1
|
Hu X, Wu Q, Huang L, Xu J, He X, Wu L. Clinical efficacy of washed microbiota transplantation on metabolic syndrome and metabolic profile of donor outer membrane vesicles. Front Nutr 2024; 11:1465499. [PMID: 39628464 PMCID: PMC11611574 DOI: 10.3389/fnut.2024.1465499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
Object To clarify the clinical efficacy of washed microbiota transplantation (WMT) for metabolic syndrome (MetS), and explore the differences in the metabolic profile of bacterial outer membrane vesicles (OMVs) in donor fecal bacteria suspension received by MetS patients with good and poor outcomes, and to construct a predictive model for the efficacy of WMT for MetS using differential metabolites. Methods Medical data 65 MetS patients who had completed at least 2 courses of WMT from 2017.05 to 2023.07 were collected. Fecal bacteria suspension of WMT donors were collected, and the clinical data of MetS patients treated with WMT during this period were collected as well. The changes of BMI, blood glucose, blood lipids, blood pressure and other indicators before and after WMT were compared. OMVs were isolated from donor fecal bacteria suspension and off-target metabolomic sequencing was performed by Liquid Chromatograph Mass Spectrometer (LC-MS). Results Compared with baseline, Body mass index (BMI), Systolic blood pressure (SBP) and Diastolic blood pressure (DBP) of MetS patients showed significant decreases after the 1st (short-term) and 2nd (medium-term) courses, and fasting blood glucose (FBG) also showed significant decreases after the 1st session. There was a significant difference between the Marked Response OMVs and the Moderate Response OMVs. It was showed that 960 metabolites were significantly up-regulated in Marked Response OMVs and 439 metabolites that were significantly down-regulated. The ROC model suggested that 9-carboxymethoxymethylguanine, AUC = 0.8127, 95% CI [0.6885, 0.9369], was the most potent metabolite predicting the most available metabolite for efficacy. Conclusion WMT had significant short-term and medium-term clinical efficacy in MetS. There were differences in the structure of metabolites between Marked Response OMVs and Moderate Response OMVs. The level of 9-Carboxy methoxy methylguanine in Marked Response OMVs can be a good predictor of the efficacy of WMT in the treatment of MetS.
Collapse
Affiliation(s)
- Xuan Hu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qingting Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lingui Huang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiating Xu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xingxiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Biological Sciences and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Kumar S, Arora A, Chaudhary R, Kumar R, Len C, Mukherjee M, Singh BK, Parmar VS. Recent Advances in the Synthesis of Acyclic Nucleosides and Their Therapeutic Applications. Top Curr Chem (Cham) 2024; 382:34. [PMID: 39441318 DOI: 10.1007/s41061-024-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
DNA is commonly known as the "molecule of life" because it holds the genetic instructions for all living organisms on Earth. The utilization of modified nucleosides holds the potential to transform the management of a wide range of human illnesses. Modified nucleosides and their role directly led to the 2023 Nobel prize. Acyclic nucleosides, due to their distinctive physiochemical and biological characteristics, rank among the most adaptable modified nucleosides in the field of medicinal chemistry. Acyclic nucleosides are more resistant to chemical and biological deterioration, and their adaptable acyclic structure makes it possible for them to interact with various enzymes. A phosphonate group, which is linked via an aliphatic functionality to a purine or a pyrimidine base, distinguishes acyclic nucleoside phosphonates (ANPs) from other nucleotide analogs. Acyclic nucleosides and their derivatives have demonstrated various biological activities such as anti-viral, anti-bacterial, anti-cancer, anti-microbial, etc. Ganciclovir, Famciclovir, and Penciclovir are the acyclic nucleoside-based drugs approved by FDA for the treatment of various diseases. Thus, acyclic nucleosides are extremely useful for generating a variety of unique bioactive chemicals. Their biological activities as well as selectivity is significantly influenced by the stereochemistry of the acyclic nucleosides because chiral acyclic nucleosides have drawn a lot of interest due to their intriguing biological functions and potential as medicines. For example, tenofovir's (R) enantiomer is roughly 50 times more potent against HIV than its (S) counterpart. We can confidently state, "The most promising developments are yet to come in the realm of acyclic nucleosides!" Herein, we have covered the most current developments in the field of chemical synthesis and therapeutic applications of acyclic nucleosides based upon our continued interest and activity in this field since mid-1990's.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India
- Department of Chemistry and Environmental Science, Medgar Evers College, 1638 Bedford Avenue, Brooklyn, NY, 11225, USA
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India
| | - Riya Chaudhary
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India
| | - Rajesh Kumar
- P.G. Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur, 842002, India
| | - Christophe Len
- Chimie ParisTech, PSL Research University, CNRS, UMR8060, Institute of Chemistry for Life and Health Sciences, 11 rue Pierre et Marie Curie, 75005, Paris, France.
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry and Research Studies, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Virinder S Parmar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India.
- Department of Chemistry and Environmental Science, Medgar Evers College, 1638 Bedford Avenue, Brooklyn, NY, 11225, USA.
- Amity Institute of Click Chemistry and Research Studies, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India.
