1
|
Purewal JS, Doshi GM. RNAi in psoriasis: A melodic exploration of miRNA, shRNA, and amiRNA with a spotlight on siRNA. Eur J Pharmacol 2024; 985:177083. [PMID: 39481628 DOI: 10.1016/j.ejphar.2024.177083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Psoriasis (Pso) is an autoimmune inflammatory skin disease characterised by well-demarcated, red plaques covered in silver scales. It affects people of all ages and can be passed down through generations. Genetics play an important role in determining vulnerability to develop Pso. Several large-scale genome-wide association studies have identified over 80 genetic loci associated with Pso susceptibility. Gene expression can be regulated via RNA interference (RNAi). RNAi suppresses gene expression by degrading mRNA molecules. Since its discovery, RNAi has generated considerable excitement over its potential therapeutic benefits. RNAi is mediated by endogenous small RNA molecules like microRNA (miRNA) or exogenous small RNA molecules like small interfering RNA (siRNA), short hairpin RNA (shRNA), and artificial micro RNA (amiRNA). These small RNA molecules can silence a disease-related gene in a sequence-specific manner. Targeting RNAi pathways can help modify disease-related biological processes in various medical conditions, including autoimmune disorders. In Pso, RNAi can downregulate the expression of molecules involved in the pathophysiology of the disease. Significant progress has been made in the field of RNAi therapeutics. However, further research is needed to fine-tune the design and delivery of RNAi therapeutics in humans. In this review, we discuss various effectors of RNAi, some challenges related to RNAi therapeutics (emphasizing siRNA) and strategies to overcome these challenges. Furthermore, we have discussed some studies that employ RNAi therapeutics for Pso.
Collapse
|
2
|
Hulscher N, McCullough PA, Marotta DE. Strategic deactivation of mRNA COVID-19 vaccines: New applications for siRNA therapy and RIBOTACs. J Gene Med 2024; 26:e3733. [PMID: 39183706 DOI: 10.1002/jgm.3733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
The rapid development and authorization of messenger ribonucleic acid (mRNA) vaccines by Pfizer-BioNTech (BNT162b2) and Moderna (mRNA-1273) in 2020 marked a significant milestone in human mRNA product application, overcoming previous obstacles such as mRNA instability and immunogenicity. This paper reviews the strategic modifications incorporated into these vaccines to enhance mRNA stability and translation efficiency, such as the inclusion of nucleoside modifications and optimized mRNA design elements including the 5' cap and poly(A) tail. We highlight emerging concerns regarding the wide systemic biodistribution of these mRNA vaccines leading to prolonged inflammatory responses and other safety concerns. The regulatory framework guiding the biodistribution studies is pivotal in assessing the safety profiles of new mRNA formulations in use today. The stability of mRNA vaccines, their pervasive distribution, and the longevity of the encapsulated mRNA along with unlimited production of the damaging and potentially lethal spike (S) protein call for strategies to mitigate potential adverse effects. Here, we explore the potential of small interfering RNA (siRNA) and ribonuclease targeting chimeras (RIBOTACs) as promising solutions to target, inactivate, and degrade residual and persistent vaccine mRNA, thereby potentially preventing uncontrolled S protein production and reducing toxicity. The targeted nature of siRNA and RIBOTACs allows for precise intervention, offering a path to prevent and mitigate adverse events of mRNA-based therapies. This review calls for further research into siRNA and RIBOTAC applications as antidotes and detoxication products for mRNA vaccine technology.
Collapse
|
3
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Zhang J, Chen B, Gan C, Sun H, Zhang J, Feng L. A Comprehensive Review of Small Interfering RNAs (siRNAs): Mechanism, Therapeutic Targets, and Delivery Strategies for Cancer Therapy. Int J Nanomedicine 2023; 18:7605-7635. [PMID: 38106451 PMCID: PMC10725753 DOI: 10.2147/ijn.s436038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Small interfering RNA (siRNA) delivery by nanocarriers has been identified as a promising strategy in the study and treatment of cancer. Short nucleotide sequences are synthesized exogenously to create siRNA, which triggers RNA interference (RNAi) in cells and silences target gene expression in a sequence-specific way. As a nucleic acid-based medicine that has gained popularity recently, siRNA exhibits novel potential for the treatment of cancer. However, there are still many obstacles to overcome before clinical siRNA delivery devices can be developed. In this review, we discuss prospective targets for siRNA drug design, explain siRNA drug properties and benefits, and give an overview of the current clinical siRNA therapeutics for the treatment of cancer. Additionally, we introduce the siRNA chemical modifications and delivery systems that are clinically sophisticated and classify bioresponsive materials for siRNA release in a methodical manner. This review will serve as a reference for researchers in developing more precise and efficient targeted delivery systems, promoting ongoing advances in clinical applications.
Collapse
Affiliation(s)
- Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Bo Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Chunyuan Gan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, People’s Republic of China
| |
Collapse
|
5
|
Ali Zaidi SS, Fatima F, Ali Zaidi SA, Zhou D, Deng W, Liu S. Engineering siRNA therapeutics: challenges and strategies. J Nanobiotechnology 2023; 21:381. [PMID: 37848888 PMCID: PMC10583313 DOI: 10.1186/s12951-023-02147-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Small interfering RNA (siRNA) is a potential method of gene silencing to target specific genes. Although the U.S. Food and Drug Administration (FDA) has approved multiple siRNA-based therapeutics, many biological barriers limit their use for treating diseases. Such limitations include challenges concerning systemic or local administration, short half-life, rapid clearance rates, nonspecific binding, cell membrane penetration inability, ineffective endosomal escape, pH sensitivity, endonuclease degradation, immunological responses, and intracellular trafficking. To overcome these barriers, various strategies have been developed to stabilize siRNA, ensuring their delivery to the target site. Chemical modifications implemented with nucleotides or the phosphate backbone can reduce off-target binding and immune stimulation. Encapsulation or formulation can protect siRNA from endonuclease degradation and enhance cellular uptake while promoting endosomal escape. Additionally, various techniques such as viral vectors, aptamers, cell-penetrating peptides, liposomes, and polymers have been developed for delivering siRNA, greatly improving their bioavailability and therapeutic potential.
Collapse
Affiliation(s)
- Syed Saqib Ali Zaidi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Faria Fatima
- College of Medical Technology, Ziauddin University, Karachi, 74700, Pakistan
| | - Syed Aqib Ali Zaidi
- Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, Chongqing Diabetic Foot Medical Research Center, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China.
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Kumari A, Kaur A, Aggarwal G. The emerging potential of siRNA nanotherapeutics in treatment of arthritis. Asian J Pharm Sci 2023; 18:100845. [PMID: 37881798 PMCID: PMC10594572 DOI: 10.1016/j.ajps.2023.100845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 08/12/2023] [Indexed: 10/27/2023] Open
Abstract
RNA interference (RNAi) using small interfering RNA (siRNA) has shown potential as a therapeutic option for the treatment of arthritis by silencing specific genes. However, siRNA delivery faces several challenges, including stability, targeting, off-target effects, endosomal escape, immune response activation, intravascular degradation, and renal clearance. A variety of nanotherapeutics like lipidic nanoparticles, liposomes, polymeric nanoparticles, and solid lipid nanoparticles have been developed to improve siRNA cellular uptake, protect it from degradation, and enhance its therapeutic efficacy. Researchers are also investigating chemical modifications and bioconjugation to reduce its immunogenicity. This review discusses the potential of siRNA nanotherapeutics as a therapeutic option for various immune-mediated diseases, including rheumatoid arthritis, osteoarthritis, etc. siRNA nanotherapeutics have shown an upsurge of interest and the future looks promising for such interdisciplinary approach-based modalities that combine the principles of molecular biology, nanotechnology, and formulation sciences.
