1
|
Kumari D, Karmakar V, Sisinthy SP, Pandey M, Jain N, Gorain B. Nanoemulsion and nanoemulgel-based carriers as advanced delivery tools for the treatment of oral diseases. Drug Deliv Transl Res 2025; 15:1139-1155. [PMID: 39500820 DOI: 10.1007/s13346-024-01735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 01/03/2025]
Abstract
Oral diseases rank among the most widespread ailments worldwide posing significant global health and economic challenges affecting around 3.5 billion people, impacting the quality of life for affected individuals. Dental caries, periodontal disease, bacterial and fungal infections, tooth loss and oral malignancies are among the most prevalent global clinical disorders contributing to oral health burden. Traditional treatments for oral diseases often face challenges such as poor drug bioavailability, breakdown of medication in saliva, inconsistent antibiotic levels at the site of periodontal infection as well as higher side effects. However, the emergence of nanoemulgel (NEG) as an innovative drug delivery system offers promising solutions where NEG combines the advantages of both nanoemulsions (NEs) and hydrogels providing improved drug solubility, stability, and targeted delivery. Due to their minuscule size and ability to control drug release, NEGs hold promise for improving treatment of oral diseases, where versatility of these delivery systems makes them suitable for various applications, including topical delivery in dentistry. This review concisely outlines the anatomy of the oral environment and investigates the therapeutic potential of NE-based gels in oral disorder treatment. It thoroughly examines the challenges of drug delivery in the oral cavity and proposes strategies to improve therapeutic efficacy, drawing attention to previous research reports for comparison. Through comprehensive analysis, the review highlights the promising role of NEGs as a novel therapeutic approach for oral health management via research advancements and their clinical translation. Additionally, it provides valuable insights into future research directions and development opportunities in this area.
Collapse
Affiliation(s)
- Deepali Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | | | - Manisha Pandey
- Department of Pharmacy, Central University of Haryana, Mahendargarh, Haryana, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
2
|
Kumbhar PR, Desai H, Desai VM, Priya S, Rana V, Singhvi G. Versatility of emulgel in topical drug delivery transforming its expedition from bench to bedside. Expert Opin Drug Deliv 2025; 22:55-68. [PMID: 39641769 DOI: 10.1080/17425247.2024.2439457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Emulgel is a novel formulation that improves drug's stability and topical administration by combining emulsion and gel matrix. Its special structure improves skin penetration and prolongs the release of therapeutic molecules. Emulgel is unique in the commercial market because of its therapeutic effects, convenience of usage, and versatility in both pharmaceutical and cosmetic uses. This report focuses on how it may improve user experience and transform topical treatments. AREAS COVERED This review explores the commercial applicability of emulgels as a topical delivery system. Industrially applicable composition and manufacturing strategies have been discussed along with characterization techniques. The market landscape, being the most critical aspect, has been thoroughly discussed with recent case studies, clinical trials, patents, and commercial formulations. The compiled findings in this review are adapted from reputed databases like Scopus, PubMed, Web of Science, NIH, ClinicalTrials.gov, Espacenet, and recent research articles published between years 2010-2024 that discussed the applications of emulgel. EXPERT OPINION Emulgels have gained commercialization potential because of their efficient drug delivery and patient-friendly qualities. However, navigating regulatory complexity is important because imprecise classifications may affect market access. Sustained innovation will be essential for overcoming these obstacles and improving chances in future.
Collapse
Affiliation(s)
- Pragati Ramesh Kumbhar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani, India
| | - Harita Desai
- Department of Pharmaceutics, Bombay College of Pharmacy, Mathuradas Colony, Mumbai, India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani, India
| | - Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani, India
| | - Vikas Rana
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani, India
| |
Collapse
|
3
|
Mathew F, Saral AM. Designing, Optimising, and Assessing a Novel Emulgel Containing Minoxidil for Controlled Drug Release, Incorporating Marine-based Polymers. Curr Drug Deliv 2025; 22:231-247. [PMID: 38362691 DOI: 10.2174/0115672018271502231226113423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/10/2023] [Accepted: 12/17/2023] [Indexed: 02/17/2024]
Abstract
OBJECTIVE This study aimed to develop an emulgel containing minoxidil as a drug for hair growth promotion in diseases, such as androgenetic alopecia, using gelling agents, such as chitosan and fucoidan. METHODS In this study, gelling agents were selected for the emulgel formulation. By various evaluation tests and through optimization, the chitosan-fucoidan combination was selected as the gelling agent for the preparation of emulgel using various evaluation parameters. RESULTS X2, the best emulgel formulation, contained 2.54 % chitosan and 0.896 % fucoidan. Chitosan prolonged the duration of drug release, and controlled release was obtained. Fucoidan increased the gelling activity, water absorption rate, and stability of the formulation. In this study, the X2 formulation showed the highest percentage of drug release at the 12th hour. It was found to be 99.7%, which followed the zero-order release model. CONCLUSION Owing to the wide range of biological activities of fucoidan, the loaded active substance can be protected, and at the same time, its potency can be improved, resulting in effective treatment. Because fucoidan has diverse properties and potential, it will be widely used in the biomedical and pharmaceutical industries in the future.
Collapse
Affiliation(s)
- Flowerlet Mathew
- School of Advanced Sciences, VIT University, Vellore, India
- Nirmala College of Pharmacy, Ernakulam, Kerala, India
| | - A Mary Saral
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, India
| |
Collapse
|
4
|
Aratwar A, Maji I, Chilvery S, Mahajan S, Aalhate M, Gupta U, Godugu C, Singh PK. Contemplating Novel W/O Emulsion Based Gel for Anti-Psoriatic Activity of Tofacitinib in Imiquimod-Induced Balb/C Mice Model. AAPS PharmSciTech 2024; 26:12. [PMID: 39668265 DOI: 10.1208/s12249-024-03003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Tyrosine kinase inhibitors like tofacitinib (TCB), are excellent examples of small molecular compounds that have demonstrated success in treating psoriasis. The current study aims to improve the efficacy of TCB and reduce its systemic adverse effects by developing a topical w/o emulgel formulation that will ameliorate the anti-psoriatic activity in a model of Imiquimod-induced BALB/c mice. In order to create w/o emulgel, the TCB was incorporated into the w/o emulsion using Peppermint oil, Transcutol P®, and PEG-200 followed by converted into a gel by adding Carbopol 940. The final formulation was optimized by applying a 3-level, 3-factor Box-Behnken Design (BBD). The optimized formulation showed a viscosity of 560606.6 ± 80.8 cps (560 Pa.S), and firmness of 356 ± 48 g, and that was within the acceptable range with respect to the marketed emulgel preparation available for topical application. The developed TCB-emulgel also exhibited a controlled release profile, with 68.26 ± 8.33% release of TCB over 24 h and a 5-fold greater skin permeation as compared to normal TCB-gel. Apart from that, the application of TCB-emulgel on the diseased model results in a 3.3-times reduction in the PASI (Psoriasis Area Severity Index) scoring. Lastly, the epidermal reduction in histopathological evaluation, along with the reduction in TNF-α and Ki-67 levels observed in immunostaining, ensures the enhanced anti-psoriatic effect of the developed TCB-emulgel in comparison to the marketed product. To put it briefly, the findings of the study and the therapeutic effectiveness of the developed TCB-emulgel provide a strong basis for the clinical management of psoriasis in the future.
Collapse
Affiliation(s)
- Ashwini Aratwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Shrilekha Chilvery
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| |
Collapse
|
5
|
Patel P, Jinugu ME, Thareja P. Rheology and Extrusion Printing of κ-Carrageenan/Olive Oil Emulsion Gel Tablets with Varying Surface Area to Volume Ratios for Release of Vitamin C and Curcumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16069-16084. [PMID: 39058356 DOI: 10.1021/acs.langmuir.4c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In this work, κ-carrageenan and olive oil at different oil to κ-carrageenan ratios (OCR) are homogenized to create emulsion gels. Interestingly, confocal imaging shows that the oil droplets are stabilized in the κ-carrageenan-structured gel matrix without using any surfactants. Rheological studies show that the oil droplets enhanced the oscillatory yield stress and the maximum printable height of the emulsion gels. The creation of the emulsion gels with an OCR of 1:9-3:7 led to an improvement in the structural integrity of extrusion printed structures. The emulsion gel with an OCR of 3:7 efficiently encapsulates vitamin C in the aqueous phase and curcumin in the hydrophobic oil phase, enabling the extrusion 3D printing of tablets with varying surface area to volume (SA/V) ratios. The release of vitamin C and curcumin is influenced by the preparation method of printing versus casting and the SA/V ratio of the tablets. The hollow cylinder with the highest SA/V ratio was observed to have the highest vitamin C release, whereas for curcumin, the printed tablets had a higher release compared to the cast tablet. Additionally, through rheo-dissolution experiments, we observe a lower modulus and higher vitamin C release from the 3D-printed disc versus the higher modulus and lower vitamin C release from the cast disc tablet.
Collapse
Affiliation(s)
- Panchami Patel
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Manasi Esther Jinugu
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Prachi Thareja
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
- Dr. Kiran C. Patel Centre for Sustainable Development, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
6
|
Stolić Jovanović A, Tadić VM, Martinović M, Žugić A, Nešić I, Blagojević S, Jasnić N, Tosti T. Liposomal Encapsulation of Ascorbyl Palmitate: Influence on Skin Performance. Pharmaceutics 2024; 16:962. [PMID: 39065659 PMCID: PMC11280113 DOI: 10.3390/pharmaceutics16070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
L-ascorbic acid represents one of the most potent antioxidant, photoprotective, anti-aging, and anti-pigmentation cosmeceutical agents, with a good safety profile. However, the main challenge is the formulation of stable topical formulation products, which would optimize the penetrability of L-ascorbic acid through the skin. The aim of our research was to evaluate the performance of ascorbyl palmitate on the skin, incorporated in creams and emulgels (2%) as carriers, as well as to determine the impact of its incorporation into liposomes on the penetration profile of this ingredient. Tape stripping was used to study the penetration of ascorbyl palmitate into the stratum corneum. In addition, the sensory and textural properties of the formulations were determined. The liposomal formulations exhibited a better penetration profile (p < 0.05) of the active substance compared to the non-liposomal counterpart, leading to a 1.3-fold and 1.2 fold-increase in the total amount of penetrated ascorbyl palmitate in the stratum corneum for the emulgel and cream, respectively. Encapsulation of ascorbyl palmitate into liposomes led to an increase in the adhesiveness and density of the prepared cream and emulgel samples. The best spreadability and absorption during application were detected in liposomal samples. The obtained results confirmed that liposomal encapsulation of ascorbyl palmitate improved dermal penetration for both the cream and emulgel formulations.