- Nanoscience Program, CUNY Graduate Center and Departments of Chemistry, Medgar Evers College and City College, 160 Convent Avenue, New York, NY, 10031, USA.
| |
Collapse
|
3
|
El Saftawy EA, Aboulhoda BE, Hassan FE, Ismail MAM, Alghamdi MA, Hussein SM, Amin NM. ACV with/without IVM: a new talk on intestinal CDX2 and muscular CD34 and Cyclin D1 during Trichinella spiralis infection. Helminthologia 2024; 61:124-141. [PMID: 39040803 PMCID: PMC11260317 DOI: 10.2478/helm-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 07/24/2024] Open
Abstract
The current study assessed the efficacy of Acyclovir (ACV) and Ivermectin (IVM) as monotherapies and combined treatments for intestinal and muscular stages of Trichinella spiralis infection. One-hundred Swiss albino mice received orally 250 ± 50 infectious larvae and were divided into infected-untreated (Group-1), IVM-treated (Group-2), ACV-treated (Group-3), combined IVM+ACV (Group-4), and healthy controls (Group-5). Each group was subdivided into subgroup-A-enteric phase (10 mice, sacrificed day-7 p.i.) and subgroup-B-muscular phase (10 mice, sacrificed day-35 p.i.). Survival rate and body weight were recorded. Parasite burden and intestinal histopathology were assessed. In addition, immunohistochemical expression of epithelial CDX2 in the intestinal phase and CyclinD1 as well as CD34 in the muscular phase were evaluated. Compared, IVM and ACV monotherapies showed insignificant differences in the amelioration of enteric histopathology, except for lymphocytic counts. In the muscle phase, monotherapies showed variable disruptions in the encapsulated larvae. Compared with monotherapies, the combined treatment performed relatively better improvement of intestinal inflammation and reduction in the enteric and muscular parasite burden. CDX2 and CyclinD1 positively correlated with intestinal inflammation and parasite burden, while CD34 showed a negative correlation. CDX2 positively correlated with CyclinD1. CD34 negatively correlated with CDX2 and CyclinD1. IVM +ACV significantly ameliorated CDX2, CyclinD1, and CD34 expressions compared with monotherapies. Conclusion. T. spiralis infection-associated inflammation induced CDX2 and CyclinD1 expressions, whereas CD34 was reduced. The molecular tumorigenic effect of the nematode remains questionable. Nevertheless, IVM +ACV appeared to be a promising anthelminthic anti-inflammatory combination that, in parallel, rectified CDX2, CyclinD1, and CD34 expressions.
Collapse
Affiliation(s)
- E. A. El Saftawy
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Parasitology Department, Armed Forces College of Medicine, Cairo, Egypt
| | - B. E. Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - F. E. Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza11562, Egypt
- General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah21442, Saudi Arabia
| | - M. A. M. Ismail
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - M. A. Alghamdi
- College of Medicine, King Khalid University, Abha62529, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha62529, Saudi Arabia
| | - S. M. Hussein
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - N. M. Amin
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
De Castro F, Ciardullo G, Fanizzi FP, Prejanò M, Benedetti M, Marino T. Incorporation of N7-Platinated Guanines into Thermus Aquaticus (Taq) DNA Polymerase: Atomistic Insights from Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:9849. [PMID: 37372996 DOI: 10.3390/ijms24129849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
In this work, we elucidated some key aspects of the mechanism of action of the cisplatin anticancer drug, cis-[Pt(NH3)2Cl2], involving direct interactions with free nucleotides. A comprehensive in silico molecular modeling analysis was conducted to compare the interactions of Thermus aquaticus (Taq) DNA polymerase with three distinct N7-platinated deoxyguanosine triphosphates: [Pt(dien)(N7-dGTP)] (1), cis-[Pt(NH3)2Cl(N7-dGTP)] (2), and cis-[Pt(NH3)2(H2O)(N7-dGTP)] (3) {dien = diethylenetriamine; dGTP = 5'-(2'-deoxy)-guanosine-triphosphate}, using canonical dGTP as a reference, in the presence of DNA. The goal was to elucidate the binding site interactions between Taq DNA polymerase and the tested nucleotide derivatives, providing valuable atomistic insights. Unbiased molecular dynamics simulations (200 ns for each complex) with explicit water molecules were performed on the four ternary complexes, yielding significant findings that contribute to a better understanding of experimental results. The molecular modeling highlighted the crucial role of a specific α-helix (O-helix) within the fingers subdomain, which facilitates the proper geometry for functional contacts between the incoming nucleotide and the DNA template needed for incorporation into the polymerase. The analysis revealed that complex 1 exhibits a much lower affinity for Taq DNA polymerase than complexes 2-3. The affinities of cisplatin metabolites 2-3 for Taq DNA polymerase were found to be quite similar to those of natural dGTP, resulting in a lower incorporation rate for complex 1 compared to complexes 2-3. These findings could have significant implications for the cisplatin mechanism of action, as the high intracellular availability of free nucleobases might promote the competitive incorporation of platinated nucleotides over direct cisplatin attachment to DNA. The study's insights into the incorporation of platinated nucleotides into the Taq DNA polymerase active site suggest that the role of platinated nucleotides in the cisplatin mechanism of action may have been previously underestimated.
Collapse
Affiliation(s)
- Federica De Castro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, I-73100 Lecce, Italy
| | - Giada Ciardullo
- Dipartimento di Chimica e Tecnologie Chimiche, Laboratorio PROMOCS cubo 14C, Università della Calabria, I-87036 Rende, Italy
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, I-73100 Lecce, Italy
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Laboratorio PROMOCS cubo 14C, Università della Calabria, I-87036 Rende, Italy
| | - Michele Benedetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, I-73100 Lecce, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Laboratorio PROMOCS cubo 14C, Università della Calabria, I-87036 Rende, Italy
| |
Collapse
|
5
|
Wei YP, Yao LY, Wu YY, Liu X, Peng LH, Tian YL, Ding JH, Li KH, He QG. Critical Review of Synthesis, Toxicology and Detection of Acyclovir. Molecules 2021; 26:molecules26216566. [PMID: 34770975 PMCID: PMC8587948 DOI: 10.3390/molecules26216566] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/02/2023] Open
Abstract
Acyclovir (ACV) is an effective and selective antiviral drug, and the study of its toxicology and the use of appropriate detection techniques to control its toxicity at safe levels are extremely important for medicine efforts and human health. This review discusses the mechanism driving ACV’s ability to inhibit viral coding, starting from its development and pharmacology. A comprehensive summary of the existing preparation methods and synthetic materials, such as 5-aminoimidazole-4-carboxamide, guanine and its derivatives, and other purine derivatives, is presented to elucidate the preparation of ACV in detail. In addition, it presents valuable analytical procedures for the toxicological studies of ACV, which are essential for human use and dosing. Analytical methods, including spectrophotometry, high performance liquid chromatography (HPLC), liquid chromatography/tandem mass spectrometry (LC-MS/MS), electrochemical sensors, molecularly imprinted polymers (MIPs), and flow injection–chemiluminescence (FI-CL) are also highlighted. A brief description of the characteristics of each of these methods is also presented. Finally, insight is provided for the development of ACV to drive further innovation of ACV in pharmaceutical applications. This review provides a comprehensive summary of the past life and future challenges of ACV.
