1
|
Yang Z, Chen L, Guo T, Huang L, Yang Y, Ye R, Zhang Y, Lin X, Fan Y, Gong C, Yang N, Guan W, Liang D, Ouyang W, Yang W, Zhao X, Zhang J. Cationic liposomes overcome neutralizing antibodies and enhance reovirus efficacy in ovarian cancer. Virology 2024; 598:110196. [PMID: 39098183 DOI: 10.1016/j.virol.2024.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Reovirus (Reo) has shown promising potential in specifically killing tumor cells, and offering new possibilities for ovarian cancer (OC) treatment. However, neutralizing antibodies in the ascites from OC patients greatly limit the further application of Reo. In this study, we employed cationic liposomes (Lipo) to deliver Reo, significantly enhancing its ability to enter OC cells and its effectiveness in killing these cells under ascitic conditions. Pre-treatment with the MβCD inhibitor notably decreased Reo-mediated tumor cell death, indicating that Lipo primarily enables Reo's cellular uptake through caveolin-mediated endocytosis. Our results demonstrate that Lipo effectively facilitates the entry of Reo into the cytoplasm and triggers cell apoptosis. The above findings provide a new strategy to overcome the obstacle of neutralizing antibodies in the clinical application of Reo.
Collapse
Affiliation(s)
- Zhiru Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Liang Chen
- Department of Thoracic and Breast Surgery, Anshun People's Hospital, Anshun, Guizhou, China
| | - Ting Guo
- Department of Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei Huang
- Department of Thoracic and Breast Surgery, Anshun People's Hospital, Anshun, Guizhou, China
| | - Yuxin Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Rui Ye
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yingchun Zhang
- Department of Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China; Tumor Immunotherapy Technology Engineering Research Center, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaojin Lin
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China; Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chulan Gong
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Na Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Weili Guan
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Liang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Weiwei Ouyang
- Department of Thoracic Oncology, The Affiliated Hospital/The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Yang
- Department of Oncology, Guizhou Medical University, Guiyang, China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China; Tumor Immunotherapy Technology Engineering Research Center, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jing Zhang
- Department of Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Zhao C, Wang C, Shan W, Wang W, Deng H. Fusogenic Lipid Nanovesicle for Biomacromolecular Delivery. NANO LETTERS 2024; 24:8609-8618. [PMID: 38954738 DOI: 10.1021/acs.nanolett.4c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Although biomacromolecules are promising cytosolic drugs which have attracted tremendous attention, the major obstacles were the cellular membrane hindering the entrance and the endosome entrapment inducing biomacromolecule degradation. How to avoid those limitations to realize directly cytosolic delivery was still a challenge. Here, we prepared oligoarginine modified lipid to assemble a nanovesicle for biomacromolecules delivery, including mRNA (mRNA) and proteins which could be directly delivered into the cytoplasm of dendritic cells through subendocytosis-mediated membrane fusion. We named this membrane fusion lipid nanovesicle as MF-LNV. The mRNA loaded MF-LNV as nanovaccines showed efficient antigen expression to elicit robust immuno responses for cancer therapy. What's more, the antigen protein loaded MF-LNV as nanovaccines elicits much stronger CD8+ T cell specific responses than lipid nanoparticles through normal uptake pathways. This MF-LNV represented a refreshing strategy for intracellular delivery of the biomacromolecule.
Collapse
Affiliation(s)
- Caiyan Zhao
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Changrong Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenbo Shan
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weipeng Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hongzhang Deng
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| |
Collapse
|
3
|
You J, Qian Y, Xiong S, Zhang P, Mukwaya V, Levi-Kalisman Y, Raviv U, Dou H. Poly(ferrocenylsilane)-Based Redox-Active Artificial Organelles for Biomimetic Cascade Reactions. Chemistry 2024; 30:e202401435. [PMID: 38739532 DOI: 10.1002/chem.202401435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Artificial organelles serve as functional counterparts to natural organelles, which are primarily employed to artificially replicate, restore, or enhance cellular functions. While most artificial organelles exhibit basic functions, we diverge from this norm by utilizing poly(ferrocenylmethylethylthiocarboxypropylsilane) microcapsules (PFC MCs) to construct multifunctional artificial organelles through water/oil interfacial self-assembly. Within these PFC MCs, enzymatic cascades are induced through active molecular exchange across the membrane to mimic the functions of enzymes in mitochondria. We harness the inherent redox properties of the PFC polymer, which forms the membrane, to facilitate in-situ redox reactions similar to those supported by the inner membrane of natural mitochondria. Subsequent studies have demonstrated the interaction between PFC MCs and living cell including extended lifespans within various cell types. We anticipate that functional PFC MCs have the potential to serve as innovative platforms for organelle mimics capable of executing specific cellular functions.
Collapse
Affiliation(s)
- Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yonghui Qian
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuhan Xiong
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peipei Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Vincent Mukwaya
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Lee ES, Nguyen N, Young BE, Wee H, Wazny V, Lee KL, Tay KY, Goh LL, Chioh FW, Law MC, Lee IR, Ang LT, Loh KM, Chan MY, Fan BE, Dalan R, Lye DC, Renia L, Cheung C. Inflammatory risk contributes to post-COVID endothelial dysfunction through anti-ACKR1 autoantibody. Life Sci Alliance 2024; 7:e202402598. [PMID: 38740432 PMCID: PMC11091471 DOI: 10.26508/lsa.202402598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Subclinical vascular impairment can be exacerbated in individuals who experience sustained inflammation after COVID-19 infection. Our study explores the prevalence and impact of autoantibodies on vascular dysfunction in healthy COVID-19 survivors, an area that remains inadequately investigated. Focusing on autoantibodies against the atypical chemokine receptor 1 (ACKR1), COVID-19 survivors demonstrated significantly elevated anti-ACKR1 autoantibodies, correlating with systemic cytokines, circulating damaged endothelial cells, and endothelial dysfunction. An independent cohort linked these autoantibodies to increased vascular disease outcomes during a median 6.7-yr follow-up. We analyzed a single-cell transcriptome atlas of endothelial cells from diverse mouse tissues, identifying enriched Ackr1 expressions in venous regions of the brain and soleus muscle vasculatures, which holds intriguing implications for tissue-specific venous thromboembolism manifestations reported in COVID-19. Functionally, purified immunoglobulin G (IgG) extracted from patient plasma did not trigger cell apoptosis or increase barrier permeability in human vein endothelial cells. Instead, plasma IgG enhanced antibody-dependent cellular cytotoxicity mediated by patient PBMCs, a phenomenon alleviated by blocking peptide or liposome ACKR1 recombinant protein. The blocking peptide uncovered that purified IgG from COVID-19 survivors possessed potential epitopes in the N-terminal extracellular domain of ACKR1, which effectively averted antibody-dependent cellular cytotoxicity. Our findings offer insights into therapeutic development to mitigate autoantibody reactivity in blood vessels in chronic inflammation.
Collapse
Affiliation(s)
- Ee-Soo Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nhi Nguyen
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Barnaby E Young
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Hannah Wee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Vanessa Wazny
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Khang Leng Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kai Yi Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Liuh Ling Goh
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Florence Wj Chioh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Michelle Cy Law
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - I Russel Lee
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Lay Teng Ang
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Mark Y Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Heart Centre, National University Health System, Singapore, Singapore
| | - Bingwen E Fan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology, Tan Tock Seng Hospital, Singapore, Singapore
- Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Rinkoo Dalan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
| | - David C Lye
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Laurent Renia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
5
|
Ashby G, Keng KE, Hayden CC, Stachowiak JC. A live cell imaging-based assay for tracking particle uptake by clathrin-mediated endocytosis. Methods Enzymol 2024; 700:413-454. [PMID: 38971609 PMCID: PMC11609598 DOI: 10.1016/bs.mie.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
A popular strategy for therapeutic delivery to cells and tissues is to encapsulate therapeutics inside particles that cells internalize via endocytosis. The efficacy of particle uptake by endocytosis is often studied in bulk using flow cytometry and Western blot analysis and confirmed using confocal microscopy. However, these techniques do not reveal the detailed dynamics of particle internalization and how the inherent heterogeneity of many types of particles may impact their endocytic uptake. Toward addressing these gaps, here we present a live-cell imaging-based method that utilizes total internal reflection fluorescence microscopy to track the uptake of a large ensemble of individual particles in parallel, as they interact with the cellular endocytic machinery. To analyze the resulting data, we employ an open-source tracking algorithm in combination with custom data filters. This analysis reveals the dynamic interactions between particles and endocytic structures, which determine the probability of particle uptake. In particular, our approach can be used to examine how variations in the physical properties of particles (size, targeting, rigidity), as well as heterogeneity within the particle population, impact endocytic uptake. These data impact the design of particles toward more selective and efficient delivery of therapeutics to cells.
Collapse
Affiliation(s)
- Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Kayla E Keng
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Carl C Hayden
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin; Department of Chemical Engineering, The University of Texas at Austin.
| |
Collapse
|
6
|
Ashby G, Keng KE, Hayden CC, Gollapudi S, Houser JR, Jamal S, Stachowiak JC. Selective Endocytic Uptake of Targeted Liposomes Occurs within a Narrow Range of Liposome Diameters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49988-50001. [PMID: 37862704 PMCID: PMC11165932 DOI: 10.1021/acsami.3c09399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Cell surface receptors facilitate signaling and nutrient uptake. These processes are dynamic, requiring receptors to be actively recycled by endocytosis. Due to their differential expression in disease states, receptors are often the target of drug-carrier particles, which are adorned with ligands that bind specifically to receptors. These targeted particles are taken into the cell by multiple routes of internalization, where the best-characterized pathway is clathrin-mediated endocytosis. Most studies of particle uptake have utilized bulk assays rather than observing individual endocytic events. As a result, the detailed mechanisms of particle uptake remain obscure. To address this gap, we employed a live-cell imaging approach to study the uptake of individual liposomes as they interact with clathrin-coated structures. By tracking individual internalization events, we find that the size of liposomes rather than the density of the ligands on their surfaces primarily determines their probability of uptake. Interestingly, targeting has the greatest impact on endocytosis of liposomes of intermediate diameters, with the smallest and largest liposomes being internalized or excluded, respectively, regardless of whether they are targeted. These findings, which highlight a previously unexplored limitation of targeted delivery, can be used to design more effective drug carriers.