Collapse
Affiliation(s)
- Anjali Kumari
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Amanpreet Kaur
- Centre for Advanced Formulation Technology, Delhi Pharmaceutical Sciences and Research, New Delhi 110017, India
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Geeta Aggarwal
- Centre for Advanced Formulation Technology, Delhi Pharmaceutical Sciences and Research, New Delhi 110017, India
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| |
Collapse
|
7
|
Bao YN, Xie XL, Lu LL, Liu WH, Ma YC, Ke YJ, Ren H, Tan LN, Wu LF, Song J, Jin Y, Liu XY. NiFe-layered double hydroxide nanoparticle for co-delivery of DOX and siRNA to overcome multidrug resistance in MCF-7/ADR cells. J Drug Deliv Sci Technol 2023; 87:104829. [DOI: 10.1016/j.jddst.2023.104829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Khan S, Rehman U, Parveen N, Kumar S, Baboota S, Ali J. siRNA therapeutics: insights, challenges, remedies and future prospects. Expert Opin Drug Deliv 2023; 20:1167-1187. [PMID: 37642354 DOI: 10.1080/17425247.2023.2251890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Among conventional and novel therapeutic approaches, the siRNA strategy stands out for treating disease by silencing the gene responsible for the corresponding disorder. Gene silencing is supposedly intended to target any disease-causing gene, and therefore, several attempts and investments were made to exploit siRNA gene therapy and advance it into clinical settings. Despite the remarkable beneficial prospects, the applicability of siRNA therapeutics is very challenging due to various pathophysiological barriers that hamper its target reach, which is the cytosol, and execution of gene silencing action. AREAS COVERED The present review provides insights into the field of siRNA therapeutics, significant in vivo hurdles that mitigate the target accessibility of siRNA, and remedies to overcome these siRNA delivery challenges. Nonetheless, the current review also highlights the on-going clinical trials and the regulatory aspects of siRNA modalities. EXPERT OPINION The siRNAs have the potential to reach previously untreated target sites and silence the concerned gene owing to their modification as polymeric or lipidic nanoparticles, conjugates, and the application of advanced drug delivery strategies. With such mounting research attempts to improve the delivery of siRNA to target tissue, we might shortly witness revolutionary therapeutic outcomes, new approvals, and clinical implications.
Collapse
Affiliation(s)
- Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Urushi Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Neha Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
9
|
Selianitis D, Katifelis H, Gazouli M, Pispas S. Novel Multi-Responsive Hyperbranched Polyelectrolyte Polyplexes as Potential Gene Delivery Vectors. Pharmaceutics 2023; 15:1627. [PMID: 37376075 PMCID: PMC10301639 DOI: 10.3390/pharmaceutics15061627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
In this work, we investigate the complexation behavior of poly(oligo(ethylene glycol)methyl methacrylate)-co-poly(2-(diisopropylamino)ethyl methacrylate), P(OEGMA-co-DIPAEMA), hyperbranched polyelectrolyte copolymers, synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization, with short-linear DNA molecules. The synthesized hyperbranched copolymers (HBC), having a different chemical composition, are prepared in order to study their ability to bind with a linear nucleic acid at various N/P ratios (amine over phosphate groups). Specifically, the three pH and thermo-responsive P(OEGMA-co-DIPAEMA) hyperbranched copolymers were able to form polyplexes with DNA, with dimensions in the nanoscale. Using several physicochemical methods, such as dynamic and electrophoretic light scattering (DLS, ELS), as well as fluorescence spectroscopy (FS), the complexation process and the properties of formed polyplexes were explored in response to physical and chemical stimuli such as temperature, pH, and ionic strength. The mass and the size of polyplexes are shown to be affected by the hydrophobicity of the copolymer utilized each time, as well as the N/P ratio. Additionally, the stability of polyplexes in the presence of serum proteins is found to be excellent. Finally, the multi-responsive hyperbranched copolymers were evaluated regarding their cytotoxicity via in vitro experiments on HEK 293 non-cancerous cell lines and found to be sufficiently non-toxic. Based on our results, these polyplexes could be useful candidates for gene delivery and related biomedical applications.
Collapse
Affiliation(s)
- Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.K.); (M.G.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.K.); (M.G.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
10
|
Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M, Díez-Pascual AM. siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int 2022; 46:1320-1344. [PMID: 35830711 PMCID: PMC9543380 DOI: 10.1002/cbin.11841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
Immune‐mediated diseases (IMDs) are chronic conditions that have an immune‐mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti‐inflammatory medications can be reduced. Still, there are many problems with using short‐interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA‐based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid‐based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid‐lipid particles, polymeric‐based siRNA nanocarriers, polyethylenimine (PEI)‐based nanosystems, chitosan‐based nanoformulations, inorganic material‐based siRNA nanocarriers, and hybrid‐based delivery systems. We have also introduced novel siRNA‐based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Reza Ghamari
- Department of Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ali Bakhshi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
11
|
Paul A, Muralidharan A, Biswas A, Venkatesh Kamath B, Joseph A, Alex AT. siRNA Therapeutics and its Challenges: Recent Advances in Effective Delivery for Cancer Therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Pengnam S, Plianwong S, Yingyongnarongkul BE, Patrojanasophon P, Opanasopit P. Delivery of small interfering RNAs by nanovesicles for cancer therapy. Drug Metab Pharmacokinet 2021; 42:100425. [PMID: 34954489 DOI: 10.1016/j.dmpk.2021.100425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Small interfering ribonucleic acids (siRNAs) are originally recognized as an intermediate of the RNA interference (RNAi) pathway. They can inhibit or silence various cellular pathways by knocking down specific messenger RNA molecules. In cancer cells, siRNAs can suppress the expression of several multidrug-resistant genes, leading to the increased deposition of chemotherapeutic drugs at the tumor site. siRNA therapy can be used to selectively increase apoptosis of cancer cells or activate an immune response to the cancer. However, delivering siRNAs to the targeted location is the main limitation in achieving safe and effective delivery of siRNAs. This review highlights some representative examples of nonviral delivery systems, especially nanovesicles such as exosomes, liposomes, and niosomes. Nanovesicles can improve the delivery of siRNAs by increasing their intracellular delivery, and they have demonstrated excellent potential for cancer therapy. This review focuses on recent discoveries of siRNA targets for cancer therapy and the use of siRNAs to successfully silence these targets. In addition, this review summarizes the recent progress in designing nanovesicles (liposomes or niosomes) for siRNA delivery to cancer cells and the effects of a combination of anticancer drugs and siRNA therapy in cancer therapy.
Collapse
Affiliation(s)
- Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | | | - Boon-Ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
13
|
Kim HY, Kim TR, Kim SH, Kim IH, Lim JO, Park JH, Yun S, Lee IC, Park HO, Kim JC. Four-Week Repeated Intravenous Dose Toxicity of Self-Assembled-Micelle Inhibitory RNA-Targeting Amphiregulin in Mice. Int J Toxicol 2021; 40:453-465. [PMID: 34286615 DOI: 10.1177/10915818211031241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study investigated the potential subchronic toxicity of self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG) in mice. The test reagent was administered once-daily by intravenous injection for 4 weeks at 0, 100, 200, or 300 mg/kg/day doses. Additional recovery groups (vehicle control and high dose groups) were observed for a 2-week recovery period. During the test period, mortality, clinical signs, body weight, food consumption, ophthalmology, urinalysis, hematology, serum biochemistry, gross pathology, organ weight, and histopathology were examined. An increase in the percentages of basophil and large unstained cells was observed in the 200 and 300 mg/kg/day groups of both sexes. In addition, the absolute and relative weights of the spleen were higher in males given 300 mg/kg/day relative to the concurrent controls. However, these findings were considered of no toxicological significance because the changes were minimal, were not accompanied by other relevant results (eg, correlating microscopic changes), and were not observed at the end of the 2-week recovery period indicating recovery of the findings. Based on the results, SAMiRNA-AREG did not cause treatment-related adverse effects at dose levels of up to 300 mg/kg/day in mice after 4-week repeated intravenous doses. Under these conditions, the no-observed-adverse-effect level of the SAMiRNA-AREG was ≥300 mg/kg/day in both sexes and no target organs were identified.