Collapse
Affiliation(s)
- Yan-Ping Wei
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Y.-P.W.); (Y.-Y.W.); (L.-H.P.); (Y.-L.T.)
- Zhuzhou People’s Hospital, Zhuzhou 412001, China; (X.L.); (J.-H.D.)
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China;
| | - Liang-Yuan Yao
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China;
| | - Yi-Yong Wu
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Y.-P.W.); (Y.-Y.W.); (L.-H.P.); (Y.-L.T.)
| | - Xia Liu
- Zhuzhou People’s Hospital, Zhuzhou 412001, China; (X.L.); (J.-H.D.)
| | - Li-Hong Peng
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Y.-P.W.); (Y.-Y.W.); (L.-H.P.); (Y.-L.T.)
| | - Ya-Ling Tian
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Y.-P.W.); (Y.-Y.W.); (L.-H.P.); (Y.-L.T.)
| | - Jian-Hua Ding
- Zhuzhou People’s Hospital, Zhuzhou 412001, China; (X.L.); (J.-H.D.)
| | - Kang-Hua Li
- Zhuzhou People’s Hospital, Zhuzhou 412001, China; (X.L.); (J.-H.D.)
- Correspondence: (K.-H.L.); (Q.-G.H.); Tel./Fax: +86-731-2218-3426 (Q.-G.H.)
| | - Quan-Guo He
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Y.-P.W.); (Y.-Y.W.); (L.-H.P.); (Y.-L.T.)
- Zhuzhou People’s Hospital, Zhuzhou 412001, China; (X.L.); (J.-H.D.)
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China;
- Correspondence: (K.-H.L.); (Q.-G.H.); Tel./Fax: +86-731-2218-3426 (Q.-G.H.)
| |
Collapse
|
6
|
Nisha S, Joe IH. Quantum chemical computation and spectroscopic investigation on antiviral drug Acyclovir:-In-silico and in-vitro analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Mei Y, Tang L, Xiao Q, Zhang Z, Zhang Z, Zang J, Zhou J, Wang Y, Wang W, Ren M. Reconstituted high density lipoprotein (rHDL), a versatile drug delivery nanoplatform for tumor targeted therapy. J Mater Chem B 2021; 9:612-633. [PMID: 33306079 DOI: 10.1039/d0tb02139c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
rHDL is a synthesized drug delivery nanoplatform exhibiting excellent biocompatibility, which possesses most of the advantages of HDL. rHDL shows almost no toxicity and can be degraded to non-toxic substances in vivo. The severe limitation of the application of various antitumor agents is mainly due to their low bioavailability, high toxicity, poor stability, etc. Favorably, antitumor drug-loaded rHDL nanoparticles (NPs), which are known as an important drug delivery system (DDS), help to change the situation a lot. This DDS shows an outstanding active-targeting ability towards tumor cells and improves the therapeutic effect during antitumor treatment while overcoming the shortcomings mentioned above. In the following text, we will mainly focus on the various applications of rHDL in tumor targeted therapy by describing the properties, preparation, receptor active-targeting ability and antitumor effects of antineoplastic drug-loaded rHDL NPs.
Collapse
Affiliation(s)
- Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Guo J, Yu Z, Sun D, Zou Y, Liu Y, Huang L. Two nanoformulations induce reactive oxygen species and immunogenetic cell death for synergistic chemo-immunotherapy eradicating colorectal cancer and hepatocellular carcinoma. Mol Cancer 2021; 20:10. [PMID: 33407548 PMCID: PMC7786897 DOI: 10.1186/s12943-020-01297-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND FOLFOX is a combinational regimen of folinic acid (FnA, FOL), fluorouracil (5-Fu, F) and oxaliplatin (OxP, OX), and has been long considered as the standard treatment of colorectal cancer (CRC) and hepatocellular carcinoma (HCC). Recent developments of nano delivery systems have provided profound promise for improving anticancer efficacy and alleviating side effects of FOLFOX. Previously, a nanoformulation (termed Nano-Folox) containing OxP derivative and FnA was developed in our laboratory using nanoprecipitation technique. Nano-Folox induced OxP-mediated immunogenic cell death (ICD)-associated antitumor immunity, which significantly suppressed tumor growth in the orthotopic CRC mouse model when administrated in combination with free 5-Fu. METHODS A nanoformulation (termed Nano-FdUMP) containing FdUMP (5-Fu active metabolite) was newly developed using nanoprecipitation technique and used in combination with Nano-Folox for CRC and HCC therapies. RESULTS Synergistic efficacy was achieved in orthotopic CRC and HCC mouse models. It resulted mainly from the fact that Nano-FdUMP mediated the formation of reactive oxygen species (ROS), which promoted the efficacy of ICD elicited by Nano-Folox. In addition, combination of Nano-Folox/Nano-FdUMP and anti-PD-L1 antibody significantly inhibited CRC liver metastasis, leading to long-term survival in mice. CONCLUSION This study provides proof of concept that combination of two nano delivery systems can result in successful FOLFOX-associated CRC and HCC therapies. Further optimization in terms of dosing and timing will enhance clinical potential of this combination strategy for patients.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhuo Yu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
9
|
Kłysik K, Pietraszek A, Karewicz A, Nowakowska M. Acyclovir in the Treatment of Herpes Viruses – A Review. Curr Med Chem 2020. [DOI: 10.2174/0929867325666180309105519] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background:
Herpes Simplex (HSV) viruses are widely spread, highly contagious
human pathogens. The statistics indicate that 50-90% of adults worldwide are seropositive for
these viruses, mainly HSV-1 and HSV-2. The primary infection results in the appearance of
watery blisters (cold sores) on the skin, lips, tongue, buccal mucosa or genitals. The ocular
infection is the major cause of corneal blindness in the Western World. Once the HSV virus
enters human body, it cannot be completely eradicated because HSV viruses are able to
change into their latent form which can survive the treatment. The viron resides in trigeminal
ganglia of the host, who becomes vulnerable to the reoccurrence of the disease during the
whole lifespan. The neurotropic and neuro-invasive properties of HSV are responsible for
neurodegenerative illnesses, such as Alzheimer's disease. Acyclovir and its analogues, being
the inhibitors of the viral DNA replication, are the only approved medicines for HSV infection
therapies.