Collapse
Affiliation(s)
- Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Kayla E. Keng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Carl C. Hayden
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Sadhana Gollapudi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Justin R. Houser
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Sabah Jamal
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| |
Collapse
|
7
|
Liu L, Zhang Q, Wang C, Guo H, Mukwaya V, Chen R, Xu Y, Wei X, Chen X, Zhang S, Zhou M, Dou H. Single-Cell Diagnosis of Cancer Drug Resistance through the Differential Endocytosis of Nanoparticles between Drug-Resistant and Drug-Sensitive Cancer Cells. ACS NANO 2023; 17:19372-19386. [PMID: 37781914 DOI: 10.1021/acsnano.3c07030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Single-cell diagnosis of cancer drug resistance is highly relevant for cancer treatment, as it can be used to identify the subpopulations of drug-resistant cancer cells, reveal the sensitivity of cancer cells to treatment, and monitor the progress of cancer drug resistance. However, simple and effective methods for cancer drug resistance detection at the single-cell level are still lacking in laboratory and clinical studies. Inspired by the fact that nanoparticles with diverse physicochemical properties would generate distinct and specific interactions with drug-resistant and drug-sensitive cancer cells, which have distinctive molecular signatures, here, we have synthesized a library of fluorescent nanoparticles with various sizes, surface charges, and compositions (SiO2 nanoparticles (SNPs), organic PS-co-PAA nanoparticles (ONPs), and ZIF-8 nanoparticles (ZNPs)), thus demonstrating that the composition has a critical influence on the interaction of nanoparticles with drug-resistant cancer cells. Furthermore, the clathrin/caveolae-independent endocytosis of ZNPs together with the P-glycoprotein-related decreased cell membrane fluidity resulted in a lower cellular accumulation of ZNPs in drug-resistant cancer cells, consequently causing the distinct cellular accumulation of ZNPs between the drug-resistant and drug-sensitive cancer cells. This difference was further quantified by detecting the fluorescence signals generated by the accumulation of nanoparticles at the single-cell level via flow cytometry. Our findings provide another insight into the nanoparticle-cell interactions and offer a promising platform for the diagnosis of cancer drug resistance of various cancer cells and clinical cancer samples at the single-cell level.
Collapse
Affiliation(s)
- Lingshan Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| | - Qiurui Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Chenglong Wang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| | - Heze Guo
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| | - Vincent Mukwaya
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| | - Rong Chen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yichun Xu
- Shanghai Biochip Co. Ltd. and National Engineering Center for Biochip at Shanghai, 151 Libing Road, Shanghai 201203, China
| | - Xiaohui Wei
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
8
|
Gandek TB, van der Koog L, Nagelkerke A. A Comparison of Cellular Uptake Mechanisms, Delivery Efficacy, and Intracellular Fate between Liposomes and Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2300319. [PMID: 37384827 PMCID: PMC11469107 DOI: 10.1002/adhm.202300319] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
A key aspect for successful drug delivery via lipid-based nanoparticles is their internalization in target cells. Two prominent examples of such drug delivery systems are artificial phospholipid-based carriers, such as liposomes, and their biological counterparts, the extracellular vesicles (EVs). Despite a wealth of literature, it remains unclear which mechanisms precisely orchestrate nanoparticle-mediated cargo delivery to recipient cells and the subsequent intracellular fate of therapeutic cargo. In this review, internalization mechanisms involved in the uptake of liposomes and EVs by recipient cells are evaluated, also exploring their intracellular fate after intracellular trafficking. Opportunities are highlighted to tweak these internalization mechanisms and intracellular fates to enhance the therapeutic efficacy of these drug delivery systems. Overall, literature to date shows that both liposomes and EVs are predominantly internalized through classical endocytosis mechanisms, sharing a common fate: accumulation inside lysosomes. Studies tackling the differences between liposomes and EVs, with respect to cellular uptake, intracellular delivery and therapy efficacy, remain scarce, despite its importance for the selection of an appropriate drug delivery system. In addition, further exploration of functionalization strategies of both liposomes and EVs represents an important avenue to pursue in order to control internalization and fate, thereby improving therapeutic efficacy.
Collapse
Affiliation(s)
- Timea B. Gandek
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Luke van der Koog
- Molecular PharmacologyGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB10Groningen9700 ADThe Netherlands
| | - Anika Nagelkerke
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| |
Collapse
|
9
|
Ashby G, Keng KE, Hayden CC, Gollapudi S, Houser JR, Jamal S, Stachowiak JC. Selective endocytic uptake of targeted liposomes occurs within a narrow range of liposome diameter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548000. [PMID: 37461728 PMCID: PMC10350051 DOI: 10.1101/2023.07.06.548000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Cell surface receptors facilitate signaling and nutrient uptake. These processes are dynamic, requiring receptors to be actively recycled by endocytosis. Due to their differential expression in disease states, receptors are often the target of drug-carrier particles, which are adorned with ligands that bind specifically to receptors. These targeted particles are taken into the cell by multiple routes of internalization, where the best-characterized pathway is clathrin-mediated endocytosis. Most studies of particle uptake have utilized bulk assays, rather than observing individual endocytic events. As a result, the detailed mechanisms of particle uptake remain obscure. To address this gap, we have employed a live-cell imaging approach to study the uptake of individual liposomes as they interact with clathrin-coated structures. By tracking individual internalization events, we find that the size of liposomes, rather than the density of the ligands on their surfaces, primarily determines their probability of uptake. Interestingly, targeting has the greatest impact on endocytosis of liposomes of intermediate diameters, with the smallest and largest liposomes being internalized or excluded, respectively, regardless of whether they are targeted. These findings, which highlight a previously unexplored limitation of targeted delivery, can be used to design more effective drug carriers.
Collapse
Affiliation(s)
- Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Kayla E Keng
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Carl C Hayden
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Sadhana Gollapudi
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Justin R Houser
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Sabah Jamal
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin
- Department of Chemical Engineering, The University of Texas at Austin
| |
Collapse
|
10
|
Mohabatpour F, Al-Dulaymi M, Lobanova L, Scutchings B, Papagerakis S, Badea I, Chen X, Papagerakis P. Gemini surfactant-based nanoparticles T-box1 gene delivery as a novel approach to promote epithelial stem cells differentiation and dental enamel formation. BIOMATERIALS ADVANCES 2022; 137:212844. [PMID: 35929273 DOI: 10.1016/j.bioadv.2022.212844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Enamel is the highest mineralized tissue in the body protecting teeth from external stimuli, infections, and injuries. Enamel lacks the ability to self-repair due to the absence of enamel-producing cells in the erupted teeth. Here, we reported a novel approach to promote enamel-like tissue formation via the delivery of a key ameloblast inducer, T-box1 gene, into a rat dental epithelial stem cell line, HAT-7, using non-viral gene delivery systems based on cationic lipids. We comparatively assessed the lipoplexes prepared from glycyl-lysine-modified gemini surfactants and commercially available 1,2-dioleoyl-3-trimethylammonium-propane lipids at three nitrogen-to phosphate (N/P) ratios of 2.5, 5 and 10. Our findings revealed that physico-chemical characteristics and biological activities of the gemini surfactant-based lipoplexes with a N/P ratio of 5 provide the most optimal outcomes among those examined. HAT-7 cells were transfected with T-box1 gene using the optimal formulation then cultured in conventional 2D cell culture systems. Ameloblast differentiation, mineralization, bio-enamel interface and structure were assessed at different time points over 28 days. Our results showed that our gemini transfection system provides superior gene expression compared to the benchmark agent, while keeping low cytotoxicity levels. T-box1-transfected HAT-7 cells strongly expressed markers of secretory and maturation stages of the ameloblasts, deposited minerals, and produced enamel-like crystals when compared to control cells. Taken together, our gemini surfactant-based T-box1 gene delivery system is effective to accelerate and guide ameloblastic differentiation of dental epithelial stem cells and promote enamel-like tissue formation. This study would represent a significant advance towards the tissue engineering and regeneration of dental enamel.
Collapse
Affiliation(s)
- Fatemeh Mohabatpour
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada; College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, S7N 5E4, SK, Canada
| | - Mays Al-Dulaymi
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, S7N 5E5, SK, Canada
| | - Liubov Lobanova
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, S7N 5E4, SK, Canada
| | - Brittany Scutchings
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, S7N 5E5, SK, Canada
| | - Silvana Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada; Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd B419, S7N 0W8, SK, Canada; Department of Otolaryngology, College of Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, S7N 5E5, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada; Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada.
| | - Petros Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada; College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, S7N 5E4, SK, Canada.
| |
Collapse
|
11
|
The pH-Responsive Liposomes-The Effect of PEGylation on Release Kinetics and Cellular Uptake in Glioblastoma Cells. Pharmaceutics 2022; 14:pharmaceutics14061125. [PMID: 35745698 PMCID: PMC9227832 DOI: 10.3390/pharmaceutics14061125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Nanomedicine has been, to a certain degree, a success story in the development of superior anticancer therapies. However, there are tumors that remain a huge challenge for nanoformulations, for instance, brain tumors such as glioblastoma, the most common and aggressive brain tumor. To utilize the fact that such tumors are characterized by an acidic extracellular environment, we selected pH-responsive liposomes as a potential drug delivery system for superior delivery to GBM. Liposomes comprising PEGylated lipid of two chain lengths with encapsulated fluorescent marker calcein were characterized and challenged against non-PEGylated vesicles. The in vitro calcein release from three liposomal formulations (<200 nm), namely non-PEGylated (pH-Lip) and PEGylated, pH-Lip−PEG750, and pH-Lip−PEG2000, was followed at three pH conditions to prove the pH-responsiveness. The intracellular delivery of a liposomally encapsulated marker was determined in GL261 glioblastoma cell lines in vitro using both flow cytometry and confocal microscopy. The inclusion of PEG2000 within liposomal formulation resulted in reduced in vitro pH-responsiveness compared to pH-Lip and pH-Lip750. All three pH-responsive liposomal formulations improved intracellular uptake in GL261 cells compared to non-pH-responsive liposomes, with negligible differences regarding PEG length. The proposed formulations should be further evaluated in glioblastoma models.