Collapse
Affiliation(s)
| | - Vanja M. Tadić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia; (V.M.T.); (A.Ž.)
| | - Milica Martinović
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia; (M.M.); (I.N.)
| | - Ana Žugić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia; (V.M.T.); (A.Ž.)
| | - Ivana Nešić
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia; (M.M.); (I.N.)
| | - Stevan Blagojević
- The Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Beograd, Serbia;
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Beograd, Serbia;
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy-National Institute of the Republic of Serbia, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| |
Collapse
|
7
|
Badruddoza AZM, Zahid MI, Walsh T, Shah J, Gates D, Yeoh T, Nurunnabi M. Topical drug delivery by Sepineo P600 emulgel: Relationship between rheology, physical stability, and formulation performance. Int J Pharm 2024; 658:124210. [PMID: 38718972 DOI: 10.1016/j.ijpharm.2024.124210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The objective of this present work was to develop and optimize oil-in-water (O/W) emulsion-based gels, namely emulgels that allow maximum topical drug delivery while having desired microstructure and acceptable physical stability. Emulgels containing 2.0 wt% lidocaine were prepared using various concentrations (0.75-5.0 wt%) of Sepineo P600. Their droplet size distribution, physical stability, rheological behaviors, in vitro drug release, and skin permeation profiles were evaluated. Results show that the concentration of Sepineo P600 significantly influenced the microstructure, rheology, and physical stability of the emulgel formulations. The physico-chemical properties also reveals that at least 1.0 wt% Sepineo P600 was needed to produce stable emulgel formulations. All formulations exhibited non-Newtonian shear-thinning properties which are desirable for topical applications. Both the release and permeation rates decreased with increasing viscosity and rigidity of the formulation. The lower the complex modulus of the emulgels, the higher the steady-state flux of the drug through the skin. Adding Sepineo P600 to emulgel systems resulted in increased rheological properties, which in turn slowed the diffusion of the drug for in vitro release. Although as expected skin permeation was rate limiting since in vitro release was 3 to 4 log-fold faster than skin flux. However, an interesting finding was that the derived skin/vehicle partition coefficient suggested the ionic interaction between lidocaine and Sepineo polymer reducing the free drug, i.e., thermodynamic activity and hence the flux with increasing Sepineo P600 concentration. Overall, this study has provided us with valuable insights into understanding the relationship between the microstructure (rheology), physical stability and skin drug delivery properties which will help to design and optimize topical emulgel formulations.
Collapse
Affiliation(s)
- Abu Zayed Md Badruddoza
- Pharmaceutical Sciences Small Molecule, Pfizer Worldwide Research and Development, Groton, CT 06340, USA.
| | - Md Ikhtiar Zahid
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, TX 79902, USA
| | - Taylor Walsh
- Eurofins Lancaster Laboratories Professional Scientific Services, Lancaster, PA 17601, USA
| | - Jaymin Shah
- Pharmaceutical Sciences Small Molecule, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Dana Gates
- Pharmaceutical Sciences Small Molecule, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Thean Yeoh
- Pharmaceutical Sciences Small Molecule, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, TX 79902, USA.
| |
Collapse
|
8
|
Khadivi Y, Shakeri S, Arjmandmazidi S, Shokri J, Monajjemzadeh F. The effect of emulgel preparation on the stability of Kojic acid in the topical anti-hyperpigmentation products. J Cosmet Dermatol 2024; 23:2145-2155. [PMID: 38415395 DOI: 10.1111/jocd.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND The emulgel, a novel drug delivery system, merges emulsion and gel, offering advantages like enhanced stability, precise control over drug release kinetics, and increased drug absorption compared to emulsions alone. Kojic acid (KA) demonstrates potent inhibition of the tyrosinase enzyme, a crucial player in the melanin synthesis pathway. AIMS The main objective of this experimental study is to formulate KA within an emulgel framework and assess its stability under various environmental conditions. METHODS One percent of KA emulgel and 1% simple gel, serving as the control product, were supplemented with varying concentrations of sodium metabisulfite (SMBS) for its antioxidant properties. The formulations were segregated into four groups and subjected to diverse maintenance and stress conditions over a three-month period. Monthly evaluations of physicochemical alterations were conducted, initially employing digital photography, followed by the extraction of KA and subsequent quantification of its concentration through high performance liquid chromatography (HPLC). RESULTS The best formulations for retaining KA among the prepared ones were the 0.25% SMBS KA emulgel and the 0.1% SMBS KA simple gel, capable of retaining 86% and 76% of the initial KA content under stress conditions, respectively (p < 0.0001). CONCLUSIONS Regarding to this study, ideal storage condition for KA emulgel and simple gel is in the refrigerator temperatures. Moreover, optimal SMBS concentrations for stability enhancement are 0.25% for emulgel and 0.1% for the simple gel. A significant statistical difference was observed between refrigerated emulgel and simple gel in the retention of KA in the presence of optimum concentration of antioxidants (p < 0.0001).
Collapse
Affiliation(s)
- Yousef Khadivi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saina Shakeri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Arjmandmazidi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Shokri
- Dermatology & Dermopharmacy Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Monajjemzadeh
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
de Souza FFP, Castro-Silva II, Andrade FK, Mattos ALA, de Sousa Lopes M, da Silva Barroso W, de Souza BWS, de Sá Moreira de Souza-Filho M, da Silva ALC. Emulgel based on fish skin collagen-microalgae-silver increased neovascularization and re-epithelialization of full thickness burn in rats. J Biomed Mater Res B Appl Biomater 2024; 112:e35399. [PMID: 38533823 DOI: 10.1002/jbm.b.35399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Deep skin burn represents a global morbidity and mortality problem, and the limitation of topical treatment agents has motivated research to development new formulations capable of preventing infections and accelerating healing. The aim of this work was to develop and characterize an emulgel based on collagen (COL) and gelatin (GEL) extracted from fish skin associated with Chlorella vulgaris extract (CE) and silver nitrate (AgNO3). COL and GEL were characterized by physicochemical and thermal analyses; and CE by electrophoresis and its antioxidant capacity. Three emulgels formulations were developed: COL (0.5%) + GEL (2.5%) (E1), COL+GEL+CE (1%) (E2), and COL+GEL+CE + AgNO3 (0.1%) (E3). All formulations were characterized by physicochemical, rheology assays, and preclinical analyses: cytotoxicity (in vitro) and healing potential using a burn model in rats. COL and GEL showed typical physicochemical characteristics, and CE presented 1.3 mg/mL of proteins and antioxidant activity of 76%. Emulgels presented a coherent physicochemical profile and pseudoplastic behavior. Preclinical analysis showed concentration-dependent cytotoxicity against fibroblast and keratinocytes. In addition, all emulgels induced similar percentages of wound contraction and complete wound closure in 28 days. The histopathological analysis showed higher scores for polymorphonuclear cells to E1 and greater neovascularization and re-epithelialization to E3. Then, E3 formulation has potential to improve burn healing, although its use in a clinical setting requires further studies.
Collapse
Affiliation(s)
- Francisco Fábio Pereira de Souza
- Molecular Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do PIci, Fortaleza, Ceará, Brazil
| | | | - Fábia Karine Andrade
- Biomaterials and Bioproducts Research Laboratory, Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | | | | | - Wallady da Silva Barroso
- Molecular Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do PIci, Fortaleza, Ceará, Brazil
| | | | | | - André Luis Coelho da Silva
- Molecular Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do PIci, Fortaleza, Ceará, Brazil
| |
Collapse
|
10
|
Zhang M, Zhang BY, Sun X, Liu YA, Yu Z, Wang X, Xu N. Freeze-thaw stability of transglutaminase-induced soy protein-maltose emulsion gel: Focusing on morphology, texture properties, and rheological characteristics. Int J Biol Macromol 2024; 261:129716. [PMID: 38290624 DOI: 10.1016/j.ijbiomac.2024.129716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
In this study, soy protein isolate (SPI) and maltose (M) were employed as materials for the synthesis of a covalent compound denoted as SPI-M. The emulsion gel was prepared by transglutaminase (TGase) as catalyst, and its freeze-thaw stability was investigated. The occurrence of Maillard reaction was substantiated through SDS-PAGE. The analysis of spectroscopy showed that the structure of the modified protein was more stretched, changed in the direction of freeze-thaw stability. After three freeze-thaw cycles (FTC), it was observed that the water holding capacity of SPI-M, SPI/M mixture (SPI+M) and SPI emulsion gels exhibited reductions of 8.49 %, 16.85 %, and 20.26 %, respectively. Moreover, the soluble protein content also diminished by 13.92 %, 23.43 %, and 35.31 %, respectively. In comparison to unmodified SPI, SPI-M exhibited increase in gel hardness by 160 %, while elasticity, viscosity, chewability, and cohesion demonstrated reductions of 17.7 %, 23.3 %, 33.3 %, and 6.76 %, respectively. Concurrently, the SPI-M emulsion gel exhibited the most rapid gel formation kinetics. After FTCs, the gel elastic modulus (G') and viscosity modulus (G″) of SPI-M emulsion were the largest. DSC analysis underscored the more compact structure and heightened thermal stability of the SPI-M emulsion gel. SEM demonstrated that the SPI-M emulsion gel suffered the least damage following FTCs.
