal dilution over time or a reduction in signal upon osteogenic differentiation. This multifunctional NP platform has the potential to advance translation of stem cell-based therapies, by improving stem cell function and consistency via intracellular drug delivery, and enabling the use of a promising emerging technology to monitor cells in a clinically relevant manner.
Collapse
Affiliation(s)
- Isaac M Adjei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, JG56, Gainesville, FL, 32611, USA
| | - Hao Yang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, JG56, Gainesville, FL, 32611, USA
| | - Glendon Plumton
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, JG56, Gainesville, FL, 32611, USA
| | | | - Jon Dobson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, JG56, Gainesville, FL, 32611, USA.,Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, JG56, Gainesville, FL, 32611, USA.,Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Huabei Jiang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, JG56, Gainesville, FL, 32611, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, JG56, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Wang J, He XT, Xu XY, Yin Y, Li X, Bi CS, Hong YL, Chen FM. Surface modification via plasmid-mediated pLAMA3-CM gene transfection promotes the attachment of gingival epithelial cells to titanium sheets in vitro and improves biological sealing at the transmucosal sites of titanium implants in vivo. J Mater Chem B 2019; 7:7415-7427. [PMID: 31710069 DOI: 10.1039/c9tb01715a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although titanium implants have been applied in dental clinics to replace lost teeth and to restore masticatory function for decades, strategies to design the surface of the transmucosal sites of implants to achieve ideal and predictable biological sealing following implantation remain to be optimized. In this study, we hypothesized that gingival epithelial cell (GEC) adhesion and new tissue attachment to titanium sheets/implants could be promoted by the release of plasmid pLAMA3-CM (encoding a motif of the C-terminal globular domain of LAMA3) from a titanium surface. To test this hypothesis, a chitosan/collagen (Chi/Col) coating was immobilized on the surfaces of titanium substrates with nanotube topography (NT-Ti) through cathodic electrophoretic deposition; it was found that pLAMA3-CM could be released from the coating in a highly sustained manner. After culturing on titanium with nanotube topography coated by Chi/Col with the plasmid pLAMA3-CM (Chi/Col/pLAMA3-CM-Ti), human GECs (hGECs) were found to effectively uptake the incorporated plasmids, which resulted in improved attachment, as evidenced by morphological and immunofluorescence analyses. In addition, Chi/Col/pLAMA3-CM-Ti induced better biological sealing at transmucosal sites following immediate implantation into Sprague-Dawley rats. Our findings indicate that the modification of titanium implants by plasmid-mediated pLAMA3-CM gene transfection points to a practical strategy for optimizing biological sealing around the transmucosal sites of implants.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China.
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China.
| | - Xin-Yue Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China.
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China.
| | - Xuan Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China.
| | - Chun-Sheng Bi
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China.
| | - Yong-Long Hong
- Stomatology Center, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, P. R. China.
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China.
| |
Collapse
|
13
|
Goker F, Larsson L, Del Fabbro M, Asa'ad F. Gene Delivery Therapeutics in the Treatment of Periodontitis and Peri-Implantitis: A State of the Art Review. Int J Mol Sci 2019; 20:ijms20143551. [PMID: 31330797 PMCID: PMC6679027 DOI: 10.3390/ijms20143551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Periodontal disease is a chronic inflammatory condition that affects supporting tissues around teeth, resulting in periodontal tissue breakdown. If left untreated, periodontal disease could have serious consequences; this condition is in fact considered as the primary cause of tooth loss. Being highly prevalent among adults, periodontal disease treatment is receiving increased attention from researchers and clinicians. When this condition occurs around dental implants, the disease is termed peri-implantitis. Periodontal regeneration aims at restoring the destroyed attachment apparatus, in order to improve tooth stability and thus reduce disease progression and subsequent periodontal tissue breakdown. Although many biomaterials have been developed to promote periodontal regeneration, they still have their own set of disadvantages. As a result, regenerative medicine has been employed in the periodontal field, not only to overcome the drawbacks of the conventional biomaterials but also to ensure more predictable regenerative outcomes with minimal complications. Regenerative medicine is considered a part of the research field called tissue engineering/regenerative medicine (TE/RM), a translational field combining cell therapy, biomaterial, biomedical engineering and genetics all with the aim to replace and restore tissues or organs to their normal function using in vitro models for in vivo regeneration. In a tissue, cells are responding to different micro-environmental cues and signaling molecules, these biological factors influence cell differentiation, migration and cell responses. A central part of TE/RM therapy is introducing drugs, genetic materials or proteins to induce specific cellular responses in the cells at the site of tissue repair in order to enhance and improve tissue regeneration. In this review, we present the state of art of gene therapy in the applications of periodontal tissue and peri-implant regeneration. PURPOSE We aim herein to review the currently available methods for gene therapy, which include the utilization of viral/non-viral vectors and how they might serve as therapeutic potentials in regenerative medicine for periodontal and peri-implant tissues.
Collapse
Affiliation(s)
- Funda Goker
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milano, Italy
| | - Lena Larsson
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milano, Italy
- IRCCS Orthopedic Institute Galeazzi, 20161 Milano, Italy
| | - Farah Asa'ad
- Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
| |
Collapse
|
14
|
Schlickewei C, Klatte TO, Wildermuth Y, Laaff G, Rueger JM, Ruesing J, Chernousova S, Lehmann W, Epple M. A bioactive nano-calcium phosphate paste for in-situ transfection of BMP-7 and VEGF-A in a rabbit critical-size bone defect: results of an in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:15. [PMID: 30671652 DOI: 10.1007/s10856-019-6217-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to prepare an injectable DNA-loaded nano-calcium phosphate paste that is suitable as bioactive bone substitution material. For this we used the well-known potential of calcium phosphate in bone contact and supplemented it with DNA for the in-situ transfection of BMP-7 and VEGF-A in a critical-size bone defect. 24 New Zealand white rabbits were randomly divided into two groups: One group with BMP-7- and VEGF-A-encoding DNA on calcium phosphate nanoparticles and a control group with calcium phosphate nanoparticles only. The bone defect was created at the proximal medial tibia and filled with the DNA-loaded calcium phosphate paste. As control, a bone defect was filled with the calcium phosphate paste without DNA. The proximal tibia was investigated 2, 4 and 12 weeks after the operation. A histomorphological analysis of the dynamic bone parameters was carried out with the Osteomeasure system. The animals treated with the DNA-loaded calcium phosphate showed a statistically significantly increased bone volume per total volume after 4 weeks in comparison to the control group. Additionally, a statistically significant increase of the trabecular number and the number of osteoblasts per tissue area were observed. These results were confirmed by radiological analysis. The DNA-loaded bone paste led to a significantly faster healing of the critical-size bone defect in the rabbit model after 4 weeks. After 12 weeks, all defects had equally healed in both groups. No difference in the quality of the new bone was found. The injectable DNA-loaded calcium phosphate paste led to a faster and more sustained bone healing and induced an accelerated bone formation after 4 weeks. The material was well integrated into the bone defect and new bone was formed on its surface. The calcium phosphate paste without DNA led to a regular healing of the critical-size bone defect, but the healing was slower than the DNA-loaded paste. Thus, the in-situ transfection with BMP-7 and VEGF-A significantly improved the potential of calcium phosphate as pasty bone substitution material.