Collapse
Affiliation(s)
- Hyeon-Young Kim
- Jeonbuk Branch Institute, 443298Korea Institute of Toxicology, Jeongeup, Republic of Korea
- College of Veterinary Medicine, 34931Chonnam National University, Gwangju, Republic of Korea
| | - Tae Rim Kim
- 65404siRNAgen Therapeutics and Bioneer Corporation, Daejeon, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, 443298Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - In-Hyeon Kim
- Jeonbuk Branch Institute, 443298Korea Institute of Toxicology, Jeongeup, Republic of Korea
- College of Veterinary Medicine, 34931Chonnam National University, Gwangju, Republic of Korea
| | - Je-Oh Lim
- College of Veterinary Medicine, 34931Chonnam National University, Gwangju, Republic of Korea
| | - Jun Hong Park
- 65404siRNAgen Therapeutics and Bioneer Corporation, Daejeon, Republic of Korea
| | - Sungil Yun
- 65404siRNAgen Therapeutics and Bioneer Corporation, Daejeon, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, 54679Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Han-Oh Park
- 65404siRNAgen Therapeutics and Bioneer Corporation, Daejeon, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine, 34931Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
14
|
Yang C, Ma D, Lu L, Yang X, Xi Z. Synthesis of KUE-siRNA Conjugates for Prostate Cancer Cell-Targeted Gene Silencing. Chembiochem 2021; 22:2888-2895. [PMID: 34263529 DOI: 10.1002/cbic.202100243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Indexed: 11/06/2022]
Abstract
The delivery of siRNAs to selectively target cells poses a great challenge in RNAi-based cancer therapy. The lack of suitable cell-targeting methods seriously restricts the advance in delivering siRNAs to extrahepatic tissues. Based on prostate-specific membrane antigen (PSMA)-targeting ligands, we have synthesized a series of lysine-urea-glutamate (KUE)-siRNA conjugates and verified their effective cell uptake and gene silencing properties in prostate cancers. The results indicated that the KUE-siRNA conjugates could selectively enter PSMA+ LNCaP cells, eventually down-regulating STAT3 expression. Based on post-synthesis modification and receptor-mediated endocytosis, this strategy of constructing ligand-siRNA conjugates might provide a general method of siRNA delivery for cell-targeted gene silencing.
Collapse
Affiliation(s)
- Chao Yang
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| | - Dejun Ma
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| | - Liqing Lu
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, P. R. China
| | - Zhen Xi
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
15
|
Giaouzi D, Pispas S. Complexation behavior of PNIPAM-b-QPDMAEA copolymer aggregates with linear DNAs of different lengths. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Sawarkar SP, Yadav V. Novel drug delivery strategies and gene therapy regimen as a promising perspective for management of psoriasis. Indian J Dermatol Venereol Leprol 2021; 87:333-340. [PMID: 33943062 DOI: 10.25259/ijdvl_470_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/01/2020] [Indexed: 01/13/2023]
Abstract
Psoriasis is an autoimmune disorder; however, an exact underlying mechanism responsible for psoriasis is yet not known. A hypothesis put forward is an abnormal proliferation of keratinocytes due to faulty signals brought about by T-cells. Due to the lack of evidence of the exact cause, a variety of treatments have been used of which topical therapy is usually the first option in most patients. Topical therapy has several shortcomings and barriers of drug delivary which may be effectively overcome using novel drug carrier systems which exhibit maximum penetration, controlled release, reduced irritancy and, overall, a better efficacy. Thus, novel treatment strategies based on gene therapy such as antisensing nucleotide, silencing RNA complex, stem cell therapy and antibody-based therapy are being envisaged. This review article discusses the concepts and background of current novel delivery systems and gene therapy tools for effective management of psoriasis.
Collapse
Affiliation(s)
- Sujata Pralhad Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati Collegeof Pharmacy, University of Mumbai, Mumbai, Maharashtra, India
| | - Vijay Yadav
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati Collegeof Pharmacy, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
17
|
Orr-Burks N, Murray J, Todd KV, Bakre A, Tripp RA. G-Protein-Coupled Receptor and Ion Channel Genes Used by Influenza Virus for Replication. J Virol 2021; 95:e02410-20. [PMID: 33536179 PMCID: PMC8104092 DOI: 10.1128/jvi.02410-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Influenza virus causes epidemics and sporadic pandemics resulting in morbidity, mortality, and economic losses. Influenza viruses require host genes to replicate. RNA interference (RNAi) screens can identify host genes coopted by influenza virus for replication. Targeting these proinfluenza genes can provide therapeutic strategies to reduce virus replication. Nineteen proinfluenza G-protein-coupled receptor (GPCR) and 13 proinfluenza ion channel genes were identified in human lung (A549) cells by use of small interfering RNAs (siRNAs). These proinfluenza genes were authenticated by testing influenza virus A/WSN/33-, A/CA/04/09-, and B/Yamagata/16/1988-infected A549 cells, resulting in the validation of 16 proinfluenza GPCR and 5 proinfluenza ion channel genes. These findings showed that several GPCR and ion channel genes are needed for the production of infectious influenza virus. These data provide potential targets for the development of host-directed therapeutic strategies to impede the influenza virus productive cycle so as to limit infection.IMPORTANCE Influenza epidemics result in morbidity and mortality each year. Vaccines are the most effective preventive measure but require annual reformulation, since a mismatch of vaccine strains can result in vaccine failure. Antiviral measures are desirable particularly when vaccines fail. In this study, we used RNAi screening to identify several GPCR and ion channel genes needed for influenza virus replication. Understanding the host genes usurped by influenza virus during viral replication can help identify host genes that can be targeted for drug repurposing or for the development of antiviral drugs. The targeting of host genes is refractory to drug resistance generated by viral mutations, as well as providing a platform for the development of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Kyle V Todd
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
18
|
Recent advances in peptide-targeted micelleplexes: Current developments and future perspectives. Int J Pharm 2021; 597:120362. [PMID: 33556489 DOI: 10.1016/j.ijpharm.2021.120362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
The decoding of the human genome revolutionized the understanding of how genetics influence the interplay between health and disease, in a multidisciplinary perspective. Thus, the development of exogenous nucleic acids-based therapies has increased to overcome hereditary or acquired genetic-associated diseases. Gene drug delivery using non-viral systems, for instance micelleplexes, have been recognized as promising options for gene-target therapies. Micelleplexes are core-shell structures, at a nanometric scale, designed using amphiphilic block copolymers. These can self-assemble in an aqueous medium, leading to the formation of a hydrophilic and positively charged corona - that can transport nucleic acids, - and a hydrophobic core - which can transport poor water-soluble drugs. However, the performance of these types of carriers usually is hindered by several in vivo barriers. Fortunately, due to a significant amount of research, strategies to overcome these shortcomings emerged. With a wide range of structural features, good stability against proteolytic degradation, affordable characteristic, easy synthesis, low immunogenicity, among other advantages, peptides have increasingly gained popularity as target ligands for non-viral carriers. Hence, this review addresses the use of peptides with micelleplexes illustrating, through the analysis of in vitro and in vivo studies, the potential and future perspectives of this combination.
Collapse
|
19
|
Norouzi P, Motasadizadeh H, Atyabi F, Dinarvand R, Gholami M, Farokhi M, Shokrgozar MA, Mottaghitalab F. Combination Therapy of Breast Cancer by Codelivery of Doxorubicin and Survivin siRNA Using Polyethylenimine Modified Silk Fibroin Nanoparticles. ACS Biomater Sci Eng 2021; 7:1074-1087. [PMID: 33539074 DOI: 10.1021/acsbiomaterials.0c01511] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, polyethylenimine (PEI) modified silk fibroin nanoparticles (SFNPs) were prepared for codelivery of doxorubicin (DOX) and survivin siRNA. The prepared NPs were characterized in terms of stability and structural, functional, and physicochemical properties. Moreover, the ability of the conjugate to escape from the endosome and cellular uptake were assessed. Afterward, the in vivo therapeutic efficacy was analyzed in the mice model. The siRNA loaded PEI-SFNPs showed acceptable size, zeta potential, and stability in serum. It also effectively induced apoptosis in the 4T1 mouse mammary tumor cell line. Cellular uptake and endosomal escape analyses confirmed that PEI-SFNPs containing siRNA could escape from the endosome and accumulate in the cytoplasm of 4T1 cells. Real time-PCR indicated the significant decrease in the expression of survivin mRNA in the 4T1 cell line 48 h postincubation with siRNA loaded PEI-SFNPs. In vivo biodistribution of PEI-SFNPs confirmed higher accumulation of SFNPs in the tumor site compared with other organs. The codelivery systems remarkably reduced the growth rate of breast tumor in the mice model without any obvious weight lost. Histopathological and tunnel staining exhibited more apoptotic tumor cells in the group containing both DOX and survivin siRNA. Tumorigenic breast tissue resected from the animals after treatment with siRNA also exhibited significant suppression of survivin gene. In conclusion, the prepared drug delivery system had an acceptable potential in tumor removal, apoptosis induction in cancer cells, and therapeutic efficacy. Thus, it would be a good candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Parisa Norouzi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Mahdi Gholami
- Pharmaceutical Science Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| |
Collapse
|
20
|
Ji Q, Hou J, Yong X, Gong G, Muddassir M, Tang T, Xie J, Fan W, Chen X. Targeted Dual Small Interfering Ribonucleic Acid Delivery via Non-Viral Polymeric Vectors for Pulmonary Fibrosis Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007798. [PMID: 33604928 DOI: 10.1002/adma.202007798] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Inhibiting the myofibroblast differentiation of lung-resident mesenchymal stem cells (LR-MSCs) is a promising yet challenging approach for pulmonary fibrosis (PF) therapy. Here, micelles formed by a graft copolymer of multiple PEGs modified branched polyethylenimine are used for delivering runt-related transcription factor-1 (RUNX1) small interfering RNA (siRNA) (siRUNX1) to the lung, aiming to inhibit the myofibroblast differentiation of LR-MSCs. LR-MSC targeting is achieved by functionalizing the micelle surface with an anti-stem-cell antigen-1 antibody fragment (Fab'). Consequently, therapeutic benefits are obtained by successful suppression of myofibroblast differentiation of LR-MSCs in bleomycin-induced PF model mice treated with siRUNX1-loaded micelles. Furthermore, an excellent synergistic effect of PF therapy is achieved for this micelle system loaded siRUNX1 and glioma-associated oncogene homolog-1 (Gli1) small interfering RNA (siGli1), a traditional anti-PF siRNA of glioma-associated oncogene homolog-1. Hence, this work not only provides RUNX1 as a novel PF therapeutic target, but also as a promising dual siRNA-loaded nanocarrier system for the therapy of PF.