Objective:
The current paper presents the up-to-date overview of the important pharmacological
features of acyclovir, its analogues and their delivery systems including the mechanism of
action, routes of administration, absorption and metabolism, as well as side effects of the therapy.
Conclusion:
Acyclovir remains the gold standard in the treatment of herpes virus infections,
mainly due to the emerging of the new delivery systems improving considerably its bioavailability.
The analogues of acyclovir, especially their esters, characterized by significantly
higher bioavailability and safety, may gradually replace acyclovir in selected applications.
Collapse
Affiliation(s)
- Katarzyna Kłysik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Aneta Pietraszek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Karewicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
10
|
Fabrication of temperature and pH sensitive decorated magnetic nanoparticles as effective biosensors for targeted delivery of acyclovir anti-cancer drug. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113024] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Guo J, Yu Z, Das M, Huang L. Nano Codelivery of Oxaliplatin and Folinic Acid Achieves Synergistic Chemo-Immunotherapy with 5-Fluorouracil for Colorectal Cancer and Liver Metastasis. ACS NANO 2020; 14:5075-5089. [PMID: 32283007 DOI: 10.1021/acsnano.0c01676] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
FOLFOX, the combinational strategy of folinic acid (FnA), 5-fluorouracil (5-Fu), and oxaliplatin (OxP), has been used as standard treatment of colorectal cancer (CRC) for decades. Despite the improved survival, patients still suffer from drawbacks such as low efficacy, high toxicity, and long course of treatment. New strategies to address these issues are needed to further clinical benefits. In this study, a nanoprecipitate (C26H35N9O7Pt) was formed by the active form of OxP ([Pt(DACH)(H2O)2]2+) and FnA, which was formulated into an aminoethyl anisamide targeted PEGylated lipid nanoparticle within microemulsions using nanoprecipitation technique. The resultant formulation (namely Nano-Folox) significantly promoted the blood circulation and tumor accumulation of platinum drug and FnA in an orthotopic CRC mouse model. Emerging evidence indicates that OxP can not only provide anticancer cytotoxic effects but also induce immunogenic cell death (a type of apoptosis that primes anticancer immune responses). Consequently, Nano-Folox demonstrated favorable chemo-immunotherapeutic activities in orthotopic CRC mice. In addition, when compared to FOLFOX the significantly stronger chemo-immunotherapeutic responses were achieved by the combination of Nano-Folox and 5-Fu without showing toxicity. Moreover, the anti-PD-L1 monoclonal antibody enhanced Nano-Folox/5-Fu for decreased liver metastases in mice. These results indicate the potential of Nano-Folox-based combination strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Jianfeng Guo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuo Yu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Manisit Das
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Zhu N, Wang D, Xie F, Qin M, Lin Z, Wang Y. Fabrication and Characterization of Calcium-Phosphate Lipid System for Potential Dental Application. Front Chem 2020; 8:161. [PMID: 32269987 PMCID: PMC7111464 DOI: 10.3389/fchem.2020.00161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid has been widely studied as a vehicle and loading vector, but there have been no reports of any such related application in the dental field. The purpose of this research was to fabricate and characterize a nano-size calcium-phosphate lipid (CL) system as a potential vehicle in dental regeneration study, wherein the biocompatibility with dental pulp stem cells (DPSCs) was evaluated. The effect of CL on DPSCs proliferation was analyzed by a CCK-8 assay, and the anti-inflammatory effect was investigated by quantitative polymerase chain reaction (qPCR). Moreover, the effect of CL on odontogenic differentiation of inflamed DPSCs (iDPSCs) was studied by Alizarin red staining, tissue-non-specific alkaline phosphatase (TNAP) staining, qPCR, and western blot analyses. The results of this study showed that CL did not affect the proliferation of DPSCs, it down-regulated the inflammatory-associated markers (IL-1β, IL-6, TNF-α, COX-2) of DPSCs treated with Escherichia coli lipopolysaccharide (LPS), and enhanced the in-vitro odontogenic differentiation potential of iDPSCs. This novel biomaterial has a broad application prospect for its bioactivity and flexible physical property, and thus represents a promising pulpal regeneration material.