Collapse
Affiliation(s)
- Carsten Schlickewei
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Till O Klatte
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Yasmin Wildermuth
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Georg Laaff
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes M Rueger
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes Ruesing
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Svitlana Chernousova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Wolfgang Lehmann
- Department of Trauma, Orthopaedics and Plastic Surgery, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany.
| |
Collapse
|
15
|
Potential of rhBMP-2 and dexamethasone-loaded Zein/PLLA scaffolds for enhanced in vitro osteogenesis of mesenchymal stem cells. Colloids Surf B Biointerfaces 2018; 169:384-394. [DOI: 10.1016/j.colsurfb.2018.05.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/25/2018] [Accepted: 05/18/2018] [Indexed: 01/09/2023]
|
16
|
Yang L, Huang J, Yang S, Cui W, Wang J, Zhang Y, Li J, Guo X. Bone Regeneration Induced by Local Delivery of a Modified PTH-Derived Peptide from Nanohydroxyapatite/Chitosan Coated True Bone Ceramics. ACS Biomater Sci Eng 2018; 4:3246-3258. [PMID: 33435063 DOI: 10.1021/acsbiomaterials.7b00780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Liang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, People’s Republic of China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, People’s Republic of China
| | - Jinghuan Huang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of China
| | - Shuyi Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, People’s Republic of China
| | - Wei Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, People’s Republic of China
| | - Jianping Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, People’s Republic of China
| | - Yinping Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, People’s Republic of China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, People’s Republic of China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, People’s Republic of China
| |
Collapse
|
17
|
Kwon DY, Park JH, Jang SH, Park JY, Jang JW, Min BH, Kim W, Lee HB, Lee J, Kim MS. Bone regeneration by means of a three‐dimensional printed scaffold in a rat cranial defect. J Tissue Eng Regen Med 2017; 12:516-528. [DOI: 10.1002/term.2532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Doo Yeon Kwon
- Department of Molecular Science and TechnologyAjou University Suwon Korea
| | - Ji Hoon Park
- Department of Molecular Science and TechnologyAjou University Suwon Korea
| | - So Hee Jang
- Department of Molecular Science and TechnologyAjou University Suwon Korea
- Nature‐Inspired Mechanical System TeamKorea Institute of Machinery and Materials Daejeon Korea
| | - Joon Yeong Park
- Department of Molecular Science and TechnologyAjou University Suwon Korea
| | | | - Byoung Hyun Min
- Department of Molecular Science and TechnologyAjou University Suwon Korea
| | - Wan‐Doo Kim
- Nature‐Inspired Mechanical System TeamKorea Institute of Machinery and Materials Daejeon Korea
| | - Hai Bang Lee
- Department of Molecular Science and TechnologyAjou University Suwon Korea
| | - Junhee Lee
- Nature‐Inspired Mechanical System TeamKorea Institute of Machinery and Materials Daejeon Korea
| | - Moon Suk Kim
- Department of Molecular Science and TechnologyAjou University Suwon Korea
| |
Collapse
|
18
|
Attia N, Mashal M, Grijalvo S, Eritja R, Zárate J, Puras G, Pedraz JL. Stem cell-based gene delivery mediated by cationic niosomes for bone regeneration. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:521-531. [PMID: 29157978 DOI: 10.1016/j.nano.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/06/2017] [Accepted: 11/06/2017] [Indexed: 01/07/2023]
Abstract
Bone morphogenetic protein-7(BMP-7) plays a pivotal role in the transformation of mesenchymal stem cells (MSCs) into bone. However, its impact is hampered due to its short half-life. Therefore, gene therapy may be an interesting approach to deliver BMP-7 gene to D1-MSCs. In this manuscript we prepared and characterized niosomes based on cationic lipid 2,3-di(tetradecyloxy)propan-1-amine, combined with polysorbate 80 for gene delivery purposes. Niosomes were characterized and combined initially with pCMS-EGFP reporter plasmid, and later with pUNO1-hBMP-7 plasmid to evaluate osteogenesis differentiation. Additionally, specific blockers of most relevant endocytic pathways were used to evaluate the intracellular disposition of complexes. MSCs transfected with niosomes showed increased growth rate, enhanced alkaline phosphatase activity (ALP) and extracellular matrix deposition which suggested the formation of osteoblast-like cells. We concluded that hBMP-7-transfected MSCs could be considered not only as an effective delivery tool of hBMP-7, but also as proliferating and bone forming cells for bone regeneration.
Collapse
Affiliation(s)
- Noha Attia
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz, Spain; Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mohamed Mashal
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Jon Zárate
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
19
|
Wang J, Li J, Yang L, Zhou Y, Wang Y. Dose-dependence of PTH-related peptide-1 on the osteogenic induction of MC3T3-E1 cells in vitro. Medicine (Baltimore) 2017; 96:e6637. [PMID: 28445262 PMCID: PMC5413227 DOI: 10.1097/md.0000000000006637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Parathyroid hormone (PTH), an 84-amino acid peptide, is an endocrine hormone that is secreted by parathyroid glands. PTH performs important functions in calcium regulation and bone remodeling. The PTH (1-34) named teriparatide, a 34-amino acid peptide derived from the N-terminus of PTH, conserves most of the functions of PTH, specifically the osteogenic capability. However, teriparatide is only used by injection and exhibits short duration. In addition, this PTH could not thoroughly expose active sites. In this study, a novel PTH-related peptide (designated PTHrP-1) derived from the N-terminus of PTH was added into the complete medium at different concentrations of PTHrP-1 (0, 50, 100, and 200 ng/mL) to induce the MC3T3-E1 cells. PTHrP-1 was detected by high-performance liquid chromatography and matrix-assisted laser desorption/ionization-time-of-flight mass spectroscopy. Cell morphology, cell proliferation, alkaline phosphatase (ALP), and ALP activity, osteocalcin concentration, and collagen type I (Col-I), osteopontin (OPN), and osteocalcin (OCN) mRNA expression by RT-PCR and protein expression by western blotting were observed and detected. The purity of the PTHrP-1 was 95.14%, and the PTHrP-1 can induce MC3T3-E1 cells into osteoblasts, thus improving ALP activity and OCN concentration, and increasing Col-I, OPN, and OCN mRNA expression and protein expression in MC3T3-E1 cell cultures. The PTHrP-1 proved to be an ideal active peptide. In addition, the osteogenic ability of PTHrP-1 at 200 and 100 ng/mL concentrations was not significantly different but significantly higher than 50 and 0 ng/mL groups. Results indicate that PTHrP-1 is a kind of active peptides that exhibits good biocompatibility with MC3T3-E1 cells and could improve cell proliferation and osteogenic differentiation. Moreover, PTHrP-1, at the preferable concentration of 100 ng/mL, could effectively promote MC3T3-E1 cells into osteoblasts.