Collapse
Affiliation(s)
- Qijian Ji
- Department of Critical Care Medicine, Xuyi People's Hospital, 28 Hongwu Road, Xuyi, Huai'an, Jiangsu, 211700, China
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xueqing Yong
- Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Guangming Gong
- Department of Pharmaceutics, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tianyu Tang
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
21
|
Hepatitis B Virus-Like Particle: Targeted Delivery of Plasmid Expressing Short Hairpin RNA for Silencing the Bcl-2 Gene in Cervical Cancer Cells. Int J Mol Sci 2021; 22:ijms22052320. [PMID: 33652577 PMCID: PMC7956328 DOI: 10.3390/ijms22052320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 01/22/2023] Open
Abstract
Gene therapy research has advanced to clinical trials, but it is hampered by unstable nucleic acids packaged inside carriers and there is a lack of specificity towards targeted sites in the body. This study aims to address gene therapy limitations by encapsidating a plasmid synthesizing a short hairpin RNA (shRNA) that targets the anti-apoptotic Bcl-2 gene using truncated hepatitis B core antigen (tHBcAg) virus-like particle (VLP). A shRNA sequence targeting anti-apoptotic Bcl-2 was synthesized and cloned into the pSilencer 2.0-U6 vector. The recombinant plasmid, namely PshRNA, was encapsidated inside tHBcAg VLP and conjugated with folic acid (FA) to produce FA-tHBcAg-PshRNA VLP. Electron microscopy revealed that the FA-tHBcAg-PshRNA VLP has an icosahedral structure that is similar to the unmodified tHBcAg VLP. Delivery of FA-tHBcAg-PshRNA VLP into HeLa cells overexpressing the folate receptor significantly downregulated the expression of anti-apoptotic Bcl-2 at 48 and 72 h post-transfection. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay demonstrated that the cells' viability was significantly reduced from 89.46% at 24 h to 64.52% and 60.63%, respectively, at 48 and 72 h post-transfection. As a conclusion, tHBcAg VLP can be used as a carrier for a receptor-mediated targeted delivery of a therapeutic plasmid encoding shRNA for gene silencing in cancer cells.
Collapse
|
22
|
Gao H, Cheng R, A. Santos H. Nanoparticle‐mediated siRNA delivery systems for cancer therapy. VIEW 2021. [DOI: 10.1002/viw.20200111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Han Gao
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki Finland
| | - Ruoyu Cheng
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki Finland
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki Finland
| |
Collapse
|
23
|
Hou J, Ji Q, Ji J, Ju S, Xu C, Yong X, Xu X, Muddassir M, Chen X, Xie J, Han X. Co-delivery of siPTPN13 and siNOX4 via (myo)fibroblast-targeting polymeric micelles for idiopathic pulmonary fibrosis therapy. Am J Cancer Res 2021; 11:3244-3261. [PMID: 33537085 PMCID: PMC7847691 DOI: 10.7150/thno.54217] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: (Myo)fibroblasts are the ultimate effector cells responsible for the production of collagen within alveolar structures, a core phenomenon in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Although (myo)fibroblast-targeted therapy holds great promise for suppressing the progression of IPF, its development is hindered by the limited drug delivery efficacy to (myo)fibroblasts and the vicious circle of (myo)fibroblast activation and evasion of apoptosis. Methods: Here, a dual small interfering RNA (siRNA)-loaded delivery system of polymeric micelles is developed to suppress the development of pulmonary fibrosis via a two-arm mechanism. The micelles are endowed with (myo)fibroblast-targeting ability by modifying the Fab' fragment of the anti-platelet-derived growth factor receptor-α (PDGFRα) antibody onto their surface. Two different sequences of siRNA targeting protein tyrosine phosphatase-N13 (PTPN13, a promoter of the resistance of (myo)fibroblasts to Fas-induced apoptosis) and NADPH oxidase-4 (NOX4, a key regulator for (myo)fibroblast differentiation and activation) are loaded into micelles to inhibit the formation of fibroblastic foci. Results: We demonstrate that Fab'-conjugated dual siRNA-micelles exhibit higher affinity to (myo)fibroblasts in fibrotic lung tissue. This Fab'-conjugated dual siRNA-micelle can achieve remarkable antifibrotic effects on the formation of fibroblastic foci by, on the one hand, suppressing (myo)fibroblast activation via siRNA-induced knockdown of NOX4 and, on the other hand, sensitizing (myo)fibroblasts to Fas-induced apoptosis by siRNA-mediated PTPN13 silencing. In addition, this (myo)fibroblast-targeting siRNA-loaded micelle did not induce significant damage to major organs, and no histopathological abnormities were observed in murine models. Conclusion: The (myo)fibroblast-targeting dual siRNA-loaded micelles offer a potential strategy with promising prospects in molecular-targeted fibrosis therapy.
Collapse
|
24
|
Aljabali AA, Obeid MA. Inorganic-organic Nanomaterials for Therapeutics and Molecular Imaging Applications. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210681209666190807145229] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Surface modification of nanoparticles with targeting moieties can be
achieved through bioconjugation chemistries to impart new Functionalities. Various polymeric
nanoparticles have been used for the formulation of nanoparticles such as naturally-occurring
protein cages, virus-like particles, polymeric saccharides, and liposomes. These polymers have
been proven to be biocompatible, side effects free and degradable with no toxicity.
Objectives::
This paper reviews available literature on the nanoparticles pharmaceutical and medical
applications. The review highlights and updates the customized solutions for selective drug
delivery systems that allow high-affinity binding between nanoparticles and the target receptors.
Methods::
Bibliographic databases and web-search engines were used to retrieve studies that assessed
the usability of nanoparticles in the pharmaceutical and medical fields. Data were extracted
on each system in vivo and in vitro applications, its advantages and disadvantages, and its ability to
be chemically and genetically modified to impart new functionalities. Finally, a comparison
between naturally occurring and their synthetic counterparts was carried out.
Results::
The results showed that nanoparticles-based systems could have promising applications in
diagnostics, cell labeling, contrast agents (Magnetic Resonance Imaging and Computed Tomography),
antimicrobial agents, and as drug delivery systems. However, precautions should be taken
to avoid or minimize toxic effect or incompatibility of nanoparticles-based systems with the biological
systems in case of pharmaceutical or medical applications.
Conclusion::
This review presented a summary of recent developments in the field of pharmaceutical
nanotechnology and highlighted the challenges and the merits that some of the nanoparticles-
based systems both in vivo and in vitro systems.