Collapse
Affiliation(s)
- Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Dan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Fei Xie
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Zhiqiang Lin
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| |
Collapse
|
13
|
Pastuch-Gawołek G, Gillner D, Król E, Walczak K, Wandzik I. Selected nucleos(t)ide-based prescribed drugs and their multi-target activity. Eur J Pharmacol 2019; 865:172747. [PMID: 31634460 PMCID: PMC7173238 DOI: 10.1016/j.ejphar.2019.172747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Nucleos(t)ide analogues play pivotal roles as antiviral, cytotoxic or immunosuppressive agents. Here, we review recent reports of nucleoside analogues that exhibit broad-spectrum activity towards multiple life-threatening RNA and DNA viruses. We also present a discussion about nucleoside antimetabolites-approved antineoplastic agents-that have recently been shown to have antiviral and/or antibacterial activity. The approved drugs and drug combinations, as well as recently identified candidates for investigation and/or experimentation, are discussed. Several examples of repurposed drugs that have already been approved for use are presented. This strategy can be crucial for the first-line treatment of acute infections or coinfections and for the management of drug-resistant strains.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Danuta Gillner
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Ewelina Król
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Krzysztof Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland.
| |
Collapse
|
14
|
Surface engineering of nanomaterials with phospholipid-polyethylene glycol-derived functional conjugates for molecular imaging and targeted therapy. Biomaterials 2019; 230:119646. [PMID: 31787335 DOI: 10.1016/j.biomaterials.2019.119646] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
In recent years, phospholipid-polyethylene glycol-derived functional conjugates have been widely employed to decorate different nanomaterials, due to their excellent biocompatibility, long blood circulation characteristics, and specific targeting capability. Numerous in vivo studies have demonstrated that nanomedicines peripherally engineered with phospholipid-polyethylene glycol-derived functional conjugates show significantly increased selective and efficient internalization by target cells/tissues. Targeting moieties including small-molecule ligands, peptides, proteins, and antibodies are generally conjugated onto PEGylated phospholipids to decorate liposomes, micelles, hybrid nanoparticles, nanocomplexes, and nanoemulsions for targeted delivery of diagnostic and therapeutic agents to diseased sites. In this review, the synthesis methods of phospholipid-polyethylene glycol-derived functional conjugates, biophysicochemical properties of nanomedicines decorated with these conjugates, factors dominating their targeting efficiency, as well as their applications for in vivo molecular imaging and targeted therapy were summarized and discussed.
Collapse
|
15
|
Chi J, Jiang Z, Qiao J, Peng Y, Liu W, Han B. Synthesis and anti-metastasis activities of norcantharidin-conjugated carboxymethyl chitosan as a novel drug delivery system. Carbohydr Polym 2019; 214:80-89. [DOI: 10.1016/j.carbpol.2019.03.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 01/23/2023]
|
16
|
Qi C, Musetti S, Fu LH, Zhu YJ, Huang L. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev 2019; 48:2698-2737. [PMID: 31080987 DOI: 10.1039/c8cs00489g] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are ubiquitous in nature and vertebrate bones and teeth, and have high biocompatibility and promising applications in various biomedical fields. Nanostructured calcium phosphates (NCaPs) are recognized as promising nanocarriers for drug/gene/protein delivery owing to their high specific surface area, pH-responsive degradability, high drug/gene/protein loading capacity and sustained release performance. In order to control the structure and surface properties of NCaPs, various biomolecules with high biocompatibility such as nucleic acids, proteins, peptides, liposomes and phosphorus-containing biomolecules are used in the synthesis of NCaPs. Moreover, biomolecules play important roles in the synthesis processes, resulting in the formation of various NCaPs with different sizes and morphologies. At room temperature, biomolecules can play the following roles: (1) acting as a biocompatible organic phase to form biomolecule/CaP hybrid nanostructured materials; (2) serving as a biotemplate for the biomimetic mineralization of NCaPs; (3) acting as a biocompatible modifier to coat the surface of NCaPs, preventing their aggregation and increasing their colloidal stability. Under heating conditions, biomolecules can (1) control the crystallization process of NCaPs by forming biomolecule/CaP nanocomposites before heating; (2) prevent the rapid and disordered growth of NCaPs by chelating with Ca2+ ions to form precursors; (3) provide the phosphorus source for the controlled synthesis of NCaPs by using phosphorus-containing biomolecules. This review focuses on the important roles of biomolecules in the synthesis of NCaPs, which are expected to guide the design and controlled synthesis of NCaPs. Moreover, we will also summarize the biomedical applications of NCaPs in nanomedicine and tissue engineering, and discuss their current research trends and future prospects.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | | | | | | | | |
Collapse
|
17
|
Zhang Y, Bush X, Yan B, Chen JA. Gemcitabine nanoparticles promote antitumor immunity against melanoma. Biomaterials 2018; 189:48-59. [PMID: 30388589 DOI: 10.1016/j.biomaterials.2018.10.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 01/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) promote tumor-mediated immunosuppression and cancer progression. Gemcitabine (Gem) is a MDSC-depleting chemotherapeutic agent; however, its clinical use is hampered by its drug resistance and inefficient in vivo delivery. Here we describe a strategy to formulate a Gem analogue gemcitabine monophosphate (GMP) into a lipid-coated calcium phosphate (LCP) nanoparticle, and investigate its antitumor immunity and therapeutic effects after systemic administrations. In the syngeneic mouse model of B16F10 melanoma, compared with free Gem, the LCP-formulated GMP (LCP-GMP) significantly induced apoptosis and reduced immunosuppression in the tumor microenvironment (TME). LCP-GMP effectively depleted MDSCs and regulatory T cells, and skewed macrophage polarization towards the antitumor M1 phenotype in the TME, leading to enhanced CD8+ T-cell immune response and profound tumor growth inhibition. Thus, engineering the in vivo delivery of MDSC-depleting agents using nanotechnology could substantially modulate immunosuppressive TME and boost T-cell immune response for enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Xin Bush
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Bingfang Yan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Justin A Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
18
|
Hoseininasr AS, Tayebee R. Synthesis and characterization of superparamagnetic nanohybrid Fe3
O4
/NH2
-Ag as an effective carrier for the delivery of acyclovir. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Reza Tayebee
- Department of Chemistry; Hakim Sabzevari University; Sabzevar 96179-76487 Iran
- Department of Chemistry; Payame Noor University (PNU); Tehran 19395-4697 Iran
| |
Collapse
|
19
|
Hosseini nasr AS, Akbarzadeh H, Tayebee R. Adsorption mechanism of different acyclovir concentrations on 1–2 nm sized magnetite nanoparticles: A molecular dynamics study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Qi C, Lin J, Fu LH, Huang P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev 2018; 47:357-403. [PMID: 29261194 DOI: 10.1039/c6cs00746e] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.