Collapse
Affiliation(s)
- Mengyue Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bo-Ya Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaotong Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yi-An Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhichao Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xibo Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Ning Xu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
Alissa M, Hjazi A, Abusalim GS, Aloraini GS, Alghamdi SA, Alharthi NS, Rizg WY, Hosny KM, Binmadi N. Utilization of nanotechnology and experimental design in the development and optimization of a posaconazole‒calendula oil nanoemulgel for the treatment of mouth disorders. Front Pharmacol 2024; 15:1347551. [PMID: 38434704 PMCID: PMC10905964 DOI: 10.3389/fphar.2024.1347551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction: Essential oil‒based nanoemulsions (NEs) are the subjects of extensive investigation due to their potential to address a variety of oral health issues. NEs are delivery systems that improve lipid medicine solubility and distribution to intended sites. The goal of the current study was to create and enhance a self-nanoemulsifying drug delivery paradigm based on calendula oil (CO) and decorated with chitosan (CS) that could deliver posaconazole (PSZ) for the treatment of gingivitis. Method: Employing a response-surface Box‒Behnken design, PSZ-CO-CS NEs were created with varying amounts of PSZ (10, 15, and 20 mg), percentages of CO (6%, 12%, and 18%), and percentages of CS (0.5%, 1.5%, and 2.5%). Results and conclusion: The optimized formulation resulted in a 22-mm bacterial growth suppression zone, 25-mm fungal growth inhibition zone, droplet sizes of 110 nm, and a viscosity of 750 centipoise (cP). Using the appropriate design, the ideal formulation was produced; it contained 20 mg of PSZ, 18% of CO, and 1.35% of CS. Furthermore, the optimal formulation had a more controlled drug release, larger inhibition zones of bacterial and fungal growth, and desirable rheologic properties. Additionally, the optimized formulation substantially lowered the ulcer index in rats when tested against other formulations. Thus, this investigation showed that PSZ-CO-CS NEs could provide efficient protection against microbially induced gingivitis.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghadah S. Abusalim
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghfren S. Aloraini
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Suad A. Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nahed S. Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nada Binmadi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Park JR, Kim G, Won J, Kim CW, Park D. Evaluation of Doxorubicin-loaded Echogenic Macroemulsion for Targeted Drug Delivery. Curr Drug Deliv 2024; 21:785-793. [PMID: 37016528 DOI: 10.2174/1567201820666230403111118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND The latest technology trend in targeted drug delivery highlights stimuliresponsive particles that can release an anticancer drug in a solid tumor by responding to external stimuli. OBJECTIVE This study aims to design, fabricate, and evaluate an ultrasound-responsive drug delivery vehicle for an ultrasound-mediated drug delivery system. METHODS The drug-containing echogenic macroemulsion (eME) was fabricated by an emulsification method using the three phases (aqueous lipid solution as a shell, doxorubicin (DOX) contained oil, and perfluorohexane (PFH) as an ultrasound-responsive agent). The morphological structure of eMEs was investigated using fluorescence microscopy, and the size distribution was analyzed by using DLS. The echogenicity of eME was measured using a contrast-enhanced ultrasound device. The cytotoxicity was evaluated using a breast cancer cell (MDA-MB-231) via an in vitro cell experiment. RESULTS The obtained eME showed an ideal morphological structure that contained both DOX and PFH in a single particle and indicated a suitable size for enhancing ultrasound response and avoiding complications in the blood vessel. The echogenicity of eME was demonstrated via an in vitro experiment, with results showcasing the potential for targeted drug delivery. Compared to free DOX, enhanced cytotoxicity and improved drug delivery efficiency in a cancer cell were proven by using DOX-loaded eMEs and ultrasound. CONCLUSION This study established a platform technology to fabricate the ultrasound-responsive vehicle. The designed drug-loaded eME could be a promising platform with ultrasound technology for targeted drug delivery.
Collapse
Affiliation(s)
- Jong-Ryul Park
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Gayoung Kim
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Jongho Won
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Chul-Woo Kim
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Donghee Park
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| |
Collapse
|
13
|
Song L, Zhang W, Tang SY, Luo SM, Xiong PY, Liu JY, Hu HC, Chen YQ, Jia B, Yan QH, Tang SQ, Huang W. Natural products in traditional Chinese medicine: molecular mechanisms and therapeutic targets of renal fibrosis and state-of-the-art drug delivery systems. Biomed Pharmacother 2024; 170:116039. [PMID: 38157643 DOI: 10.1016/j.biopha.2023.116039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Renal fibrosis (RF) is the end stage of several chronic kidney diseases. Its series of changes include excessive accumulation of extracellular matrix, epithelial-mesenchymal transition (EMT) of renal tubular cells, fibroblast activation, immune cell infiltration, and renal cell apoptosis. RF can eventually lead to renal dysfunction or even renal failure. A large body of evidence suggests that natural products in traditional Chinese medicine (TCM) have great potential for treating RF. In this article, we first describe the recent advances in RF treatment by several natural products and clarify their mechanisms of action. They can ameliorate the RF disease phenotype, which includes apoptosis, endoplasmic reticulum stress, and EMT, by affecting relevant signaling pathways and molecular targets, thereby delaying or reversing fibrosis. We also present the roles of nanodrug delivery systems, which have been explored to address the drawback of low oral bioavailability of natural products. This may provide new ideas for using natural products for RF treatment. Finally, we provide new insights into the clinical prospects of herbal natural products.
Collapse
Affiliation(s)
- Li Song
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shi-Yun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Si-Min Luo
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Pei-Yu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Yu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Heng-Chang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying-Qi Chen
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian-Hua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China.
| | - Song-Qi Tang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Wei Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
14
|
Kumari V, Bajpai M. Formulation and Characterization of Emulgel Lornoxicam Containing Lemon Grass Oil as Penetration Enhancer. Antiinflamm Antiallergy Agents Med Chem 2024; 23:164-173. [PMID: 39069701 DOI: 10.2174/0118715230289163240703075629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Emulgel dosage form is an advanced form of transdermal drug delivery. It is a combination of emulsion and gel in a definite ratio. Emulsions are incorporated into the gel with proper mixing. The emulsion present in emulgel can be either oil/water or water/oil, which is thickened by mixing it with a gelling agent. MATERIALS AND METHODS On the basis of the solubility of lornoxicam in various oils, a surfactant and a co-surfactant were selected for further research. For the preparation of emulgel, the emulsion was prepared with Smix (surfactant and co-surfactant) in a ratio of 1:2. The prepared emulsion was incorporated into different concentrations of carbapol 934 in a 1:1 ratio to make a homogenous emulgel. RESULTS The emulgel was inspected visually to see if it had any phase behaviour, spreadability, or grittiness by applying it to a slide. All formulations were evaluated for pH, physical properties, drug content, spreadability, extrudability, swelling index, viscosity, and centrifugation. Franz diffusion cell was used to perform in-vitro release of formulation with the help of egg membrane. Among all formulations, F3 showed 83% release after 6 hours and showed acceptable physical properties like homogeneity, colour, consistency, pH value, spreadability, extrudability, and drug content. DISCUSSION Thus, emulgel can be regarded as a more feasible drug delivery system for hydrophobic drugs (lornoxicam) than the currently marketed formulation. Optimized emulgel formulation consists of a microemulsion of lornoxicam, 1% of carbopol 934, propylene glycol, sodium benzoate, lemon grass oil, glycerin, and distilled water. In the in-vitro release studies, pH 7.4 phosphate buffer emulgel formulation (F3) showed 83% after 6 hours. Emulgel was found to be stable under stable conditions. CONCLUSION The emulgel of the poorly water-soluble drug (lornoxicam) was formulated. The components and their optimum ratio for the formulation of microemulsion were obtained by solubility studies and droplet size analysis. Thus, microemulsion can be regarded as a more feasible dose delivery system for lornoxicam than the currently marketed tablet, capsule, and injection formulations. Optimized microemulsion of lornoxicam was incorporated into the gel base. Therefore, it may be concluded that emulgel of lornoxicam can be used as a controlledrelease dosage form of the drug for local application in rheumatoid arthritis.
Collapse
Affiliation(s)
- Vibha Kumari
- Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, 281406, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, 281406, India
| |
Collapse
|
15
|
Masood S, Arshad MS, Khan HMS, Begum MY, Khan KUR. Encapsulation of Leptadenia pyrotechnica (Khip) Extract in Carbomer Based Emulgel for Its Enhanced Antioxidant Effects and Its In Vitro Evaluation. Gels 2023; 9:977. [PMID: 38131963 PMCID: PMC10743248 DOI: 10.3390/gels9120977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The use of natural products in skin care has been valued for their tremendous therapeutic benefits since ancient times. The current study was aimed at exploring the Leptadenia pyrotechnica plant extract and development of a stable emulgel loaded with the same extract to assess its cosmeceutical potentials. METHODOLOGY A stable emulgel loaded with methanolic plant extract along with its control gel was prepared by homogenization. The antioxidant potential of extracts prepared in different solvents (methanol MLP, ethanol ELP, n-hexane nLP, ethyl acetate EALP, and petroleum ether PLP) was determined by DPPH scavenging activity. The presence of phytochemicals was confirmed by total phenolic and flavonoid content analysis (TPC/TFC). HPLC was used for quantification of bioactive components. FTIR analysis was performed for confirmation of functional groups. SPF was calculated via spectroscopic analysis for extract, control gel, and extract loaded emulgel. Stability studies included physical evaluation, pH, conductivity, spreadability, and rheological testing of both control and test emulgels at different temperatures, i.e., 8 °C ± 1, 25 °C ± 1, 40 °C ± 1, 40 °C ± 1 with RH of 75% for a period of 90 days. RESULTS DPPH radical scavenging activity showed the highest antioxidant activity of 85.5% ± 2.78 for MLP. TPC and TFC were also found to be highest for the methanolic fraction, i.e., 190.98 ± 0.40 mgGAE/g and 128.28 ± 2.64 mgQE/g, respectively. The SPF of methanolic extract, placebo gel, and LPEG was 13.43 ± 0.46, 2.37 ± 0.33, and 7.28 ± 0.56, respectively. HPLC assay confirmed the presence of catechin, vanillic acid, caffeic acid, and sinapinic acid. Rheological analysis showed that formulation has pseudo-plastic flow behavior. Other stability tests also revealed that prepared emulgel is a stable one. CONCLUSION A stable emulgel loaded with Leptadenia pyrotechnica plant extract was successfully prepared and characterized for its cosmetic effects.
Collapse
Affiliation(s)
- Shamaila Masood
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakriya University, Multan 60800, Pakistan; (S.M.); (M.S.A.)
| | - Muhammad Sohail Arshad
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakriya University, Multan 60800, Pakistan; (S.M.); (M.S.A.)
| | - Haji Muhammad Shoaib Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Kashif ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| |
Collapse
|
16
|
Kitisin T, Muangkaew W, Thitipramote N, Pudgerd A, Sukphopetch P. The study of tryptophol containing emulgel on fungal reduction and skin irritation. Sci Rep 2023; 13:18881. [PMID: 37919393 PMCID: PMC10622431 DOI: 10.1038/s41598-023-46121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023] Open
Abstract
Tryptophol (TOH), a fungal quorum-sensing molecule, that possesses anti-fungal activities for controlling the growth of human pathogenic fungi. In the present study, we developed TOH-containing emulgel formulations and examined the antifungal activities and potential use as topical treatments on the skin. The results showed that TOH-containing emulgel at 1000 μM has excellent physical characteristics as homogenous, stability, and inhibits the growth of 30 species of human pathogenic fungi in vitro. TOH-containing emulgel did not cause skin irritation in mouse model of irritation and in healthy human volunteers. Moreover, an increase in skin hydration and a decrease in trans-epidermal water loss (TEWL) were observed after TOH-containing emulgel treatment on human skin. Our findings indicated that TOH-containing emulgel can be utilize as an antifungal agent for topical treatment against fungal infections on the skin.