Collapse
Affiliation(s)
- Alaa A.A. Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| |
Collapse
|
25
|
Sajid MI, Moazzam M, Kato S, Yeseom Cho K, Tiwari RK. Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside. Pharmaceuticals (Basel) 2020; 13:E294. [PMID: 33036435 PMCID: PMC7600125 DOI: 10.3390/ph13100294] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
The RNA interference (RNAi) pathway possesses immense potential in silencing any gene in human cells. Small interfering RNA (siRNA) can efficiently trigger RNAi silencing of specific genes. FDA Approval of siRNA therapeutics in recent years garnered a new hope in siRNA therapeutics. However, their therapeutic use is limited by several challenges. siRNAs, being negatively charged, are membrane-impermeable and highly unstable in the systemic circulation. In this review, we have comprehensively discussed the extracellular barriers, including enzymatic degradation of siRNAs by serum endonucleases and RNAases, rapid renal clearance, membrane impermeability, and activation of the immune system. Besides, we have thoroughly described the intracellular barriers such as endosomal trap and off-target effects of siRNAs. Moreover, we have reported most of the strategies and techniques in overcoming these barriers, followed by critical comments in translating these molecules from bench to bedside.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Muhammad Moazzam
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Shun Kato
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| | - Kayley Yeseom Cho
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| |
Collapse
|
26
|
Zhang J, Jing N, Fan X, Tang X. Photoregulation of Gene Expression with Amantadine‐Modified Caged siRNAs through Host–Guest Interactions. Chemistry 2020; 26:14002-14010. [DOI: 10.1002/chem.202003084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/16/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jinhao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| |
Collapse
|
27
|
Ando H, Ishida T. An RNAi therapeutic, DFP-10825, for intraperitoneal and intrapleural malignant cancers. Adv Drug Deliv Rev 2020; 154-155:27-36. [PMID: 32781056 DOI: 10.1016/j.addr.2020.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
RNA interference (RNAi), a potent post-transcriptional gene-silencing action, has received considerable attentions as a novel therapeutic tool to treat intractable cancers. In recent days, we have developed a novel RNAi-based therapeutic formulation, DFP-10825, for the treatment of intractable advanced cancers developed in coelomic cavities. DFP-10825 was composed of chemically synthesized short hairpin RNA (shRNA) against thymidylate synthase (TS), a key enzyme for cancer proliferation, and cationic liposomes, and achieved high therapeutic effect on the mouse models of peritoneally disseminated gastric and ovarian cancers and malignant pleural mesothelioma without severe side effects by intracoelomic direct treatment. We further designed a freeze-dried DFP-10825 formulation for mass industrial production. DFP-10825 is undergoing in pre-clinical phase and goes to clinical trials. This review introduces a DFP-10825 formulation, a potent novel RNAi-based therapeutic maximizing the benefit of RNAi molecule (shRNA).
Collapse
|
28
|
Kang S, Kim J, Ahn M, Kim J, Heo MG, Min DH, Won C. RNAi nanotherapy for fibrosis: highly durable knockdown of CTGF/CCN-2 using siRNA-DegradaBALL (LEM-S401) to treat skin fibrotic diseases. NANOSCALE 2020; 12:6385-6393. [PMID: 32134425 DOI: 10.1039/c9nr10305h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Skin fibrosis occurs in a variety of human diseases but the current anti-fibrosis treatments are not sufficient. One major cause of fibrotic diseases shared across diverse organ fibrosis is uncontrolled overexpression of the connective tissue growth factor (CTGF, also known as CCN2). Here, we examine the anti-fibrotic activity of RNAi therapy utilizing siRNA against CTGF with a new drug delivery system (DDS), 'DegradaBALL', which is based on porous nanoparticles, for durable CTGF gene silencing. DegradaBALL is a modular DDS having many favorable properties for RNA delivery such as effective intracellular uptake, convenient drug loading, biocompatibility, sustained release profile and biodegradability. DegradaBALL loaded with siCTGF, named 'LEM-S401', showed highly durable and effective CTGF gene-silencing in TGF-β induced lung fibrosis and skin fibrosis model cells, A549 and HaCaT, respectively. In addition, LEM-S401 induced knockdown of collagen types I and III, which are excess extracellular matrix components in fibrotic skin in addition to CTGF in the mouse wound healing model. Most importantly, we showed that LEM-S401 effectively inhibited the formation of hypertrophic scars in wound-associated dermal fibrosis mouse models, during both the epidermis recovery and tissue remodeling process. Our findings suggest that LEM-S401 could be a highly potent therapeutic option for skin fibrotic diseases.
Collapse
Affiliation(s)
- Seounghun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. Eur J Pharm Biopharm 2020; 148:88-106. [PMID: 31958514 DOI: 10.1016/j.ejpb.2019.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Osteosarcoma(OS) represents the main cancer affecting bone tissue, and one of the most frequent in children. In this review we discuss the major pathological hallmarks of this pathology, its current therapeutics, new active biomolecules, as well as the nanotechnology outbreak applied to the development of innovative strategies for selective OS targeting. Small RNA molecules play a role as key-regulator molecules capable of orchestrate different responses in what concerns cancer initiation, proliferation, migration and invasiveness. Frequently associated with lung metastasis, new strategies are urgent to upgrade the therapeutic outcomes and the life-expectancy prospects. Hence, the prominent rise of micelleplexes as multifaceted and efficient structures for nucleic acid delivery and selective drug targeting is revisited here with special emphasis on ligand-mediated active targeting. Future landmarks toward the development of novel nanostrategies for both OS diagnosis and OS therapy improvements are also discussed.
Collapse
|
30
|
Wu S, Tang S, Peng H, Jiang Y, Liu Y, Wu Z, Liu Q, Zhu X. Effects of lentivirus-mediated CCR3 RNA interference on the function of mast cells of allergic rhinitis in mice. Int Immunopharmacol 2020; 78:106011. [DOI: 10.1016/j.intimp.2019.106011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
|
31
|
Cristofolini T, Dalmina M, Sierra JA, Silva AH, Pasa AA, Pittella F, Creczynski-Pasa TB. Multifunctional hybrid nanoparticles as magnetic delivery systems for siRNA targeting the HER2 gene in breast cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110555. [PMID: 32228895 DOI: 10.1016/j.msec.2019.110555] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/04/2019] [Accepted: 12/12/2019] [Indexed: 12/30/2022]
Abstract
Breast cancer is a major cause of death among women worldwide. Resistance to conventional therapies has been observed in HER2-positive breast cancer patients, indicating the need for more effective treatments. Small interfering RNA (siRNA) therapy is an attractive strategy against HER2-positive tumors, but its success depends largely on the efficient delivery of agents to target tissues. In this study, we prepared a magnetic hybrid nanostructure composed of iron oxide nanoparticles coated with caffeic acid and stabilized by layers of calcium phosphate and PEG-polyanion block copolymer for incorporation of siRNA. Transmission electron microscopy images showed monodisperse, neutrally charged compact spheres sized <100 nm. Dynamic light scattering and nanoparticle tracking analysis revealed that the nanostructure had an average hydrodynamic diameter of 130 nm. Nanoparticle suspensions remained stable over 42 days of storage at 4 and 25 °C. Unloaded caffeic acid-magnetic calcium phosphate (Caf-MCaP) nanoparticles were not cytotoxic, and loaded nanoparticles were successfully taken up by the HER2-positive breast cancer cell line HCC1954, even more so under magnetic guidance. Nanoparticles escaped endosomal degradation and delivered siRNA into the cytoplasm, inducing HER2 gene silencing.
Collapse
Affiliation(s)
- Tatiane Cristofolini
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Milene Dalmina
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Jelver A Sierra
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil; PGMAT, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Adny H Silva
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - André A Pasa
- LFFS, Department of Physics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Frederico Pittella
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil; Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Tânia B Creczynski-Pasa
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
32
|
Mendes LP, Sarisozen C, Luther E, Pan J, Torchilin VP. Surface-engineered polyethyleneimine-modified liposomes as novel carrier of siRNA and chemotherapeutics for combination treatment of drug-resistant cancers. Drug Deliv 2019; 26:443-458. [PMID: 30929529 PMCID: PMC6450504 DOI: 10.1080/10717544.2019.1574935] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
Modification of nanoparticle surfaces with PEG has been widely considered the gold standard for many years. However, PEGylation presents controversial and serious challenges including lack of functionality, hindered cellular interaction, allergic reactions, and stimulation of IgM production after repetitive dosing that accelerates blood clearance of the nanoparticles. We report the development of novel liposomal formulations surface-modified with a low molecular weight, branched polyethyleneimine (bPEI)-lipid conjugate for use as an alternative to PEG. The formulations had very good stability characteristics in ion- and protein-rich mediums. Protein adsorption onto the liposomal surface did not interfere with the cellular interaction. bPEI-modified liposomes (PEIPOS) showed enhanced association with three different cell lines by up to 75 times compared to plain or PEGylated liposomes and were without carrier toxicity. They also penetrated the deeper layers of 3D spheroids. Encapsulating paclitaxel (PTX) into PEIPOS did not change its main mechanism of action. PEIPOS complexed and intracellularly delivered siRNAs and downregulated resistance-associated proteins. Finally, tumor growth inhibition was observed in a mouse ovarian xenograft tumor model, without signs of toxicity, in animals treated with the siRNA/PTX co-loaded formulation. These complex-in-nature but simple-in-design novel liposomal formulations constitute viable and promising alternatives with added functionality to their PEGylated counterparts.