Collapse
|
12
|
Sheikholeslami B, Lam NW, Dua K, Haghi M. Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sci 2022; 300:120574. [DOI: 10.1016/j.lfs.2022.120574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
|
13
|
Rashwan AK, Karim N, Xu Y, Xie J, Cui H, Mozafari MR, Chen W. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Crit Rev Food Sci Nutr 2021:1-24. [PMID: 34661483 DOI: 10.1080/10408398.2021.1987858] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Anthocyanins (ACNs) are notable hydrophilic compounds that belong to the flavonoid family, which are available in plants. They have excellent antioxidants, anti-obesity, anti-diabetic, anti-inflammatory, anticancer activity, and so on. Furthermore, ACNs can be used as a natural dye in the food industry (food colorant). On the other hand, the stability of ACNs can be affected by processing and storage conditions, for example, pH, temperature, light, oxygen, enzymes, and so on. These factors further reduce the bioavailability (BA) and biological efficacy of ACNs, as well as limit ACNs application in both food and pharmaceutics field. The stability and BA of ACNs can be improved via loading them in encapsulation systems including nanoemulsions, liposomes, niosomes, biopolymer-based nanoparticles, nanogel, complex coacervates, and tocosomes. Among all systems, biopolymer-based nanoparticles, nanohydrogels, and complex coacervates are comparatively suitable for improving the stability and BA of ACNs. These three systems have excellent functional properties such as high encapsulation efficiency and well-stable against unfavorable conditions. Furthermore, these carrier systems can be used for coating of other encapsulation systems (such as liposome). Additionally, tocosomes are a new system that can be used for encapsulating ACNs. ACNs-loaded encapsulation systems can improve the stability and BA of ACNs. However, further studies regarding stability, BA, and in vivo work of ACNs-loaded micro/nano-encapsulation systems could shed a light to evaluate the therapeutic efficacy including physicochemical stability, target mechanisms, cellular internalization, and release kinetics.
Collapse
Affiliation(s)
- Ahmed K Rashwan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.,Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Haoxin Cui
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, Australia
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Cheng M, Liu L, Zhang P, Xiong S, Dou H. Cell Coding Arrays Based on Fluorescent Glycan Nanoparticles for Cell Line Identification and Cell Contamination Evaluation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44054-44064. [PMID: 34499479 DOI: 10.1021/acsami.1c12674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell lines are applied on a large scale in the field of biomedicine, but they are susceptible to issues such as misidentification and cross-contamination. This situation is becoming worse over time due to the rapid growth of the biomedical field, and thus there is an urgent need for a more effective strategy to address the problem. As described herein, a cell coding method is established based on two types of uniform and stable glycan nanoparticles that are synthesized using the graft-copolymerization-induced self-assembly (GISA) method, which further exhibit distinct fluorescent properties due to elaborate modification with fluorescent labeling molecules. The different affinity between each nanoparticle and various cell lines results in clearly distinguishable differences in their endocytosis degrees, thus resulting in distinct characteristic fluorescence intensities. Through flow cytometry measurements, the specific signals of each cell sample can be recorded and turned into a map divided into different regions by statistical processing. Using this sensing array strategy, we have successfully identified six human cell lines, including one normal type and five tumor types. Moreover, cell contamination evaluation of different cell lines with HeLa cells as the contaminant in a semiquantitative analysis has also been successfully achieved. Notably, the whole process of nanoparticle fabrication and fluorescent testing is facile and the results are highly reliable.
Collapse
Affiliation(s)
- Meng Cheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lingshan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuhan Xiong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
15
|
Yu C, Chen Z, Li X, Bao H, Wang Y, Zhang B, Huang J, Zhang Z. pH-Triggered Aggregation of Gold Nanoparticles for Enhanced Labeling and Long-Term CT Imaging Tracking of Stem Cells in Pulmonary Fibrosis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101861. [PMID: 34235846 DOI: 10.1002/smll.202101861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Gold nanoparticles (AuNPs) pose a great challenge in the development of nanotracers that can self-adaptively alter their properties in response to certain cellular environments for long-term stem cell tracking. Herein, pH-sensitive Au nanotracers (CPP-PSD@Au) are fabricated by sequential coupling of AuNPs with sulfonamide-based polymer (PSD) and cell-penetrating peptide (CPP), which can be efficiently internalized by mesenchymal stem cells (MSCs) and undergo pH-induced self-assembly in endosomes, facilitating long-term computed tomography (CT) imaging tracking MSCs in a murine model of idiopathic pulmonary fibrosis (IPF). Using the CPP-PSD@Au, the transplanted MSCs for the first time can be monitored with CT imaging for up to 35 days after transplantation into the lung of IPF mice, clearly elucidating the migration process of MSCs in vivo. Moreover, we preliminarily explored the mechanism of the CPP-PSD@Au labeled MSCs in the alleviation of IPF, including recovery of alveolar integrity, decrease of collagen deposition, as well as down-regulation of relevant cytokine level. This work facilitates our understanding of the behavior and effect of MSCs in the therapy of IPF, thereby providing an important insight into the stem cell-based treatment of lung diseases.
Collapse
Affiliation(s)
- Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Zhongjin Chen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaodi Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Hongying Bao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yujie Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Bo Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
16
|
Borocci S, Bozzuto G, Bombelli C, Ceccacci F, Formisano G, Stringaro A, Molinari A, Mancini G. How stereochemistry of lipid components can affect lipid organization and the route of liposome internalization into cells. NANOSCALE 2021; 13:11976-11993. [PMID: 34212969 DOI: 10.1039/d1nr02175c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Though liposome-based drugs are in clinical use, the mechanism of cell internalization of liposomes is yet an object of controversy. The present experimental investigation, carried out on human glioblastoma cells, indicated different internalization routes for two diastereomeric liposomes. Molecular dynamics simulations of the lipid bilayers of the two formulations indicated that the different stereochemistry of a lipid component controls some parameters such as area per lipid molecule and fluidity of lipid membranes, surface potential and water organization at the lipid/water interface, all of which affect the interaction with biomolecules and cell components.
Collapse
Affiliation(s)
- Stefano Borocci
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
You J, Liu L, Huang W, Manners I, Dou H. Redox-Active Micelle-Based Reaction Platforms for In Situ Preparation of Noble Metal Nanocomposites with Photothermal Conversion Capability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13648-13657. [PMID: 33688724 DOI: 10.1021/acsami.0c21925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyferrocenylsilane (PFS)-based polymers are an attractive family of organometallic polymers with unique redox-active properties. Herein, we report a novel amphiphilic redox-active PFS-based homopolymer, poly(ferrocenylmethylethylthiocarboxypropylsilane) (PFC), with a hydrophobic backbone chain and hydrophilic carboxylic acid side groups in each repeating unit. Self-assembly was induced by addition of water to a molecularly dispersed solution of PFC in DMSO. Spherical PFC micelles with controllable hydrodynamic diameters (60-180 nm) were obtained under various conditions. These PFC micelles could be readily endocytosed by A549 cells and HUVEC cells and show no significant cytotoxicity toward them at the concentration of 200 μg/mL. On this basis, Au nanoparticles (AuNPs) were prepared through in situ reduction of HAuCl4 by PFC micelles as nanoreactors without requiring any other reductants. The PFC/Au nanocomposites (NCs) were found to exhibit significant photothermal behavior. Moreover, PFC micelles could also act as nanoreactors for other noble metals such as Ag, Pd, and Pt. By taking advantage of properties of the nanostructures and noble metal nanoparticles comprising these materials, the PFC micelles and PFC/noble metal NCs may have great potential in biomedical or catalytic applications.
Collapse
Affiliation(s)
- Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Lingshan Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Wanqiu Huang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
18
|
Sun Y, Chi J, Ye X, Wang S, Liang J, Yue P, Xiao H, Gao X. Nanoliposomes as delivery system for anthocyanins: Physicochemical characterization, cellular uptake, and antioxidant properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Fritzen DL, Giordano L, Rodrigues LCV, Monteiro JHSK. Opportunities for Persistent Luminescent Nanoparticles in Luminescence Imaging of Biological Systems and Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2015. [PMID: 33066063 PMCID: PMC7600618 DOI: 10.3390/nano10102015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The use of luminescence in biological systems allows us to diagnose diseases and understand cellular processes. Persistent luminescent materials have emerged as an attractive system for application in luminescence imaging of biological systems; the afterglow emission grants background-free luminescence imaging, there is no need for continuous excitation to avoid tissue and cell damage due to the continuous light exposure, and they also circumvent the depth penetration issue caused by excitation in the UV-Vis. This review aims to provide a background in luminescence imaging of biological systems, persistent luminescence, and synthetic methods for obtaining persistent luminescent materials, and discuss selected examples of recent literature on the applications of persistent luminescent materials in luminescence imaging of biological systems and photodynamic therapy. Finally, the challenges and future directions, pointing to the development of compounds capable of executing multiple functions and light in regions where tissues and cells have low absorption, will be discussed.