Collapse
Affiliation(s)
- Jianping Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University
| | - Liang Yang
- Department of Orthopedics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yichi Zhou
- Department of Orthopedics, Zhongnan Hospital of Wuhan University
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University
| |
Collapse
|
20
|
Haidari S, Boskov M, Schillinger U, Bissinger O, Wolff KD, Plank C, Kolk A. Functional analysis of bioactivated and antiinfective PDLLA - coated surfaces. J Biomed Mater Res A 2017; 105:1672-1683. [PMID: 28218496 DOI: 10.1002/jbm.a.36042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/16/2017] [Indexed: 12/20/2022]
Abstract
Common scaffold surfaces such as titanium can have side effects; for example, infections, cytotoxicity, impaired osseointegration, or low regeneration rates for bone tissue. These effects lead to poor implant integration or even implant loss. Therefore, bioactive implants are promising instruments in tissue regeneration. Osteoinductive elements-such as growth factors and anti-infectives-support wound healing and bone growth and thereby enable faster osseointegration, even in elderly patients. In this study, titanium surfaces were coated with a poly-(d,l-lactide) (PDLLA) layer containing different concentrations of copolymer-protected gene vectors (COPROGs) to locally provide bone morphogenetic protein-2 (BMP-2) or activated anti-infective agents, such as chlorhexidine gluconate, triclosan, and metronidazole, to prevent peri-implantitis. The coated titanium implants were then loaded with osteoblasts, NIH 3T3 fibroblasts, and human mesenchymal stem cells in 96-well plates. When shielded by COPROGs as a protective layer and resuspended in PDLLA, BMP-2-encoding pDNA at relatively low doses (5.63 µg/implant) induced the local expression of BMP-2. A linear dose dependence, which is common for recombinant growth factors, was not found, probably due to the retention property of the PDLLA surface. PDLLA, in general, successfully retains additional elements, such as osteoconductive growth factors (BMP-2) and anti-infective agents, which was demonstrated using metronidazole, and thus prevents the systemic application of excessive doses. These bioactive implant surfaces that provide the local release of therapeutic gene vectors or anti-infective agents allow the controlled stimulation of the implant and scaffold osseointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1672-1683, 2017.
Collapse
Affiliation(s)
- Selgai Haidari
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Marko Boskov
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Ulrike Schillinger
- Institute of Molecular Immunology - Experimental Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Oliver Bissinger
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Christian Plank
- Institute of Molecular Immunology - Experimental Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany.,Institute of Molecular Immunology - Experimental Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| |
Collapse
|
21
|
Jazayeri HE, Tahriri M, Razavi M, Khoshroo K, Fahimipour F, Dashtimoghadam E, Almeida L, Tayebi L. A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:913-929. [DOI: 10.1016/j.msec.2016.08.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023]
|
22
|
Fliefel R, Kühnisch J, Ehrenfeld M, Otto S. Gene Therapy for Bone Defects in Oral and Maxillofacial Surgery: A Systematic Review and Meta-Analysis of Animal Studies. Stem Cells Dev 2016; 26:215-230. [PMID: 27819181 DOI: 10.1089/scd.2016.0172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Craniofacial bone defects are challenging problems for maxillofacial surgeons over the years. With the development of cell and molecular biology, gene therapy is a breaking new technology with the aim of regenerating tissues by acting as a delivery system for therapeutic genes in the craniofacial region rather than treating genetic disorders. A systematic review was conducted summarizing the articles reporting gene therapy in maxillofacial surgery to answer the question: Was gene therapy successfully applied to regenerate bone in the maxillofacial region? Electronic searching of online databases was performed in addition to hand searching of the references of included articles. No language or time restrictions were enforced. Meta-analysis was done to assess significant bone formation after delivery of gene material in the surgically induced maxillofacial defects. The search identified 2081 articles, of which 57 were included with 1726 animals. Bone morphogenetic proteins were commonly used proteins for gene therapy. Viral vectors were the universally used vectors. Sprague-Dawley rats were the frequently used animal model in experimental studies. The quality of the articles ranged from excellent to average. Meta-analysis results performed on 21 articles showed that defects favored bone formation by gene therapy. Funnel plot showed symmetry with the absence of publication bias. Gene therapy is on the top list of innovative strategies that developed in the last 10 years with the hope of developing a simple chair-side protocol in the near future, combining improvement of gene delivery as well as knowledge of the molecular basis of oral and maxillofacial structures.
Collapse
Affiliation(s)
- Riham Fliefel
- 1 Experimental Surgery and Regenerative Medicine (ExperiMed), Ludwig-Maximilians-University , Munich, Germany .,2 Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University , Munich, Germany .,3 Department of Oral and Maxillofacial Surgery, Alexandria University , Alexandria, Egypt
| | - Jan Kühnisch
- 4 Department of Conservative Dentistry and Periodontology, Ludwig-Maximilians-University , Munich, Germany
| | - Michael Ehrenfeld
- 2 Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University , Munich, Germany
| | - Sven Otto
- 2 Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University , Munich, Germany
| |
Collapse
|
23
|
Atluri K, Lee J, Seabold D, Elangovan S, Salem AK. Gene-Activated Titanium Surfaces Promote In Vitro Osteogenesis. Int J Oral Maxillofac Implants 2016; 32:e83–e96. [PMID: 27706263 DOI: 10.11607/jomi.5026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Commercially pure titanium (CpTi) and its alloys possess favorable mechanical and biologic properties for use as implants in orthopedics and dentistry. However, failures in osseointegration still exist and are common in select individuals with risk factors such as smoking. Therefore, in this study, a proposal was made to enhance the potential for osseointegration of CpTi discs by coating their surfaces with nanoplexes comprising polyethylenimine (PEI) and plasmid DNA (pDNA) encoding bone morphogenetic protein-2 (pBMP-2). MATERIALS AND METHODS The nanoplexes were characterized for size and surface charge with a range of N/P ratios (the molar ratio of amine groups of PEI to phosphate groups in pDNA backbone). CpTi discs were surface characterized for morphology and composition before and after nanoplex coating using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD). The cytotoxicity and transfection ability of CpTi discs coated with nanoplexes of varying N/P ratios in human bone marrow-derived mesenchymal stem cells (BMSCs) was measured via MTS assays and flow cytometry, respectively. RESULTS The CpTi discs coated with nanoplexes prepared at an N/P ratio of 10 (N/P-10) were considered optimal, resulting in 75% cell viability and 14% transfection efficiency. Enzyme-linked immunosorbent assay results demonstrated a significant enhancement in BMP-2 protein secretion by BMSCs 7 days posttreatment with PEI/pBMP-2 nanoplexes (N/P-10) compared to the controls, and real-time PCR data demonstrated that the BMSCs treated with PEI/pBMP-2 nanoplex-coated CpTi discs resulted in an enhancement of Runx-2, alkaline phosphatase, and osteocalcin gene expressions on day 7 posttreatment. In addition, these BMSCs demonstrated enhanced calcium deposition on day 30 posttreatment as determined by qualitative (alizarin red staining) and quantitative (atomic absorption spectroscopy) assays. CONCLUSION It can be concluded that PEI/pBMP-2 nanoplex (N/P-10)-coated CpTi discs have the potential to induce osteogenesis and enhance osseointegration.
Collapse
|
24
|
Begam H, Nandi SK, Kundu B, Chanda A. Strategies for delivering bone morphogenetic protein for bone healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:856-869. [PMID: 27770964 DOI: 10.1016/j.msec.2016.09.074] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/12/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
Abstract
Bone morphogenetic proteins (BMPs) are the most significant growth factors that belong to the Transforming Growth Factor Beta (TGF-β) super-family. Though more than twenty members of this family have been identified so far in humans, Food and Drug Administration (FDA) approved two growth factors: BMP-2 and BMP-7 for treatments of spinal fusion and long-bone fractures with collagen carriers. Currently BMPs are clinically used in spinal fusion, oral and maxillofacial surgery and also in the repair of long bone defects. The efficiency of BMPs depends a lot on the selection of suitable carriers. At present, different types of carrier materials are used: natural and synthetic polymers, calcium phosphate and ceramic-polymer composite materials. Number of research articles has been published on the minute intricacies of the loading process and release kinetics of BMPs. Despite the significant evidence of its potential for bone healing demonstrated in animal models, future clinical investigations are needed to define dose, scaffold and route of administration. The efficacy and application of BMPs in various levels with a proper carrier and dose is yet to be established. The present article collates various aspects of success and limitation and identifies the prospects and challenges associated with the use of BMPs in orthopaedic surgery.