Collapse
Affiliation(s)
- Chao Qi
- Guangdong Key Laboratory for Biomedical, Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | | | | | | |
Collapse
|
21
|
Gładysz M, Ruszkowski P, Milecki J. Synthesis and cytotoxic activity of novel acyclic nucleoside analogues with functionality in click chemistry. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:53-66. [PMID: 29336675 DOI: 10.1080/15257770.2017.1417598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe synthesis of novel acyclic nucleoside analogues which are building blocks for CuAAC reaction and their activity against two types of human cancer cell lines (HeLa, KB). Three of chosen compounds show promising cytotoxic activity. Synthesis pathway starting from simple and easily accessible substrates employing DMT or TBDPS protective groups is described. Adenosine and thymidine analogues containing alkyne moiety and adenosine analogue containing azido group were synthesized. The obtained units showed ability of forming triazole motif under the CuAAC reaction conditions.
Collapse
Affiliation(s)
- Michał Gładysz
- a Institute of Bioorganic Chemistry Polish Academy of Sciences , Z. Noskowskiego 12/14, Poznań , Poland
| | - Piotr Ruszkowski
- b Department of Pharmacology Poznan University of Medical Sciences , Rokietnicka 5a, Poznań , Poland
| | - Jan Milecki
- c Faculty of Chemistry Adam Mickiewicz University , Umultowska 89 b, Poznań , Poland
| |
Collapse
|
22
|
Huang JL, Chen HZ, Gao XL. Lipid-coated calcium phosphate nanoparticle and beyond: a versatile platform for drug delivery. J Drug Target 2017; 26:398-406. [PMID: 29258343 DOI: 10.1080/1061186x.2017.1419360] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, lipid-coated calcium-phosphate (LCP) nanoparticle has been developed as a versatile platform for delivery of various therapeutics including gene, protein/peptide, chemotherapeutics and theranostic agents. The high endosomal escape, coupled with the ability to efficiently encapsulate phosphorylated drugs or prodrugs, make LCP become attractive vehicle for drug delivery. Additionally, the principle behind LCP formulation has also allowed rational design of LCP-derived nanoparticles (NPs) with other solid core or lipid membrane to overcome the various drug delivery barriers. Here, we briefly review the history of the development of LCP NPs, highlight the optimisations and modulations in the development process, and summarise the major applications of LCP NPs and LCP-derived NPs in drug delivery.
Collapse
Affiliation(s)
- Jia-Lin Huang
- a Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine , Shanghai Jiao Tong University School of Medicine , Shanghai , PR China.,b Department of Neurological Surgery , Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China
| | - Hong-Zhuan Chen
- a Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine , Shanghai Jiao Tong University School of Medicine , Shanghai , PR China
| | - Xiao-Ling Gao
- a Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine , Shanghai Jiao Tong University School of Medicine , Shanghai , PR China
| |
Collapse
|
23
|
Abstract
Nanoparticle drug formulations have been extensively investigated, developed, and in some cases, approved by the Food and Drug Administration (FDA). Synergistic combinations of drugs having distinct tumor-inhibiting mechanisms and non-overlapping toxicity can circumvent the issue of treatment resistance and may be essential for effective anti-cancer therapy. At the same time, co-delivery of a combined regimen by a single nanocarrier presents a challenge due to differences in solubility, molecular weight, functional groups and encapsulation conditions between the two drugs. This review discusses cellular and microenvironment mechanisms behind treatment resistance and nanotechnology-based solutions for effective anti-cancer therapy. Co-loading or cascade delivery of multiple drugs using of polymeric nanoparticles, polymer-drug conjugates and lipid nanoparticles will be discussed along with lipid-coated drug nanoparticles developed by our lab and perspectives on combination therapy.
Collapse
Affiliation(s)
- Lei Miao
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shutao Guo
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - C Michael Lin
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
Hu K, Miao L, Goodwin TJ, Li J, Liu Q, Huang L. Quercetin Remodels the Tumor Microenvironment To Improve the Permeation, Retention, and Antitumor Effects of Nanoparticles. ACS NANO 2017; 11:4916-4925. [PMID: 28414916 PMCID: PMC5961944 DOI: 10.1021/acsnano.7b01522] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Our previous work demonstrated that Wnt16 expression in cisplatin-damaged tumor-associated fibroblasts is a key factor contributing to cisplatin resistance in malignancies. Natural antifibrotic compounds with low toxicities are promising candidates to downregulate Wnt16 expression, improving the antitumor effect of cisplatin nanoparticles. Upon screening several natural chemicals, we found that a dietary flavonoid, quercetin, significantly suppresses Wnt16 expression in activated fibroblasts. To facilitate drug delivery, we have prepared a targeted lipid/calcium/phosphate nanoparticle formulation consisting of a prodrug of quercetin, i.e., quercetin phosphate, with a high loading efficiency (26.6% w/w). This quercetin nanoparticle with a particle size of around 35 nm significantly improved the bioavailability and metabolic stability of the parent quercetin. Quercetin phosphate is released from the nanoparticles and converted back to the parent quercetin under physiological conditions. Following systemic administration of quercetin phosphate nanoparticles, a significant downregulation in Wnt16 expression was observed and further yielded a synergistic antitumor effect with cisplatin nanoparticles in a stroma-rich bladder carcinoma model. The α-SMA-positive fibroblast and collagen within the tumor decreased significantly after combination treatment. This suggests that the remodeling of the tumor microenvironment induced by quercetin plays a critical role in promoting the synergy. Indeed, our data further confirmed that quercetin phosphate alone significantly remodeled the tumor microenvironment and increased the penetration of second-wave nanoparticles into the tumor nests. Collectively, quercetin phosphate nanoparticles may be a safe and effective way to improve therapeutic treatment for desmoplastic tumors.