Collapse
Affiliation(s)
- Douglas L. Fritzen
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | - Luidgi Giordano
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | - Lucas C. V. Rodrigues
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | | |
Collapse
|
20
|
Liu L, Xu Y, Zhang P, You J, Li W, Chen Y, Li R, Rui B, Dou H. High-Order Assembly toward Polysaccharide-Based Complex Coacervate Nanodroplets Capable of Targeting Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8580-8588. [PMID: 32598156 DOI: 10.1021/acs.langmuir.0c01458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-order assembly plays a significant role in the formation of living organisms containing a large number of biomacromolecules and, thus, enlightens the construction of nanomaterials that can load macromolecular payloads at a high efficiency. Herein, by choosing anionic hyaluronic acid (HA) as a model payload, we demonstrated how the electrostatic-interaction-induced high-order assembly can be used to load efficiently biomacromolecules into complex coacervate nanodroplets. The resultant assemblies were primarily composed of HA and cationic chitosan oligosaccharide/dextran (COS/Dex) nanogels and had a controllable structure while also exhibiting biological functionality. HA in the assemblies is capable of targeting CD44-overexpressed tumor cells through CD44-mediated endocytic pathways, which are elucidated herein. Therefore, this study provides a reliable approach for the efficient loading of macromolecular payloads into complex coacervate nanodroplets via electrostatic-attraction-induced high-order assembly.
Collapse
Affiliation(s)
- Lingshan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yuan Xu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jiayi You
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Wei Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yunfeng Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Rong Li
- Department of Pulmonary Medicine, Clinical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, People's Republic of China
| | - Biyu Rui
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
21
|
Wei X, Duan X, Zhang Y, Ma Z, Li C, Zhang X. Internalization Mechanism of Phenylboronic-Acid-Decorated Nanoplatform for Enhanced Nasal Insulin Delivery. ACS APPLIED BIO MATERIALS 2020; 3:2132-2139. [PMID: 35025265 DOI: 10.1021/acsabm.0c00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insulin injection causes great pain to the patient, and nasal mucosal administration of insulin is a novel route for the treatment of diabetes. This strategy could protect insulin from either extensive first-pass metabolism or enzyme degradation in the gastrointestinal tract. With the dynamic boronate esters reversibly formed by phenylboronic acid and diols on nasal mucosal epithelial cell surfaces, we herein developed phenylboronic-acid-functionalized dextran nanoplatforms to enhance the permeability of cargos and boost penetration. The nanoplatforms with excellent loading capacity exhibited significant endocytosis compared with naked insulin. The mechanism of endocytosis was involved in clathrin- and lipid raft/caveolae-dependent endocytic pathways. The in vivo nasal delivery of insulin suggested that these nanoplatforms did not trigger nasal epithelial inflammation and greatly decreased blood sugar levels and improved insulin bioavailability. Collectively, this proof-of-concept study demonstrates a novel carrier of phenylboronic-acid-decorated polymer for insulin delivery and provides a promising approach for the development of a diabetes therapeutic strategy.
Collapse
Affiliation(s)
- Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaozhuang Duan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Noh I, Kim M, Kim J, Lee D, Oh D, Kim J, Kim C, Jon S, Kim YC. Structure-inherent near-infrared bilayer nanovesicles for use as photoacoustic image-guided chemo-thermotherapy. J Control Release 2020; 320:283-292. [PMID: 31982436 DOI: 10.1016/j.jconrel.2020.01.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
Abstract
Image-guided therapy, combined with imaging and therapeutic action, forms an attractive system because it can induce outstanding effects at focused locations. However, the conventional liposomes-based system cannot figure in therapeutic or imaging roles themselves, thereby causing the disadvantage of their biological unavailability as a theragnosis tool. Herein, the structure-inherent near-infrared bilayer nanovesicles are fabricated with amphiphilic heptamethine cyanine dye, PEG conjugated heptamethine cyanine dye, and gemcitabine (NEPCG) is developed for the novel photoacoustic image-guided chemo-thermotherapy system. The organic structure-inherent near-infrared bilayer nanovesicles are self-assembled and exhibit a liposome-like bilayer structure. Furthermore, NEPCG showed the high photoacoustic signal (PA) due to the specific accumulation in the tumor site. Delivered NEPCG than displayed concurrent chemotherapy and photothermal therapy (PTT) effects against cancer, triggered by PA imaging with minimal side effects. In vitro and in vivo experiments show that NEPCG can be used as outstanding contrast agents and completely obliterate the tumor without reoccurrence under laser irradiation. Therefore, this work presents the potential for the realization of unprecedented structure-inherent near-infrared bilayer nanovesicles as highly accurate and effective theragnostic tools in clinical fields.
Collapse
Affiliation(s)
- Ilkoo Noh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - MunSik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeesu Kim
- Department of Creative IT Engineering and Electrical Engineering, POSTECH (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - DaeYong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Donghyeon Oh
- Department of Creative IT Engineering and Electrical Engineering, POSTECH (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Juhwan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chulhong Kim
- Department of Creative IT Engineering and Electrical Engineering, POSTECH (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
23
|
Shah AR, Banerjee R. Mitigation of Hydrochloric Acid (HCl)-Induced Lung Injury in Mice by Aerosol Therapy of Surface-Active Nanovesicles Containing Antioxidant and Anti-inflammatory Drugs. ACS APPLIED BIO MATERIALS 2019; 2:5379-5389. [PMID: 35021537 DOI: 10.1021/acsabm.9b00697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute lung injury leading to alveolar inflammation and surfactant dysfunction remains a medical challenge. Surface-active lipid nanovesicles of 200-250 nm size with antioxidant D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and anti-inflammatory drug dexamethasone disodium phosphate (DXP) dual combination (Dual-NV) were developed for delivery as aerosols by nebulization in acid lung injury models. Drug deposition studies showed Dual-NV deposited ∼2.5 times more DXP compared to equivalent DXP solution. Nanovesicles are actively internalized by A549 cells through ATP- and clathrin-dependent pathways. The nanovesicles could be phagocytosed by RAW 264.7 macrophages and were nonimmunogenic and did not elicit overproduction of TNF-α, IL-1β, and IL-6. Dual-NV aerosol therapy at 200 mg/kg body weight, in HCl acid-induced lung injury in mice, markedly reduced pulmonary hemorrhage and protein leakage and improved capillary (airway) patency to ∼96%. Dual-NV aerosol therapy also significantly lowered production of inflammatory cytokine IL-1β, IL-6, and TNF-α and reduced oxidative stress by ∼95% in the injured group. Surface-active Dual-NV aerosol therapy is promising for replenishing the dysfunctional surfactant pool and mitigating inflammation and oxidative stress in lung injuries.
Collapse
Affiliation(s)
- Apurva R Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| |
Collapse
|
24
|
Mu W, Jiang D, Mu S, Liang S, Liu Y, Zhang N. Promoting Early Diagnosis and Precise Therapy of Hepatocellular Carcinoma by Glypican-3-Targeted Synergistic Chemo-Photothermal Theranostics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23591-23604. [PMID: 31179679 DOI: 10.1021/acsami.9b05526] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The specific-targeting approach could promote the specificity of diagnosis and the accuracy of cancer treatment. The choice of a specific-targeting receptor is the key step in this approach. Glypican-3 (GPC3) is an oncofetal proteoglycan anchored on the cell membrane. It is overexpressed even in the early stage of hepatocellular carcinoma (HCC), whereas it shows almost no expression in the healthy adult liver. Therefore, GPC3 may be applied as a specific-targeting receptor for HCC theranostics. In this study, a GPC3 specific-targeting theranostics nanodevice, GPC3 targeting peptide (named G12)-modified liposomes co-loaded with sorafenib (SF) and IR780 iodide (IR780), was developed (GSI-Lip), which aims to realize early diagnosis and precise chemo-photothermal therapy of HCC. SF was the first-line chemotherapy drug for the treatment of HCC. IR780 was used for photothermal therapy and near-infrared fluorescence imaging. The evaluation of early diagnosis verified that early-stage tumors (3.45 ± 0.98 mm3, 2 days after 5 × 105 H22 cells' inoculation in mice) could be clearly detected using GSI-Lip, which was significantly more sensitive than folic acid-modified liposomes ( p < 0.01, 32.90 ± 10.01 mm3, 4 days after 1 × 106 H22 cells' inoculation in mice). The study of the endocytic pathway indicated that specific G12/GPC3 recognition may induce caveolae-mediated endocytosis of GSI-Lip. Notably, the accumulation of GSI-Lip in tumors was significantly increased compared with that observed with folic acid-modified liposomes ( p < 0.01). Specific-targeting endowed the precise antitumor effect of GSI-Lip. GSI-Lip showed a higher antitumor efficacy in comparison with folic acid-modified liposomes (inhibition rate: 90.52% vs 84.22%, respectively; p < 0.01). During a period of 21 days, the synergistic chemo-photothermal therapy (GSI-Lip + laser) exhibited a better antitumor effect versus GSI-Lip without laser (inhibition rate: 94.93% vs 90.52%, respectively; p < 0.01). Overall, GPC3-targeted GSI-Lip promoted the sensitivity and specificity of HCC early diagnosis and achieved synergistic efficacy of chemo-photothermal theranostics, which has potential clinical applications. Furthermore, the present study revealed that a more specific-targeting ligand could further improve the efficacy of theranostics against HCC.
Collapse
Affiliation(s)
- Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong Province 250012 , People's Republic of China
| | - Dandan Jiang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong Province 250012 , People's Republic of China
| | - Shengjun Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong Province 250012 , People's Republic of China
| | - Shuang Liang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong Province 250012 , People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong Province 250012 , People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong Province 250012 , People's Republic of China
| |
Collapse
|
25
|
Kovvasu SP, Kunamaneni P, Yeung S, Rueda J, Betageri GV. Formulation of Dronedarone Hydrochloride-Loaded Proliposomes: In Vitro and In Vivo Evaluation Using Caco-2 and Rat Model. AAPS PharmSciTech 2019; 20:226. [PMID: 31214813 DOI: 10.1208/s12249-019-1437-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/27/2019] [Indexed: 11/30/2022] Open
Abstract
The objective of the present study was to develop a proliposomal formulation to increase the oral bioavailability of dronedarone hydrochloride (dronedarone HCl) by enhancing solubility, dissolution, and/or intestinal absorption. Proliposomes were prepared by using solvent evaporation method. In this process, different ratios of drug, phospholipids, such as soy phosphatidylcholine (SPC), Phospholipon 90H, hydrogenated egg phosphatidylcholine (HEPC), and dimyristoyl phosphatidylglycerol (DMPG), and cholesterol were used. Physical characterization and in vitro dissolution studies were evaluated for the prepared formulations. In vitro transport across the membrane was carried out using Caco-2 cells. Among all the formulations, the amount of drug released in dissolution was higher with DPF8 formulation (drug:DMPG Na:cholesterol:::1:2:0.2) compared to the pure drug. Also, Caco-2 cell permeability studies resulted in 2.6-fold increase in apparent permeability. Optimized formulation was evaluated in vivo in male Sprague-Dawley rats. After single oral administration of optimized formulation (DPF8), a relative bioavailability of 148.36% was achieved compared to the pure drug. Improved oral bioavailability of dronedarone could be provided by an optimized proliposomal formulation with enhanced solubility, permeability, and oral absorption.