Collapse
Affiliation(s)
- Howa Begam
- School of Bioscience and Engineering, Jadavpur University, Kolkata 700032, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery, Radiology West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| | - Biswanath Kundu
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India.
| | - Abhijit Chanda
- Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
25
|
Kolk A, Tischer T, Koch C, Vogt S, Haller B, Smeets R, Kreutzer K, Plank C, Bissinger O. A novel nonviral gene delivery tool of BMP-2 for the reconstitution of critical-size bone defects in rats. J Biomed Mater Res A 2016; 104:2441-55. [PMID: 27176560 DOI: 10.1002/jbm.a.35773] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/13/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
The osseointegration of bone implants, implant failure, and the bridging of critical-size bone defects are frequent clinical challenges. Deficiencies in endogenous bone healing can be resolved through the local administration of suitable recombinant growth factors (GFs). In preclinical models, gene-therapy-supported bone healing has proven promising for overcoming certain limitations of GFs. We report the dose-dependent bridging of critical-size mandibular bone defects (CSDs) in a rat model using a non-viral BMP-2-encoding copolymer-protected gene vector (pBMP-2) embedded in poly(d, l-lactide) (PDLLA) coatings on titanium discs that were used to cover drill holes in the mandibles of 53 male Sprague Dawley rats. After sacrificing, the mandibles were subjected to micro-computed tomography (µCT), micro-radiography, histology, and fluorescence analyses to evaluate bone regeneration. pBMP-2 in PDLLA-coated titanium implants promoted partial bridging of bone defects within 14 days and complete defect healing within 112 days when the DNA dose per implant did not exceed 2.5 µg. No bridging was observed in untreated control CSDs. Thus, the delivery of plasmid DNA coding for BMP-2 appears to be a potent method for controlled new-bone formation with an inverse dose dependency. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2441-2455, 2016.
Collapse
Affiliation(s)
- Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany.,Institute of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Thomas Tischer
- Department of Orthopeadic Sports Medicine, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christian Koch
- Institute of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Stephan Vogt
- Department of Orthopeadic Sports Medicine, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Haller
- Institute of Medical Statistics and Epidemiology, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Kilian Kreutzer
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christian Plank
- Institute of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Oliver Bissinger
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
26
|
Papageorgiou SN, Papageorgiou PN, Deschner J, Götz W. Comparative effectiveness of natural and synthetic bone grafts in oral and maxillofacial surgery prior to insertion of dental implants: Systematic review and network meta-analysis of parallel and cluster randomized controlled trials. J Dent 2016; 48:1-8. [DOI: 10.1016/j.jdent.2016.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/21/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022] Open
|
27
|
Smeets R, Barbeck M, Hanken H, Fischer H, Lindner M, Heiland M, Wöltje M, Ghanaati S, Kolk A. Selective laser-melted fully biodegradable scaffold composed of poly(d
,l
-lactide) and β-tricalcium phosphate with potential as a biodegradable implant for complex maxillofacial reconstruction: In vitro
and in vivo
results. J Biomed Mater Res B Appl Biomater 2016; 105:1216-1231. [DOI: 10.1002/jbm.b.33660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Ralf Smeets
- Department of Oral and Maxillofacial Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Mike Barbeck
- Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery; Medical Center of the Goethe University Frankfurt; Frankfurt Germany
| | - Henning Hanken
- Department of Oral and Maxillofacial Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research; University Hospital RWTH Aachen; Aachen Germany
| | - Markus Lindner
- Department of Dental Materials and Biomaterials Research; University Hospital RWTH Aachen; Aachen Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Michael Wöltje
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden; Dresden Germany
| | - Shahram Ghanaati
- Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery; Medical Center of the Goethe University Frankfurt; Frankfurt Germany
| | - Andreas Kolk
- Department of Oral- and Maxillofacial Surgery; Klinikum rechts der Isar der Technischen Universität München; 81675 Munich Germany
| |
Collapse
|
28
|
BMP6-Engineered MSCs Induce Vertebral Bone Repair in a Pig Model: A Pilot Study. Stem Cells Int 2015; 2016:6530624. [PMID: 26770211 PMCID: PMC4685143 DOI: 10.1155/2016/6530624] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 01/13/2023] Open
Abstract
Osteoporotic patients, incapacitated due to vertebral compression fractures (VCF), suffer grave financial and clinical burden. Current clinical treatments focus on symptoms' management but do not combat the issue at the source. In this pilot study, allogeneic, porcine mesenchymal stem cells, overexpressing the BMP6 gene (MSC-BMP6), were suspended in fibrin gel and implanted into a vertebral defect to investigate their effect on bone regeneration in a clinically relevant, large animal pig model. To check the effect of the BMP6-modified cells on bone regeneration, a fibrin gel only construct was used for comparison. Bone healing was evaluated in vivo at 6 and 12 weeks and ex vivo at 6 months. In vivo CT showed bone regeneration within 6 weeks of implantation in the MSC-BMP6 group while only minor bone formation was seen in the defect site of the control group. After 6 months, ex vivo analysis demonstrated enhanced bone regeneration in the BMP6-MSC group, as compared to control. This preclinical study presents an innovative, potentially minimally invasive, technique that can be used to induce bone regeneration using allogeneic gene modified MSCs and therefore revolutionize current treatment of challenging conditions, such as osteoporosis-related VCFs.
Collapse
|
29
|
Fu YC, Wang YH, Chen CH, Wang CK, Wang GJ, Ho ML. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects. Int J Nanomedicine 2015; 10:7231-40. [PMID: 26664114 PMCID: PMC4671780 DOI: 10.2147/ijn.s88134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid) microspheres (SIM/PLGA) that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS) bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration of bone in the clinical setting.
Collapse
Affiliation(s)
- Yin-Chih Fu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan ; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Orthopaedics, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Hsiung Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan ; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Orthopaedics, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Kuang Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Gwo-Jaw Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Orthopaedics, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Orthopaedics, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
30
|
Bone Regeneration from PLGA Micro-Nanoparticles. BIOMED RESEARCH INTERNATIONAL 2015; 2015:415289. [PMID: 26509156 PMCID: PMC4609778 DOI: 10.1155/2015/415289] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/04/2015] [Indexed: 12/19/2022]
Abstract
Poly-lactic-co-glycolic acid (PLGA) is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2). Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed.
Collapse
|
31
|
Jung O, Smeets R, Porchetta D, Kopp A, Ptock C, Müller U, Heiland M, Schwade M, Behr B, Kröger N, Kluwe L, Hanken H, Hartjen P. Optimized in vitro procedure for assessing the cytocompatibility of magnesium-based biomaterials. Acta Biomater 2015; 23:354-363. [PMID: 26073090 DOI: 10.1016/j.actbio.2015.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 05/15/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023]
Abstract
Magnesium (Mg) is a promising biomaterial for degradable implant applications that has been extensively studied in vitro and in vivo in recent years. In this study, we developed a procedure that allows an optimized and uniform in vitro assessment of the cytocompatibility of Mg-based materials while respecting the standard protocol DIN EN ISO 10993-5:2009. The mouse fibroblast line L-929 was chosen as the preferred assay cell line and MEM supplemented with 10% FCS, penicillin/streptomycin and 4mM l-glutamine as the favored assay medium. The procedure consists of (1) an indirect assessment of effects of soluble Mg corrosion products in material extracts and (2) a direct assessment of the surface compatibility in terms of cell attachment and cytotoxicity originating from active corrosion processes. The indirect assessment allows the quantification of cell-proliferation (BrdU-assay), viability (XTT-assay) as well as cytotoxicity (LDH-assay) of the mouse fibroblasts incubated with material extracts. Direct assessment visualizes cells attached to the test materials by means of live-dead staining. The colorimetric assays and the visual evaluation complement each other and the combination of both provides an optimized and simple procedure for assessing the cytocompatibility of Mg-based biomaterials in vitro.