Collapse
Affiliation(s)
- Kaili Hu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People’s Republic of China
| | - Lei Miao
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tyler J. Goodwin
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jun Li
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Corresponding Author:
| |
Collapse
|
25
|
Shafique S, Rashid S. Antiviral drug acyclovir exhibits antitumor activity via targeting βTrCP1: Molecular docking and dynamics simulation study. J Mol Graph Model 2017; 72:96-105. [DOI: 10.1016/j.jmgm.2016.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/15/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|
26
|
Dasargyri A, Kümin CD, Leroux JC. Targeting Nanocarriers with Anisamide: Fact or Artifact? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603451. [PMID: 27885719 DOI: 10.1002/adma.201603451] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/08/2016] [Indexed: 05/19/2023]
Abstract
Encapsulating chemotherapeutics in nanoparticles can reduce the side effects of intravenous administration and improve their antitumor efficacy. Additionally, surface decoration of the nanocarriers with tumor-targeting ligands may enhance their specificity for cancer cells overexpressing the corresponding ligand-binding counterpart. The focus here is on anisamide, a low-molecular-weight benzamide derivative used as a tumor-directing moiety in functionalized nanosystems, based on its alleged interaction with Sigma receptors. The scintigraphic agents that initially inspired the use of anisamide for tumor targeting are described, and the published anisamide-tethered nanocarrier formulations are reviewed, together with a critical overview of the ligand's tumor-targeting properties. Moreover, anisamide's putative but dubious cellular target, the Sigma-1 receptor, is discussed with regard to its subcellular localization and implications in cancer. Data from in vivo studies reveal that the effect of anisamide on the antitumor efficacy of the decorated nanosystems varies considerably among the published reports. Together with the evidence questioning the interaction of anisamide with the Sigma receptors, the variability of anisamide's effect on the tumor deposition and the antitumor efficacy of the decorated drug carriers calls into question the extent of the ligand's tumor-targeting effect. Further research is necessary to elucidate the ligand's utility in tumor targeting.
Collapse
Affiliation(s)
- Athanasia Dasargyri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, 8093, Switzerland
| | - Carole D Kümin
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, 8093, Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, 8093, Switzerland
| |
Collapse
|
27
|
Li Y, Wu Y, Huang L, Miao L, Zhou J, Satterlee AB, Yao J. Sigma receptor-mediated targeted delivery of anti-angiogenic multifunctional nanodrugs for combination tumor therapy. J Control Release 2016; 228:107-119. [PMID: 26941036 DOI: 10.1016/j.jconrel.2016.02.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/31/2016] [Accepted: 02/27/2016] [Indexed: 12/12/2022]
Abstract
The potential of low molecular weight heparin (LMWH) in anti-angiogenic therapy has been tempered by poor in vivo delivery to the tumor cell and potentially harmful side effects, such as the risk of bleeding due to heparin's anticoagulant activity. In order to overcome these limitations and further improve the therapeutic effect of LMWH, we designed a novel combination nanosystem of LMWH and ursolic acid (UA), which is also an angiogenesis inhibitor for tumor therapy. In this system, an amphiphilic LMWH-UA (LHU) conjugate was synthesized and self-assembled into core/shell nanodrugs with combined anti-angiogenic activity and significantly reduced anticoagulant activity. Furthermore, DSPE-PEG-AA-modified LHU nanodrugs (A-LHU) were developed to facilitate the delivery of nanodrugs to the tumor. The anti-angiogenic activity of A-LHU was investigated both in vitro and in vivo. It was found that A-LHU significantly inhibited the tubular formation of human umbilical vein endothelial cells (HUVECs) (p<0.01) and the angiogenesis induced by basic fibroblast growth factor (bFGF) in a Matrigel plug assay (p<0.001). More importantly, A-LHU displayed significant inhibition on the tumor growth in B16F10-bearing mice in vivo. The level of CD31 and p-VEGFR-2 expression has demonstrated that the excellent efficacy of antitumor was associated with a decrease in angiogenesis. In conclusion, A-LHU nanodrugs are a promising multifunctional antitumor drug delivery system.
Collapse
Affiliation(s)
- Yuanke Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yuanyuan Wu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill 27599, USA
| | - Lei Miao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill 27599, USA
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Andrew Benson Satterlee
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill 27599, USA; University of North Carolina and North Carolina State University Joint Department of Biomedical Engineering, Chapel Hill, NC 27599, USA
| | - Jing Yao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
28
|
Satterlee AB, Huang L. Current and Future Theranostic Applications of the Lipid-Calcium-Phosphate Nanoparticle Platform. Theranostics 2016; 6:918-29. [PMID: 27217828 PMCID: PMC4876619 DOI: 10.7150/thno.14689] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/15/2016] [Indexed: 11/11/2022] Open
Abstract
Over the last four years, the Lipid-Calcium-Phosphate (LCP) nanoparticle platform has shown success in a wide range of treatment strategies, recently including theranostics. The high specific drug loading of radiometals into LCP, coupled with its ability to efficiently encapsulate many types of cytotoxic agents, allows a broad range of theranostic applications, many of which are yet unexplored. In addition to providing an overview of current medical imaging modalities, this review highlights the current theranostic applications for LCP using SPECT and PET, and discusses potential future uses of the platform by comparing it with both systemically and locally delivered clinical radiotherapy options as well as introducing its applications as an MRI contrast agent. Strengths and weaknesses of LCP and of nanoparticles in general are discussed, as well as caveats regarding the use of fluorescence to determine the accumulation or biodistribution of a probe.