Collapse
|
26
|
Gong L, Chen Y, He K, Liu J. Surface Coverage-Regulated Cellular Interaction of Ultrasmall Luminescent Gold Nanoparticles. ACS NANO 2019; 13:1893-1899. [PMID: 30702855 DOI: 10.1021/acsnano.8b08103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Investigations for accurately controlling the interaction between functional nanoparticles (NPs) and living cells set a long-thought benefit in nanomedicine and disease diagnostics. Here, we reveal a surface coverage-dependent cellular interaction by comparing the membrane binding and uptake of three ultrasmall luminescent gold NPs (AuNPs) with different surface coverages. Lower surface coverage leads to fast cellular interaction and strong membrane binding but low cellular uptake, whereas high surface coverage induces slow cellular interaction and low membrane binding but major cellular uptake. The slight number increase of cell-penetrating peptide on the surface of AuNPs shows improved cellular interaction dynamics and internalization through direct cellular membrane penetration. Furthermore, the different intrinsic emissions resulted from the surface coverage variation, especially the pH-responsive dual emissions, make the AuNPs powerful optical probes for subcellular imaging and tracking. The findings advance the fundamental understanding of the cellular interaction mechanisms of ultrasmall AuNPs and provide a feasible strategy for the design of functional NPs with tunable cellular interaction by surface regulation.
Collapse
Affiliation(s)
- Lingshan Gong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Ying Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Kui He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
27
|
Pereira SGT, Hudoklin S, Kreft ME, Kostevsek N, Stuart MCA, Al-Jamal WT. Intracellular Activation of a Prostate Specific Antigen-Cleavable Doxorubicin Prodrug: A Key Feature Toward Prodrug-Nanomedicine Design. Mol Pharm 2019; 16:1573-1585. [DOI: 10.1021/acs.molpharmaceut.8b01257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sara G. T. Pereira
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, U.K
| | - Samo Hudoklin
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Nina Kostevsek
- Department for Nanostructured Materials, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Marc C. A. Stuart
- Electron Microscopy, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Wafa T. Al-Jamal
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, U.K
| |
Collapse
|
28
|
Neuberger K, Boddupalli A, Bratlie KM. Effects of arginine-based surface modifications of liposomes for drug delivery in Caco-2 colon carcinoma cells. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Shim G, Kim D, Lee S, Chang RS, Byun J, Oh YK. Staphylococcus aureus-mimetic control of antibody orientation on nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 16:267-277. [PMID: 30368001 DOI: 10.1016/j.nano.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
We designed a bacterio-mimetic nanoparticle that can noncovalently control the orientation of attached antibodies. Liposomes with Fc-binding peptide (FcBP), formulated using FcBP-conjugated PEGylated lipid, were used as model nanoparticles. Compared with control nanoparticles surface-modified with antibody covalently attached via maleimide functional groups (Mal-NPs), FcBP-capped nanoparticles (FcBP-NPs) exhibited greater binding affinity to the target protein. Human epidermal growth factor receptor 2 (HER2)-specific antibody-modified FcBP-NPs (HER2/FcBP-NPs) showed 5.3-fold higher binding affinity to HER2 than isotype IgG antibody-modified NPs, and 2.6-fold higher affinity compared with anti-HER2 antibody-conjugated Mal-NPs. Cellular uptake of HER2/FcBP-NPs in HER2-positive cells was significantly higher than that of other formulations. The biodistribution of HER2/FcBP-NPs was higher than that of antibody-conjugated NPs in HER2-positive tumor tissues, but not in HER2-negative tumors. Our findings suggest the potential of bacteriomimetic nanoparticles for controlling the orientation of antibody attachment. These nanoparticles may have diverse applications in nanomedicine, including drug delivery, molecular imaging, and diagnosis.
Collapse
Affiliation(s)
- Gayong Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangbin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Rae Sung Chang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Minnelli C, Moretti P, Fulgenzi G, Mariani P, Laudadio E, Armeni T, Galeazzi R, Mobbili G. A Poloxamer-407 modified liposome encapsulating epigallocatechin-3-gallate in the presence of magnesium: Characterization and protective effect against oxidative damage. Int J Pharm 2018; 552:225-234. [PMID: 30291957 DOI: 10.1016/j.ijpharm.2018.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is a polyphenolic catechin from green tea, well known for being bioactive in age-associated pathologies where oxidative stress plays a preeminent role. The activity of this molecule is however contrasted by its high chemical and metabolic instability that determines a poor concentration of the antioxidant within the biological system after administration. In order to protect the molecule and increase its delivery efficiency, we have encapsulated EGCG inside anionic liposomes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and cholesteryl hemisuccinate. To maximize EGCG internalization, magnesium salt was added in the preparation. However stable nanodispersions suitable for drug delivery were obtained only after treatment with Poloxamer-407, a polyethylene-propylene glycol copolymer. The structural and morphological properties of the produced dispersion were studied by X-ray diffraction, which showed a multilamellar structure even after EGCG addition and an ordering effect of Poloxamer-407; Dynamic Light Scattering demonstrated serum stability of the liposomes. The characterization was completed by evaluating both encapsulation efficiency (100%, in the final formulation) and in vitro EGCG release. Since oxidative stress is involved in numerous retinal degenerative diseases, such as age-related macular degeneration, the ability of these liposomes to contrast H2O2-induced cell death was assessed in human retinal cells. Morphological changes at the subcellular level were analyzed by Transmission Electron Microscopy, which showed that mitochondria were better preserved in cells treated with liposomes then those treated with free EGCG. In conclusion, the results demonstrated that the produced formulation enhances the efficacy of EGCG under stress conditions, thus representing a potential formulation for the intracellular delivery of EGCG in diseases caused by oxidative damage.
Collapse
Affiliation(s)
- Cristina Minnelli
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Paolo Moretti
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Gianluca Fulgenzi
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Conca, Torrette Polo scientifico didattico Murri, 60131 Ancona, Italy
| | - Paolo Mariani
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Emiliano Laudadio
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Tatiana Armeni
- Dipartimento Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Roberta Galeazzi
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Giovanna Mobbili
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
31
|
Liang J, Gao C, Zhu Y, Ling C, Wang Q, Huang Y, Qin J, Wang J, Lu W, Wang J. Natural Brain Penetration Enhancer-Modified Albumin Nanoparticles for Glioma Targeting Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30201-30213. [PMID: 30113810 DOI: 10.1021/acsami.8b11782] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The unsatisfactory therapeutic outcome for glioma is mainly due to the poor blood-brain barrier (BBB) permeability and inefficient accumulation in the glioma area of chemotherapeutic agents. The existing drug delivery strategies can increase drug transport to the brain but are restricted by side effects and/or poor delivery efficiency. In this study, potent brain penetration enhancers were screened from the active components of aromatic resuscitation drugs used in traditional Chinese medicine. A novel glioma-targeting system based on enhancer-modified albumin nanoparticles was developed to safely and efficiently deliver drugs to the glioma regions in the brain. The nanoparticles improved the transport of nanoparticles across brain capillary endothelial cell (BCEC) monolayer by increasing endocytosis in endothelial cells and causing BBB disruption. In vivo imaging studies demonstrated that the systems could enter the brain and subsequently accumulate in glioma cells with a much higher targeting efficiency than that of transferrin-modified albumin nanoparticles. Of note, the nanoparticles could be captured and penetrate through endothelial cells fenestrae in pineal gland, which is suggestive of an effective way to deliver a nanosystem to the brain by bypassing the BBB. The nanoparticles showed good biocompatibility and negligible cytotoxicity. The results reveal an efficient and safe strategy for brain drug delivery in glioma therapy.
Collapse
Affiliation(s)
- Jianming Liang
- Guangzhou University of Chinese Medicine , Guangzhou 510006 , PR China
- Department of Pharmaceutics, School of Pharmacy , Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , PR China
- Shanghai Institute of Pharmaceutical Industry , China State Institute of Pharmaceutical Industry , Shanghai 201203 , PR China
| | - Caifang Gao
- Department of Pharmaceutics, School of Pharmacy , Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , PR China
- Shanghai Institute of Pharmaceutical Industry , China State Institute of Pharmaceutical Industry , Shanghai 201203 , PR China
| | - Ying Zhu
- Guangzhou University of Chinese Medicine , Guangzhou 510006 , PR China
| | - Chengli Ling
- School of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , PR China
| | - Qi Wang
- Guangzhou University of Chinese Medicine , Guangzhou 510006 , PR China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , PR China
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy , Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , PR China
| | - Jue Wang
- Department of Pharmaceutics, School of Pharmacy , Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , PR China
| | - Weigen Lu
- Shanghai Institute of Pharmaceutical Industry , China State Institute of Pharmaceutical Industry , Shanghai 201203 , PR China
| | - Jianxin Wang
- Guangzhou University of Chinese Medicine , Guangzhou 510006 , PR China
- Department of Pharmaceutics, School of Pharmacy , Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , PR China
| |
Collapse
|
32
|
Piazzini V, Landucci E, Graverini G, Pellegrini-Giampietro DE, Bilia AR, Bergonzi MC. Stealth and Cationic Nanoliposomes as Drug Delivery Systems to Increase Andrographolide BBB Permeability. Pharmaceutics 2018; 10:pharmaceutics10030128. [PMID: 30104484 PMCID: PMC6161272 DOI: 10.3390/pharmaceutics10030128] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Andrographolide (AG) is a natural compound effective for the treatment of inflammation-mediated neurodegenerative disorders. The aim of this investigation was the preparation of liposomes to enhance the penetration into the brain of AG, by modifying the surface of the liposomes by adding Tween 80 (LPs-AG) alone or in combination with Didecyldimethylammonium bromide (DDAB) (CLPs-AG). (2) Methods: LPs-AG and CLPs-AG were physically and chemically characterized. The ability of liposomes to increase the permeability of AG was evaluated by artificial membranes (PAMPA) and hCMEC/D3 cells. (3) Results: Based on obtained results in terms of size, homogeneity, ζ-potential and EE%. both liposomes are suitable for parenteral administration. The systems showed excellent stability during a month of storage as suspensions or freeze-dried products. Glucose resulted the best cryoprotectant agent. PAMPA and hCMEC/D3 transport studies revealed that LPs-AG and CLPs-AG increased the permeability of AG, about an order of magnitude, compared to free AG without alterations in cell viability. The caveolae-mediated endocytosis resulted the main mechanism of up-take for both formulations. The presence of positive charge increased the cellular internalization of nanoparticles. (4) Conclusions: This study shows that developed liposomes might be ideal candidates for brain delivery of AG.