Collapse
|
32
|
Atluri K, Seabold D, Hong L, Elangovan S, Salem AK. Nanoplex-Mediated Codelivery of Fibroblast Growth Factor and Bone Morphogenetic Protein Genes Promotes Osteogenesis in Human Adipocyte-Derived Mesenchymal Stem Cells. Mol Pharm 2015; 12:3032-42. [PMID: 26121311 PMCID: PMC4613810 DOI: 10.1021/acs.molpharmaceut.5b00297] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study highlights the importance of transfection mediated coordinated bone morphogenetic protein 2 (BMP-2) and fibroblast growth factor 2 (FGF-2) signaling in promoting osteogenesis. We employed plasmids independently encoding BMP-2 and FGF-2 complexed with polyethylenimine (PEI) to transfect human adipose derived mesenchymal stem cells (hADMSCs) in vitro. The nanoplexes were characterized for size, surface charge, in vitro cytotoxicity, and transfection ability in hADMSCs. A significant enhancement in BMP-2 protein secretion was observed on day 7 post-transfection of hADMSCs with PEI nanoplexes loaded with both pFGF-2 and pBMP-2 (PEI/(pFGF-2+pBMP-2)) versus transfection with PEI nanoplexes of either pFGF-2 alone or pBMP-2 alone. Osteogenic differentiation of transfected hADMSCs was determined by measuring osteocalcin and Runx-2 gene expression using real time polymerase chain reactions. A significant increase in the expression of Runx-2 and osteocalcin was observed on day 3 and day 7 post-transfection, respectively, by cells transfected with PEI/(pFGF-2+pBMP-2) compared to cells transfected with nanoplexes containing pFGF-2 or pBMP-2 alone. Alizarin Red staining and atomic absorption spectroscopy revealed elevated levels of calcium deposition in hADMSC cultures on day 14 and day 30 post-transfection with PEI/(pFGF-2+pBMP-2) compared to other treatments. We have shown that codelivery of pFGF-2 and pBMP-2 results in a significant enhancement in osteogenic protein synthesis, osteogenic marker expression, and subsequent mineralization. This research points to a new clinically translatable strategy for achieving efficient bone regeneration.
Collapse
Affiliation(s)
- Keerthi Atluri
- †Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Denise Seabold
- ‡Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Liu Hong
- ‡Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Satheesh Elangovan
- ‡Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Aliasger K Salem
- †Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
- ‡Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
33
|
Götz C, Warnke PH, Kolk A. Current and future options of regeneration methods and reconstructive surgery of the facial skeleton. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120:315-23. [PMID: 26297391 DOI: 10.1016/j.oooo.2015.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/27/2015] [Accepted: 05/26/2015] [Indexed: 01/06/2023]
Abstract
Musculoskeletal defects attributable to trauma or infection or as a result of oncologic surgery present a common challenge in reconstructive maxillofacial surgery. The autologous vascularized bone graft still represents the gold standard for salvaging these situations. Preoperative virtual planning offers great potential and provides assistance in reconstructive surgery. Nevertheless, the applicability of autologous bone transfer might be limited within the medically compromised patient or because of the complexity of the defect and the required size of the graft to be harvested. The development of alternative methods are urgently needed in the field of regenerative medicine to enable the regeneration of the original tissue. Since the first demonstration of de novo bone formation by regenerative strategies and the application of bone growth factors some decades ago, further progress has been achieved by tissue engineering, gene transfer, and stem cell application concepts. This review summarizes recent approaches and current developments in regenerative medicine.
Collapse
Affiliation(s)
- Carolin Götz
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Patrick H Warnke
- Department of Oral and Maxillofacial Surgery, University of Kiel, Kiel, Germany; Belegärztliche Gemeinschaftspraxis für Oral-, Mund- und Kieferchirurgie und plastische Gesichtschirurgie Dres. Sprengel und Klebe, Flensburg, Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.
| |
Collapse
|
34
|
Norouzi M, Boroujeni SM, Omidvarkordshouli N, Soleimani M. Advances in skin regeneration: application of electrospun scaffolds. Adv Healthc Mater 2015; 4:1114-33. [PMID: 25721694 DOI: 10.1002/adhm.201500001] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Indexed: 12/28/2022]
Abstract
The paucity of cellular and molecular signals essential for normal wound healing makes severe dermatological ulcers stubborn to heal. The novel strategies of skin regenerative treatments are focused on the development of biologically responsive scaffolds accompanied by cells and multiple biomolecules resembling structural and biochemical cues of the natural extracellular matrix (ECM). Electrospun nanofibrous scaffolds provide similar architecture to the ECM leading to enhancement of cell adhesion, proliferation, migration and neo tissue formation. This Review surveys the application of biocompatible natural, synthetic and composite polymers to fabricate electrospun scaffolds as skin substitutes and wound dressings. Furthermore, the application of biomolecules and therapeutic agents in the nanofibrous scaffolds viz growth factors, genes, antibiotics, silver nanoparticles, and natural medicines with the aim of ameliorating cellular behavior, wound healing, and skin regeneration are discussed.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Department of Nanotechnology and Tissue Engineering; Stem Cell Technology Research Center; Tehran Iran
| | | | | | - Masoud Soleimani
- Department of Hematology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
35
|
Yang J, Zhang K, Zhang S, Fan J, Guo X, Dong W, Wang S, Chen Y, Yu B. Preparation of calcium phosphate cement and polymethyl methacrylate for biological composite bone cements. Med Sci Monit 2015; 21:1162-72. [PMID: 25904398 PMCID: PMC4418284 DOI: 10.12659/msm.893845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background We studied the biological safety, biomechanics, and tissue compatibility of calcium phosphate cement and Polymethyl Methacrylate composite bone cement mixed in different ratios. Material/Methods CPC and PMMA were mixed in different ratios (3: 1, 2: 1, 1: 1, 1: 2, 1: 5, 1: 10, 1: 15, and 1: 20). PMMA solvent is a general solvent containing a dissolved preparation of the composite bone cement specific to a given specimen to determine biological safety, biomechanics, and tissue compatibility. Results The CPC/PMMA (33%) group, CPC/PMMA (50%) group, CPC/PMMA (67%) group, and CPC/PMMA (75%) group were more in line with the composite bone cement without cytotoxicity requirements. The compressive strength of the CPC/PMMA (67%) group and CPC/PMMA (75%) group was 20Mpa–30Mpa, while that of the CPC/PMMA (4.8%) group, CPC/PMMA (6.25%) group, CPC/PMMA (9.1%) group, CPC/PMMA (16.7%) group, CPC/PMMA (33%) group, and CPC/PMMA (50%) group was 40Mpa–70Mpa. Curing time was longer in the CPC group (more than 11 min) and shorter in the PMMA group (less than 2 min). The results of weight loss rate showed that there were no significant differences between the CPC/PMMA group (4.8%, 6.25%, 9.1%, 16.7%, 33%) and PMMA control group (p>0.05). With the decrease of CPC content, the rate of weight loss gradually decreased. Conclusions The CPC/PMMA (50%) group, CPC/PMMA (67%) group, and CPC/PMMA (75%) group provide greater variability and selectivity for the composite bone cement in obtaining better application.
