1
|
Payamifar S, Khalili Y, Foroozandeh A, Abdouss M, Hasanzadeh M. Magnetic mesoporous silica nanoparticles as advanced polymeric scaffolds for efficient cancer chemotherapy: recent progress and challenges. RSC Adv 2025; 15:16050-16074. [PMID: 40370857 PMCID: PMC12076205 DOI: 10.1039/d5ra00948k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Magnetic mesoporous silica nanoparticles (MMS NPs) stand out as excellent options for targeted chemotherapy owing to their remarkable features, such as extensive surface area, substantial pore volume, adjustable and uniform pore size, facile scalability, and versatile surface chemistry. This review comprehensively explores the latest developments in MMS NPs, emphasizing their design, functionalization, and application in cancer therapy. Initially, we discuss the critical need for targeted and controlled drug delivery (DD) in oncology, highlighting the role of magnetic and MMs in addressing some challenges. Subsequently, the key features of MMS NPs, such as their high surface area, pore structure, and functionalization strategies, are examined for their impact on their DD performance for efficient cancer chemotherapy. The integration of chemotherapy methods such as photothermal therapy and photodynamic therapy with MMS NPs is also explored, showcasing multifunctional platforms that combine imaging and therapeutic capabilities. Finally, we identify the current challenges and provide future perspectives for the development and clinical translation of MMS NPs, underscoring their potential to reshape CT paradigms.
Collapse
Affiliation(s)
- Sara Payamifar
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Yasaman Khalili
- School of Chemistry, Faculty of Science, University of Tehran Iran
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
2
|
Shi X, Lei L, Xia Y, Chen X, Shi S. Self-Crosslinking AuNPs Composite Hydrogel Bolus for Radiophotothermal Therapy. Macromol Rapid Commun 2025; 46:e2400285. [PMID: 39073217 DOI: 10.1002/marc.202400285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Indexed: 07/30/2024]
Abstract
Radiophotothermal therapy is a promising treatment for superficial tumors. Traditional radiotherapy requires tissue boluses on the patient's skin to increase therapeutic effectiveness due to the dose-buildup effect of high-energy radiation. However, combining radiotherapy with photothermal therapy leads to uncertainties as the low-penetration near-infrared light dose is reduced after penetrating the bolus. To enhance precision and effectiveness, this study introduces a novel bolus made of AuNPs@poly(AM-THMA-DMAEMA) composite hydrogel. This hydrogel is prepared through a one-pot method involving the reduction of trihydrate chloroauric acid (HAuCl4·3H2O) and copolymerization of acrylamide (AM) and N-[Tris(hydroxymethyl)methyl]acrylamide (THMA) in a redox system with dimethylaminoethyl methacrylate (DMAEMA) and potassium persulfate (KPS). The gold nanoparticles (AuNPs) improve the mechanical strength (tensile strength of 320.84 kPa, elongation at break of 830%) and antibacterial properties (>99% against Staphylococcus aureus). The local surface plasmon resonance (LSPR) effect of AuNPs enables the hydrogel to absorb near-infrared light for precise monitoring of the infrared radiation dose. The hydrogel's biocompatibility is enhanced by the absence of additional crosslinking agents, and its excellent surface adhesion strength is due to numerous hydrogen bonds and electrostatic interactions. This study offers new possibilities for nanoparticle composite hydrogels as tissue boluses, achieving high precision and efficiency in radiophotothermal therapy.
Collapse
Affiliation(s)
- Xudong Shi
- Beijing Engineering Research Center for the Synthesis and Application of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lei Lei
- Beijing Engineering Research Center for the Synthesis and Application of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuzheng Xia
- Beijing Engineering Research Center for the Synthesis and Application of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaonong Chen
- Beijing Engineering Research Center for the Synthesis and Application of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuxian Shi
- Beijing Engineering Research Center for the Synthesis and Application of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Chen Z, Tian Z, Wu Y, Liu S. DNA tetrahedron nanomedicine for enhanced antitumor and antimetastatic effect through the amplification of mitochondrial oxidative stress. Acta Biomater 2025; 195:378-389. [PMID: 39922515 DOI: 10.1016/j.actbio.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Amplifying mitochondrial oxidative stress by elevating reactive oxygen species (ROS) and reducing glutathione (GSH) levels proved highly effective in eradicating tumor cells and inhibiting metastasis. How to significantly amplify mitochondrial oxidative stress remains a challenge due to the hypoxic microenvironment and high level of GSH in the mitochondria. Herein, we smartly fabricated a multifunctional DNA tetrahedron nanomedicine (tDNA-TPP-AuNCs-BPQDs) for intracellular enzyme activated fluorescence imaging and amplified mitochondrial oxidative stress. The apurinic/apyrimidinic site (AP site) on the cantilever of DNA tetrahedron (tDNA) could be rapidly cleaved by apurinic/apyrimidinic endonuclease 1 (APE1), allowing for in situ fluorescence imaging of APE1 with high sensitivity and specificity. Gold nanoclusters (AuNCs) could continuously convert intracellular H2O2 to O2 to alleviate the hypoxic conditions and adsorb intracellular GSH, thus the photodynamic therapy (PDT) effect of black phosphorus quantum dots (BPQDs) and AuNCs triggered a ∼10-fold and ∼3-fold increase in ROS generation compared to tDNA-TPP and tDNA-TPP-BPQDs, respectively. The elevated ROS and reduced GSH led to mitochondrial oxidative stress. In addition, the photothermal therapy (PTT) effect of the BPQDs and AuNCs further amplified the mitochondrial oxidative stress, which successfully induced immunogenic cell death (ICD) process and triggered a systemic antitumor immune response. The nanomedicine could render activation of fluorescence signal and anti-tumor therapeutic activity (34-fold higher than control) in tumor, thereby achieving effective tumor growth inhibition and antimetastatic effects. STATEMENT OF SIGNIFICANCE: 1. An effective mitochondrion targeting delivery system (tDNA-TPP-AuNCs-BPQDs) was developed for enhanced antitumor and antimetastatic effect through amplifying mitochondrial oxidative stress. 2. The multifunctional nanomedicine integrates tetrahedra DNA, Au NPs, TPP, and BP quantum dots to synergistically enhance cancer therapy effect through amplified mitochondrial oxidative stress. Additionally, an AP site segment was strategically incorporated into the tDNA structure for in situ fluorescence imaging of APE1 with high sensitivity and specificity in tumor cells. 3. The elevated ROS and reduced GSH amplify mitochondrial oxidative stress to induce ICD. The relieved hypoxic tumor microenvironment and induced ICD further stimulate a systemic antitumor immune response.
Collapse
Affiliation(s)
- Zixuan Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhaoyan Tian
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Ahmed MS, Yun S, Kim HY, Ko S, Islam M, Nam KW. Hydrogels and Microgels: Driving Revolutionary Innovations in Targeted Drug Delivery, Strengthening Infection Management, and Advancing Tissue Repair and Regeneration. Gels 2025; 11:179. [PMID: 40136884 PMCID: PMC11942270 DOI: 10.3390/gels11030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Hydrogels and microgels are emerging as pivotal platforms in biomedicine, with significant potential in targeted drug delivery, enhanced infection management, and tissue repair and regeneration. These gels, characterized by their high water content, unique structures, and adaptable mechanical properties, interact seamlessly with biological systems, making them invaluable for controlled and targeted drug release. In the realm of infection management, hydrogels and microgels can incorporate antimicrobial agents, offering robust defenses against bacterial infections. This capability is increasingly important in the fight against antibiotic resistance, providing innovative solutions for infection prevention in wound dressings, surgical implants, and medical devices. Additionally, the biocompatibility and customizable mechanical properties of these gels make them ideal scaffolds for tissue engineering, supporting the growth and repair of damaged tissues. Despite their promising applications, challenges such as ensuring long-term stability, enhancing therapeutic agent loading capacities, and scaling production must be addressed for widespread adoption. This review explores the current advancements, opportunities, and limitations of hydrogels and microgels, highlighting research and technological directions poised to revolutionize treatment strategies through personalized and regenerative approaches.
Collapse
Affiliation(s)
- Md. Shahriar Ahmed
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.)
| | - Sua Yun
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Hae-Yong Kim
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sunho Ko
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Mobinul Islam
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.)
| | - Kyung-Wan Nam
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.)
| |
Collapse
|
5
|
Ronemus M, Bradford D, Laster Z, Li S. Exploring genome-transcriptome correlations in cancer. Biochem Soc Trans 2025; 53:BST20240108. [PMID: 39910794 DOI: 10.1042/bst20240108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
We examine the complex relationship between genomic copy number variation (CNV) and gene expression, highlighting the relevance to cancer biology and other biological contexts. By tracing the history of genometranscriptome correlations, we emphasize the complexity and challenges in understanding these interactions, particularly within the heterogeneous landscape of human cancers. Recent advances in computational algorithms and high-throughput single-cell multi-omic sequencing technologies are discussed, demonstrating their potential to refine our understanding of cancer biology and their limitations. The integration of genomic and transcriptomic analyses, which offers novel insights into tumor evolution and heterogeneity as well as therapeutic strategies, is presented as a crucial approach for advancing cancer research.