Collapse
Affiliation(s)
- Vieri Piazzini
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Giulia Graverini
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - Domenico E Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
33
|
E S, Mao QX, Yuan XL, Kong XL, Chen XW, Wang JH. Targeted imaging of the lysosome and endoplasmic reticulum and their pH monitoring with surface regulated carbon dots. NANOSCALE 2018; 10:12788-12796. [PMID: 29947397 DOI: 10.1039/c8nr03453b] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Organelles play crucial roles in cellular activities and the functions of organelles are related greatly to the pH values, therefore, the bio-imaging of targeted organelles and their related pH sensing is of great importance in biological assays. Herein we report the fluorescence imaging of specific organelles, i.e., lysosomes and endoplasmic reticulum, and their pH sensing with surface regulated carbon dots (CDs). Carbon dots functionalized with amine groups (ACDs) are first prepared by hydrothermal treatment of citric acid and urea, and then laurylamine functionalized CDs (LCDs) are obtained via the conjugation of laurylamine with ACDs. The as-prepared ACDs and LCDs provide clear and bright imaging results for the lysosome and endoplasmic reticulum, respectively. The subcellular targeting features of the two CDs are attributed to their surface chemistries and cellular uptake pathways. Moreover, both the CDs are pH responsive within a certain pH range, i.e., 4.0-5.4 for ACDs and 6.2-7.2 for LCDs. The ACDs and LCDs are thus successfully applied to visualize the pH fluctuations of the lysosome and endoplasmic reticulum in MCF-7 cells.
Collapse
Affiliation(s)
- Shuang E
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | |
Collapse
|
34
|
Chen L, Chen C, Chen W, Li K, Chen X, Tang X, Xie G, Luo X, Wang X, Liang H, Yu S. Biodegradable Black Phosphorus Nanosheets Mediate Specific Delivery of hTERT siRNA for Synergistic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21137-21148. [PMID: 29882656 DOI: 10.1021/acsami.8b04807] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human telomerase reverse transcriptase (hTERT) has been found to be closely related to tumor transformation, growth, and metastasis. Thus, the delivery of hTERT small interfering RNA (siRNA) is an important approach for cancer gene therapy. However, the single anticancer effect of gene silencing is often limited by poor specificity or low efficiency in siRNA delivery and release. In this work, we present small and thin black phosphorus (BP) nanosheets as a biodegradable delivery system for hTERT siRNA. The BP nanosheets prepared with poly(ethylene glycol) (PEG) and polyethylenimine (PEI) modification (PPBP), exhibited high siRNA loading capacity and robust cell uptake. The PPBP nanosheets also exhibited potent photodynamic therapy/photothermal therapy (PDT/PTT) activities when exposed to different wavelengths of laser irradiation. More importantly, PPBP nanosheets underwent a gradual degradation when presented in a mixture of low pH and reactive oxygen species (ROS)-rich environment. The degradation of PPBP was strengthened especially after local and minimal invasive PDT treatment, because of excessive ROS production. Further delivery and release of siRNA to the cytoplasm for gene silencing was achieved by PEI-aided escape from the acidic lysosome. Thus, PPBP-siRNA efficiently inhibited tumor growth and metastasis by specific delivery of hTERT siRNA and a synergistic combination of targeted gene therapy, PTT and PDT.
Collapse
Affiliation(s)
| | - Chuan Chen
- Cancer Center, Daping Hospital and Research Institute of Surgery , Army Medical University , Chongqing 400042 , People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hu B, Cheng R, Gao X, Pan X, Kong F, Liu X, Xu K, Tang B. Targetable Mesoporous Silica Nanoprobes for Mapping the Subcellular Distribution of H 2Se in Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17345-17351. [PMID: 29708719 DOI: 10.1021/acsami.8b02206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogen selenide, a highly active reductant, is believed as a key molecule in the cytotoxicity of inorganic selenium compounds. However, the detail mechanism has hardly been studied because the distribution of H2Se in the subcellular organelles remains unclear. Herein, we exploited a series of novel targetable mesoporous silica nanoplatforms to map the distribution of H2Se in cytoplasm, lysosome, and mitochondria of cancer cells. The subcellular targeting moiety-conjugated mesoporous silica nanoparticles were assembled with a near-infrared fluorescent probe (NIR-H2Se) for detecting endogenous H2Se in the corresponding organelles. The confocal fluorescence imaging of cancer cells induced by Na2SeO3 found out a higher concentration of H2Se accumulated only in mitochondria. Consequently, the H2Se burst in mitochondria-triggered mitochondrial collapse that led to cell apoptosis. Hence, the selenite-induced cytotoxicity in cancer cells associates with the alteration in mitochondrial function caused by high level of H2Se. These findings provide a new way to explore the tumor cell apoptosis signaling pathways induced by Na2SeO3, meanwhile, we propose a research strategy for tracking the biomolecules in the subcellular organelles and the correlative cellular function and related disease diagnosis.
Collapse
Affiliation(s)
- Bo Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Ranran Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Xiaohong Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Xiaojun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| |
Collapse
|
36
|
Formulation, Development, and In Vitro Evaluation of a CD22 Targeted Liposomal System Containing a Non-Cardiotoxic Anthracycline for B Cell Malignancies. Pharmaceutics 2018; 10:pharmaceutics10020050. [PMID: 29662041 PMCID: PMC6027244 DOI: 10.3390/pharmaceutics10020050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 11/25/2022] Open
Abstract
Doxorubicin cardiotoxicity has led to the development of superior chemotherapeutic agents such as AD 198. However, depletion of healthy neutrophils and thrombocytes from AD 198 therapy must be limited. This can be done by the development of a targeted drug delivery system that delivers AD 198 to the malignant cells. The current research highlights the development and in vitro analysis of targeted liposomes containing AD 198. The best lipids were identified and optimized for physicochemical effects on the liposomal system. Physiochemical characteristics such as size, ζ-potential, and dissolution were also studied. Active targeting to CD22 positive cells was achieved by conjugating anti-CD22 Fab’ to the liposomal surface. Size and ζ-potential of the liposomes was between 115 and 145 nm, and −8 to−15 mV. 30% drug was released over 72 h. Higher cytotoxicity was observed in CD22+ve Daudi cells compared to CD22−ve Jurkat cells. The route of uptake was a clathrin- and caveolin-independent pathway. Intracellular localization of the liposomes was in the endolysosomes. Upon drug release, apoptotic pathways were activated partly by the regulation of apoptotic and oncoproteins such as caspase-3 and c-myc. It was observed that the CD22 targeted drug delivery system was more potent and specific compared to other untargeted formulations.
Collapse
|
37
|
Alshehri A, Grabowska A, Stolnik S. Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells. Sci Rep 2018; 8:3748. [PMID: 29491352 PMCID: PMC5830644 DOI: 10.1038/s41598-018-22166-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/19/2018] [Indexed: 01/01/2023] Open
Abstract
Design of an efficient delivery system is a generally recognised bottleneck in translation of siRNA technology into clinic. Despite research efforts, cellular processes that determine efficiency of siRNA silencing achieved by different delivery formulations remain unclear. Here, we investigated the mechanism(s) of cellular internalisation of a model siRNA-loaded liposome system in a correlation to the engagement of delivered siRNA with its target and consequent silencing by adopting siRNA molecular beacon technology. Probing of cellular internalisation pathways by a panel of pharmacological inhibitors indicated that clathrin-mediated (dynamin-dependent) endocytosis, macropinocytosis (dynamine independent), and cell membrane cholesterol dependent process(es) (clathrin and caveolea-independent) all play a role in the siRNA-liposomes internalization. The inhibition of either of these entry routes was, in general, mirrored by a reduction in the level of siRNA engagement with its target mRNA, as well as in a reduction of the target gene silencing. A dramatic increase in siRNA engagement with its target RNA was observed on disruption of endosomal membrane (by chloroquine), accompanied with an increased silencing. The work thus illustrates that employing molecular beacon siRNA technology one can start to assess the target RNA engagement - a stage between initial cellular internalization and final gene silencing of siRNA delivery systems.