Collapse
Affiliation(s)
- Jun Yang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Kairui Zhang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Sheng Zhang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jiping Fan
- Department of Orthopaedics, 421 hospital of PLA, Guangzhou, Guangdong, China (mainland)
| | - Xinhui Guo
- Department of Orthopaedics, 421 Hospital of PLA, Guangzhou, Guangdong, China (mainland)
| | - Weiqiang Dong
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Shengnan Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yirong Chen
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
36
|
Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, Kang B, Giannobile WV. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater 2015; 31:317-38. [PMID: 25701146 DOI: 10.1016/j.dental.2015.01.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/19/2014] [Accepted: 01/11/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The focus of this review is to summarize recent advances on regenerative technologies (scaffolding matrices, cell/gene therapy and biologic drug delivery) to promote reconstruction of tooth and dental implant-associated bone defects. METHODS An overview of scaffolds developed for application in bone regeneration is presented with an emphasis on identifying the primary criteria required for optimized scaffold design for the purpose of regenerating physiologically functional osseous tissues. Growth factors and other biologics with clinical potential for osteogenesis are examined, with a comprehensive assessment of pre-clinical and clinical studies. Potential novel improvements to current matrix-based delivery platforms for increased control of growth factor spatiotemporal release kinetics are highlighting including recent advancements in stem cell and gene therapy. RESULTS An analysis of existing scaffold materials, their strategic design for tissue regeneration, and use of growth factors for improved bone formation in oral regenerative therapies results in the identification of current limitations and required improvements to continue moving the field of bone tissue engineering forward into the clinical arena. SIGNIFICANCE Development of optimized scaffolding matrices for the predictable regeneration of structurally and physiologically functional osseous tissues is still an elusive goal. The introduction of growth factor biologics and cells has the potential to improve the biomimetic properties and regenerative potential of scaffold-based delivery platforms for next-generation patient-specific treatments with greater clinical outcome predictability.
Collapse
Affiliation(s)
- Sophia P Pilipchuk
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| | - Alexandra B Plonka
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Alberto Monje
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Andrei D Taut
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Alejandro Lanis
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Benjamin Kang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - William V Giannobile
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Wang SZ, Chang Q, Lu J, Wang C. Growth factors and platelet-rich plasma: promising biological strategies for early intervertebral disc degeneration. INTERNATIONAL ORTHOPAEDICS 2015; 39:927-34. [PMID: 25653173 DOI: 10.1007/s00264-014-2664-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/28/2014] [Indexed: 12/20/2022]
Abstract
Intervertebral disc degeneration (IDD) is a complex process with the mechanism not fully elucidated. The current clinical treatments for IDD are mainly focused on providing symptomatic relief without addressing the underlying cause of the IDD. Biological therapeutic strategies to repair and regenerate the degenerated discs are drawing more attention. Growth factor therapy is one of the biological strategies and holds promising prospects. As a promising bioactive substance, platelet-rich plasma (PRP) is considered to be an ideal growth factor "cocktail" for intervertebral disc (IVD) restoration. Results from many in vitro and in vivo studies have confirmed the efficacy of growth factors and PRP in IVD repair and regeneration. It is essential to advance the research on growth factor therapy and associated mechanism for IDD. This article reviews the background of IDD, current concepts in growth factor and PRP-related therapy for IDD. Future research perspectives and clinical directions are also discussed.
Collapse
Affiliation(s)
- Shan-zheng Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu, 210009, People's Republic of China
| | | | | | | |
Collapse
|
38
|
Smith BT, Shum J, Wong M, Mikos AG, Young S. Bone Tissue Engineering Challenges in Oral & Maxillofacial Surgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 881:57-78. [PMID: 26545744 DOI: 10.1007/978-3-319-22345-2_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decades, there has been a substantial amount of innovation and research into tissue engineering and regenerative approaches for the craniofacial region. This highly complex area presents many unique challenges for tissue engineers. Recent research indicates that various forms of implantable biodegradable scaffolds may play a beneficial role in the clinical treatment of craniofacial pathological conditions. Additionally, the direct delivery of bioactive molecules may further increase de novo bone formation. While these strategies offer an exciting glimpse into potential future treatments, there are several challenges that still must be overcome. In this chapter, we will highlight both current surgical approaches for craniofacial reconstruction and recent advances within the field of bone tissue engineering. The clinical challenges and limitations of these strategies will help contextualize and inform future craniofacial tissue engineering strategies.
Collapse
Affiliation(s)
- Brandon T Smith
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jonathan Shum
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mark Wong
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
39
|
Kaipel M, Schützenberger S, Hofmann AT, Ferguson J, Nau T, Redl H, Feichtinger GA. Evaluation of fibrin-based gene-activated matrices for BMP2/7 plasmid codelivery in a rat nonunion model. INTERNATIONAL ORTHOPAEDICS 2014; 38:2607-13. [PMID: 25192687 DOI: 10.1007/s00264-014-2499-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
Abstract
PURPOSE Treatment of large-segmental bone defects still is a challenge in clinical routine. Application of gene-activated matrices (GAMs) based on fibrin, bone morphogenic protein (BMP) 2/7 plasmids and nonviral transfection reagents (cationic polymers) could be an innovative treatment strategy to overcome this problem. The aim of this study was to determine the therapeutic efficacy of fibrin GAMs with or without additional transfection reagents for BMP2 and 7 plasmid codelivery in a femur nonunion rat model. METHODS In this experimental study, a critical-sized femoral defect was created in 27 rats. At four weeks after the surgery, animals were separated into four groups and underwent a second operation. Fibrin clots containing BMP2/7 plasmids with and without cationic polymer were implanted into the femoral defect. Fibrin clots containing recombinant human (rh) BMP2 served as positive and clots without supplement as negative controls. RESULTS At eight weeks, animals that received GAMs containing the cationic polymer and BMP2/7 plasmids showed decreased bone volume compared with animals treated with GAMs and BMP2/7 only. Application of BMP2/7 plasmids in fibrin GAMs without cationic polymer led to variable results. Animals that received rhBMP2 protein showed increased bone volume, and osseous unions were achieved in two of six animals. CONCLUSIONS Cationic polymers decrease therapeutic efficiency of fibrin GAM-based BMP2/7 plasmid codelivery in bone regeneration. Nonviral gene transfer of BMP2/7 plasmids needs alternative promoters (e.g. by sonoporation, electroporation) to produce beneficial clinical effects.