Collapse
Affiliation(s)
- Michael Ronemus
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| | - Daniel Bradford
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| | - Zachary Laster
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| | - Siran Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| |
Collapse
|
6
|
Dutton AJ, Turnbaugh EM, Patel CD, Garland CR, Taylor SA, Alers-Velazquez R, Knipe DM, Nautiyal KM, Leib DA. Asymptomatic neonatal herpes simplex virus infection in mice leads to persistent CNS infection and long-term cognitive impairment. PLoS Pathog 2025; 21:e1012935. [PMID: 39919123 PMCID: PMC11828378 DOI: 10.1371/journal.ppat.1012935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/14/2025] [Accepted: 01/25/2025] [Indexed: 02/09/2025] Open
Abstract
Neonatal herpes simplex virus (nHSV) is a devastating infection impacting approximately 14,000 newborns globally each year. nHSV infection is associated with high neurologic morbidity and mortality, making early intervention critical. Clinical outcomes of symptomatic nHSV infections are well-studied, but little is known about the frequency of, or outcomes following, subclinical or asymptomatic nHSV. Given the ubiquitous nature of HSV infection and frequency of asymptomatic shedding in adults, subclinical infections are underreported and could contribute to long-term neurological damage. To assess potential neurological morbidity associated with subclinical nHSV infection, we developed a low-dose (100 PFU) intranasal HSV infection model in neonatal wild-type C57BL/6 mice. At this dose, HSV DNA was detected in the brain by quantitative PCR (qPCR) but was not associated with acute clinical signs of infection. However, months after neonatal inoculation with this low dose of HSV, we observed impaired mouse performance on a range of cognitive and memory tests. Memory impairment was induced by infection with either HSV-1 or HSV-2 wild-type viruses, indicating that the cognitive impairment associated with neonatal infection was not strain-specific. Maternal immunization reduced neonate central nervous system (CNS) viral burden and prevented offspring from developing neurological sequelae following nHSV infection. Altogether, these results support the idea that subclinical neonatal infections may lead to cognitive decline in adulthood and that maternal vaccination is an effective strategy for reducing neurological sequelae in infected offspring. These findings may have profound implications for understanding and modeling the etiology of human neurodegenerative disorders such as Alzheimer's Disease.
Collapse
Affiliation(s)
- Abigail J. Dutton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, New Hampshire, United States of America
| | - Evelyn M. Turnbaugh
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, New Hampshire, United States of America
| | - Chaya D. Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, New Hampshire, United States of America
| | - Callaghan R. Garland
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Sean A. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Roberto Alers-Velazquez
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David M. Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katherine M. Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - David A. Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| |
Collapse
|
7
|
Wang T, Yu T, Liu Q, Sung TC, Higuchi A. Lipid nanoparticle technology-mediated therapeutic gene manipulation in the eyes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102236. [PMID: 39005878 PMCID: PMC11245926 DOI: 10.1016/j.omtn.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Millions of people worldwide have hereditary genetic disorders, trauma, infectious diseases, or cancer of the eyes, and many of these eye diseases lead to irreversible blindness, which is a major public health burden. The eye is a relatively small and immune-privileged organ. The use of nucleic acid-based drugs to manipulate malfunctioning genes that target the root of ocular diseases is regarded as a therapeutic approach with great promise. However, there are still some challenges for utilizing nucleic acid therapeutics in vivo because of certain unfavorable characteristics, such as instability, biological carrier-dependent cellular uptake, short pharmacokinetic profiles in vivo (RNA), and on-target and off-target side effects (DNA). The development of lipid nanoparticles (LNPs) as gene vehicles is revolutionary progress that has contributed the clinical application of nucleic acid therapeutics. LNPs have the capability to entrap and transport various genetic materials such as small interfering RNA, mRNA, DNA, and gene editing complexes. This opens up avenues for addressing ocular diseases through the suppression of pathogenic genes, the expression of therapeutic proteins, or the correction of genetic defects. Here, we delve into the cutting-edge LNP technology for ocular gene therapy, encompassing formulation designs, preclinical development, and clinical translation.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD, Jhongli, Taoyuan 32001, Taiwan
| |
Collapse
|
8
|
Singh D. Beyond the membrane: Exploring non-viral methods for mitochondrial gene delivery. Mitochondrion 2024; 78:101922. [PMID: 38897397 DOI: 10.1016/j.mito.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Mitochondrial disorders, stemming from mutations in mitochondrial DNA (mtDNA), present a significant therapeutic challenge due to their complex pathophysiology and broad spectrum of clinical manifestations. Traditional gene therapy approaches, primarily reliant on viral vectors, face obstacles such as potential immunogenicity, insertional mutagenesis, and the specificity of targeting mtDNA. This review delves into non-viral methods for mitochondrial gene delivery, emerging as a promising alternative to overcome these limitations. Focusing on lipid-based nanoparticles, polymer-based vectors, and mitochondrial-targeted peptides, the mechanisms of action, advantages, and current applications in treating mitochondrial diseases was well elucidated. Non-viral vectors offer several benefits, including reduced immunogenicity, enhanced safety profiles, and the flexibility to carry a wide range of genetic material. We examine case studies where these methods have been applied, highlighting their potential in correcting pathogenic mtDNA mutations and mitigating disease phenotypes. Despite their promise, challenges such as delivery efficiency, specificity, and long-term expression stability persist. The review underscores the need for ongoing research to refine these delivery systems carry a wide range of genetic material. We examine case studies where these methods settings. As we advance our understanding of mitochondrial biology and gene delivery technologies, non-viral methods hold the potential to revolutionize the treatment of mitochondrial disorders, offering hope for therapies that can precisely target and correct the underlying genetic defects.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali 140413, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India.
| |
Collapse
|
9
|
Dutton A, Patel CD, Taylor SA, Garland CR, Turnbaugh EM, Alers-Velazquez R, Mehrbach J, Nautiyal KM, Leib DA. Asymptomatic neonatal herpes simplex virus infection in mice leads to long-term cognitive impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590596. [PMID: 38712140 PMCID: PMC11071430 DOI: 10.1101/2024.04.22.590596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Neonatal herpes simplex virus (nHSV) is a devastating infection impacting approximately 14,000 newborns globally each year. Infection is associated with high neurologic morbidity and mortality, making early intervention and treatment critical. Clinical outcomes of symptomatic nHSV infections are well-studied, but little is known about the frequency of, or outcomes following, sub-clinical or asymptomatic nHSV. Given the ubiquitous nature of HSV infection and frequency of asymptomatic shedding in adults, subclinical infections are underreported, yet could contribute to long-term neurological damage. To assess potential neurological morbidity associated with subclinical nHSV infection, we developed a low-dose (100 PFU) HSV infection protocol in neonatal C57BL/6 mice. At this dose, HSV DNA was detected in the brain by PCR but was not associated with acute clinical symptoms. However, months after initial inoculation with 100 PFU of HSV, we observed impaired mouse performance on a range of cognitive and memory performance tasks. Memory impairment was induced by infection with either HSV-1 or HSV-2 wild-type viruses, but not by a viral mutant lacking the autophagy-modulating Beclin-binding domain of the neurovirulence gene γ34.5. Retroviral expression of wild type γ34.5 gene led to behavioral pathology in mice, suggesting that γ34.5 expression may be sufficient to cause cognitive impairment. Maternal immunization and HSV-specific antibody treatment prevented offspring from developing neurological sequelae following nHSV-1 infection. Altogether, these results support the idea that subclinical neonatal infections may lead to cognitive decline in adulthood, with possible profound implications for research on human neurodegenerative disorders such as Alzheimer's Disease.
Collapse
|
10
|
Oelkrug C. Analysis of physical and biological delivery systems for DNA cancer vaccines and their translation to clinical development. Clin Exp Vaccine Res 2024; 13:73-82. [PMID: 38752006 PMCID: PMC11091436 DOI: 10.7774/cevr.2024.13.2.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 03/30/2024] [Indexed: 05/18/2024] Open
Abstract
DNA cancer vaccines as an approach in tumor immunotherapy are still being investigated in preclinical and clinical settings. Nevertheless, only a small number of clinical studies have been published so far and are still active. The investigated vaccines show a relatively stable expression in in-vitro transfected cells and may be favorable for developing an immunologic memory in patients. Therefore, DNA vaccines could be suitable as a prophylactic or therapeutic approach against cancer. Due to the low efficiency of these vaccines, the administration technique plays an important role in the vaccine design and its efficacy. These DNA cancer vaccine delivery systems include physical, biological, and non-biological techniques. Although the pre-clinical studies show promising results in the application of the different delivery systems, further studies in clinical trials have not yet been successfully proven.
Collapse
|
11
|
Huynh M, Vinck R, Gibert B, Gasser G. Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311437. [PMID: 38174785 DOI: 10.1002/adma.202311437] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.
Collapse
Affiliation(s)
- Marie Huynh
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Robin Vinck
- Orano, 125 avenue de Paris, Châtillon, 92320, France
| | - Benjamin Gibert
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
| |
Collapse
|
12
|
Mach M, Płachta Ł, Wydro P. Study of the correlation between the structure of selected triester of phosphatidylcholine and their impact on physicochemical properties of model mammalian membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184254. [PMID: 37989397 DOI: 10.1016/j.bbamem.2023.184254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Cationic lipids are synthetic compounds of amphiphilic character used in Drug Delivery Systems (DDS), especially in gene therapy, as the carriers of genetic material. As it is known, the main limitation of the application of cationic lipids in DDS is their high cytotoxicity after in vivo administration and low bioactivity. This is probably related to not fully known the relationship between the lipid structure and its activity as well as the mechanism of lipofection or drug delivery. Therefore, in this work we determined the impact of a selected group of cationic lipids - triesters of phosphatidylcholine (Et-PCs) - differing in their hydrophobic structure on model mammalian membranes. In the research, as model systems, Langmuir monolayers and liposomes were applied. It was shown that the incorporation of Et-PCs into model mammalian membranes weakens interactions between lipids, causing the increase of fluidity, disordering degree and permeability of membrane. The destabilization of the membrane in this way can facilitate the entry of drugs, carried inside cationic liposomes, into the pathological cell. Moreover, the studies prove that the structure of the hydrophobic part of cationic lipids also affects the properties of lipid membranes.