Collapse
Affiliation(s)
- Abdullah Alshehri
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Anna Grabowska
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Snow Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
38
|
Yang J, Tu J, Lamers GEM, Olsthoorn RCL, Kros A. Membrane Fusion Mediated Intracellular Delivery of Lipid Bilayer Coated Mesoporous Silica Nanoparticles. Adv Healthc Mater 2017; 6. [PMID: 28945015 DOI: 10.1002/adhm.201700759] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/10/2017] [Indexed: 01/07/2023]
Abstract
Protein delivery into the cytosol of cells is a challenging topic in the field of nanomedicine, because cellular uptake and endosomal escape are typically inefficient, hampering clinical applications. In this contribution cuboidal mesoporous silica nanoparticles (MSNs) containing disk-shaped cavities with a large pore diameter (10 nm) are studied as a protein delivery vehicle using cytochrome-c (cytC) as a model membrane-impermeable protein. To ensure colloidal stability, the MSNs are coated with a fusogenic lipid bilayer (LB) and cellular uptake is induced by a complementary pair of coiled-coil (CC) lipopeptides. Coiled-coil induced membrane fusion leads to the efficient cytosolic delivery of cytC and triggers apoptosis of cells. Delivery of these LB coated MSNs in the presence of various endocytosis inhibitors strongly suggests that membrane fusion is the dominant mechanism of cellular uptake. This method is potentially a universal way for the efficient delivery of any type of inorganic nanoparticle or protein into cells mediated by CC induced membrane fusion.
Collapse
Affiliation(s)
- Jian Yang
- Department of Supramolecular & Biomaterials Chemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 Leiden 2300 RA The Netherlands
| | - Jing Tu
- Department of Supramolecular & Biomaterials Chemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 Leiden 2300 RA The Netherlands
| | - Gerda E. M. Lamers
- Institute of Biology; Leiden University; Sylviusweg 72 Leiden 2333 BE The Netherlands
| | - René C. L. Olsthoorn
- Department of Supramolecular & Biomaterials Chemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 Leiden 2300 RA The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 Leiden 2300 RA The Netherlands
| |
Collapse
|
39
|
Machado Y, Duinkerken S, Hoepflinger V, Mayr M, Korotchenko E, Kurtaj A, Pablos I, Steiner M, Stoecklinger A, Lübbers J, Schmid M, Ritter U, Scheiblhofer S, Ablinger M, Wally V, Hochmann S, Raninger AM, Strunk D, van Kooyk Y, Thalhamer J, Weiss R. Synergistic effects of dendritic cell targeting and laser-microporation on enhancing epicutaneous skin vaccination efficacy. J Control Release 2017; 266:87-99. [PMID: 28919557 DOI: 10.1016/j.jconrel.2017.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023]
Abstract
Due to its unique immunological properties, the skin is an attractive target tissue for allergen-specific immunotherapy. In our current work, we combined a dendritic cell targeting approach with epicutaneous immunization using an ablative fractional laser to generate defined micropores in the upper layers of the skin. By coupling the major birch pollen allergen Bet v 1 to mannan from S. cerevisiae via mild periodate oxidation we generated hypoallergenic Bet-mannan neoglycoconjugates, which efficiently targeted CD14+ dendritic cells and Langerhans cells in human skin explants. Mannan conjugation resulted in sustained release from the skin and retention in secondary lymphoid organs, whereas unconjugated antigen showed fast renal clearance. In a mouse model, Bet-mannan neoglycoconjugates applied via laser-microporated skin synergistically elicited potent humoral and cellular immune responses, superior to intradermal injection. The induced antibody responses displayed IgE-blocking capacity, highlighting the therapeutic potential of the approach. Moreover, application via micropores, but not by intradermal injection, resulted in a mixed TH1/TH17-biased immune response. Our data clearly show that applying mannan-neoglycoconjugates to an organ rich in dendritic cells using laser-microporation is superior to intradermal injection. Due to their low IgE binding capacity and biodegradability, mannan neoglycoconjugates therefore represent an attractive formulation for allergen-specific epicutaneous immunotherapy.
Collapse
Affiliation(s)
- Yoan Machado
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Sanne Duinkerken
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Melissa Mayr
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Almedina Kurtaj
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Isabel Pablos
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Markus Steiner
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Joyce Lübbers
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Uwe Ritter
- Department of Immunology, University of Regensburg, Regensburg, Germany
| | | | - Michael Ablinger
- Division of Experimental Dermatology, EB House Austria, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Verena Wally
- Division of Experimental Dermatology, EB House Austria, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Sarah Hochmann
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria
| | - Anna M Raninger
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria
| | - Dirk Strunk
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Josef Thalhamer
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
40
|
Yamazaki N, Yamakawa S, Sugimoto T, Yoshizaki Y, Teranishi R, Hayashi T, Kotaka A, Shinde C, Kumei T, Sumida Y, Shimizu T, Ohashi Y, Yuba E, Harada A, Kono K. Carboxylated phytosterol derivative-introduced liposomes for skin environment-responsive transdermal drug delivery system. J Liposome Res 2017; 28:275-284. [DOI: 10.1080/08982104.2017.1369995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Naoko Yamazaki
- Research Institute, Fancl Corporation, Yokohama, Kanagawa, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Satoshi Yamakawa
- Cosmetic Ingredients Laboratory, Nippon Fine Chemical Corporation, Takasago, Hyogo, Japan
| | - Takumi Sugimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Yuta Yoshizaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Ryoma Teranishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Takaaki Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Aki Kotaka
- Research Institute, Fancl Corporation, Yokohama, Kanagawa, Japan
| | - Chiharu Shinde
- Research Institute, Fancl Corporation, Yokohama, Kanagawa, Japan
| | - Takayuki Kumei
- Research Institute, Fancl Corporation, Yokohama, Kanagawa, Japan
| | - Yasushi Sumida
- Research Institute, Fancl Corporation, Yokohama, Kanagawa, Japan
| | - Toru Shimizu
- Cosmetic Ingredients Laboratory, Nippon Fine Chemical Corporation, Takasago, Hyogo, Japan
| | - Yukihiro Ohashi
- Cosmetic Ingredients Laboratory, Nippon Fine Chemical Corporation, Takasago, Hyogo, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
41
|
Zhao L, Zhang X, Liu X, Li J, Luan Y. pH-responsive poly(ethylene glycol)-poly(ϵ-caprolactone)-poly(glutamic acid) polymersome as an efficient doxorubicin carrier for cancer therapy. POLYM INT 2017. [DOI: 10.1002/pi.5416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lanxia Zhao
- School of Pharmaceutical Science and Center for Pharmaceutical Research and Drug Delivery Systems; Shandong University; Jinan PR China
- Department of Pharmacy; Second Hospital of Shandong University; Jinan PR China
| | - Xia Zhang
- Institute of Endemic Disease Control; Shandong Province Jinan PR China
| | - Xin Liu
- School of Pharmaceutical Science and Center for Pharmaceutical Research and Drug Delivery Systems; Shandong University; Jinan PR China
- Department of Pharmacy; Second Hospital of Shandong University; Jinan PR China
| | - Juan Li
- Department of Pharmacy; Second Hospital of Shandong University; Jinan PR China
| | - Yuxia Luan
- School of Pharmaceutical Science and Center for Pharmaceutical Research and Drug Delivery Systems; Shandong University; Jinan PR China
| |
Collapse
|
42
|
Alekseeva AA, Moiseeva EV, Onishchenko NR, Boldyrev IA, Singin AS, Budko AP, Shprakh ZS, Molotkovsky JG, Vodovozova EL. Liposomal formulation of a methotrexate lipophilic prodrug: assessment in tumor cells and mouse T-cell leukemic lymphoma. Int J Nanomedicine 2017; 12:3735-3749. [PMID: 28553111 PMCID: PMC5439940 DOI: 10.2147/ijn.s133034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In a previous study, a formulation of methotrexate (MTX) incorporated in the lipid bilayer of 100-nm liposomes in the form of diglyceride ester (MTX-DG, lipophilic prodrug) was developed. In this study, first, the interactions of MTX-DG liposomes with various human and mouse tumor cell lines were studied using fluorescence techniques. The liposomes composed of egg phosphatidylcholine (PC)/yeast phosphatidylinositol/MTX-DG, 8:1:1 by mol, were labeled with fluorescent analogs of PC and MTX-DG. Carcinoma cells accumulated 5 times more MTX-DG liposomes than the empty liposomes. Studies on inhibitors of liposome uptake and processing by cells demonstrated that the formulation used multiple mechanisms to deliver the prodrug inside the cell. According to the data from the present study, undamaged liposomes fuse with the cell membrane only 1.5-2 hours after binding to the cell surface, and then, the components of liposomal bilayer enter the cell separately. The study on the time course of plasma concentration in mice showed that the area under the curve of MTX generated upon intravenous injection of MTX-DG liposomes exceeded that of intact MTX 2.5-fold. These data suggested the advantage of using liposomal formulation to treat systemic manifestation of hematological malignancies. Indeed, the administration of MTX-DG liposomes to recipient mice bearing T-cell leukemic lymphoma using a dose-sparing regimen resulted in lower toxicity and retarded lymphoma growth rate as compared with MTX.
Collapse
Affiliation(s)
- Anna A Alekseeva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
| | - Ekaterina V Moiseeva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
| | - Natalia R Onishchenko
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
| | - Ivan A Boldyrev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
| | - Alexander S Singin
- N.N. Blokhin Russian Cancer Research Center, the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Andrey P Budko
- N.N. Blokhin Russian Cancer Research Center, the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Zoya S Shprakh
- N.N. Blokhin Russian Cancer Research Center, the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Julian G Molotkovsky
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
| | - Elena L Vodovozova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
| |
Collapse
|
43
|
Hu X, Yang FF, Liu CY, Ehrhardt C, Liao YH. In vitro uptake and transport studies of PEG-PLGA polymeric micelles in respiratory epithelial cells. Eur J Pharm Biopharm 2017; 114:29-37. [DOI: 10.1016/j.ejpb.2017.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 10/20/2022]
|
44
|
Insight into the role of dual-ligand modification in low molecular weight heparin based nanocarrier for targeted delivery of doxorubicin. Int J Pharm 2017; 523:427-438. [PMID: 28359815 DOI: 10.1016/j.ijpharm.2017.03.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/15/2017] [Accepted: 03/26/2017] [Indexed: 12/26/2022]
Abstract
Low molecular weight heparin nanoparticles (LMWH) modified by glycyrrhetinic acid (GA) (LMWH-GA) and further decorated by lactobionic acid (LA) (LA-LMWH-GA) were reported as novel hepatocellular carcinoma (HPC)-targeted carriers to overcome multidrug resistance (MDR) of doxorubicin (DOX). The drug-loaded nanoparticles had negative charge of around -25mV and average size range of 70-170nm. These nanoparticles performed sustained drug release in vitro and prolonged DOX residence time in blood circulation in vivo. Compared to free DOX, DOX-loaded nanoparticles demonstrated increased DOX accumulation in drug-resistance HepG2/ADR cells and enhanced in vitro therapeutic efficacy. However, DOX/LA-LMWH-GA with dual ligands didn't show higher cellular uptake and cytotoxicity than single GA modified DOX/LMWH-GA, although both GA-mediated and LA-mediated endocytosis were involved in their cell internalization. Uptake pathway inhibition study revealed the less efficacy of DOX/LA-LMWH-GA in cellular level could be attributed to the reduced effect of micropinocytosis and caveolae-mediated endocytosis in cellular uptake. Interestingly, the DOX-loaded nanoparticles developed from lower drug/carrier feeding ratio possessed higher performance in cell internalization and in vitro efficacy compared to those developed from higher drug/carrier feeding ratio, which could highlight the role of carrier in drug delivery process.