Collapse
Affiliation(s)
- Andrew B. Satterlee
- 1. Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA
- 2. UNC and NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27599
| | - Leaf Huang
- 1. Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA
- 2. UNC and NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27599
| |
Collapse
|
29
|
Dasargyri A, Hervella P, Christiansen A, Proulx ST, Detmar M, Leroux JC. Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles. J Control Release 2016; 224:229-238. [PMID: 26774218 DOI: 10.1016/j.jconrel.2016.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 11/22/2022]
Abstract
Anisamide is a small benzamide previously suggested as a tumor-targeting ligand for nanocarriers and it has been shown to enhance tumor uptake in vitro as well as in vivo when grafted on the nanoparticle surface. Anisamide has been hypothesized to interact with the Sigma-1 receptor, based on the binding of larger benzamides, which contain anisamide in their structure, to this receptor. However, the interaction between anisamide and Sigma-1 receptor has never been thoroughly studied. We developed fluorescent PEGylated particles decorated with anisamide, which were preferentially taken up in vitro by melanoma cells compared to macrophages. The anisamide-decorated particles were used to study their interaction with the Sigma-1 receptor. The absence of competition of Sigma-1 receptor ligands for the particle uptake was a first indication that the receptor might not be involved in the uptake process. In addition, the extent of particle uptake did not correlate with the levels of cellular expression of Sigma-1 receptor in the cell models tested. Immunostaining of the receptor on melanoma cells revealed intracellular localization, indirectly excluding the possibility of anisamide binding to the receptor when grafted on the particles. All these data question the previously suggested Sigma-1 receptor-mediated uptake of the anisamide-decorated particles, a finding which may have an impact on the use of anisamide as a targeting ligand.
Collapse
Affiliation(s)
- Athanasia Dasargyri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Pablo Hervella
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Ailsa Christiansen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Steven T Proulx
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Michael Detmar
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland.
| |
Collapse
|
30
|
Maniya NH, Patel SR, Murthy Z. Development and in vitro evaluation of acyclovir delivery system using nanostructured porous silicon carriers. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
31
|
Sharma S, Verma A, Teja BV, Pandey G, Mittapelly N, Trivedi R, Mishra PR. An insight into functionalized calcium based inorganic nanomaterials in biomedicine: Trends and transitions. Colloids Surf B Biointerfaces 2015; 133:120-39. [PMID: 26094145 DOI: 10.1016/j.colsurfb.2015.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/28/2022]
Abstract
Over the recent years the use of biocompatible and biodegradable nanoparticles in biomedicine has become a significant priority. Calcium based ceramic nanoparticles like calcium phosphate (CaP) and calcium carbonate (CaCO3) are therefore considered as attractive carriers as they are naturally present in human body with nanosize range. Their application in tissue engineering and localized controlled delivery of bioactives for bones and teeth is well established now, but recently their use has increased significantly as carrier of bioactives through other routes also. These delivery systems have become most potential alternatives to other commonly used delivery system because of their cost effectiveness, biodegradability, chemical stability, controlled and stimuli responsive behaviour. This review comprehensively covers their characteristic features, method of preparation and applications but the thrust is to focus their recent development, functionalization and use in systemic delivery. On the same platform mineralization of other nanoparticulate delivery system which has widened their application drug delivery will be discussed. The emphasis has been given on their pH dependent properties which make them excellent carriers for tumour targeting and intracellular delivery. Finally this review also attempts to discuss their drawback which limits their clinical utility.
Collapse
Affiliation(s)
- Shweta Sharma
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Ashwni Verma
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - B Venkatesh Teja
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Gitu Pandey
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Naresh Mittapelly
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - P R Mishra
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India.
| |
Collapse
|
32
|
Dickherber A, Morris SA, Grodzinski P. NCI investment in nanotechnology: achievements and challenges for the future. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:251-65. [PMID: 25429991 DOI: 10.1002/wnan.1318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 08/28/2014] [Accepted: 10/11/2014] [Indexed: 12/31/2022]
Abstract
Nanotechnology offers an exceptional and unique opportunity for developing a new generation of tools addressing persistent challenges to progress in cancer research and clinical care. The National Cancer Institute (NCI) recognizes this potential, which is why it invests roughly $150 M per year in nanobiotechnology training, research and development. By exploiting the various capacities of nanomaterials, the range of nanoscale vectors and probes potentially available suggests much is possible for precisely investigating, manipulating, and targeting the mechanisms of cancer across the full spectrum of research and clinical care. NCI has played a key role among federal R&D agencies in recognizing early the value of nanobiotechnology in medicine and committing to its development as well as providing training support for new investigators in the field. These investments have allowed many in the research community to pursue breakthrough capabilities that have already yielded broad benefits. Presented here is an overview of how NCI has made these investments with some consideration of how it will continue to work with this research community to pursue paradigm-changing innovations that offer relief from the burdens of cancer.
Collapse
Affiliation(s)
- Anthony Dickherber
- Office of the Director, Center for Strategic Scientific Initiatives, NCI/NIH, Bethesda, MD, USA
| | | | | |
Collapse
|