Collapse
Affiliation(s)
- Marzena Mach
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Łukasz Płachta
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Paweł Wydro
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
13
|
Henderson ML, Zieba JK, Li X, Campbell DB, Williams MR, Vogt DL, Bupp CP, Edgerly YM, Rajasekaran S, Hartog NL, Prokop JW, Krueger JM. Gene Therapy for Genetic Syndromes: Understanding the Current State to Guide Future Care. BIOTECH 2024; 13:1. [PMID: 38247731 PMCID: PMC10801589 DOI: 10.3390/biotech13010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Gene therapy holds promise as a life-changing option for individuals with genetic variants that give rise to disease. FDA-approved gene therapies for Spinal Muscular Atrophy (SMA), cerebral adrenoleukodystrophy, β-Thalassemia, hemophilia A/B, retinal dystrophy, and Duchenne Muscular Dystrophy have generated buzz around the ability to change the course of genetic syndromes. However, this excitement risks over-expansion into areas of genetic disease that may not fit the current state of gene therapy. While in situ (targeted to an area) and ex vivo (removal of cells, delivery, and administration of cells) approaches show promise, they have a limited target ability. Broader in vivo gene therapy trials have shown various continued challenges, including immune response, use of immune suppressants correlating to secondary infections, unknown outcomes of overexpression, and challenges in driving tissue-specific corrections. Viral delivery systems can be associated with adverse outcomes such as hepatotoxicity and lethality if uncontrolled. In some cases, these risks are far outweighed by the potentially lethal syndromes for which these systems are being developed. Therefore, it is critical to evaluate the field of genetic diseases to perform cost-benefit analyses for gene therapy. In this work, we present the current state while setting forth tools and resources to guide informed directions to avoid foreseeable issues in gene therapy that could prevent the field from continued success.
Collapse
Affiliation(s)
- Marian L. Henderson
- The Department of Biology, Calvin University, Grand Rapids, MI 49546, USA;
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Jacob K. Zieba
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Daniel B. Campbell
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Michael R. Williams
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Daniel L. Vogt
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Medical Genetics, Corewell Health, Grand Rapids, MI 49503, USA
| | | | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA;
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Corewell Health, Grand Rapids, MI 49503, USA
| | - Nicholas L. Hartog
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Allergy & Immunology, Corewell Health, Grand Rapids, MI 49503, USA
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA;
| | - Jena M. Krueger
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Department of Neurology, Helen DeVos Children’s Hospital, Corewell Health, Grand Rapids, MI 49503, USA
| |
Collapse
|
14
|
Liu X, Chen S, Liu L, Chen Y. Cationic brush hybrid nanoparticles scavenge cell-free DNA to enhance rheumatoid arthritis treatment. Acta Biomater 2023; 170:215-227. [PMID: 37619897 DOI: 10.1016/j.actbio.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Abnormally high level of cell-free DNA (cfDNA) is one of the important causes of autoimmune diseases, which aggravate the symptoms of rheumatoid arthritis (RA). Recently, the utilization of cationic polymeric nanoparticles for scavenging cfDNA has emerged as a promising therapeutic strategy for the treatment of RA. However, the intravenous introduction of cationic polymeric nanoparticles into the circulation carries a risk of dissociation, causing toxicity. To realize the potential clinical translation, we employed a series of silica particles grafted with poly(2-(dimethylamino) ethyl methacrylate) (PDMA) (SiNP@PDMA) brush, which possess adjustable PDMA content (100, 200, and 300 degree of polymerization (DP)) and particle size (50, 100, and 200 nm diameter), to selectively scavenge cfDNA in inflamed joint cavity. We demonstrate that the binding affinity for cfDNA, cytotoxicity, circulation time in vivo and retention in the inflamed joint cavity are influenced by the core-shell structure of SiNP@PDMA, ultimately impacting therapeutic efficacy. Among them, SiNP@PDMA with 100 nm size and 200 DP of PDMA exhibit enhanced accumulation and prolonged retention time in inflammatory joint cavity, resulting in superior therapeutic effect. Therefore, in this study, applying the precisely tuning size and cation content of SiNP@PDMA, we demonstrated the factors to matter the therapeutic effect of cationic nanoparticles, which deepened the understanding of the anti-inflammatory therapies based on cfDNA scavenger for RA. STATEMENT OF SIGNIFICANCE: Inspired by the discovery that cfDNA would induce inappropriate immune responses to exacerbate the progress of RA, we innovatively employed SiNP@PDMA as a cfDNA scavenger to inhibit cfDNA-induced inflammation in RA. Increase in the cation content efficiently strengthened the binding between SiNP@PDMA and cfDNA, leading to an improvement in inhibitory effect of inflammation. In addition, we compared the behaviors of 50, 100 and 200 nm SiNP@PDMA in RA symptom suppression, local cfDNA scavenging and inflammation inhibition. The results demonstrated that SiNP100-PDMA200 outperformed other analogues, corresponding to their more favorable distribution in inflammatory articular cavity. Together, this study revealed the structure-property relationship of cfDNA scavengers for further development of safe and effective cfDNA scavenging system.
Collapse
Affiliation(s)
- Xingliang Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China; Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Cheng Q, Kang Y, Yao B, Dong J, Zhu Y, He Y, Ji X. Genetically Engineered-Cell-Membrane Nanovesicles for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302131. [PMID: 37409429 PMCID: PMC10502869 DOI: 10.1002/advs.202302131] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Indexed: 07/07/2023]
Abstract
The advent of immunotherapy has marked a new era in cancer treatment, offering significant clinical benefits. Cell membrane as drug delivery materials has played a crucial role in enhancing cancer therapy because of their inherent biocompatibility and negligible immunogenicity. Different cell membranes are prepared into cell membrane nanovesicles (CMNs), but CMNs have limitations such as inefficient targeting ability, low efficacy, and unpredictable side effects. Genetic engineering has deepened the critical role of CMNs in cancer immunotherapy, enabling genetically engineered-CMN (GCMN)-based therapeutics. To date, CMNs that are surface modified by various functional proteins have been developed through genetic engineering. Herein, a brief overview of surface engineering strategies for CMNs and the features of various membrane sources is discussed, followed by a description of GCMN preparation methods. The application of GCMNs in cancer immunotherapy directed at different immune targets is addressed as are the challenges and prospects of GCMNs in clinical translation.
Collapse
Affiliation(s)
| | - Yong Kang
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yalan Zhu
- Jinhua Municipal Central HospitalJinhua321000China
| | - Yiling He
- Jinhua Municipal Central HospitalJinhua321000China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
- Medical CollegeLinyi UniversityLinyi276000China
| |
Collapse
|
16
|
Xiu K, Zhang J, Xu J, Chen YE, Ma PX. Recent progress in polymeric gene vectors: Delivery mechanisms, molecular designs, and applications. BIOPHYSICS REVIEWS 2023; 4:011313. [PMID: 37008888 PMCID: PMC10062053 DOI: 10.1063/5.0123664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Gene therapy and gene delivery have drawn extensive attention in recent years especially when the COVID-19 mRNA vaccines were developed to prevent severe symptoms caused by the corona virus. Delivering genes, such as DNA and RNA into cells, is the crucial step for successful gene therapy and remains a bottleneck. To address this issue, vehicles (vectors) that can load and deliver genes into cells are developed, including viral and non-viral vectors. Although viral gene vectors have considerable transfection efficiency and lipid-based gene vectors become popular since the application of COVID-19 vaccines, their potential issues including immunologic and biological safety concerns limited their applications. Alternatively, polymeric gene vectors are safer, cheaper, and more versatile compared to viral and lipid-based vectors. In recent years, various polymeric gene vectors with well-designed molecules were developed, achieving either high transfection efficiency or showing advantages in certain applications. In this review, we summarize the recent progress in polymeric gene vectors including the transfection mechanisms, molecular designs, and biomedical applications. Commercially available polymeric gene vectors/reagents are also introduced. Researchers in this field have never stopped seeking safe and efficient polymeric gene vectors via rational molecular designs and biomedical evaluations. The achievements in recent years have significantly accelerated the progress of polymeric gene vectors toward clinical applications.
Collapse
Affiliation(s)
- Kemao Xiu
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | - Peter X. Ma
- Author to whom correspondence should be addressed:. Tel.: (734) 764-2209
| |
Collapse
|
17
|
Tailoring carrier-free nanocombo of small-molecule prodrug for combinational cancer therapy. J Control Release 2022; 352:256-275. [PMID: 36272660 DOI: 10.1016/j.jconrel.2022.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The outcomes of monotherapy could not satisfy clinical cancer treatment owing to the challenges of tumor heterogeneity, multi-drug resistance, tumor metastasis and relapse. In response, the significance of combinational cancer therapy has been highlighted. Traditional combinational schemes usually utilize "free" drug for multi drug administration, independently. The diverse pharmacokinetics and biodistribution greatly hinder the antitumor effects and cause systematic toxicity. To tackle the hinderance, various nanoparticulate drug delivery systems (Nano-DDSs) have been developed. However, conventional Nano-DDSs encapsulate drugs into carrier materials through noncovalent interactions, resulting in low drug loading, fixed multi drug encapsulation ratio, chemical instability and carrier-associated toxicity. Recently, carrier-free nanocombos based on self-assembling small-molecule prodrugs (SPNCs) have emerged as a versatile Nano-DDSs for multiple drug delivery. Benefited by the self-assembly capability, SPNCs could be facilely fabricated with distinct merits of ultra-high drug loading, adjustable drug ratio and negligible carrier-associated toxicity. Herein, we summarize the latest trends of SPNCs. First, a basic review on self-assembling small-molecule prodrugs is presented. Additionally, facile techniques to prepare SPNCs are introduced. Furthermore, advanced combinational therapies based on SPNCs are spotlighted with special emphasis on synergistic mechanisms. Finally, future prospects and challenges are discussed.