Collapse
Affiliation(s)
- Livia P. Mendes
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Can Sarisozen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Ed Luther
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| |
Collapse
|
33
|
Duenas-Gonzalez A, Gonzalez-Fierro A. Pharmacodynamics of current and emerging treatments for cervical cancer. Expert Opin Drug Metab Toxicol 2019; 15:671-682. [DOI: 10.1080/17425255.2019.1648431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Alfonso Duenas-Gonzalez
- Unit of Biomedical Research on Cancer, Instituto de Investigaciones Biomédicas UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
| | | |
Collapse
|
34
|
Savari F, Badavi M, Rezaie A, Gharib-Naseri MK, Mard SA. Evaluation of the therapeutic potential effect of Fas receptor gene knockdown in experimental model of non-alcoholic steatohepatitis. Free Radic Res 2019; 53:486-496. [PMID: 31010354 DOI: 10.1080/10715762.2019.1608982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aim: Stimulation of Fas death receptor is introduced as a major cause of non-alcoholic steatohepatitis (NASH) progression through suppression of cell viability. Therefore, the blocking of death pathways is hypothesised to be express new approaches to NASH therapy. For this purpose, current experiment applied synthetic small interference RNA (SiRNA) to trigger Fas death receptor and to show its potential therapeutic role in designed NASH model. Methods: Male mice were placed on a western diet (WD) for 8 weeks and exposed to cigarette smoke during the last 4 weeks of feeding to induce NASH model. In the next step, Fas SiRNA was injected to mice aiming to examine specific Fas gene silencing, after 8 weeks. As a control, mice received scrambled SiRNA. Reversible possibility of disease was examined by 3 weeks of recovery. Results: Analysis of data is accompanied with the significant histopathological changes (steatosis, ballooning and inflammation), increased lipid profile and hepatic enzyme activities (AST, ALT, ALP) plus TBARS as well as decreased antioxidants levels in NASH model. Upon Fas-SiRNA injection, almost all measured parameters of NASH such as overexpression of Fas receptor, caspase3, NF-kB genes and marked increase of hepatic TNF-α were significantly restored and were remained nearly unchanged following recovery liking as scrambled groups. Conclusions: The suppression of Fas receptor signalling subsequent RNAi therapy may represent an applicable strategy to decline hepatocyte damages and so NASH progression in mice.
Collapse
Affiliation(s)
- Feryal Savari
- a Physiology Research Center (PRC), Department of Physiology, School of Medicine , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Mohammad Badavi
- a Physiology Research Center (PRC), Department of Physiology, School of Medicine , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Anahita Rezaie
- b Department of Pathobiology, School of Veterinary Medicine , Shahid Chamran University of Ahvaz , Ahvaz , Iran
| | - Mohammad Kazem Gharib-Naseri
- a Physiology Research Center (PRC), Department of Physiology, School of Medicine , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Seyyed Ali Mard
- c Persian Gulf's Physiology Research Center (PRC), Alimentary Tract Research Center, Department of Physiology, School of Medicine , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
35
|
Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Adv Healthc Mater 2019; 8:e1801320. [PMID: 30666822 DOI: 10.1002/adhm.201801320] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a promising approach to treat cancer, since it facilitates eradication of cancer by enhancing innate and/or adaptive immunity without using cytotoxic drugs. Of the immunotherapeutic approaches, significant clinical potentials are shown in cancer vaccination, immune checkpoint therapy, and adoptive cell transfer. Nevertheless, conventional immunotherapies often involve immune-related adverse effects, such as liver dysfunction, hypophysitis, type I diabetes, and neuropathy. In an attempt to address these issues, polymeric nanomedicines are extensively investigated in recent years. In this review, recent advances in polymeric nanomedicines for cancer immunotherapy are highlighted and thoroughly discussed in terms of 1) antigen presentation, 2) activation of antigen-presenting cells and T cells, and 3) promotion of effector cells. Also, the future perspectives to develop ideal nanomedicines for cancer immunotherapy are provided.
Collapse
Affiliation(s)
- Eun Sook Lee
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jung Min Shin
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Wooram Um
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
36
|
Pandi P, Jain A, Kommineni N, Ionov M, Bryszewska M, Khan W. Dendrimer as a new potential carrier for topical delivery of siRNA: A comparative study of dendriplex vs. lipoplex for delivery of TNF-α siRNA. Int J Pharm 2018; 550:240-250. [PMID: 30165098 DOI: 10.1016/j.ijpharm.2018.08.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
Topical delivery of siRNA is challenging task due to complex barrier property of stratum corneum and cationic lipid based carriers have been widely explored for this purpose due to improved permeation through skin. For gene delivery application, dendrimers are considered as efficient carrier due to their cationic nature and well-defined surface groups. However, they are not well explored for topical delivery. This work compares the suitability of PAMAM dendrimer with DOTAP liposome for topical delivery of siRNA against TNF-α. The particle size, zeta potential and entrapment efficiency of dendriplex were 99.80 ± 1.80 nm, 13.40 ± 4.84 mV and 98.72 ± 2.02% whereas for lipoplex were 174.80 ± 0.80 nm, 29.96 ± 0.51 mV and 94.99 ± 5.01% respectively. Both the formulations were stable in serum and in the presence of RNAse. TNF-α is inflammatory cytokine, hence the in vivo efficacy of developed formulations was determined using psoriatic plaque model. Results suggested improved phenotypic and histopathological features and reduced levels of IL-6, TNF-α, IL-17 and IL-22 for dendriplex and lipoplex treated groups in comparison to Imiquimod treated group. These findings suggest that dendrimer can be a potential carrier for topical gene delivery.
Collapse
Affiliation(s)
- Palpandi Pandi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad 500037, India
| | - Anjali Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad 500037, India
| | - Nagavendra Kommineni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad 500037, India
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
37
|
Abstract
Immune-mediated diseases are emerging as a major healthcare concern in the present era. TNF-α, a proinflammatory cytokine, plays a major role in the manifestation of these diseases by mediating different pathways and inducing the expression of other cytokines. In last decades, monoclonal antibodies and extracellular portion of human TNF-α receptors are explored in this area; however, the risk of immunological response and undesired effects urge a need to develop more effective therapies to control TNF-α levels. siRNA therapeutic strategies are emerging for the treatment of myriad of diseases, but the delivery challenges associated with siRNA require the development of suitable delivery vectors. For delivery of TNF-α siRNA, both viral and nonviral vectors are explored. This review attempts to describe different delivery approaches for TNF-α siRNA with special focus on nonviral delivery vectors.