Collapse
Affiliation(s)
- Martin Kaipel
- Orthopaedic Department, Barmherzige Brüder Hospital, Johannes von Gott-Platz 1/A-7000, Eisenstadt, Austria,
| | | | | | | | | | | | | |
Collapse
|
40
|
Smeets R, Henningsen A, Jung O, Heiland M, Hammächer C, Stein JM. Definition, etiology, prevention and treatment of peri-implantitis--a review. Head Face Med 2014; 10:34. [PMID: 25185675 PMCID: PMC4164121 DOI: 10.1186/1746-160x-10-34] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/15/2014] [Indexed: 11/10/2022] Open
Abstract
Peri-implant inflammations represent serious diseases after dental implant treatment, which affect both the surrounding hard and soft tissue. Due to prevalence rates up to 56%, peri-implantitis can lead to the loss of the implant without multilateral prevention and therapy concepts. Specific continuous check-ups with evaluation and elimination of risk factors (e.g. smoking, systemic diseases and periodontitis) are effective precautions. In addition to aspects of osseointegration, type and structure of the implant surface are of importance. For the treatment of peri-implant disease various conservative and surgical approaches are available. Mucositis and moderate forms of peri-implantitis can obviously be treated effectively using conservative methods. These include the utilization of different manual ablations, laser-supported systems as well as photodynamic therapy, which may be extended by local or systemic antibiotics. It is possible to regain osseointegration. In cases with advanced peri-implantitis surgical therapies are more effective than conservative approaches. Depending on the configuration of the defects, resective surgery can be carried out for elimination of peri-implant lesions, whereas regenerative therapies may be applicable for defect filling. The cumulative interceptive supportive therapy (CIST) protocol serves as guidance for the treatment of the peri-implantitis. The aim of this review is to provide an overview about current data and to give advices regarding diagnosis, prevention and treatment of peri-implant disease for practitioners.
Collapse
Affiliation(s)
- Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20246 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Streckbein P, Kähling C, Wilbrand JF, Malik CY, Schaaf H, Howaldt HP, Streckbein R. Horizontal alveolar ridge augmentation using autologous press fit bone cylinders and micro-lag-screw fixation: Technical note and initial experience. J Craniomaxillofac Surg 2014; 42:387-91. [DOI: 10.1016/j.jcms.2014.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/24/2013] [Accepted: 01/03/2014] [Indexed: 12/15/2022] Open
|
42
|
Jin H, Zhang K, Qiao C, Yuan A, Li D, Zhao L, Shi C, Xu X, Ni S, Zheng C, Liu X, Yang B, Sun H. Efficiently engineered cell sheet using a complex of polyethylenimine-alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation. Int J Nanomedicine 2014; 9:2179-90. [PMID: 24855355 PMCID: PMC4019610 DOI: 10.2147/ijn.s60937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2) gene-engineered cell sheet using a complex of polyethylenimine-alginate (PEI-al) nanocomposites plus human BMP-2 complementary(c)DNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI-al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI-al nanocomposites efficiently deliver the BMP-2 gene to bone marrow mesenchymal stem cells and that BMP-2 gene-engineered cell sheet is an effective way for promoting bone regeneration.
Collapse
Affiliation(s)
- Han Jin
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Chunyan Qiao
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Anliang Yuan
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Daowei Li
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Liang Zhao
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Ce Shi
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Xiaowei Xu
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Shilei Ni
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Hongchen Sun
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
43
|
Smeets R, El-Moawen A, Jung O, Hanken H, Hartjen P, Heiland M, Kansy K, Kloss F, Kolk A. From bench to application: current practices in tissue engineering and its realisation at maxillofacial units in Germany, Austria and Switzerland. J Craniomaxillofac Surg 2014; 42:1128-32. [PMID: 24530074 DOI: 10.1016/j.jcms.2014.01.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/21/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022] Open
Abstract
Over the last 20 years, the highly interdisciplinary field of tissue engineering (TE) has become an established subspecialty in research facilities all over the world. Numerous methods and protocols are available for various research intentions and aims, but there are no data indicating which of these methods and resources are generally used. This study is an overview of the resources and methods that are commonly applied in TE research in general, and in the field of oral and maxillofacial surgery (OMFS) in Germany, Austria and Switzerland. The DÖSAK collaborative group for TE developed a detailed questionnaire and collected information from participating university hospitals in these three countries. We evaluated the availability of research facilities, in vitro realisation and in vivo designs for animal studies in these departments. 11 units who replied, out of 35 we contacted, conducted research on bone regeneration in interdisciplinary research facilities. 10 departments used xenogeneic and alloplastic scaffolds for in vitro and in vivo applications. In this case, the most commonly utilised trademarks were Bio-Oss(®) and CERASORB(®). 9 units used osteoblasts (73%) and 10 proliferation assays in vitro, whereas rats served as the standard animal model for histology/immunohistochemistry in 6. All research units were interested in establishing a platform for research exchange and communication. This study shows that tissue engineering is well established and highly accepted in most participating university hospitals and research facilities. The presented data, together with data published in a foregoing paper will help arrange more readily available standardised procedures for further investigations.
Collapse
Affiliation(s)
- Ralf Smeets
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. med. Dr. med. dent. Max Heiland), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| | - Ahmed El-Moawen
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. med. Dr. med. dent. Max Heiland), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Ole Jung
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. med. Dr. med. dent. Max Heiland), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Henning Hanken
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. med. Dr. med. dent. Max Heiland), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. med. Dr. med. dent. Max Heiland), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. med. Dr. med. dent. Max Heiland), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Katinka Kansy
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. med. Dr. med. dent. Jürgen Hoffmann), University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Frank Kloss
- Doctor's Office, Kärntner Straße 62, 9900 Lienz, Austria
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. med. Dr. med. dent. Klaus Dietrich Wolff), Klinikum rechts der Isar der Technischen Universität München, Ismaninger Straße 22, 81675 München, Germany
| |
Collapse
|
44
|
Feric N, Cheng CCH, Goh MC, Dudnyk V, Di Tizio V, Radisic M. Angiopoietin-1 peptide QHREDGS promotes osteoblast differentiation, bone matrix deposition and mineralization on biomedical materials. Biomater Sci 2014; 2:1384-1398. [PMID: 25485104 DOI: 10.1039/c4bm00073k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bone loss occurs as a consequence of a variety of diseases as well as from traumatic injuries, and often requires therapeutic intervention. Strategies for repairing and replacing damaged and/or lost bone tissue include the use of biomaterials and medical implant devices with and without osteoinductive coatings. The soluble growth factor angiopoietin-1 (Ang-1) has been found to promote cell adhesion and survival in a range of cell types including cardiac myocytes, endothelial cells and fibroblasts through an integrin-dependent mechanism. Furthermore, the short sequence QHREDGS has been identified as the integrin-binding sequence of Ang-1 and as a synthetic peptide has been found to possess similar integrin-dependent effects as Ang-1 in the aforementioned cell types. Integrins have been implicated in osteoblast differentiation and bone mineralization, processes critical to bone regeneration. By binding integrins on the osteoblast surface, QHREDGS could promote cell survival and adhesion, as well as conceivably osteoblast differentiation and bone mineralization. Here we immobilized QHREDGS onto polyacrylate (PA)-coated titanium (Ti) plates and polyethylene glycol (PEG) hydrogels. The osteoblast differentiation marker, alkaline phosphatase, peaked in activity 4-12 days earlier on the QHREDGS-immobilized PA-coated Ti plates than on the unimmobilized, DGQESHR (scrambled)- and RGDS-immobilized surfaces. Significantly more bone matrix was deposited on the QHREDGS-immobilized Ti surface than on the other surfaces as determined by atomic force microscopy. The QHREDGS-immobilized hydrogels also had a significantly higher mineral-to-matrix (M/M) ratio determined by Fourier transform infrared spectroscopy. Alizarin Red S and von Kossa staining and quantification, and environmental scanning electron microscopy showed that while both the QHREDGS- and RGDS-immobilized surfaces had extensive mineralization relative to the unimmobilized and DGQESHR-immobilized surfaces, the mineralization was more considerable on the QHREDGS-immobilized surface, both with and without the induction of osteoblast differentiation. Finally, treatment of cell monolayers with soluble QHREDGS was demonstrated to upregulate osteogenic gene expression. Taken together, these results demonstrate that the QHREDGS peptide is osteoinductive, inducing osteoblast differentiation, bone matrix deposition and mineralization.