Collapse
Affiliation(s)
- Thitinan Kitisin
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Arnon Pudgerd
- Division of Anatomy, School of Medical Science, University of Phayao, Muang, Phayao, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
17
|
Siafaka PI, Özcan Bülbül E, Okur ME, Karantas ID, Üstündağ Okur N. The Application of Nanogels as Efficient Drug Delivery Platforms for Dermal/Transdermal Delivery. Gels 2023; 9:753. [PMID: 37754434 PMCID: PMC10529964 DOI: 10.3390/gels9090753] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
The delivery of active molecules via the skin seems to be an efficient technology, given the various disadvantages of oral drug administration. Skin, which is the largest human organ of the body, has the important role of acting as a barrier for pathogens and other molecules including drugs; in fact, it serves as a primary defense system blocking any particle from entering the body. Therefore, to overcome the skin barriers and poor skin permeability, researchers implement novel carriers which can effectively carry out transdermal delivery of the molecules. Another significant issue which medical society tries to solve is the effective dermal delivery of molecules especially for topical wound delivery. The application of nanogels is only one of the available approaches offering promising results for both dermal and transdermal administration routes. Nanogels are polymer-based networks in nanoscale dimensions which have been explored as potent carriers of poorly soluble drugs, genes and vaccines. The nanogels present unique physicochemical properties, i.e., high surface area, biocompatibility, etc., and, importantly, can improve solubility. In this review, authors aimed to summarize the available applications of nanogels as possible vehicles for dermal and transdermal delivery of active pharmaceutical ingredients and discuss their future in the pharmaceutical manufacturing field.
Collapse
Affiliation(s)
- Panoraia I. Siafaka
- Department of Life Sciences, School of Sciences, Faculty of Pharmacy, European University Cyprus, 2404 Nicosia, Cyprus
| | - Ece Özcan Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, 34010 Istanbul, Turkey;
| | - Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, 34116 Istanbul, Turkey;
| | | | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, 34668 Istanbul, Turkey;
| |
Collapse
|
18
|
Vichare R, Crelli C, Liu L, McCallin R, Cowan A, Stratimirovic S, Herneisey M, Pollock JA, Janjic JM. Folate-conjugated near-infrared fluorescent perfluorocarbon nanoemulsions as theranostics for activated macrophage COX-2 inhibition. Sci Rep 2023; 13:15229. [PMID: 37709807 PMCID: PMC10502124 DOI: 10.1038/s41598-023-41959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
Activated macrophages play a critical role in the orchestration of inflammation and inflammatory pain in several chronic diseases. We present here the first perfluorocarbon nanoemulsion (PFC NE) that is designed to preferentially target activated macrophages and can deliver up to three payloads (two fluorescent dyes and a COX-2 inhibitor). Folate receptors are overexpressed on activated macrophages. Therefore, we introduced a folate-PEG-cholesterol conjugate into the formulation. The incorporation of folate conjugate did not require changes in processing parameters and did not change the droplet size or fluorescent properties of the PFC NE. The uptake of folate-conjugated PFC NE was higher in activated macrophages than in resting macrophages. Flow cytometry showed that the uptake of folate-conjugated PFC NE occurred by both phagocytosis and receptor-mediated endocytosis. Furthermore, folate-conjugated PFC NE inhibited the release of proinflammatory cytokines (TNF-α and IL-6) more effectively than nonmodified PFC NE, while drug loading and COX-2 inhibition were comparable. The PFC NEs reported here were successfully produced on multiple scales, from 25 to 200 mL, and by using two distinct processors (microfluidizers: M110S and LM20). Therefore, folate-conjugated PFC NEs are viable anti-inflammatory theranostic nanosystems for macrophage drug delivery and imaging.
Collapse
Affiliation(s)
- Riddhi Vichare
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Caitlin Crelli
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Lu Liu
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Rebecca McCallin
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Abree Cowan
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Stefan Stratimirovic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Michele Herneisey
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - John A Pollock
- Department of Biological Sciences, School of Science and Engineering, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
19
|
Saeed J, Hussain Shah SN, Javed H, Aslam A, Ali A, Siddique F, Zahra T, Bin Jardan YA, Wondmie GF, Nafidi HA, Bourhia M. Experimental and in silico evaluation of Carthamus tinctorius L. oil emulgel: a promising treatment for bacterial skin infections. Front Cell Infect Microbiol 2023; 13:1253095. [PMID: 37731820 PMCID: PMC10508954 DOI: 10.3389/fcimb.2023.1253095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
Purpose The current study aimed to develop a topical herbal emulgel containing Carthamus tinctorius L. (CT) oil extract, which has been scientifically proven for its antibacterial and antioxidant activities for the ailment of bacterial skin infections. Method The CT emulgel was formulated by response surface methodology (RSM) and was evaluated by various parameters like extrudability, spreadability, pH, viscosity, and antibacterial and antioxidant activities. Molecular docking was also performed using AutoDock. Results Among all formulated CT emulgels, F9 and F8 were optimized. Optimized formulations had shown good spreadability and extrudability characteristics. Sample F8 had % inhibition of 42.131 ± 0.335, 56.720 ± 0.222, and 72.440 ± 0.335 at different concentrations. Sample F9 had % inhibition of 26.312 ± 0.280, 32.461 ± 0.328, and 42.762 ± 0.398 at concentrations of 250 µg/ml, 500 µg/ml, and 1,000 µg/ml, respectively, which shows that both samples F8 and F9 have significant antioxidant potential. Optimized CT emulgels F8 and F9 had significant antibacterial activity against Staphylococcus aureus and Escherichia coli at p-value = 0.00, the Emulgel-F8 shows zone of inhibition of 24 mm for E-coli and 19 mm for S-aureus. Emulgel-F9 shows zone of inhibition of 22 mm for E-coli and 15 mm for S-aureus while pure CT- Oil extract shows zone of inhibition of 25 mm for E-coli and 20 mm for S-aureus and ciprofloxacin used as standard shows 36mm zone of inhibition against both E-coli and S-aureus. The comparative investigation through molecular docking binding affinities and interactions of ligands with various target proteins provides insights into the molecular processes behind ligand binding and may have significance for drug discovery and design for the current study. Conclusion The current study suggests that C. tinctorius L.-based emulgel has good antioxidant and antibacterial activities against E. coli for the treatment of bacterial skin infections.
Collapse
Affiliation(s)
- Javaria Saeed
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Syed Nisar Hussain Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Hina Javed
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Asma Aslam
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Anam Ali
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Tahreem Zahra
- Institute of Zoology, Bahauddin Zakariya University, Multan, Pakistan
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| |
Collapse
|
20
|
Mahmood A, Erum A, Tulain UR, Malik NS, Saleem A, Alqahtani MS, Malik MZ, Siddiqui M, Safdar A, Malik A. Exploring the gelling properties of Plantago ovata-based Arabinoxylan: Fabrication and optimization of a topical emulgel using response surface methodology. PLoS One 2023; 18:e0290223. [PMID: 37607173 PMCID: PMC10443879 DOI: 10.1371/journal.pone.0290223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Prime objective of the current research was to develop a stable nimesulide emulgel with the help of arabinoxylan, a natural gelling agent extracted from Plantago ovata. The response surface methodology was used by a Design Expert 10 software to formulate and optimize the emulgel. The experimental design approach evaluated the impact of independent and dependent variables. Independent variables were different concentrations of arabinoxylan, span 80 and tween 20, whereas, dependent variables were viscosity, pH, and content uniformity. FTIR demonstrated the compatibility of nimesulide with the excipients. Stability study indicated no phase separation and no change in pH for formulation F1, F3 and F4. The negative values of zeta potential revealed the excellent stability of emulgel. Viscosity, spreadability and extrudability values were in desired range. Ex-vivo permeation study illustrated 86%, 55% and 66% release of the drug over a period of 24 h from the formulations F1, F3 and F4, respectively. Analgesic effect of the optimized emulgel was significantly higher in test group as compared to control and did not produce any sort of irritation. Therefore, it can be concluded that the newly developed emulgel based on arabinoxylan, as gelling agent, appear to be an effective drug delivery system.
Collapse
Affiliation(s)
- Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi, UAE
- AAU Health and Biomedical Research Center (HBRC) Al Ain University, Abu Dhabi, UAE
| | - Alia Erum
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | | | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Aneeqa Saleem
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Mohammed S. Alqahtani
- Department of Pharmaceutics, Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Mahwish Siddiqui
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Asif Safdar
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Abdul Malik
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
21
|
Mulukuri NVLS, Dhara M, Gupta D, Devi K, Kumar P. Development and Optimization of Novel Emulgel Loaded with Andrographolide-Rich Extract and Sesame Oil Using Quality by Design Approach: In Silico and In Vitro Cytotoxic Evaluation against A431 Cells. Gels 2023; 9:507. [PMID: 37504386 PMCID: PMC10379390 DOI: 10.3390/gels9070507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023] Open
Abstract
An epidermoid carcinoma is a form of non-melanoma skin cancer that originates from the outer layer of the skin's squamous cells. Previous studies have shown that andrographis extract and andrographolide inhibit the growth and proliferation of epidermoid carcinoma cells while also inducing cell cycle arrest and apoptosis. The objective of this study was to improve the anticancer efficacy of the andrographolide-rich extract by delivering it in the form of nanoemulgel. During the formulation of emulgels, sonication, and homogenization were employed, and a 22-factorial design was used to optimize the formulations through the quality by design (QbD) approach. The optimized formulation (AEE8) was subjected to preliminary evaluations along with particle size, drug release, and scanning electron microscopy (SEM) studies. The potential of the optimized emulgel against A431 cell lines was also investigated using MTT assay followed by flow cytometric analysis. The SEM results reveal that the optimized emulgel had a well-defined spherical shape, with a droplet size of 226 ± 1.8 nm, a negative surface charge of -30.1 ± 1.6 mV, and a PDI of 0.157. The cellular data indicate that AEE8 reduced the viability of the A431 cells with an IC50 of 16.56 μg/mL, as determined by MTT assay when compared to cells treated with the extract alone. Furthermore, the flow cytometric analysis of the optimized emulgel formulation demonstrated a marked G2/M phase arrest. This finding further supports the effectiveness of the gel in disrupting the cell cycle at the critical G2 and M phases, which are pivotal for cell division and proliferation. This disruption in cell cycle progression can impede the growth and spread of cancer cells, making the gel a promising candidate for anti-skin-cancer therapy. The safety of emulgels (AEE8) was validated through rigorous biocompatibility testing conducted on HDF (human dermal fibroblast) cell lines, ensuring their suitability for use. Considering the potential of the nanoemulgel, particularly AEE8, as demonstrated by its favorable properties and its ability to disrupt the cell cycle, it holds great promise as an innovative approach to treating skin cancer.