Collapse
|
45
|
Abshire C, Murad HY, Arora JS, Liu J, Mandava SH, John VT, Khismatullin DB, Lee BR. Focused Ultrasound-Triggered Release of Tyrosine Kinase Inhibitor From Thermosensitive Liposomes for Treatment of Renal Cell Carcinoma. J Pharm Sci 2017; 106:1355-1362. [PMID: 28159640 DOI: 10.1016/j.xphs.2017.01.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 12/29/2022]
Abstract
This study reports, for the first time, development of tyrosine kinase inhibitor-loaded, thermosensitive liposomes (TKI/TSLs) and their efficacy for treatment of renal cell carcinoma when triggered by focused ultrasound (FUS). Uptake of these nanoparticles into renal cancer cells was visualized with confocal and fluorescent imaging of rhodamine B-loaded liposomes. The combination of TKI/TSLs and FUS was tested in an in vitro tumor model of renal cell carcinoma. According to MTT cytotoxic assay and flow cytometric analysis, the combined treatment led to the least viability (23.4% ± 2.49%, p < 0.001), significantly lower than that observed from treatment with FUS (97.6% ± 0.67%, not significant) or TKI/TSL (71.0% ± 3.65%, p < 0.001) at 96 h compared to control. The importance of this unique, synergistic combination was demonstrated in viability experiments with non-thermosensitive liposomes (TKI/NTSL + FUS: 58.8% ± 1.5% vs. TKI/TSL + FUS: 36.2% ± 1.4%, p < 0.001) and heated water immersion (TKI/TSL + WB43°: 59.3% ± 2.91% vs. TKI/TSL + FUS: 36.4% ± 1.55%, p < 0.001). Our findings coupled with the existing use of FUS in clinical practice make the proposed combination of targeted chemotherapy, nanotechnology, and FUS a promising platform for enhanced drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Caleb Abshire
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Hakm Y Murad
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana 70118; Tulane Institute for Integrative Engineering for Health and Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Jaspreet S Arora
- Department of Chemical and Bimolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana 70118; Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, Louisiana 70112
| | - James Liu
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Sree Harsha Mandava
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Vijay T John
- Department of Chemical and Bimolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana 70118; Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, Louisiana 70112
| | - Damir B Khismatullin
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana 70118; Tulane Institute for Integrative Engineering for Health and Medicine, Tulane University, New Orleans, Louisiana 70112; Division of Urology, University of Arizona College of Medicine, Tucson, Arizona 85724
| | - Benjamin R Lee
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana 70112; Division of Urology, University of Arizona College of Medicine, Tucson, Arizona 85724.
| |
Collapse
|
46
|
Geng S, Wang Y, Wang L, Kouyama T, Gotoh T, Wada S, Wang JY. A Light-Responsive Self-Assembly Formed by a Cationic Azobenzene Derivative and SDS as a Drug Delivery System. Sci Rep 2017; 7:39202. [PMID: 28051069 PMCID: PMC5209711 DOI: 10.1038/srep39202] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022] Open
Abstract
The structure of a self-assembly formed from a cationic azobenzene derivative, 4-cholesterocarbonyl-4'-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and surfactant sodium dodecyl sulfate (SDS) in aqueous solution was studied by cryo-TEM and synchrotron radiation small-angle X-ray scattering (SAXS). Both unilamellar and multilamellar vesicles could be observed. CAB in vesicles were capable to undergo reversible trans-to-cis isomerization upon UV or visible light irradiation. The structural change upon UV light irradiation could be catched by SAXS, which demonstrated that the interlamellar spacing of the cis-multilamellar vesicles increased by 0.2-0.3 nm. Based on this microstructural change, the release of rhodamine B (RhB) and doxorubicin (DOX) could be triggered by UV irradiation. When incubated NIH 3T3 cells and Bel 7402 cells with DOX-loaded CAB/SDS vesicles, UV irradiation induced DOX release decreased the viability of both cell lines significantly compared with the non-irradiated cells. The in vitro experiment indicated that CAB/SDS vesicles had high efficiency to deliver loaded molecules into cells. The in vivo experiment showed that CAB/SDS vesicles not only have high drug delivery efficiency into rat retinas, but also could maintain high drug concentration for a longer time. CAB/SDS catanionic vesicles may find potential applications as a smart drug delivery system for controlled release by light.
Collapse
Affiliation(s)
- Shengyong Geng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Photonics Control Technology Team, Advanced Photonics Technology Development Group, Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yuzhu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Liping Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Toshiaki Gotoh
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, Advanced Photonics Technology Development Group, Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198, Japan
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
47
|
Dubey RD, Klippstein R, Wang JTW, Hodgins N, Mei KC, Sosabowski J, Hider RC, Abbate V, Gupta PN, Al-Jamal KT. Novel Hyaluronic Acid Conjugates for Dual Nuclear Imaging and Therapy in CD44-Expressing Tumors in Mice In Vivo. Nanotheranostics 2017; 1:59-79. [PMID: 29071179 PMCID: PMC5646725 DOI: 10.7150/ntno.17896] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid, a natural CD44 receptor ligand, has attracted attention in the past years as a macromolecular delivery of anticancer agents to cancer. At the same time, the clinical applications of Gemcitabine (Gem) have been hindered by its short biological half-life, high dose and development of drug resistance. This work reports the synthesis of a hyaluronic acid (HA) conjugate for nuclear imaging, and in vivo Gem delivery to CD44-expressing solid tumors in mice. HA was individually conjugated, via amide coupling, to Gem (HA-Gem), 4'-(aminomethyl)fluorescein hydrochloride (HA-4'-AMF) or tris(hydroxypyridinone) amine (HA-THP) for cancer therapy, in vitro tracking or single photon emission computed tomography/computed tomography (SPECT/CT) imaging, respectively. Gem conjugation to HA was directly confirmed by nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC) and UV-visible spectrometry, or indirectly by a nucleoside transporter inhibition study. Gem conjugation to HA improved its plasma stability, reduced blood hemolysis and resulted in delayed cytotoxicity in vitro. Uptake inhibition studies in colon CT26 and pancreatic PANC-1 cells, by flow cytometry, revealed that uptake of fluorescent HA conjugate is CD44 receptor and macropinocytosis-dependent. Gamma scintigraphy and SPECT/CT imaging confirmed the relatively prolonged blood circulation profile and uptake in CT26 (1.5 % ID/gm) and PANC-1 (1 % ID/gm) subcutaneous tumors at 24 h after intravenous injection in mice. Four injections of HA-Gem at ~15 mg/kg, over a 28-day period, resulted in significant delay in CT26 tumor growth and prolonged mice survival compared to the free drug. This study reports for the first time dual nuclear imaging and drug delivery (Gem) of HA conjugates to solid tumors in mice. The conjugates show great potential in targeting, imaging and killing of CD44-over expressing cells in vivo. This work is likely to open new avenues for the application of HA-based macromolecules in the field of image-guided delivery in oncology.
Collapse
Affiliation(s)
- Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Rebecca Klippstein
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Naomi Hodgins
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Kuo-Ching Mei
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Jane Sosabowski
- Centre for Molecular Oncology, Bart's Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Robert C Hider
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| |
Collapse
|
48
|
Wei Y, Zhang L, Fu Y, Xu X. Rapid delivery of paclitaxel with an organic solvent-free system based on a novel cell penetrating peptide for suppression of tumor growth. J Mater Chem B 2017; 5:7768-7774. [DOI: 10.1039/c7tb01259d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PTX is rapidly translocated into HeLa cells with the help of R7. The intracellular PTX concentration of R7/PTX complex group is 3 fold that of the free PTX group. This delivery system does not contain any organic solvent. The tumor growth is significantly suppressed by a tail vein injection of the R7/PTX complex.
Collapse
Affiliation(s)
- Yuping Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Liang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Yankai Fu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing
- P. R. China
- University of Chinese Academy of Sciences
- Beijing
| | - Xia Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan
- P. R. China
| |
Collapse
|
49
|
Yang MM, Wilson WR, Wu Z. pH-Sensitive PEGylated liposomes for delivery of an acidic dinitrobenzamide mustard prodrug: Pathways of internalization, cellular trafficking and cytotoxicity to cancer cells. Int J Pharm 2017; 516:323-333. [DOI: 10.1016/j.ijpharm.2016.11.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 11/25/2022]
|
50
|
Zhang Y, Zhang Z, Liu C, Chen W, Li C, Wu W, Jiang X. Synthesis and biological properties of water-soluble polyphenylthiophene brushes with poly(ethylene glycol)/polyzwitterion side chains. Polym Chem 2017. [DOI: 10.1039/c6py01941b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two types of water-soluble polyphenylthiophene brushes with poly(ethylene glycol) and polyzwitterion side chains were synthesized and studied as bioprobes.
Collapse
Affiliation(s)
- Yajun Zhang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Zhengkui Zhang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Changren Liu
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Weizhi Chen
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Cheng Li
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Wei Wu
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| |
Collapse
|