Collapse
Affiliation(s)
- Nicole Feric
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9 Canada
| | - Calvin C H Cheng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - M Cynthia Goh
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada ; Institute for Optical Sciences, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | | | - Val Di Tizio
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9 Canada ; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
45
|
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part I: recapitulation of native tissue healing and variables for the design of delivery systems. TISSUE ENGINEERING. PART B, REVIEWS 2013; 19:308-26. [PMID: 23268651 PMCID: PMC3690094 DOI: 10.1089/ten.teb.2012.0138] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022]
Abstract
The potential of growth factors to stimulate tissue healing through the enhancement of cell proliferation, migration, and differentiation is undeniable. However, critical parameters on the design of adequate carriers, such as uncontrolled spatiotemporal presence of bioactive factors, inadequate release profiles, and supraphysiological dosages of growth factors, have impaired the translation of these systems onto clinical practice. This review describes the healing cascades for bone, cartilage, and osteochondral interface, highlighting the role of specific growth factors for triggering the reactions leading to tissue regeneration. Critical criteria on the design of carriers for controlled release of bioactive factors are also reported, focusing on the need to provide a spatiotemporal control over the delivery and presentation of these molecules.
Collapse
Affiliation(s)
- Vítor E. Santo
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E. Gomes
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F. Mano
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
46
|
Jakobsen C, Sørensen JA, Kassem M, Thygesen TH. Mesenchymal stem cells in oral reconstructive surgery: a systematic review of the literature. J Oral Rehabil 2013; 40:693-706. [DOI: 10.1111/joor.12079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2013] [Indexed: 11/30/2022]
Affiliation(s)
- C. Jakobsen
- Department of Oral and Maxillofacial Surgery; Odense University Hospital (OUH); Odense Denmark
| | - J. A. Sørensen
- Department of Plastic and Reconstructive Surgery; Odense University Hospital (OUH); Odense Denmark
| | - M. Kassem
- Endocrinology Research Unit; Odense University Hospital (OUH); Odense Denmark
| | - T. H. Thygesen
- Department of Oral and Maxillofacial Surgery; Odense University Hospital (OUH); Odense Denmark
| |
Collapse
|
47
|
Yewle JN, Puleo DA, Bachas LG. Bifunctional bisphosphonates for delivering PTH (1-34) to bone mineral with enhanced bioactivity. Biomaterials 2013; 34:3141-9. [DOI: 10.1016/j.biomaterials.2013.01.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/08/2013] [Indexed: 01/16/2023]
|
48
|
Ramazanoglu M, Lutz R, Rusche P, Trabzon L, Kose GT, Prechtl C, Schlegel KA. Bone response to biomimetic implants delivering BMP-2 and VEGF: an immunohistochemical study. J Craniomaxillofac Surg 2013; 41:826-35. [PMID: 23434516 DOI: 10.1016/j.jcms.2013.01.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/18/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022] Open
Abstract
This animal study evaluated bone healing around titanium implant surfaces biomimetically coated with bone morphogenic protein-2 (BMP-2) and/or vascular endothelial growth factor (VEGF) by examining bone matrix proteins and mineralisation. Five different implant surfaces were established: acid-etched surface (AE), biomimetic calcium phosphate surface (CAP), BMP-2 loaded CAP surface, VEGF loaded CAP surface and dual BMP-2 + VEGF loaded CAP surface. The implants were inserted into calvariae of adult domestic pigs. For the comparison of osteoconductive capacity of each surface, bone mineral density and expression of bone matrix proteins (collagen I, BMP-2/4, osteocalcin and osteopontin) inside defined chambers around the implant were assessed using light microscopy and microradiography and immunohistochemical analysis at 1, 2 and 4 weeks. In the both groups delivering BMP-2, the bone mineral density was significantly enhanced after 2 weeks and the highest value was measured for the group BMP + VEGF. In the group VEGF, collagen I and BMP-2/4 expressions were significantly up-regulated at the first and second weeks. The percentage of BMP-2/4 positive cells in the group BMP + VEGF was significantly enhanced compared with the groups AE and CAP at the second week. Although the highest osteocalcin and osteopontin expression values were observed for the group BMP + VEGF after 2 weeks, no statistically significant difference in osteocalcin and osteopontin expressions was found between all groups at any time. It was concluded that combined delivery of BMP-2 and VEGF favoured bone mineralisation and expression of important bone matrix proteins that might explain synergistic interaction between both growth factors.
Collapse
Affiliation(s)
- Mustafa Ramazanoglu
- Department of Oral Surgery, Faculty of Dentistry, Istanbul University, Istanbul 34093, Turkey.
| | | | | | | | | | | | | |
Collapse
|
49
|
Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Deliv Rev 2012; 64:1078-89. [PMID: 22465487 DOI: 10.1016/j.addr.2012.03.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/12/2012] [Accepted: 03/05/2012] [Indexed: 11/21/2022]
Abstract
The regeneration of large bone defects caused by trauma or disease remains a significant clinical problem. Although osteoinductive growth factors such as bone morphogenetic proteins have entered clinics, transplantation of autologous bone remains the gold standard to treat bone defects. The effective treatment of bone defects by protein therapeutics in humans requires quantities that exceed the physiological doses by several orders of magnitude. This not only results in very high treatment costs but also bears considerable risks for adverse side effects. These issues have motivated the development of biomaterials technologies allowing to better control biomolecule delivery from the solid phase. Here we review recent approaches to immobilize biomolecules by affinity binding or by covalent grafting to biomaterial matrices. We focus on biomaterials concepts that are inspired by extracellular matrix (ECM) biology and in particular the dynamic interaction of growth factors with the ECM. We highlight the value of synthetic, ECM-mimicking matrices for future technologies to study bone biology and develop the next generation of 'smart' implants.
Collapse
|
50
|
Gene therapy approaches to regenerating bone. Adv Drug Deliv Rev 2012; 64:1320-30. [PMID: 22429662 DOI: 10.1016/j.addr.2012.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/13/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
Bone formation and regeneration therapies continue to require optimization and improvement because many skeletal disorders remain undertreated. Clinical solutions to nonunion fractures and osteoporotic vertebral compression fractures, for example, remain suboptimal and better therapeutic approaches must be created. The widespread use of recombinant human bone morphogenetic proteins (rhBMPs) for spine fusion was recently questioned by a series of reports in a special issue of The Spine Journal, which elucidated the side effects and complications of direct rhBMP treatments. Gene therapy - both direct (in vivo) and cell-mediated (ex vivo) - has long been studied extensively to provide much needed improvements in bone regeneration. In this article, we review recent advances in gene therapy research whose aims are in vivo or ex vivo bone regeneration or formation. We examine appropriate vectors, safety issues, and rates of bone formation. The use of animal models and their relevance for translation of research results to the clinical setting are also discussed in order to provide the reader with a critical view. Finally, we elucidate the main challenges and hurdles faced by gene therapy aimed at bone regeneration as well as expected future trends in this field.
Collapse
|