Collapse
Affiliation(s)
- N V L Sirisha Mulukuri
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, India
| | - Moumita Dhara
- Nitte College of Pharmaceutical Sciences, Bangalore 560064, India
| | - Dheeraj Gupta
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, India
| | - Kusum Devi
- Nitte College of Pharmaceutical Sciences, Bangalore 560064, India
| | - Pankaj Kumar
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
22
|
Milutinov J, Krstonošić V, Ćirin D, Pavlović N. Emulgels: Promising Carrier Systems for Food Ingredients and Drugs. Polymers (Basel) 2023; 15:polym15102302. [PMID: 37242878 DOI: 10.3390/polym15102302] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Novel delivery systems for cosmetics, drugs, and food ingredients are of great scientific and industrial interest due to their ability to incorporate and protect active substances, thus improving their selectivity, bioavailability, and efficacy. Emulgels are emerging carrier systems that represent a mixture of emulsion and gel, which are particularly significant for the delivery of hydrophobic substances. However, the proper selection of main constituents determines the stability and efficacy of emulgels. Emulgels are dual-controlled release systems, where the oil phase is utilized as a carrier for hydrophobic substances and it determines the occlusive and sensory properties of the product. The emulsifiers are used to promote emulsification during production and to ensure emulsion stability. The choice of emulsifying agents is based on their capacity to emulsify, their toxicity, and their route of administration. Generally, gelling agents are used to increase the consistency of formulation and improve sensory properties by making these systems thixotropic. The gelling agents also impact the release of active substances from the formulation and stability of the system. Therefore, the aim of this review is to gain new insights into emulgel formulations, including the components selection, methods of preparation, and characterization, which are based on recent advances in research studies.
Collapse
Affiliation(s)
- Jovana Milutinov
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Veljko Krstonošić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dejan Ćirin
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
23
|
Inal O, Amasya G, Sezgin Bayindir Z, Yuksel N. Development and quality assessment of glutathione tripeptide loaded niosome containing carbopol emulgels as nanocosmeceutical formulations. Int J Biol Macromol 2023; 241:124651. [PMID: 37119885 DOI: 10.1016/j.ijbiomac.2023.124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
This study focuses on the preparation, physicopharmaceutical and mechanical characterization of reduced glutathione tripeptide loaded niosome containing emulgels as a novel nanocosmeceutical product. Prepared emulgel formulations were mainly composed of oily phase containing different lipids such as glycerine dibehenate, cetyl alcohol, cetearyl alcohol, etc., and aqueous phase containing Carbopol934® as gelling agent. Niosomal lipidic vesicles prepared from Span 60 and cholesterol were subsequently incorporated into optimum emulgel formulations. The pH, viscosity, and textural/mechanical properties of emulgels were examined before and after the incorporation of niosomes. The viscoelasticity and morphological characterization were performed on the final formulation before the packed formulation's microbiological stability test. The hardness and compressibility results ensured easy removal of the emulgel from the container. Due to the carboxyl groups of Carbopol934®, moderate adhesiveness with good cohesiveness was achieved. The rheological characteristics of the emulgels were estimated by oscillatory testing and the data fitted with the Herschel-Bulkley model. Thus, the viscoelastic properties and shear-thinning flow of emulgels were demonstrated. The final formulation was microbiologically stable, and pathogens or skin-irritating allergens were not detected. An anti-aging cosmeceutical preparation containing glutathione tripeptide loaded lipid-based niosome dispersion, suitable for topical use due to its textural and viscosity properties, was successfully produced.
Collapse
Affiliation(s)
- Ozge Inal
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Turkey.
| | - Gulin Amasya
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Turkey.
| | - Zerrin Sezgin Bayindir
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Turkey.
| | - Nilufer Yuksel
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Turkey.
| |
Collapse
|
24
|
Oliveira R, Almeida IF. Patient-Centric Design of Topical Dermatological Medicines. Pharmaceuticals (Basel) 2023; 16:ph16040617. [PMID: 37111373 PMCID: PMC10144586 DOI: 10.3390/ph16040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Topical treatments are essential approaches to skin diseases but are associated with poor adherence. Topical vehicles have the primary purpose of ensuring drug effectiveness (by modulating drug stability and delivery, as well as skin properties) but have a marked impact on treatment outcomes as they influence patient satisfaction and, consequently, adherence to topical treatments. There is also a wide variety of vehicles available for topical formulations, which can complicate the decisions of clinicians regarding the most appropriate treatments for specific skin disorders. One of the possible strategies to improve topical-treatment adherence is the implementation of patient-centric drug-product design. In this process, the patient's needs (e.g., those related to motor impairment), the needs associated with the disease (according to the skin lesions' characteristics), and the patient's preferences are taken into consideration and translated into a target product profile (TPP). Herein, an overview of topical vehicles and their properties is presented, along with a discussion of the patient-centric design of topical dermatological medicines and the proposal of TPPs for some of the most common skin diseases.
Collapse
Affiliation(s)
- Rita Oliveira
- FP-BHS-Biomedical and Health Sciences Research Unit, FFP-I3ID-Instituto de Investigação, Inovação e Desenvolvimento, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo de Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo de Ferreira 228, 4050-313 Porto, Portugal
| | - Isabel F Almeida
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo de Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo de Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
25
|
Altay Benetti A, Tarbox T, Benetti C. Current Insights into the Formulation and Delivery of Therapeutic and Cosmeceutical Agents for Aging Skin. COSMETICS 2023. [DOI: 10.3390/cosmetics10020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
“Successful aging” counters the traditional idea of aging as a disease and is increasingly equated with minimizing age signs on the skin, face, and body. From this stems the interest in preventative aesthetic dermatology that might help with the healthy aging of skin, help treat or prevent certain cutaneous disorders, such as skin cancer, and help delay skin aging by combining local and systemic methods of therapy, instrumental devices, and invasive procedures. This review will discuss the main mechanisms of skin aging and the potential mechanisms of action for commercial products already on the market, highlighting the issues related to the permeation of the skin from different classes of compounds, the site of action, and the techniques employed to overcome aging. The purpose is to give an overall perspective on the main challenges in formulation development, especially nanoparticle formulations, which aims to defeat or slow down skin aging, and to highlight new market segments, such as matrikines and matrikine-like peptides. In conclusion, by applying enabling technologies such as those delivery systems outlined here, existing agents can be repurposed or fine-tuned, and traditional but unproven treatments can be optimized for efficacious dosing and safety.
Collapse
|
26
|
Echanur VA, Matadh AV, Pragathi SG, Sarasija S, Thean Y, Badruddoza AZ, Shah J, Kulkarni V, Ajjarapu S, Reena NM, Shivakumar HN, Murthy SN. Continuous Manufacturing of Oil in Water (O/W) Emulgel by Extrusion Process. AAPS PharmSciTech 2023; 24:76. [PMID: 36899180 DOI: 10.1208/s12249-023-02530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
Pharmaceutical industries and drug regulatory agencies are inclining towards continuous manufacturing due to better control over the processing conditions and in view to improve product quality. In the present work, continuous manufacturing of O/W emulgel by melt extrusion process was explored using lidocaine as an active pharmaceutical ingredient. Emulgel was characterized for pH, water activity, globule size distribution, and in vitro release rate. Additionally, effect of temperature (25°C and 60°C) and screw speed (100, 300, and 600 rpm) on the globule size and in vitro release rate was studied. Results indicated that at a given temperature, emulgel prepared under screw speed of 300 rpm resulted in products with smaller globules and faster drug release.
Collapse
Affiliation(s)
- V Anusha Echanur
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | - Anusha V Matadh
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | - S G Pragathi
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | - S Sarasija
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | | | | | | | | | | | - N M Reena
- Topical Products Testing, LLC, 9 Industrial Park Drive, Oxford, Mississippi, 38655, USA
| | - H N Shivakumar
- Institute for Drug Delivery and Biomedical Research, Bangalore, India.,KLE College of Pharmacy, Bangalore, India
| | - S Narasimha Murthy
- Institute for Drug Delivery and Biomedical Research, Bangalore, India. .,Topical Products Testing, LLC, 9 Industrial Park Drive, Oxford, Mississippi, 38655, USA.
| |
Collapse
|
27
|
Stolić Jovanović A, Martinović M, Žugić A, Nešić I, Tosti T, Blagojević S, Tadić VM. Derivatives of L-Ascorbic Acid in Emulgel: Development and Comprehensive Evaluation of the Topical Delivery System. Pharmaceutics 2023; 15:pharmaceutics15030813. [PMID: 36986679 PMCID: PMC10056080 DOI: 10.3390/pharmaceutics15030813] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The dual controlled release of emulgels makes them efficient drug delivery systems of increasing interest. The framework of this study was to incorporate selected L-ascorbic acid derivatives into emulgels. From the formulated emulgels, the release profiles of actives were evaluated considering their different polarities and concentrations, and consequently their effectiveness on the skin via a long-term in vivo study that lasted for 30 days was determined. Skin effects were assessed by measuring the electrical capacitance of the stratum corneum (EC), trans-epidermal water loss (TEWL), melanin index (MI) and skin pH. In addition, the sensory and textural properties of emulgel formulations were compared with each other. The changes in the rate of the release of the L-ascorbic acid derivatives were monitored using the Franz diffusion cells. The obtained data were statistically significant, and indicated an increase in the degree of hydration of the skin and skin whitening potential, while no significant changes in TEWL and pH values were detected. The consistency, firmness and stickiness of the emulgels were estimated by volunteers applying the established sensory evaluation protocol. In addition, it was revealed that the difference in hydrophilic/lipophilic properties of L-ascorbic acid derivatives influenced their release profiles without changing their textural characteristics. Therefore, this study highlighted emulgels as L-ascorbic acid suitable carrier systems and one of the promising candidates as novel drug delivery systems.