Collapse
|
18
|
Yang G, Zhou D, Dai Y, Li Y, Wu J, Liu Q, Deng X. Construction of PEI-EGFR-PD-L1-siRNA dual functional nano-vaccine and therapeutic efficacy evaluation for lung cancer. Thorac Cancer 2022; 13:2941-2950. [PMID: 36117149 PMCID: PMC9626337 DOI: 10.1111/1759-7714.14618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND PD-1/PD-L1 tumor immunotherapy shows effective anticancer in treatment of solid tumors, so PEI lipid nanoparticles (PEI-LNP)/siRNA complex (EPV-PEI-LNP-SiRNA) with the therapeutic function of PD-L1-siRNA and EGFR short peptide/PD-L1 double immune-enhancing function were constructed for the prevention and treatment of EGFR-positive lung cancer in this study. METHOD In this study, PEI lipid nanoparticles (PEI-LNP)/siRNA complex (EPV-PEI-LNP-siRNA) with the therapeutic function of PD-L1-siRNA and EGFR short peptide/PD-L1 double immune-enhancing function were constructed for the prevention and treatment of EGFR-positive lung cancer and functional evaluation was conducted. RESULTS On the basis of the construction of the composite nano-drug delivery system, the binding capacity, cytotoxicity, apoptosis and uptake capacity of siRNA and EPV-PEI-LNP were tested in vitro, and the downregulation effect of PD-L1 on A549 cancer cells and the cytokine levels of cocultured T cells were tested. Lipid nanoparticles delivered siRNA and EGFR short peptide vaccine to non-small cell lung cancer (NSCLC), increasing tumor invasion and activation of CD8 + T cells. Combination therapy is superior to single target therapy. CONCLUSION Our constructed lipid nanoparticles of tumor targeted therapy gene siRNA combination had the ability to target cells in vitro and downregulate the expression of PD-L1, realizing the tumor-specific expression of immune-stimulating cytokines, which is a highly efficient and safe targeted therapy nano-vaccine.
Collapse
Affiliation(s)
- Guixue Yang
- Department of Thoracic Surgery, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yin Dai
- Department of Information, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yanqi Li
- Department of Thoracic Surgery, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jiang Wu
- Department of Thoracic Surgery, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Quanxing Liu
- Department of Thoracic Surgery, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xufeng Deng
- Department of Thoracic Surgery, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
19
|
Hinchliffe BA, Turner P, J H Cant D, De Santis E, Aggarwal P, Harris R, Templeton D, Shard AG, Hodnett M, Minelli C. Deagglomeration of DNA nanomedicine carriers using controlled ultrasonication. ULTRASONICS SONOCHEMISTRY 2022; 89:106141. [PMID: 36067646 PMCID: PMC9463456 DOI: 10.1016/j.ultsonch.2022.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Control over the agglomeration state of manufactured particle systems for drug and oligonucleotide intracellular delivery is paramount to ensure reproducible and scalable therapeutic efficacy. Ultrasonication is a well-established mechanism for the deagglomeration of bulk powders in dispersion. Its use in manufacturing requires strict control of the uniformity and reproducibility of the cavitation field within the sample volume to minimise within-batch and batch-to-batch variability. In this work, we demonstrate the use of a reference cavitating vessel which provides stable and reproducible cavitation fields over litre-scale volumes to assist the controlled deagglomeration of a novel non-viral particle-based plasmid delivery system. The system is the Nuvec delivery platform, comprising polyethylenimine-coated spiky silica particles with diameters of ∼ 200 nm. We evaluated the use of controlled cavitation at different input powers and stages of preparation, for example before and after plasmid loading. Plasmid loading was confirmed by X-ray photoelectron spectroscopy and gel electrophoresis. The latter was also used to assess plasmid integrity and the ability of the particles to protect plasmid from potential degradation caused by the deagglomeration process. We show the utility of laser diffraction and differential centrifugal sedimentation in quantifying the efficacy of product de-agglomeration in the microscale and nanoscale size range respectively. Transmission electron microscopy was used to assess potential damages to the silica particle structure due to the sonication process.
Collapse
Affiliation(s)
| | - Piers Turner
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | - David J H Cant
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | | | - Purnank Aggarwal
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | - Rob Harris
- N4 Pharma, Weston House, Bradgate Park View, Chellaston DE73 5UJ, UK
| | - David Templeton
- N4 Pharma, Weston House, Bradgate Park View, Chellaston DE73 5UJ, UK
| | - Alex G Shard
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | - Mark Hodnett
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | - Caterina Minelli
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK.
| |
Collapse
|
20
|
Yuan X, Luo SZ, Chen L. Novel branched amphiphilic peptides for nucleic acids delivery. Int J Pharm 2022; 624:121983. [PMID: 35803534 DOI: 10.1016/j.ijpharm.2022.121983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
Highly efficient and safe non-viral vectors for nucleic acids delivery have attracted much attention due to their potential applications in gene therapy, gene editing and vaccination against infectious diseases, and various materials have been investigated and designed as delivery vectors. Herein, we designed a series of branched amphiphilic peptides (BAPs) and tested their applications as pDNA/mRNA delivery vectors. The BAP structure was inspired by the phospholipids, in which lysine oligomers were used as the "polar head", segments containing phenylalanine, histidine and leucine were used as the "hydrophobic tails", and a lysine residue was used as the branching point. By comparing the gel retardation, particle sizes and zeta potentials of the BAP/pDNA complexes of the short-branch BAPs (BAP-V1 ∼ BAP-V4), we determined the optimal lysine oligomer was K6. However, their cell transfection efficiencies were not satisfactory, and thus three long-branch BAPs (BAP-V5 ∼ BAP-V7) were further designed. In these long-branch BAPs, more hydrophobic residues were added and the overall amphiphilicity increased accordingly. The results showed that these three BAPs could effectively compact the nucleic acids, including both pDNA and mRNA, and all could transfect nucleic acids into HEK 293 cells, with low cytotoxicity. Among the three long-branch BAPs, BAP-V7 (bis(FFLFFHHH)-K-K6) showed the best transfection efficiency at N/P = 10, which was better than the commercial transfection reagent PEI-25 K. These results indicate that increased amphiphilicity would also benefit for BAP mediated nucleic acid delivery. The designed BAPs provide more documents of such novel type of nucleic acids delivery vectors, which is worth of further investigation as a new gene theranostic platforms.
Collapse
Affiliation(s)
- Xiushuang Yuan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
21
|
Padmakumar A, Koyande NP, Rengan AK. The Role of Hitchhiking in Cancer Therapeutics – A review. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ananya Padmakumar
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy 502284 India
| | - Navami Prabhakar Koyande
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy 502284 India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy 502284 India
| |
Collapse
|
22
|
Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev 2022; 184:114169. [PMID: 35217114 DOI: 10.1016/j.addr.2022.114169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Human cells are both advanced pharmaceutical drugs and 'drug deliverers'. However, functional control prior to or after cell implantation remains challenging. Micro-patterning cells through geometrically defined adhesion sites allows controlling morphogenesis, polarity, cellular mechanics, proliferation, migration, differentiation, stemness, cell-cell interactions, collective cell behavior, and likely immuno-modulatory properties. Consequently, generating micro-patterned therapeutic cells is a promising idea that has not yet been realized and few if any steps have been undertaken in this direction. This review highlights potential therapeutic applications, summarizes comprehensively the many cell functions that have been successfully controlled through micro-patterning, details the established micro-pattern designs, introduces the available fabrication technologies to the non-specialized reader, and suggests a quality evaluation score. Such a broad review is not yet available but would facilitate the manufacturing of therapeutically patterned cell populations using micro-patterned cell-instructive biomaterials for improved functional control as drug delivery systems in the context of cells as pharmaceutical products.
Collapse
Affiliation(s)
- Hui Che
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, China
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| |
Collapse
|
23
|
Lima E, Barroso AG, Sousa MA, Ferreira O, Boto RE, Fernandes JR, Almeida P, Silvestre SM, Santos AO, Reis LV. Picolylamine-functionalized benz[e]indole squaraine dyes: Synthetic approach, characterization and in vitro efficacy as potential anticancer phototherapeutic agents. Eur J Med Chem 2022; 229:114071. [PMID: 34979302 DOI: 10.1016/j.ejmech.2021.114071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022]
Abstract
Squaraine dyes are a family of compounds known for their relevant photophysical and photochemical properties potentially useful as photosensitizing agents. Since pyridines have been introduced into the skeleton of several families of compounds to enhance their pharmacological activity, and this approach had not yet been performed on squaraines, novel dyes derived from benz[e]indole functionalized with picolyl- and dipicolylamine and N-ethyl and -hexyl chains were designed and synthesized. After being fully characterized, their interaction with human albumin was in vitro and in silico evaluated. Dyes were further assessed for their phototoxicity activity, and the most interesting ones were studied regarding cell localization and induction of morphological cell changes, genotoxicity, apoptosis and cell cycle arrest. The molecules with N-ethyl chains showed the greatest in vitro light-dependent cytotoxic effects, particularly the zwitterionic squaraine dye and the one bearing a single pyridine unit, which also exhibited a more significant interaction with human albumin. Phenotypically, the cells incubated with these squaraines became smaller and rounded after irradiation, the effects varying with the tested concentration. Genotoxic effects were observed even without irradiation, being more evident for the N-ethyl picolylamine-derived dye. The fluorescence emitted by Rhodamine 123 largely coincided with that emitted by the dyes, suggesting that they are found preferentially in mitochondria. After irradiation, an increase in the subG1 population was verified by propidium iodide-staining analysis by flow cytometry, indicative of cell death by apoptosis.
Collapse
Affiliation(s)
- Eurico Lima
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal; Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Andreia G Barroso
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Margarida A Sousa
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Octávio Ferreira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Renato E Boto
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - José R Fernandes
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Paulo Almeida
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Samuel M Silvestre
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal; Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, 3000-517, Coimbra, Portugal.
| | - Adriana O Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal.
| | - Lucinda V Reis
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal.
| |
Collapse
|
24
|
Nehru S, Misra R, Bhaswant M. Multifaceted Engineered Biomimetic Nanorobots Toward Cancer Management. ACS Biomater Sci Eng 2022; 8:444-459. [PMID: 35118865 DOI: 10.1021/acsbiomaterials.1c01352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The noteworthy beneficiary to date in nanotechnology is cancer management. Nanorobots are developed as the result of advancements in the nanostructure, robotics, healthcare, and computer systems. These devices at the nanoscale level are beneficial in the prevention, diagnosis, and treatment of various health conditions notably cancer. Though these structures have distinct potentialities, the usage of inorganic substances in their construction can affect their performance and can cause health issues in the body. To overcome this, naturally inspired substances are incorporated in the fabrication process of nanorobots termed biomimetic nanorobots that can overcome the immunological responses and reduce the side effects with effective functionalization. These biomimetic nanorobots can widen the opportunities in cancer imaging and therapy. Herein, an up-to-date review of biomimetic nanorobots along with their applications in cancer management is provided. Furthermore, the safety issues and future directions of biomimetic nanorobots to achieve clinical translation are also stated.