Collapse
|
38
|
Ki67 targeted strategies for cancer therapy. Clin Transl Oncol 2017; 20:570-575. [DOI: 10.1007/s12094-017-1774-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
|
39
|
López-Cebral R, Silva-Correia J, Reis RL, Silva TH, Oliveira JM. Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomater Sci Eng 2017; 3:3098-3122. [DOI: 10.1021/acsbiomaterials.7b00655] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R. López-Cebral
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. Silva-Correia
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - R. L. Reis
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - T. H. Silva
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. M. Oliveira
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| |
Collapse
|
40
|
Lee SH, Lee JY, Kim JS, Park TG, Mok H. Amphiphilic siRNA Conjugates for Co-Delivery of Nucleic Acids and Hydrophobic Drugs. Bioconjug Chem 2017; 28:2051-2061. [DOI: 10.1021/acs.bioconjchem.7b00222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Soo Hyeon Lee
- Department
of Chemistry and Applied Biosciences, Institute of Pharmaceutical
Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Vladimir-Prelog-Weg, Zurich 8093, Switzerland
| | - Jeong Yu Lee
- Basic Research & Innovation Division, AmorePacific Corporation R&D Unit, Yongin 446-729, Republic of Korea
| | - Jee Seon Kim
- National Institute of Biomedical Imaging and Bioengineering, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Tae Gwan Park
- Department
of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Hyejung Mok
- Department
of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
41
|
Nucleic acid combinations: A new frontier for cancer treatment. J Control Release 2017; 256:153-169. [DOI: 10.1016/j.jconrel.2017.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022]
|
42
|
Wu M, Liu X, Jin W, Li Y, Li Y, Hu Q, Chu PK, Tang G, Ping Y. Targeting ETS1 with RNAi-based supramolecular nanoassemblies for multidrug-resistant breast cancer therapy. J Control Release 2017; 253:110-121. [PMID: 28302581 DOI: 10.1016/j.jconrel.2017.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/19/2017] [Accepted: 03/06/2017] [Indexed: 01/01/2023]
Abstract
Overexpression of erythroblastosis virus E26 oncogene homolog 1 (ETS1) gene is correlated with both tumor progression and poor response to chemotherapy in cancer treatment, and the exploitation of RNA interference (RNAi) technology to downregulate ETS1 seems to be a promising approach to reverse multidrug-resistant cancer cells to chemotherapy. Hence, the RNAi-based nanomedicine which is able to simultaneously downregulate ETS1 expression and to deliver chemotherapeutic agents may improve multidrug-resistant cancer therapy synergistically. In this study, we developed a supramolecular nanoassembly that could deliver siRNA targeting ETS1 (siETS1) and doxorubicin (DOX) as an effective nanomedicine to achieve successful chemotherapy towards multidrug-resistant breast cancer. The nanotherapeutic system was prepared by loading adamantane-conjugated doxorubicin (AD) into polyethyleneimine-modified (2-hydroxypropyl)-γ-cyclodextrin (HP) through the supramolecular assembly to form AD-loaded HP (HPAD), followed by electrostatically-driven self-assembly between siETS1 and HPAD. When the HPAD/siETS1 nanoassemblies were delivered into drug-resistant MCF-7/ADR cells, the drug efflux was significantly reduced as a result of simultaneous silencing of ETS1 and MDR1 genes. Importantly, the HPAD/siETS1 nanoassembly could enhance drug residence time at tumor site, and effectively inhibit drug-resistant tumor growth due to the inhibition of angiogenesis and necrosis in tumor tissues. Western blot analysis indicated that the gene expression of both ETS1 and MDR1 in vivo was considerably downregulated after the drug-resistant tumor-bearing mouse was treated with HPAD/siETS1 nanoassemblies. This study offers a new therapeutic delivery strategy targeting ETS1 for the effective multidrug-resistant chemotherapy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Doxorubicin/administration & dosage
- Doxorubicin/therapeutic use
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Female
- Green Fluorescent Proteins/genetics
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Polyethyleneimine/chemistry
- Proto-Oncogene Protein c-ets-1/genetics
- Proto-Oncogene Protein c-ets-1/metabolism
- RNA Interference
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/therapeutic use
- Tumor Burden
- gamma-Cyclodextrins/chemistry
Collapse
Affiliation(s)
- Min Wu
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China; Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xingang Liu
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Weihong Jin
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yongbing Li
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China; Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yang Li
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China; Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Paul K Chu
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Guping Tang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China; Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Yuan Ping
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
43
|
Escalona-Rayo O, Fuentes-Vázquez P, Leyva-Gómez G, Cisneros B, Villalobos R, Magaña JJ, Quintanar-Guerrero D. Nanoparticulate strategies for the treatment of polyglutamine diseases by halting the protein aggregation process. Drug Dev Ind Pharm 2017; 43:871-888. [PMID: 28142290 DOI: 10.1080/03639045.2017.1281949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) diseases are a class of neurodegenerative disorders that cause cellular dysfunction and, eventually, neuronal death in specific regions of the brain. Neurodegeneration is linked to the misfolding and aggregation of expanded polyQ-containing proteins, and their inhibition is one of major therapeutic strategies used commonly. However, successful treatment has been limited to date because of the intrinsic properties of therapeutic agents (poor water solubility, low bioavailability, poor pharmacokinetic properties), and difficulty in crossing physiological barriers, including the blood-brain barrier (BBB). In order to solve these problems, nanoparticulate systems with dimensions of 1-1000 nm able to incorporate small and macromolecules with therapeutic value, to protect and deliver them directly to the brain, have recently been developed, but their use for targeting polyQ disease-mediated protein misfolding and aggregation remains scarce. This review provides an update of the polyQ protein aggregation process and the development of therapeutic strategies for halting it. The main features that a nanoparticulate system should possess in order to enhance brain delivery are discussed, as well as the different types of materials utilized to produce them. The final part of this review focuses on the potential application of nanoparticulate system strategies to improve the specific and efficient delivery of therapeutic agents to the brain for the treatment of polyQ diseases.
Collapse
Affiliation(s)
- Oscar Escalona-Rayo
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Paulina Fuentes-Vázquez
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Gerardo Leyva-Gómez
- b Laboratory of Connective Tissue , CENIAQ, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra , Mexico City , Mexico
| | - Bulmaro Cisneros
- c Department of Genetics and Molecular Biology , CINVESTAV-IPN , Mexico City , Mexico
| | - Rafael Villalobos
- d División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Jonathan J Magaña
- e Laboratory of Genomic Medicine, Department of Genetics , Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra , Mexico City , Mexico
| | - David Quintanar-Guerrero
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| |
Collapse
|
44
|
Mao X, Su Z, Mookhtiar AK. Long non-coding RNA: a versatile regulator of the nuclear factor-κB signalling circuit. Immunology 2017; 150:379-388. [PMID: 27936492 DOI: 10.1111/imm.12698] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/27/2016] [Accepted: 12/01/2016] [Indexed: 12/16/2022] Open
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors play an essential role for the regulation of inflammatory responses, immune function and malignant transformation. Aberrant activity of this signalling pathway may lead to inflammation, autoimmune diseases and oncogenesis. Over the last two decades great progress has been made in the understanding of NF-κB activation and how the response is counteracted for maintaining tissue homeostasis. Therapeutic targeting of this pathway has largely remained ineffective due to the widespread role of this vital pathway and the lack of specificity of the therapies currently available. Besides regulatory proteins and microRNAs, long non-coding RNA (lncRNA) is emerging as another critical layer of the intricate modulatory architecture for the control of the NF-κB signalling circuit. In this paper we focus on recent progress concerning lncRNA-mediated modulation of the NF-κB pathway, and evaluate the potential therapeutic uses and challenges of using lncRNAs that regulate NF-κB activity.