Collapse
Affiliation(s)
| | - Milica Martinović
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia
| | - Ana Žugić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia
| | - Ivana Nešić
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Stevan Blagojević
- The Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Beograd, Serbia
| | - Vanja M. Tadić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
28
|
Formulation, In Vitro and In Silico Evaluations of Anise ( Pimpinella anisum L.) Essential Oil Emulgel with Improved Antimicrobial Effects. Gels 2023; 9:gels9020111. [PMID: 36826281 PMCID: PMC9957046 DOI: 10.3390/gels9020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Over the past decade, researchers have made several efforts to develop gel-based formulations that provide an alternative to traditional hydrogels and emulgel. Due to its excellent antibacterial properties, anise, the main constituent of Pimpinella anisum L., widely used in pharmaceuticals, was selected as the active ingredient in this study. Since many bacteria have developed considerable antibiotic resistance, this research aimed to develop an herbal emulgel for treating skin infections caused by bacteria. Given these obstacles, we developed and evaluated a new, cost-effective topical emulgel solution containing anise essential oil against Escherichia coli (E. coli). Anise-based emulgels, potential drug delivery platforms, have been evaluated for various parameters, including physical properties, viscosity, pH, rheology, encapsulation efficiency, and in vitro release research. The AEOs emulgel demonstrated remarkable colloidal stability, with a zeta potential of 29 mV, a size of 149.05 nm, and considerable polydispersity. The efficacy of anise-loaded emulgels as antibacterial formulations was evaluated in vitro. E. coli was used as a model microbial organism for the antibacterial study. Human keratinocytes (HaCaT) were used to examine the biocompatibility of the emulgel. Molecular docking revealed that the essential oil components of Pimpinella anisum L. possess a high affinity for the bacterial adhesin protein FimH of E. coli. These findings indicate that the developed AEOs have the potential to be analyzed using E. coli as a model organism.
Collapse
|
29
|
Donthi MR, Munnangi SR, Krishna KV, Saha RN, Singhvi G, Dubey SK. Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15010164. [PMID: 36678794 PMCID: PMC9863395 DOI: 10.3390/pharmaceutics15010164] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Nano-emulgel is an emerging drug delivery system intended to enhance the therapeutic profile of lipophilic drugs. Lipophilic formulations have a variety of limitations, which includes poor solubility, unpredictable absorption, and low oral bioavailability. Nano-emulgel, an amalgamated preparation of different systems aims to deal with these limitations. The novel system prepared by the incorporation of nano-emulsion into gel improves stability and enables drug delivery for both immediate and controlled release. The focus on nano-emulgel has also increased due to its ability to achieve targeted delivery, ease of application, absence of gastrointestinal degradation or the first pass metabolism, and safety profile. This review focuses on the formulation components of nano-emulgel for topical drug delivery, pharmacokinetics and safety profiles.
Collapse
Affiliation(s)
- Mahipal Reddy Donthi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Siva Ram Munnangi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- R&D Healthcare Division Emami Ltd., 13, BT Road, Kolkata 700056, India
- Correspondence: ; Tel.: +91-8239703734
| |
Collapse
|
30
|
Sharma M, Rathi R, Kaur S, Singh I, Kadir EA, Chahardehi AM, Lim V. Antiinflammatory activity of herbal bioactive-based formulations for topical administration. RECENT DEVELOPMENTS IN ANTI-INFLAMMATORY THERAPY 2023:245-277. [DOI: 10.1016/b978-0-323-99988-5.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
31
|
Stolić Jovanović A, Martinović M, Nešić I. Investigation of sensory characteristics of cosmetic emulgels containing different vitamin C derivatives. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.03.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
| | - Milica Martinović
- Department of Pharmacy, Faculty of Medicine, University of Niš, 81 Dr Zoran Đinđić Boulevard, 18000 Niš, Serbia
| | - Ivana Nešić
- Department of Pharmacy, Faculty of Medicine, University of Niš, 81 Dr Zoran Đinđić Boulevard, 18000 Niš, Serbia
| |
Collapse
|
32
|
Rosyida NF, Ana ID, Alhasyimi AA. The Use of Polymers to Enhance Post-Orthodontic Tooth Stability. Polymers (Basel) 2022; 15:polym15010103. [PMID: 36616453 PMCID: PMC9824751 DOI: 10.3390/polym15010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Relapse after orthodontic treatment occurs at a rate of about 70 to 90%, and this phenomenon is an orthodontic issue that has not yet been resolved. Retention devices are one attempt at prevention, but they require a considerable amount of time. Most orthodontists continue to find it challenging to manage orthodontic relapse; therefore, additional research is required. In line with existing knowledge regarding the biological basis of relapse, biomedical engineering approaches to relapse regulation show promise. With so many possible uses in biomedical engineering, polymeric materials have long been at the forefront of the materials world. Orthodontics is an emerging field, and scientists are paying a great deal of attention to polymers because of their potential applications in this area. In recent years, the controlled release of bisphosphonate risedronate using a topically applied gelatin hydrogel has been demonstrated to be effective in reducing relapse. Simvastatin encapsulation in exosomes generated from periodontal ligament stem cells can promote simvastatin solubility and increase the inhibitory action of orthodontic relapse. Moreover, the local injection of epigallocatechin gallate-modified gelatin suppresses osteoclastogenesis and could be developed as a novel treatment method to modify tooth movement and inhibit orthodontic relapse. Furthermore, the intrasulcular administration of hydrogel carbonated hydroxyapatite-incorporated advanced platelet-rich fibrin has been shown to minimize orthodontic relapse. The objective of this review was to provide an overview of the use of polymer materials to reduce post-orthodontic relapse. We assume that bone remodeling is a crucial factor even though the exact process by which orthodontic correction is lost after retention is not fully known. Delivery of a polymer containing elements that altered osteoclast activity inhibited osteoclastogenesis and blocking orthodontic relapse. The most promising polymeric materials and their potential orthodontic uses for the prevention of orthodontic relapse are also discussed.
Collapse
Affiliation(s)
- Niswati Fathmah Rosyida
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Correspondence: ; Tel.: +62-82136708250
| |
Collapse
|
33
|
Bruno E, Lupi FR, Mammolenti D, Mileti O, Baldino N, Gabriele D. Emulgels Structured with Dietary Fiber for Food Uses: A Rheological Model. Foods 2022; 11:3866. [PMID: 36496676 PMCID: PMC9736285 DOI: 10.3390/foods11233866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Emulgels are biphasic emulsified systems in which the continuous phase is structured with a specific gelling agent. In this work, a rheological and microscopic investigation of O/W emulgels prepared by structuring the aqueous (continuous) phase with citrus fiber was carried out with the aim of designing their macroscopic properties for food uses and predicting their characteristics with a rheological model. According to previous investigations, fiber suspensions behave as "particle gels" and, consequently, the derived emulgels' properties are strongly dependent on the fiber concentration and on process conditions adopted to produce them. Therefore, a rotor-stator system was used to prepare emulgels with increasing fiber content and with different levels of energy and power used for mixing delivered to the materials. An investigation of particle gels was then carried out, fixing the operating process conditions according to emulgel results. Furthermore, the effect of the dispersed (oil) phase volume fraction was varied and a modified semi-empirical Palierne model was proposed with the aim of optimizing a correlation between rheological properties and formulation parameters, fixing the process conditions.
Collapse
Affiliation(s)
| | - Francesca Romana Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, 87036 Rende, Italy
| | | | | | | | | |
Collapse
|
34
|
Zhang Y, Ma M, Chen L, Du X, Meng Z, Zhang H, Zheng Z, Chen J, Meng Q. A Biocompatible Liquid Pillar[n]arene-Based Drug Reservoir for Topical Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122621. [PMID: 36559115 PMCID: PMC9783689 DOI: 10.3390/pharmaceutics14122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Advanced external preparations that possess a sustained-release effect and integrate few irritant elements are urgently needed to satisfy the special requirements of topical administration in the clinic. Here, a series of liquid pillar[n]arene-bearing varying-length oligoethylene oxide chains (OEPns) were designed and synthesized. Following rheological property and biocompatibility investigations, pillar[6]arene with triethylene oxide substituents (TEP6) with satisfactory cavity size were screened as optimal candidate compounds. Then, a supramolecular liquid reservoir was constructed from host-guest complexes between TEP6 and econazole nitrate (ECN), an external antimicrobial agent without additional solvents. In vitro drug-release studies revealed that complexation by TEP6 could regulate the release rate of ECN and afford effective cumulative amounts. In vivo pharmacodynamic studies confirmed the formation of a supramolecular liquid reservoir contributed to the accelerated healing rate of a S. aureus-infected mouse wound model. Overall, these findings have provided the first insights into the construction of a supramolecular liquid reservoir for topical administration.
Collapse
Affiliation(s)
- Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Mengke Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Han Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (Z.Z.); (J.C.); (Q.M.)
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Ministry of Education, Tianjin Normal University, Tianjin 300387, China
- Correspondence: (Z.Z.); (J.C.); (Q.M.)
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (Z.Z.); (J.C.); (Q.M.)
| |
Collapse
|
35
|
Emulsion Gel: a Dual Drug Delivery Platform for Osteoarthritis Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
The influence of different bioadhesive polymers on physicochemical properties of thermoresponsive emulgels containing Amazonian andiroba oil. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Supramolecular Tools to Improve Wound Healing and Antioxidant Properties of Abietic Acid: Biocompatible Microemulsions and Emulgels. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196447. [PMID: 36234983 PMCID: PMC9572722 DOI: 10.3390/molecules27196447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Abietic acid, a naturally occurring fir resin compound, that exhibits anti-inflammatory and wound-healing properties, was formulated into biocompatible emulgels based on stable microemulsions with the addition of a carbamate-containing surfactant and Carbopol® 940 gel. Various microemulsion and emulgel formulations were tested for antioxidant and wound-healing properties. The chemiluminescence method has shown that all compositions containing abietic acid have a high antioxidant activity. Using Strat-M® skin-modelling membrane, it was found out that emulgels significantly prolong the release of abietic acid. On Wistar rats, it was shown that microemulsions and emulgels containing 0.5% wt. of abietic acid promote the rapid healing of an incised wound and twofold tissue reinforcement compared to the untreated group, as documented by tensiometric wound suture-rupture assay. The high healing-efficiency is associated with a combination of antibacterial activity of the formulation components and the anti-inflammatory action of abietic acid.