Collapse
Affiliation(s)
- Sushmitha Nehru
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai-600119, India
| | - Ranjita Misra
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai-600119, India
| | - Maharshi Bhaswant
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai-600119, India
| |
Collapse
|
25
|
Manturthi S, Bhattacharya D, Sakhare KR, Narayan KP, Patri SV. Nicotinic acid-based cationic vectors for efficient gene delivery to glioblastoma cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj03207d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A tocopherol-conjugated nicotinic acid-based lipid (NGT) was used for liposomal formation with the co-lipid DOPE and exhibited enhanced transfection of glioblastoma cells for eGFP and β-galactosidase protein expression.
Collapse
Affiliation(s)
- Shireesha Manturthi
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana-506004, India
| | - Dwaipayan Bhattacharya
- Department of Biological Science, Bits pilani-hyderabad, Hyderabad, Telangana-500078, India
| | - Kalyani Rajesh Sakhare
- Department of Biological Science, Bits pilani-hyderabad, Hyderabad, Telangana-500078, India
| | - Kumar Pranav Narayan
- Department of Biological Science, Bits pilani-hyderabad, Hyderabad, Telangana-500078, India
| | - Srilakshmi V. Patri
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana-506004, India
| |
Collapse
|
26
|
Vaughan HJ, Green JJ. Recent Advances in Gene Therapy for Cancer Theranostics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100300. [PMID: 34738046 PMCID: PMC8562678 DOI: 10.1016/j.cobme.2021.100300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is great interest in developing gene therapies for many disease indications, including cancer. However, successful delivery of nucleic acids to tumor cells is a major challenge, and in vivo efficacy is difficult to predict. Cancer theranostics is an approach combining anti-tumor therapy with imaging or diagnostic capabilities, with the goal of monitoring successful delivery and efficacy of a therapeutic agent in a tumor. Successful theranostics must maintain a high degree of anticancer targeting and efficacy while incorporating high-contrast imaging agents that are nontoxic and compatible with clinical imaging modalities. This review highlights recent advancements in theranostic strategies, including imaging technologies and genetic engineering approaches. Graphical Abstract.
Collapse
Affiliation(s)
- Hannah J. Vaughan
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
- Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
27
|
Liang J, Xuan M, Wu W, Li J. GSH-responsive nanofibrous prodrug formed by a short naphthylacetic acid-terminated peptide for 6-mercaptopurine delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Diltemiz SE, Tavafoghi PhD M, Roberto de Barros N, Kanada M, Heinamaki J, Contag C, Seidlits S, Ashammakhi N. USE OF ARTIFICIAL CELLS AS DRUG CARRIERS. MATERIALS CHEMISTRY FRONTIERS 2021; 5:6672-6692. [PMID: 38344270 PMCID: PMC10857888 DOI: 10.1039/d1qm00717c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cells are the fundamental functional units of biological systems and mimicking their size, function and complexity is a primary goal in the development of new therapeutic strategies. Recent advances in chemistry, synthetic biology and material science have enabled the development of cell membrane-based drug delivery systems (DDSs), often referred to as "artificial cells" or protocells. Artificial cells can be made by removing functions from natural systems in a top-down manner, or assembly from synthetic, organic or inorganic materials, through a bottom-up approach where simple units are integrated to form more complex structures. This review covers the latest advances in the development of artificial cells as DDSs, highlighting how their designs have been inspired by natural cells or cell membranes. Advancement of artificial cell technologies has led to a set of drug carriers with effective and controlled release of a variety of therapeutics for a range of diseases, and with increasing complexity they will have a greater impact on therapeutic designs.
Collapse
Affiliation(s)
- Sibel Emir Diltemiz
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Department of Chemistry, Eskisehir Technical University, Eskisehir, Turkey
| | - Maryam Tavafoghi PhD
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
| | - Natan Roberto de Barros
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Department of Bioprocess and Biotechnology Engineering, São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Masamitsu Kanada
- Institute for Quantitative Health Science and Engineering (IQ), Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jyrki Heinamaki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse Str. 1, EE-50411 Tartu, Estonia
| | - Christopher Contag
- Institute for Quantitative Health Science and Engineering (IQ) and Departments of Biomedical Engineering (BME), and Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Stephanie Seidlits
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
29
|
Degradable cationic polyesters via ring-opening copolymerization of valerolactones as nanocarriers for the gene delivery. Bioorg Chem 2021; 116:105299. [PMID: 34454300 DOI: 10.1016/j.bioorg.2021.105299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 01/19/2023]
Abstract
The development of cationic polymers as non-viral gene vectors has been hurdled by their high toxicity, thus degradable and biocompatible polymers are urgently demanded. Herein, five polyesters (B3a-B3e) were synthesized based on the ring-opening copolymerization between α-allyl-δ-valerolactone and δ-valerolactone derivatives decorated with alkyl or alkoxyl chains of different lengths, followed by the modification with 1,5,9-triazacyclododecyl ([12]aneN3) through thiol-ene click reactions. The five polyesters effectively condensed DNA into nanoparticles. Of them, B3a with a shorter alkyl chain and B3d with more positive charged units showed stronger DNA condensing performance and can completely retard the migration of DNA at N/P = 1.6 in the presence of DOPE. B3b/DOPE with a longer alkyl chain exhibited the highest transfection efficiency in HeLa cells with 1.8 times of 25 kDa PEI, while B3d/DOPE with more positive charged units exhibited highest transfection efficiency in A549 cells with 2.3 times of 25 kDa PEI. B3b/DOPE and B3d/DOPE successfully delivered pEGFP into zebrafish, which was superior to 25 kDa PEI (1.5 folds and 1.1 folds, respectively). The cytotoxicity measurements proved that the biocompatibility of these polyesters was better than 25 kDa PEI, due to their degradable property in acid environment. The results indicated that these cationic polyesters can be developed as potential non-viral gene vectors for DNA delivery.
Collapse
|
30
|
Gao P, Chang X, Zhang D, Cai Y, Chen G, Wang H, Wang T. Synergistic integration of metal nanoclusters and biomolecules as hybrid systems for therapeutic applications. Acta Pharm Sin B 2021; 11:1175-1199. [PMID: 34094827 PMCID: PMC8144895 DOI: 10.1016/j.apsb.2020.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic nanoparticles are designed to enhance efficacy, real-time monitoring, targeting accuracy, biocompatibility, biodegradability, safety, and the synergy of diagnosis and treatment of diseases by leveraging the unique physicochemical and biological properties of well-developed bio-nanomaterials. Recently, bio-inspired metal nanoclusters (NCs) consisting of several to roughly dozens of atoms (<2 nm) have attracted increasing research interest, owing to their ultrafine size, tunable fluorescent capability, good biocompatibility, variable metallic composition, and extensive surface bio-functionalization. Hybrid core-shell nanostructures that effectively incorporate unique fluorescent inorganic moieties with various biomolecules, such as proteins (enzymes, antigens, and antibodies), DNA, and specific cells, create fluorescently visualized molecular nanoparticle. The resultant nanoparticles possess combinatorial properties and synergistic efficacy, such as simplicity, active bio-responsiveness, improved applicability, and low cost, for combination therapy, such as accurate targeting, bioimaging, and enhanced therapeutic and biocatalytic effects. In contrast to larger nanoparticles, bio-inspired metal NCs allow rapid renal clearance and better pharmacokinetics in biological systems. Notably, advances in nanoscience, interfacial chemistry, and biotechnologies have further spurred researchers to explore bio-inspired metal NCs for therapeutic purposes. The current review presents a comprehensive and timely overview of various metal NCs for various therapeutic applications, with a special emphasis on the design rationale behind the use of biomolecules/cells as the main scaffolds. In the different hybrid platform, we summarize the current challenges and emerging perspectives, which are expected to offer in-depth insight into the rational design of bio-inspired metal NCs for personalized treatment and clinical translation.
Collapse
Affiliation(s)
- Peng Gao
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Chang
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dagan Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Hao Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Tianfu Wang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
31
|
Jindal M, Nagpal M, Singh M, Aggarwal G, Dhingra GA. Gold Nanoparticles- Boon in Cancer Theranostics. Curr Pharm Des 2021; 26:5134-5151. [PMID: 32611300 DOI: 10.2174/1381612826666200701151403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/23/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cancer is the world's second-largest cause of death, with an estimated 9.6 million fatalities in 2018. Malignant tumour (cancer) is caused by a mixture of genetic modifications due to the environmental variables that tend to activate or inactivate different genes, ultimately resulting in neoplastic transformations. Cancer is a multi-stage process that results from the conversion of the ordinary cells to tumour cells and progresses from a pre-cancer lesion to abnormal growth. METHODS Chemotherapy inhibits the ability of the cells to divide rapidly in an abnormal manner, but this treatment simultaneously affects the entire cellular network in the human body leading to cytotoxic effects. In this review article, the same issue has been addressed by discussing various aspects of the newer class of drugs in cancer therapeutics, i.e., Gold Nanoparticles (AuNPs) from metal nanoparticle (NP) class. RESULTS Metal NPs are advantageous over conventional chemotherapy as the adverse drug reactions are lesser. Additionally, ease of drug delivery, targeting and gene silencing are salient features of this treatment. Functionalized ligand-targeting metal NPs provide better energy deposition control in tumour. AuNPs are promising agents in the field of cancer treatment and are comprehensively studied as contrast agents, carriers of medicinal products, radiosensitizers and photothermal agents. For the targeted delivery of chemotherapeutic agents, AuNPs are used and also tend to enhance tumour imaging in vivo for a variety of cancer types and diseased organs. CONCLUSION The first part of the review focuses on various nano-carriers that are used for cancer therapy and deals with the progression of metal NPs in cancer therapy. The second part emphasizes the use of nanotechnology by considering the latest studies for diagnostic and therapeutic properties of AuNPs. AuNPs present the latest studies in the field of nanotechnology, which leads to the development of early-stage clinical trials. The next part of the review discusses the major features of five principal types of AuNPs: gold nanorods, gold nanoshells, gold nanospheres, gold nanocages, and gold nanostars that have their application in photothermal therapy (PTT).