Collapse
|
38
|
Formulation and Evaluation of the In Vitro Performance of Topical Dermatological Products Containing Diclofenac Sodium. Pharmaceutics 2022; 14:pharmaceutics14091892. [PMID: 36145640 PMCID: PMC9502351 DOI: 10.3390/pharmaceutics14091892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 02/05/2023] Open
Abstract
The selection of an appropriate vehicle in a semi-solid topical product is of utmost importance since the vehicle composition and microstructure can potentially cause changes in drug-vehicle or vehicle-skin interactions and affect drug release and subsequent permeation into and across skin. Hence, the aim of this study was to evaluate different semi-solid formulations containing diclofenac sodium for the physicochemical and structural performance of excipients used and various physiological factors governing permeation of drugs applied to skin. The formulations (emulsion, emulgel, gel, and ointment) were prepared using conventional excipients and were found to be homogenous and stable. Rheological analysis demonstrated characteristic shear-thinning and viscoelastic behavior of formulations. The mean release rate of the gel formulation (380.42 ± 3.05 µg/cm2/h0.5) was statistically higher compared to all other formulations. In vitro permeation using human skin showed a significantly greater extent of drug permeation and retention for the emulgel formulation (23.61 ± 1.03 µg/cm2 and 47.95 ± 2.47 µg/cm2, respectively). The results demonstrated that the different formulations influenced product performance due to their inherent properties. The findings of this study demonstrated that a comprehensive physicochemical and structural evaluation is required to optimize the in vitro performance for dermatological formulations depending on the intended therapeutic effect.
Collapse
|
39
|
Rompicherla NC, Joshi P, Shetty A, Sudhakar K, Amin HIM, Mishra Y, Mishra V, Albutti A, Alhumeed N. Design, Formulation, and Evaluation of Aloe vera Gel-Based Capsaicin Transemulgel for Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14091812. [PMID: 36145560 PMCID: PMC9503439 DOI: 10.3390/pharmaceutics14091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022] Open
Abstract
Topical treatments are a potential therapeutic option for the therapy of osteoarthritis, with significant data supporting the effectiveness and safety of topical formulation. Topical gel formulations may offer an alternative to oral formulations to relieve osteoarthritis (OA) pain while decreasing systemic exposure. Topical capsaicin transemulgel may represent an effective and safe alternative. The transemulgel was prepared from aqueous Aloe vera gel and Carbopol 934 with capsaicin in clove oil emulsion. The optimized transemulgel of capsaicin showed a pH of 6.1 ± 0.1 and viscosity of 15263–998 cps. Data from in vitro diffusion demonstrated improved permeability properties. The formulation caused no skin irritation when applied topically. The optimal transemulgel spreadability was found to be 20.23 g·cm/s. In vitro and ex vivo studies of the optimized formulation were performed. The skin irritant test was performed on rat skin with an optimized and marketed formulation. Both showed no irritation on the skin. The transemulgel of the capsaicin with Aloe vera gel was proven to be effective for osteoarthritis therapy.
Collapse
Affiliation(s)
- Narayana Charyulu Rompicherla
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to Be University), Mangaluru 575018, Karnataka, India
| | - Punam Joshi
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to Be University), Mangaluru 575018, Karnataka, India
| | - Amitha Shetty
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to Be University), Mangaluru 575018, Karnataka, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Hawraz Ibrahim M. Amin
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil 44001, Iraq
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil 44001, Iraq
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
- Correspondence: (V.M.); (A.A.)
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (V.M.); (A.A.)
| | - Naif Alhumeed
- Deputyship for Research and Innovation, Ministry of Education, Riyadh 11153, Saudi Arabia
| |
Collapse
|
40
|
Alam P, Shakeel F, Foudah AI, Alshehri S, Salfi R, Alqarni MH, Aljarba TM. Central Composite Design (CCD) for the Optimisation of Ethosomal Gel Formulation of Punica granatum Extract: In Vitro and In Vivo Evaluations. Gels 2022; 8:511. [PMID: 36005111 PMCID: PMC9407133 DOI: 10.3390/gels8080511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
This research manuscript's objective was to develop the Punica granatum extract ethosome gel. The use of nanotechnology can improve transdermal drug delivery permeation of its major bioactive compound β-sitosterol. The optimised and developed formulations were further studied in vitro and in vivo. The assessment of the anti-inflammatory activity of the gel was performed in Albino rats. Methanolic extract was prepared and developed into an ethosome suspension and an ethosome gel. To optimise the formulation's response in terms of particle size (nm) and entrapment efficiency (%), the central composite design (CCD) was used in 22 levels. The effects of factors such as lecithin (%) and ethanol (mL) in nine formulations were observed. Characterisation of ethosome gel was performed and the results showed the particle size (516.4 nm) and mean zeta potential (-45.4 mV). Evaluations of the gel formulation were performed. The results were good in terms of pH (7.1), viscosity (32,158 cps), spreadability (31.55 g cm/s), and no grittiness. In an in vitro study, the percentages of β-sitosterol release of ethosome gel (91.83%), suspension (82.74%), and extracts (68.15%) at 279 nm were recorded. The effects of the formulated gel on formalin-induced oedema in Albino rats showed good results in terms of anti-inflammatory activity. The comparative anti-inflammatory activity of Punica granatum extract and gel showed that the gel action was good for their topical application.
Collapse
Affiliation(s)
- Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Roshan Salfi
- Deccan School of Pharmacy, Darussalam, Aghapura, Hyderabad 500001, Telangana, India
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Tariq M. Aljarba
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
41
|
Eid AM, Jaradat N, Issa L, Abu-Hasan A, Salah N, Dalal M, Mousa A, Zarour A. Evaluation of Anticancer, Antimicrobial, and Antioxidant Activities of Rosemary (Rosmarinus Officinalis) Essential Oil and Its Nanoemulgel. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Butkeviciute A, Ramanauskiene K, Kurapkiene V, Janulis V. Dermal Penetration Studies of Potential Phenolic Compounds Ex Vivo and Their Antioxidant Activity In Vitro. PLANTS (BASEL, SWITZERLAND) 2022; 11:1901. [PMID: 35893606 PMCID: PMC9331963 DOI: 10.3390/plants11151901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds with miscellaneous biological activities are an interesting component in dermatology and cosmetology practices. The aim of our study was to determine the phenolic compounds released from emulsion, emulgel, gel, ointment, and oleogel formulations penetration into human skin layers, both the epidermis and dermis, and estimate their antioxidant activity. The ex vivo penetration study was performed using Bronaugh type flow-through diffusion cells. Penetration studies revealed that, within 24 h, the chlorogenic acid released from the oleogel penetrated into skin layers to a depth of 2.0 ± 0.1 µg/mL in the epidermis and 1.5 ± 0.07 µg/mL in the dermis. The oleogel-released complex of phenolic compounds penetrating into epidermis showed the strongest DPPH free radical scavenging activity (281.8 ± 14.1 µM TE/L). The study estimated a strong positive correlation (r = 0.729) between the amount of quercetin penetrated into epidermis and the antioxidant activity detected in the epidermis extract. Plant based phenolic compounds demonstrated antioxidant activity and showed great permeability properties through the skin.
Collapse
Affiliation(s)
- Aurita Butkeviciute
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania;
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania; (K.R.); (V.K.)
| | - Vaida Kurapkiene
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania; (K.R.); (V.K.)
| | - Valdimaras Janulis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania;
| |
Collapse
|
43
|
Design of an Emulgel for Psoriasis Focused on Patient Preferences. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adherence to topical treatments is low and is known to be influenced by the vehicle properties. Betamethasone dipropionate (BD) is an anti-inflammatory steroid, used in psoriasis treatment in the form of an ointment, cream, or solution. The aim of this work was to develop a new vehicle for BD, focusing on the preferences of patients with psoriasis as a strategy to improve treatment adherence. Two vehicles with an aqueous external phase were explored: an emulgel and a hydrogel based on a cyclodextrin inclusion complex used to improve the aqueous solubility of BD. Since BD solubilization was not fully achieved in the hydrogel, only the emulgel was selected for further characterization. This new vehicle (emulgel) is characterized by its white, shiny appearance and good spreading properties. In comparison with petrolatum, a lower residue, higher evaporation rate, lower stickiness, and reduced ability to stain polyester fabric were observed. This vehicle also showed shear thinning behavior. The impact of this new vehicle on adherence to topical treatments should be further confirmed in clinical settings.
Collapse
|
44
|
Butkeviciute A, Ramanauskiene K, Janulis V. Formulation of Gels and Emulgels with Malus domestica Borkh: Apple Extracts and Their Biopharmaceutical Evaluation In Vitro. Antioxidants (Basel) 2022; 11:antiox11020373. [PMID: 35204255 PMCID: PMC8868542 DOI: 10.3390/antiox11020373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 01/07/2023] Open
Abstract
Phenolic compounds that estimate apple extracts with multifaceted biological effects are potentially valuable for protection against skin disorders. The purpose of our research was to formulate gels and emulgels containing a complex of phenolic compounds of apple extracts and to perform a biopharmaceutical evaluation of semi-solid pharmaceutical forms, determining their antioxidant activity in vitro. HPLC analyses of phenolic compounds were performed. The total amount of phenolic compounds found in the sample of apples from the ‘Paprastasis antaninis’ cultivar was 1455.5 ± 72.8 µg/g. The release of phenolics from gels and emulgels was assessed by Franz-type diffusion cells. The in vitro release test revealed that phenolic compounds were released from the gel (G1–G6) formulations (70.6–73.8%) compared to the amounts (77.2–83.9%) released from the emulgel (E1–E6) formulations. The largest amount (83.9%) of phenolic compounds was released from the E5 formulation, while the smallest amounts (70.6%) were released from the formulations G3 and G5. The antioxidant activity evaluated by the DPPH and FRAP methods observed in all gel (G1–G6) and emulgel (E1–E6) formulations after 6 h were the strongest, compared to the activities observed in the formulations after 2 or 4 h. Gels and emulgels, which are rich in apple extracts, have strong antioxidant properties and may be promising choices for the development of new, innovative pharmaceutical forms or cosmetics.
Collapse
Affiliation(s)
- Aurita Butkeviciute
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania;
- Correspondence: ; Tel.: +37-037-621-56190
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania;
| | - Valdimaras Janulis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania;
| |
Collapse
|
45
|
Cherukuri S, M T, Vuppalapati L. Formulation and optimization of novel dexibuprofen- Aloe vera deformable emulgels for enhanced anti-inflammatory activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Schmidt BVKJ. Multicompartment Hydrogels. Macromol Rapid Commun 2022; 43:e2100895. [PMID: 35092101 DOI: 10.1002/marc.202100895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Hydrogels belong to the most promising materials in polymer and materials science at the moment. As they feature soft and tissue-like character as well as high water-content, a broad range of applications are addressed with hydrogels, e.g. tissue engineering and wound dressings but also soft robotics, drug delivery, actuators and catalysis. Ways to tailor hydrogel properties are crosslinking mechanism, hydrogel shape and reinforcement, but new features can be introduced by variation of hydrogel composition as well, e.g. via monomer choice, functionalization or compartmentalization. Especially, multicompartment hydrogels drive progress towards complex and highly functional soft materials. In the present review the latest developments in multicompartment hydrogels are highlighted with a focus on three types of compartments, i.e. micellar/vesicular, droplets or multi-layers including various sub-categories. Furthermore, several morphologies of compartmentalized hydrogels and applications of multicompartment hydrogels will be discussed as well. Finally, an outlook towards future developments of the field will be given. The further development of multicompartment hydrogels is highly relevant for a broad range of applications and will have a significant impact on biomedicine and organic devices. This article is protected by copyright. All rights reserved.
Collapse
|
47
|
Shah MKA, Azad AK, Nawaz A, Ullah S, Latif MS, Rahman H, Alsharif KF, Alzahrani KJ, El-Kott AF, Albrakati A, Abdel-Daim MM. Formulation Development, Characterization and Antifungal Evaluation of Chitosan NPs for Topical Delivery of Voriconazole In Vitro and Ex Vivo. Polymers (Basel) 2021; 14:135. [PMID: 35012154 PMCID: PMC8747354 DOI: 10.3390/polym14010135] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
This study aims to develop chitosan-based voriconazole nanoparticles (NPs) using spray-drying technique. The effect of surfactants and polymers on the physicochemical properties, in vitro release, and permeation of NPs was investigated. The prepared NPs containing various surfactants and polymers (e.g., Tween 20 (T20), Tween 80 (T80), sodium lauryl sulfate (SLS), propylene glycol (PG), and Polyethylene glycol-4000 (PEG-4000)) were physiochemically evaluated for size, zeta potential, drug content, percent entrapment efficiency, in vitro release, and permeation across rats' skin. A Franz diffusion cell was used for evaluating the in vitro release and permeation profile. The voriconazole-loaded NPs were investigated for antifungal activity against Candida albicans (C. albicans). The prepared NPs were in the nano range (i.e., 160-500 nm) and positively charged. Images taken by a scanning electron microscope showed that all prepared NPs were spherical and smooth. The drug content of NPs ranged from 75% to 90%. Nanoparticle formulations exhibited a good in vitro release profile and transport voriconazole across the rat's skin in a slow control release manner. The NPs containing SLS, T80, and PG exhibited the best penetration and skin retention profile. In addition, the formulation exhibited a potential antifungal effect against C. albicans. It was concluded that the development of chitosan NPs has a great potential for the topical delivery of voriconazole against fungal infection.
Collapse
Affiliation(s)
- Muhammad Khurshid Alam Shah
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Abul Kalam Azad
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Shafi Ullah
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Muhammad Shahid Latif
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (K.J.A.)
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (K.J.A.)
| | - Attalla F. El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia;
- Zoology Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
48
|
Enhanced Skin Performance of Emulgel vs. Cream as Systems for Topical Delivery of Herbal Actives (Immortelle Extract and Hemp Oil). Pharmaceutics 2021; 13:pharmaceutics13111919. [PMID: 34834334 PMCID: PMC8623303 DOI: 10.3390/pharmaceutics13111919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Immortelle, as rich source of chlorogenic acid and the phloroglucinol alpha-pyrone compound arzanol, possesses anti-inflammatory and antioxidant properties, affects cell regeneration, and has positive effect on many skin conditions. Hemp oil, characterized by a favorable omega-6 to omega-3 ratio, as well as an abundance of essential fatty acids and vitamin E, participates in immunoregulation and also act as an anti-inflammatory. In the present study, we examined the effect on the skin of creams and emulgels with immortelle extract and hemp oil, by comparing them to placebo samples and a non-treated control. A long-term in vivo study of biophysical skin characteristics, which lasted for 30 days, was conducted on 25 healthy human volunteers. Measured parameters were electrical capacitance of the stratum corneum, trans-epidermal water loss (TEWL), and skin pH and erythema index. Further, a sensory study was carried out in which the panelists had to choose descriptive terms for sensory attributes in questionnaire. The results showed that application of all preparations led to increase of skin hydration and TEWL reduction, while the skin was not irritated, and its normal pH was not disrupted. This study also showed importance of the carrier. Not only were emulgels described by panelists as preparations with better sensory properties, there was a significant difference between the skin hydration effect of emulgel with immortelle extract and hemp oil compared to the placebo emulgel, which was not the case with creams. Such findings indicated enhanced delivery of herbal active substances from emulgel compared to the cream.
Collapse
|
49
|
Tebcharani L, Wanzke C, Lutz TM, Rodon-Fores J, Lieleg O, Boekhoven J. Emulsions of hydrolyzable oils for the zero-order release of hydrophobic drugs. J Control Release 2021; 339:498-505. [PMID: 34662584 DOI: 10.1016/j.jconrel.2021.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022]
Abstract
Drug delivery systems that release hydrophobic drugs with zero-order kinetics remain rare and are often complicated to use. In this work, we present a gellified emulsion (emulgel) that comprises oil droplets of a hydrolyzable oil entrapped in a hydrogel. In the oil, we incorporate various hydrophobic drugs and, because the oil hydrolyzes with zero-order kinetics, the release of the drugs is also linear. We tune the release period from three hours to 50 h by varying the initial oil concentration. We show that the release rate is tunable by varying the initial drug concentration. Our quantitative understanding of the system allows for predicting the drug release kinetics once the drug's partition coefficient between the oil and the aqueous phase is known. Finally, we show that our drug delivery system is fully functional after storing it at -20 °C. Cell viability studies show that the hydrolyzable oil and its hydrolysis product are non-toxic under the employed conditions. With its simplicity and versatility, our system is a promising platform for the zero-order release of the drug.
Collapse
Affiliation(s)
- Laura Tebcharani
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Caren Wanzke
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Theresa M Lutz
- Center for Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Straße 8, 85748 Garching, Germany
| | - Jennifer Rodon-Fores
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Oliver Lieleg
- Center for Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Straße 8, 85748 Garching, Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany.
| |
Collapse
|
50
|
Said dos Santos R, Bassi da Silva J, Rosseto HC, Vecchi CF, Campanholi KDSS, Caetano W, Bruschi ML. Emulgels Containing Propolis and Curcumin: The Effect of Type of Vegetable Oil, Poly(Acrylic Acid) and Bioactive Agent on Physicochemical Stability, Mechanical and Rheological Properties. Gels 2021; 7:gels7030120. [PMID: 34449614 PMCID: PMC8396026 DOI: 10.3390/gels7030120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 02/01/2023] Open
Abstract
Emulgels are obtained by the entrapment of an organic phase within a three-dimensional network built by hydrophilic molecules. Polymers based on cross-linked poly(acrylic acid) have been utilized as gel matrices, improving adhesiveness, rheological and mechanical performance. Propolis (PRP) produced by Apis mellifera L. bees displays a wide range of biological activities. Together with curcumin (CUR), they may show synergic anti-inflammatory, antioxidant and antimicrobial action on skin disorders. This work investigated the effect of vegetable oils (sweet almond, andiroba, and passion fruit) with regard to the physicochemical properties of emulgels composed of Carbopol 934P®, Carbopol 974P®, or polycarbophil aiming the CUR and PRP delivery. Physicochemical stability enabled the selection of systems containing passion fruit or andiroba oil. Mechanical and rheological characteristics provided rational comprehension of how vegetable oils and bioactive agents affect the structure of emulsion gels. All formulations exhibited high physiochemical stability and properties dependent on the polymer type, oil, and bioactive agent. Formulations displayed pseudoplastic, thixotropic and viscoelastic properties. Emulgels containing andiroba oil were the most stable systems. Carbopol 934P® or polycarbophil presence resulted in formulations with improved smoothness and mechanical properties. Systems containing andiroba oil and one of these two polymers are promising for further investigations as topical delivery systems of CUR and/or PRP on the skin and mucous membranes.
Collapse
Affiliation(s)
- Rafaela Said dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa 87020-900, PR, Brazil; (R.S.d.S.); (J.B.d.S.); (H.C.R.); (C.F.V.)
| | - Jéssica Bassi da Silva
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa 87020-900, PR, Brazil; (R.S.d.S.); (J.B.d.S.); (H.C.R.); (C.F.V.)
| | - Hélen Cássia Rosseto
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa 87020-900, PR, Brazil; (R.S.d.S.); (J.B.d.S.); (H.C.R.); (C.F.V.)
| | - Camila Felix Vecchi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa 87020-900, PR, Brazil; (R.S.d.S.); (J.B.d.S.); (H.C.R.); (C.F.V.)
| | - Katieli da Silva Souza Campanholi
- Postgraduate Program in Chemistry, Department of Chemistry, Research Nucleus in Photodynamic Systems, State University of Maringa, Maringa 87020-900, PR, Brazil; (K.d.S.S.C.); (W.C.)
| | - Wilker Caetano
- Postgraduate Program in Chemistry, Department of Chemistry, Research Nucleus in Photodynamic Systems, State University of Maringa, Maringa 87020-900, PR, Brazil; (K.d.S.S.C.); (W.C.)
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa 87020-900, PR, Brazil; (R.S.d.S.); (J.B.d.S.); (H.C.R.); (C.F.V.)
- Correspondence: ; Tel.: +55-44-3011-4870
| |
Collapse
|