Collapse
Affiliation(s)
- Mehak Jindal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, New Delhi-110017, India
| | | |
Collapse
|
32
|
Long K, Liu Y, Li Y, Wang W. Self-assembly of trigonal building blocks into nanostructures: molecular design and biomedical applications. J Mater Chem B 2021; 8:6739-6752. [PMID: 32686806 DOI: 10.1039/d0tb01128b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trigonal molecules have a special triskelion structure similar to clathrin protein, providing great inspiration for constructing artificial nanoassemblies. To date, various synthetic trigonal conjugates have been designed for supramolecular self-assembly, which have demonstrated versatile and controllable self-assembly ability in materials science. Here we will review the design of trigonal (sometimes called three-legged, tripodal, C3-symmetric, or triskelion) building blocks that can self-assemble into various nanostructures and discuss the biomedical applications of the self-assembled nanomaterials.
Collapse
Affiliation(s)
- Kaiqi Long
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | | | | | | |
Collapse
|
33
|
The effect of drug position on the properties of paclitaxel-conjugated gold nanoparticles for liver tumor treatment. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Sheikh-Hosseini M, Larijani B, Gholipoor Kakroodi Z, Shokoohi M, Moarefzadeh M, Sayahpour FA, Goodarzi P, Arjmand B. Gene Therapy as an Emerging Therapeutic Approach to Breast Cancer: New Developments and Challenges. Hum Gene Ther 2021; 32:1330-1345. [PMID: 33307949 DOI: 10.1089/hum.2020.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a heterogeneous disease, which is the consequence of several genetic and environmental factors. Also, it is one of the most common causes of cancer death and second leading cancer among women all around the world. Therefore, it is necessary to develop novel therapeutic approaches useful for the successful treatment of breast cancer. As conventional treatments had limited success, alternative approaches for the treatment of breast cancer have been applied in recent years. Hence, the molecular basis of breast cancer has provided the opportunity of using genetic materials for therapeutic uses. In this regard, gene therapy as one of the potentially efficient and beneficial treatments among various techniques became a popular treatment for different cancers, especially breast cancer. Accordingly, there are plenty of targets available for gene therapy of breast cancer. Gene therapy strategies have the potential to correct molecular defects that contributed to the cancer progression. These techniques should selectively target tumor cells without affecting normal cells. Moreover, data of clinical trials in gene therapy for breast cancer indicated that this approach has little toxicity compared to other therapeutic approaches. In this study, different aspects of breast neoplasm, gene therapy techniques, challenges, and recent developments will be mentioned.
Collapse
Affiliation(s)
- Motahareh Sheikh-Hosseini
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Gholipoor Kakroodi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Shokoohi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Moarefzadeh
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Batabyal S, Kim S, Wright W, Mohanty S. Laser-assisted targeted gene delivery to degenerated retina improves retinal function. JOURNAL OF BIOPHOTONICS 2021; 14:e202000234. [PMID: 33026157 DOI: 10.1002/jbio.202000234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Delivery of therapeutic genes into retina is proving to reverse degeneration and restore vision, however, viral vector-based gene delivery is prone to immunorejection, inflammatory/immune-response and nontargeted. Here, we report nonviral gene delivery and expression of opsin encoding genes in mouse retina in-vitro and in-vivo by use of pulsed femtosecond laser microbeam. In-vitro patch-clamp recording of the opsin-sensitized retinal cells and visually evoked in-vivo electrical recording from laser-transfected eye of mouse with degenerated retina showed functional response. The ultrafast laser-based naked gene delivery showed minimal damage and reliable expression of therapeutic opsin in cell membrane of the selected cells and in targeted retinal region. Laser-based "naked DNA gene therapy" in a spatially targeted manner will pave the way for treatment of inherited retinal diseases.
Collapse
|
36
|
Yang C, Gao Y, Fan Y, Cao L, Li J, Ge Y, Tu W, Liu Y, Cao X, Shi X. Dual-mode endogenous and exogenous sensitization of tumor radiotherapy through antifouling dendrimer-entrapped gold nanoparticles. Theranostics 2021; 11:1721-1731. [PMID: 33408777 PMCID: PMC7778585 DOI: 10.7150/thno.54930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
Development of a powerful sensitization system to alleviate radioresistance for enhanced tumor radiotherapy (RT) remains to be explored. Herein, we present a unique dual-mode endogenous and exogenous nanosensitizer based on dendrimer-entrapped gold nanoparticles (Au DENPs) to realize enhanced tumor RT. Methods: Generation 5 poly(amidoamine) dendrimers partially modified with 1,3-propanesultone were used for templated synthesis of Au NPs, and the created zwitterionic Au DENPs were adopted for serum-enhanced delivery of siRNA to lead to the knockdown of hypoxia-inducible factor-1α (HIF-1α) protein and downstream genes to relieve tumor invasion. The Au DENPs/siRNA polyplexes were also used for dual-mode endogenous and exogenous sensitization of tumor RT in vivo. Results: Due to the dual-mode endogenous sensitization through HIF-1α gene silencing and the exogenous sensitization through the existing Au component, enhanced RT of cancer cells in vitro and a tumor model in vivo can be realized, which was confirmed by enhanced cytotoxic reactive oxygen species (ROS) generation in vitro and double-strand DNA damage verified from the γ-H2AX protein expression in tumor cells in vivo. By integrating the advantages of HIF-1α gene silencing-induced downregulation of downstream genes and the dual-mode sensitization-enhanced RT, simultaneous inhibition of primary tumors and metastasis can be readily realized. Conclusions: The developed zwitterionic Au DENPs may be used as a promising platform for dual-mode endogenously and exogenously sensitized RT of other tumor types.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Liu Cao
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Jin Li
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yulong Ge
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, People's Republic of China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, People's Republic of China
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, People's Republic of China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
37
|
Khalid K, Tan X, Mohd Zaid HF, Tao Y, Lye Chew C, Chu DT, Lam MK, Ho YC, Lim JW, Chin Wei L. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered 2020; 11:328-355. [PMID: 32138595 PMCID: PMC7161543 DOI: 10.1080/21655979.2020.1736240] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
With the unique properties such as high surface area to volume ratio, stability, inertness, ease of functionalization, as well as novel optical, electrical, and magnetic behaviors, nanomaterials have a wide range of applications in various fields with the common types including nanotubes, dendrimers, quantum dots, and fullerenes. With the aim of providing useful insights to help future development of efficient and commercially viable technology for large-scale production, this review focused on the science and applications of inorganic and organic nanomaterials, emphasizing on their synthesis, processing, characterization, and applications on different fields. The applications of nanomaterials on imaging, cell and gene delivery, biosensor, cancer treatment, therapy, and others were discussed in depth. Last but not least, the future prospects and challenges in nanoscience and nanotechnology were also explored.
Collapse
Affiliation(s)
- Khalisanni Khalid
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Malaysia
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Xuefei Tan
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, PR China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China
- Dalian SEM Bio-Engineering Technology Co., Ltd, Dalian, PR China
| | - Hayyiratul Fatimah Mohd Zaid
- Fundamental and Applied Sciences Department, Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chien Lye Chew
- Sime Darby Plantation Research (Formerly Known as Sime Darby Research), R&D Centre – Carey Island, Pulau Carey, Malaysia
| | - Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Norway
| | - Man Kee Lam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Univesiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Center for Urban Resource Sustainably, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia Lim
| | - Lai Chin Wei
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya (UM), Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Naik S, Shreya AB, Raychaudhuri R, Pandey A, Lewis SA, Hazarika M, Bhandary SV, Rao BSS, Mutalik S. Small interfering RNAs (siRNAs) based gene silencing strategies for the treatment of glaucoma: Recent advancements and future perspectives. Life Sci 2020; 264:118712. [PMID: 33159955 DOI: 10.1016/j.lfs.2020.118712] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 01/22/2023]
Abstract
RNA-interference-based mechanisms, especially the use of small interfering RNAs (siRNAs), have been under investigation for the treatment of several ailments and have shown promising results for ocular diseases including glaucoma. The eye, being a confined compartment, serves as a good target for the delivery of siRNAs. This review focuses on siRNA-based strategies for gene silencing to treat glaucoma. We have discussed the ocular structures and barriers to gene therapy (tear film, corneal, conjunctival, vitreous, and blood ocular barriers), methods of administration for ocular gene delivery (topical instillation, periocular, intracameral, intravitreal, subretinal, and suprachoroidal routes) and various viral and non-viral vectors in siRNA-based therapy for glaucoma. The components and mechanism of siRNA-based gene silencing have been mentioned briefly followed by the basic strategies and challenges faced during siRNA therapeutics development. We have emphasized different therapeutic targets for glaucoma which have been under research by scientists and the current siRNA-based drugs used in glaucoma treatment. We also mention briefly strategies for siRNA-based treatment after glaucoma surgery.
Collapse
Affiliation(s)
- Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajjappla Basavaraj Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Manali Hazarika
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Director - Research, Directorte of Research, Manipal Academy of Higher Education, Manipal and School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
39
|
Rahimmanesh I, Totonchi M, Khanahmad H. The challenging nature of primary T lymphocytes for transfection: Effect of protamine sulfate on the transfection efficiency of chemical transfection reagents. Res Pharm Sci 2020; 15:437-446. [PMID: 33628285 PMCID: PMC7879792 DOI: 10.4103/1735-5362.297846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background and purpose: The optimization of an effective non-viral gene delivery method for genetic manipulation of primary human T cells has been a major challenge in immunotherapy researches. Due to the poor transfection efficiency of conventional methods in T cells, there has been an effort to increase the transfection rate in these cells. Protamine is an FDA-approved compound with a documented safety profile that enhances DNA condensation for gene delivery. Experimental approach: In this study, the effect of protamine sulfate on the transfection efficiency of standard transfection reagents, was evaluated to transfect primary human T cells. In this regard, pre-condensation of DNA was applied using protamine, and the value of the zeta potential of DNA/protamine/cargo complexes was determined. T cells were transfected with DNA/protamine/cargo complexes. The transfection efficiency rate was evaluated by flow cytometry. Also, the green fluorescent protein expression level and cytotoxicity of each complex were identified using real-time polymerase chain reaction and MTT assay, respectively. Findings/Results: Our results demonstrated that protamine efficiently increases the positive charge of DNA/cargo complex without any cytotoxic effect on the primary human T cells. We observed that the transfection efficiency in DNA/protamine/ Lipofectamine® 2000 and DNA/protamine/TurboFect™ was 87.2% and 78.9%, respectively, while transfection of T cells by Lipofectamine® 2000 and TurboFect™ would not result in sufficient transfection. Conclusion and implications: Protamine sulfate enhanced the transfection rate of T cells; and could be a promising non-viral gene delivery method to achieve a safe, rapid, cost-effective, and efficient system which will be further applied in gene therapy and T cells manipulation methods.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, I.R. Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
40
|
Development of Theranostic Cationic Liposomes Designed for Image-Guided Delivery of Nucleic Acid. Pharmaceutics 2020; 12:pharmaceutics12090854. [PMID: 32911863 PMCID: PMC7559777 DOI: 10.3390/pharmaceutics12090854] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 02/01/2023] Open
Abstract
Cationic liposomes have been considered as potential vectors for gene delivery thanks to their ability to transfect cells with high efficiency. Recently, the combination of diagnostic agent and therapeutic agents in the same particle to form a theranostic system has been reported. Magnetic liposomes are one of these examples. Due to the magnetic nanoparticles encapsulated in the liposomes, they can act as a drug delivery system and, at the same time, a magnetic resonance imaging contrast enhancement agent or hyperthermia. In this work, nucleic acid delivery systems based on magnetic cationic liposomes (MCLs) were developed. Two different techniques, reverse phase evaporation and cosolvent sonication, were employed for liposome preparation. Both strategies produced MCLs of less than 200 nm with highly positive charge. Enhancement of their transverse and longitudinal relaxivities r2 and r1 was obtained with both kinds of magnetic liposomes compared to free magnetic nanoparticles. Moreover, these MCLs showed high capacity to form complexes and transfect CT-26 cells using the antibiotic-free pFAR4-luc plasmid. The transfection enhancement with magnetofection was also carried out in CT26 cells. These results suggested that our MCLs could be a promising candidate for image-guided gene therapy.
Collapse
|
41
|
Lu Z, Wang Z, Li D. Application of atomic force microscope in diagnosis of single cancer cells. BIOMICROFLUIDICS 2020; 14:051501. [PMID: 32922587 PMCID: PMC7474552 DOI: 10.1063/5.0021592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Changes in mechanical properties of cells are closely related to a variety of diseases. As an advanced technology on the micro/nano scale, atomic force microscopy is the most suitable tool for information acquisition of living cells in human body fluids. AFMs are able to measure and characterize the mechanical properties of cells which can be used as effective markers to distinguish between different cell types and cells in different states (benign or cancerous). Therefore, they can be employed to obtain additional information to that obtained via the traditional biochemistry methods for better identifying and diagnosing cancer cells for humans, proposing better treatment methods and prognosis, and unravelling the pathogenesis of the disease. In this report, we review the use of AFMs in cancerous tissues, organs, and cancer cells cultured in vitro to obtain cellular mechanical properties, demonstrate and summarize the results of AFMs in cancer biology, and look forward to possible future applications and the direction of development.
Collapse
Affiliation(s)
- Zhengcheng Lu
- JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| | - Zuobin Wang
- Authors to whom correspondence should be addressed: and
| | - Dayou Li
- JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| |
Collapse
|
42
|
Dong W, Wu P, Qin M, Guo S, Liu H, Yang X, He W, Bouakaz A, Wan M, Zong Y. Multipotent miRNA Sponge-Loaded Magnetic Nanodroplets with Ultrasound/Magnet-Assisted Delivery for Hepatocellular Carcinoma Therapy. Mol Pharm 2020; 17:2891-2910. [PMID: 32678617 DOI: 10.1021/acs.molpharmaceut.0c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gene therapy is likely to be the most promising way to tackle cancer, while defects in molecular strategies and delivery systems have led to an impasse in clinical application. Here, it is found that onco-miRNAs of the miR-515 and -449 families were upregulated in hepatocellular carcinoma (HCC), and the sponge targeting miR-515 family had a significant probability to suppress cancer cell proliferation. Then, we constructed non-toxic sponge-loaded magnetic nanodroplets containing 20% C6F14 (SLMNDs-20%) that are incorporated with fluorinated superparamagnetic iron oxide nanoparticles enhancing external magnetism-assisted targeting and enabling a direct visualization of SLMNDs-20% distribution in vivo via magnetic resonance imaging monitoring. SLMNDs-20% could be vaporized by programmable focused ultrasound (FUS) activation, achieving ∼45% in vitro sponge delivery efficiency and significantly enhancing in vivo sponge delivery without a clear apoptosis. Moreover, the sponge-1-carrying SLMNDs-20% could effectively suppress proliferation of xenograft HCC after FUS exposure because sponge-1-suppressing onco-miR-515 enhanced the expression of anti-oncogenes (P21, CD22, TIMP1, NFKB, and E-cadherin) in cancer cells. The current results indicated that ultrasonic cavitation-inducing sonoporation enhanced the intracellular delivery of sponge-1 using SLMNDs-20% after magnetic-assisted accumulation, which was a therapeutic approach to inhibit HCC progression.
Collapse
Affiliation(s)
- Wei Dong
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Pengying Wu
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Mengfan Qin
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shifang Guo
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huasheng Liu
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xinxing Yang
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Department of Ultrasound, The First Affiliated Hospital of AFMU (Xijing Hospital), Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Wen He
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Ayache Bouakaz
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours 37000, France
| | - Mingxi Wan
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yujin Zong
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
43
|
Malla WA, Arora R, Khan RIN, Mahajan S, Tiwari AK. Apoptin as a Tumor-Specific Therapeutic Agent: Current Perspective on Mechanism of Action and Delivery Systems. Front Cell Dev Biol 2020; 8:524. [PMID: 32671070 PMCID: PMC7330108 DOI: 10.3389/fcell.2020.00524] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide in humans and animals. Conventional treatment regimens often fail to produce the desired outcome due to disturbances in cell physiology that arise during the process of transformation. Additionally, development of treatment regimens with no or minimum side-effects is one of the thrust areas of modern cancer research. Oncolytic viral gene therapy employs certain viral genes which on ectopic expression find and selectively destroy malignant cells, thereby achieving tumor cell death without harming the normal cells in the neighborhood. Apoptin, encoded by Chicken Infectious Anemia Virus' VP3 gene, is a proline-rich protein capable of inducing apoptosis in cancer cells in a selective manner. In normal cells, the filamentous Apoptin becomes aggregated toward the cell margins, but is eventually degraded by proteasomes without harming the cells. In malignant cells, after activation by phosphorylation by a cancer cell-specific kinase whose identity is disputed, Apoptin accumulates in the nucleus, undergoes aggregation to form multimers, and prevents the dividing cancer cells from repairing their DNA lesions, thereby forcing them to undergo apoptosis. In this review, we discuss the present knowledge about the structure of Apoptin protein, elaborate on its mechanism of action, and summarize various strategies that have been used to deliver it as an anticancer drug in various cancer models.
Collapse
Affiliation(s)
- Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Richa Arora
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardisation, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
44
|
Haladjova E, Smolíček M, Ugrinova I, Momekova D, Shestakova P, Kroneková Z, Kronek J, Rangelov S. DNA delivery systems based on copolymers of poly (2‐methyl‐2‐oxazoline) and polyethyleneimine: Effect of polyoxazoline moieties on the endo‐lysosomal escape. J Appl Polym Sci 2020. [DOI: 10.1002/app.49400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Maroš Smolíček
- Department for Biomaterials ResearchPolymer Institute, Slovak Academy of Sciences Bratislava Slovakia
- Department of Inorganic Chemistry, Faculty of Natural SciencesComenius University Mlynská dolina Bratislava Slovakia
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences Sofia Bulgaria
| | | | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Zuzana Kroneková
- Department for Biomaterials ResearchPolymer Institute, Slovak Academy of Sciences Bratislava Slovakia
| | - Juraj Kronek
- Department for Biomaterials ResearchPolymer Institute, Slovak Academy of Sciences Bratislava Slovakia
| | | |
Collapse
|
45
|
Zhang X, Lu T, Ma Y, Li R, Pang Y, Mao H, Liu P. Novel Nanocomplexes Targeting STAT3 Demonstrate Promising Anti-Ovarian Cancer Effects in vivo. Onco Targets Ther 2020; 13:5069-5082. [PMID: 32606729 PMCID: PMC7292488 DOI: 10.2147/ott.s247398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cationic solid lipid nanoparticles (SLN) have attracted intensive interest as an effective gene delivery system for its high biocompatibility, stability and low cytotoxicity. In our previous study, we successfully prepared SLN-STAT3 decoy ODN complexes and made a primary study on its antitumor behavior in ovarian cancer cells in vitro. However, there is little information available so far about the effect of SLN-STAT3 decoy ODN complexes on ovarian cancer in vivo, either little information about the pharmacological toxicology in vivo. Material and Methods We applied nanotechnology to improve the gene delivery system and synthesize SLN-STAT3 decoy ODN complexes. Xenograft mouse models were established to assess the antitumor effects of SLN-STAT3 decoy ODN on the tumor growth of ovarian cancer in vivo. To analyze the mechanisms of SLN-STAT3 decoy ODN, we investigated apoptosis, autophagy, epithelial–mesenchymal transition (EMT) in tumor tissues of nude mice and investigated the effects and toxicology of SLN-STAT3 decoy ODN complexes on the vital organs of nude mice. Results The results showed that SLN-STAT3 decoy ODN complexes markedly inhibited tumor growth in vivo. SLN-STAT3 decoy ODN complexes could induce cell apoptosis through downregulating Bcl-2, survivin and pro caspase 3, but upregulating Bax and cleaved caspase 3. These complexes could also regulate autophagy through upregulating LC3A-II, LC3B-II and beclin-1, but downregulating p-Akt and p-mTOR. Moreover, these complexes could inhibit cancer cell invasion through reversing EMT. Besides, SLN-STAT3 decoy ODN complexes showed no obvious toxicity on vital organs and hematological parameters of nude mice. Conclusion The molecular mechanisms that SLN-STAT3 decoy ODN complexes inhibit tumor growth involved activating the apoptotic cascade, regulating autophagy, and reversing EMT program; and these complexes showed no obvious toxicity on nude mice. Our study indicated that the nanocomplexes SLN-STAT3 decoy ODN might be a promising therapeutic approach for ovarian cancer treatment.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Tao Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Yanhui Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Rui Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Yingxin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Hongluan Mao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
46
|
Jin C, Cao N, Ni J, Zhao W, Gu B, Zhu W. A Lipid-Nanosphere-Small MyoD Activating RNA-Bladder Acellular Matrix Graft Scaffold [NP(saMyoD)/BAMG] Facilitates Rat Injured Bladder Muscle Repair and Regeneration [NP(saMyoD)/BAMG]. Front Pharmacol 2020; 11:795. [PMID: 32581787 PMCID: PMC7287117 DOI: 10.3389/fphar.2020.00795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Background Bladder tissue engineering is an excellent alternative to conventional gastrointestinal bladder enlargement in the treatment of various acquired and congenital bladder abnormalities. We constructed a nanosphere-small MyoD activating RNA-bladder acellular matrix graft scaffold NP(saMyoD)/BAMG inoculated with adipose-derived stem cells (ADSC) to explore its effect on smooth muscle regeneration and bladder repair function in a rat augmentation model. Methods We performed many biotechniques, such as reverse transcriptase-polymerase chain reaction (RT-PCR), Western blot, MTT assay, HE staining, masson staining, and immunohistochemistry in our study. Lipid nanospheres were transfected into rat ADSCs after encapsulate saRNA-MyoD as an introduction vector. Lipid nanospheres encapsulated with saRNA-MyoD were transfected into rat ADSCs. The functional transfected rat ADSCs were called ADSC-NP(saMyoD). Then, Rat models were divided into four groups: sham group, ADSC-BAMG group, ADSC-NP(saMyoD)/BAMG group, and ADSC-NP(saMyoD)/SF(VEGF)/BAMG group. Finally, we compared the bladder function of different models by detecting the bladder histology, bladder capacity, smooth muscle function in each group. Results RT-PCR and Western blot results showed that ADSCs transfected with NP(saMyoD) could induce high expression of α-SMA, SM22α, and Desmin. At the same time, MTT analysis showed that NP(saMyoD) did not affect the activity of ADSC cells, suggesting little toxicity. HE staining and immunohistochemistry indicated that the rat bladder repair effect (smooth muscle function, bladder capacities) was better in the ADSC-NP(saMyoD)/BAMG group, ADSC-NP(saMyoD)/SF(VEGF)/BAMG group than in the control group. Conclusions Taken together, our results demonstrate that the NP(saMyoD)/SF(VEGF)/BAMG scaffold seeded with ADSCs could promote bladder morphological regeneration and improved bladder urinary function. This strategy of ADSC-NP(saMyoD)/SF(VEGF)/BAMG may has a potential to repair bladder defects in the future.
Collapse
Affiliation(s)
- Chongrui Jin
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Urology, Shanghai Eastern Urological Reconstruction and Repair Institute, Shanghai, China
| | - Nailong Cao
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Urology, Shanghai Eastern Urological Reconstruction and Repair Institute, Shanghai, China
| | - Jianshu Ni
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Urology, Shanghai Eastern Urological Reconstruction and Repair Institute, Shanghai, China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Baojun Gu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Urology, Shanghai Eastern Urological Reconstruction and Repair Institute, Shanghai, China
| | - Weidong Zhu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Urology, Shanghai Eastern Urological Reconstruction and Repair Institute, Shanghai, China
| |
Collapse
|
47
|
Riebe S, Zimmermann A, Koch J, Vallet C, Knauer SK, Sowa A, Wölper C, Voskuhl J. Lipofection with estrone-based luminophores featuring aggregation-induced emission properties. RSC Adv 2020; 10:19643-19647. [PMID: 35515436 PMCID: PMC9054052 DOI: 10.1039/d0ra03608k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/16/2020] [Indexed: 12/30/2022] Open
Abstract
In this communication we present the use of a novel class of luminophores with aggregation-induced emission (AIE) properties based on the steroid estrone. These molecules were equipped with cationic residues yielding amphiphiles suitable for lipofection. To this end, self-assembled luminescent structures were formed in aqueous media and mixed with a red-fluorescent protein expressing plasmid, yielding lipoplexes with increased emission intensity. These luminescent lipoplexes were able to efficiently transfect HeLa and HEK 293T cells and were able to be tracked due to the aggregation induced-emission properties.
Collapse
Affiliation(s)
- Steffen Riebe
- Institute for Organic Chemistry and CENIDE, University of Duisburg-Essen Universitätsstrasse 7 45141 Essen Germany
| | - Alexander Zimmermann
- Institute for Organic Chemistry and CENIDE, University of Duisburg-Essen Universitätsstrasse 7 45141 Essen Germany
| | - Johannes Koch
- ICCE, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen Universitätsstrasse 2 45141 Essen Germany
| | - Cecilia Vallet
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen 45117 Essen Germany
| | - Shirley K Knauer
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen 45117 Essen Germany
| | - Andrea Sowa
- Institute for Organic Chemistry and CENIDE, University of Duisburg-Essen Universitätsstrasse 7 45141 Essen Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen Universitätsstrasse 5-7 45117 Essen Germany
| | - Jens Voskuhl
- Institute for Organic Chemistry and CENIDE, University of Duisburg-Essen Universitätsstrasse 7 45141 Essen Germany
| |
Collapse
|
48
|
Liposomes Loaded with the Proteasome Inhibitor Z-Leucinyl-Leucinyl-Norleucinal are Effective in Inducing Apoptosis in Colorectal Cancer Cell Lines. MEMBRANES 2020; 10:membranes10050091. [PMID: 32375292 PMCID: PMC7281214 DOI: 10.3390/membranes10050091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/19/2020] [Accepted: 04/29/2020] [Indexed: 01/09/2023]
Abstract
Colorectal cancer (CRC) is one of the main causes of cancer-related death in developed countries. Targeted therapies and conventional chemotherapeutics have been developed to help treat this type of aggressive cancer. Among these, the monoclonal antibodies cetuximab (Cxm) and panitumumab specifically target and inactivate the signaling of ERBB1 (EGF receptor), a key player in the development and progression of this cancer. Unfortunately, these antibodies are effective only on a small fraction of patients due to primary or secondary/acquired resistance. However, as ERBB1 cell surface expression is often maintained in resistant tumors, ERBB1 can be exploited as a target to deliver other drugs. Liposomes and immunoliposomes are under intensive investigation as pharmaceutical nanocarriers and can be functionalized with specific antibodies. In this study, we first investigated the anti-cancer activity of a cell permeable tripeptide, leucine-leucin-norleucinal (LLNle), an inhibitor of gamma-secretase and proteasome, in three different CRC cell lines that express ERBB1. We formulated LLNle-liposomes and Cxm-conjugated LLNle-loaded liposomes (LLNle-immunoliposomes) and evaluated their efficacy in inhibiting cell survival. Despite similar pro-apoptotic effects of free LLNle and LLNle-liposomes, immunoliposomes-LLNle were significantly less effective than their unconjugated counterparts. Indeed, immunoliposomes-LLNle were readily internalized and trafficked to lysosomes, where LLNle was likely trapped and/or inactivated. In conclusion, we demonstrated that LLNle was readily delivered to CRC cell lines by liposomes, but immunoliposomes-LLNle failed to show significant anti-cancer activity.
Collapse
|
49
|
Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci 2020; 279:102157. [PMID: 32330734 PMCID: PMC7261203 DOI: 10.1016/j.cis.2020.102157] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Calcium phosphate is the inorganic mineral of hard tissues such as bone and teeth. Due to their similarities to the natural bone, calcium phosphates are highly biocompatible and biodegradable materials that have found numerous applications in dental and orthopedic implants and bone tissue engineering. In the form of nanoparticles, calcium phosphate nanoparticles (CaP's) can also be used as effective delivery vehicles to transfer therapeutic agents such as nucleic acids, drugs, proteins and enzymes into tumor cells. In addition, facile preparation and functionalization of CaP's, together with their inherent properties such as pH-dependent solubility provide advantages in delivery and release of these bioactive agents using CaP's as nanocarriers. In this review, the challenges and achievements in the intracellular delivery of these agents to tumor cells are discussed. Also, the most important issues in the design and potential applications of CaP-based biominerals are addressed with more focus on their biodegradability in tumor microenvironment.
Collapse
Affiliation(s)
- Razieh Khalifehzadeh
- Department of Chemical Engineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, United States; Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States
| | - Hamed Arami
- Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States; Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States.
| |
Collapse
|
50
|
Yang YJ, Dong HL, Qiang XW, Fu H, Zhou EC, Zhang C, Yin L, Chen XF, Jia FC, Dai L, Tan ZJ, Zhang XH. Cytosine Methylation Enhances DNA Condensation Revealed by Equilibrium Measurements Using Magnetic Tweezers. J Am Chem Soc 2020; 142:9203-9209. [DOI: 10.1021/jacs.9b11957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ya-Jun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Hai-Long Dong
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiao-Wei Qiang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Er-Chi Zhou
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Lei Yin
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xue-Feng Chen
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Fu-Chao Jia
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| |
Collapse
|