Collapse
Affiliation(s)
- Xiaohua Mao
- Department of Biochemistry, Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhenyi Su
- Department of Biochemistry, Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | | |
Collapse
|
45
|
Pereira P, Queiroz JA, Figueiras A, Sousa F. Current progress on microRNAs-based therapeutics in neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27882692 DOI: 10.1002/wrna.1409] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs)-based therapy has recently emerged as a promising strategy in the treatments of neurodegenerative diseases. Thus, in this review, the most recent and important challenges and advances on the development of miRNA therapeutics for brain targeting are discussed. In particular, this review highlights current knowledge and progress in the field of manufacturing, recovery, isolation, purification, and analysis of these therapeutic oligonucleotides. Finally, the available miRNA delivery systems are reviewed and an analysis is presented in what concerns to the current challenges that have to be addressed to ensure their specificity and efficacy. Overall, it is intended to provide a perspective on the future of miRNA-based therapeutics, focusing the biotechnological approach to obtain miRNAs. WIREs RNA 2017, 8:e1409. doi: 10.1002/wrna.1409 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Patrícia Pereira
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Figueiras
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Coimbra, Coimbra, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
46
|
Kaban K, Salva E, Akbuga J. In Vitro Dose Studies on Chitosan Nanoplexes for microRNA Delivery in Breast Cancer Cells. Nucleic Acid Ther 2016; 27:45-55. [PMID: 27763825 DOI: 10.1089/nat.2016.0633] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Changes in microRNA (miRNA) expression levels that play important roles in regulation lead to many pathological events such as cancer. The miR-200 family is an important target in cancer therapy. The aim of this study is to equilibrate endogenous levels between cancer and noncancerous cells to prevent serious side effects of miR-200c- and miR-141-like metastatic colonization. For the first time, the characterization of miR-200c and miR-141 cluster containing chitosan nanoplexes was shown, and the optimization of miRNA expression levels by conducting dose studies in breast cancer cell lines was made. The mean diameter of chitosan/miR-141 and chitosan/miR-200c nanoplexes ranged from 296 to 355 nm and from 294 to 380 nm depending on the N/P ratio, respectively. The surface charge of nanoplexes was positive with zeta potential of +12 to +26 mV. While naked miRNA was degraded after 0 min in a 10% serum-containing medium, chitosan/miRNA nanoplexes were protected for 72 h. During the in vitro cellular uptake study, nanoplexes were observed to be accumulating in the cytoplasm or nucleus. After using different doses for miR-200c, the determined doses are 750, 100, and 750 ng in the MCF-7, MDA-MB-231, and MDA-MB-435 cell lines, respectively. Doses were determined as 100 ng for MDA-MB-231 and 150 ng for MDA-MB-435 to reach endogenous miR-141 levels of MCF-10A. Our results suggest that chitosan nanoplexes for miR-200c and miR-141 are an efficient delivery system in terms of formulation and transfection. As a conclusion, dose studies are important to provide effective treatment with miRNAs.
Collapse
Affiliation(s)
- Kubra Kaban
- 1 Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University , Istanbul, Turkey
| | - Emine Salva
- 2 Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Inonu University , Malatya, Turkey
| | - Julide Akbuga
- 1 Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University , Istanbul, Turkey
| |
Collapse
|
47
|
Hickerson RP, Speaker TJ, Lara MF, González-González E, Flores MA, Contag CH, Kaspar RL. Non-Invasive Intravital Imaging of siRNA-Mediated Mutant Keratin Gene Repression in Skin. Mol Imaging Biol 2016; 18:34-42. [PMID: 26169581 DOI: 10.1007/s11307-015-0875-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Small interfering RNAs (siRNAs) specifically and potently inhibit target gene expression. Pachyonychia congenita (PC) is a skin disorder caused by mutations in genes encoding keratin (K) 6a/b, K16, and K17, resulting in faulty intermediate filaments. A siRNA targeting a single nucleotide, PC-relevant mutation inhibits K6a expression and has been evaluated in the clinic with encouraging results. PROCEDURES To better understand the pathophysiology of PC, and develop a model system to study siRNA delivery and visualize efficacy in skin, wild type (WT) and mutant K6a complementary DNAs (cDNAs) were fused to either enhanced green fluorescent protein or tandem tomato fluorescent protein cDNA to allow covisualization of mutant and WT K6a expression in mouse footpad skin using a dual fluorescence in vivo confocal imaging system equipped with 488 and 532 nm lasers. RESULTS Expression of mutant K6a/reporter resulted in visualization of keratin aggregates, while expression of WT K6a/reporter led to incorporation into filaments. Addition of mutant K6a-specific siRNA resulted in inhibition of mutant, but not WT, K6a/reporter expression. CONCLUSIONS Intravital imaging offers subcellular resolution for tracking functional activity of siRNA in real time and enables detailed analyses of therapeutic effects in individual mice to facilitate development of nucleic acid-based therapeutics for skin disorders.
Collapse
Affiliation(s)
- Robyn P Hickerson
- TransDerm Inc., 2161 Delaware Ave., Santa Cruz, CA, 95060, USA.,Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, UK
| | - Tycho J Speaker
- TransDerm Inc., 2161 Delaware Ave., Santa Cruz, CA, 95060, USA
| | - Maria Fernanda Lara
- TransDerm Inc., 2161 Delaware Ave., Santa Cruz, CA, 95060, USA.,Urology Research Unit Virgen de la Victoria and Regional Hospital, Malaga, Spain
| | - Emilio González-González
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.,Canvax Biotech S.L., Technological Park, Cordoba, Spain
| | - Manuel A Flores
- TransDerm Inc., 2161 Delaware Ave., Santa Cruz, CA, 95060, USA
| | - Christopher H Contag
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Departments of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Roger L Kaspar
- TransDerm Inc., 2161 Delaware Ave., Santa Cruz, CA, 95060, USA.
| |
Collapse
|
48
|
Abstract
Recent studies have led to a greater appreciation of the diverse roles RNAs play in maintaining normal cellular function and how they contribute to disease pathology, broadening the number of potential therapeutic targets. Antisense oligonucleotides are the most direct means to target RNA in a selective manner and have become an established platform technology for drug discovery. There are multiple molecular mechanisms by which antisense oligonucleotides can be used to modulate RNAs in cells, including promoting the degradation of the targeted RNA or modulating RNA function without degradation. Antisense drugs utilizing various antisense mechanisms are demonstrating therapeutic potential for the treatment of a broad variety of diseases. This review focuses on some of the advances that have taken place in translating antisense technology from the bench to the clinic.
Collapse
Affiliation(s)
| | | | - Nguyen Pham
- Ionis Pharmaceuticals, Carlsbad, California 92010;
| | - Eric Swayze
- Ionis Pharmaceuticals, Carlsbad, California 92010;
| | | |
Collapse
|
49
|
Lee SH, Kang YY, Jang HE, Mok H. Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics. Adv Drug Deliv Rev 2016; 104:78-92. [PMID: 26514375 DOI: 10.1016/j.addr.2015.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 01/01/2023]
Abstract
Recent promising clinical results of RNA therapeutics have drawn big attention of academia and industries to RNA therapeutics and their carrier systems. To improve their feasibility in clinics, systemic evaluations of currently available carrier systems under clinical trials and preclinical studies are needed. In this review, we focus on recent noticeable preclinical studies and clinical results regarding siRNA-based conjugates for clinical translations. Advantages and drawbacks of siRNA-based conjugates are discussed, compared to particle-based delivery systems. Then, representative siRNA-based conjugates with aptamers, peptides, carbohydrates, lipids, polymers, and nanostructured materials are introduced. To improve feasibility of siRNA conjugates in preclinical studies, several considerations for the rational design of siRNA conjugates in terms of cleavability, immune responses, multivalent conjugations, and mechanism of action are also presented. Lastly, we discuss lessons from previous preclinical and clinical studies related to siRNA conjugates and perspectives of their clinical applications.
Collapse
Affiliation(s)
- Soo Hyeon Lee
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland
| | - Yoon Young Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyo-Eun Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
50
|
Lechanteur A, Furst T, Evrard B, Delvenne P, Hubert P, Piel G. PEGylation of lipoplexes: The right balance between cytotoxicity and siRNA effectiveness. Eur J Pharm Sci 2016; 93:493-503. [PMID: 27593989 DOI: 10.1016/j.ejps.2016.08.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022]
Abstract
The delivery of small interfering RNA (siRNA) is an attractive therapeutic approach to treat several pathologies, such as viral infections or cancers. However, the stability and the efficacy of these biotherapies are still a major obstacle to their use. Cationic liposomes (DOTAP/Chol/DOPE 1/0.75/0.5M ratio) have been complexed to siRNA (lipoplexes) in order to be administrated by the vaginal route, in the context of HPV16 induced cervical preneoplastic lesions. To overcome the constraint of the cervico-vaginal mucus, PEGylation is required to allow the diffusion of lipoplexes through it. Thereby, PEGylated lipoplexes coated with three types of polyethylene glycol (PEG) as DSPE-PEG2000, DSPE-PEG750 or C8-PEG2000-Ceramide (Ceramide-PEG2000) at different densities have been developed and characterized. PEGylated lipoplexes were successfully prepared and showed a hydrodynamic diameter around 200nm, appropriate for vaginal application. In vitro assays on HPV16 positive cell lines revealed that a positive charge of PEGylated lipoplexes allows a higher mRNA knockdown by siRNA. However, the cationic property is also associated to cytotoxicity. The addition of a high percentage of PEG prevented this toxicity but seemed also to reduce siRNA endosomal escape, probably by steric hindrance. The decreasing of PEG density of Ceramide-PEG2000 to 20% allows the release of siRNA and in consequence, biological activities, contrarily to DSPE-PEG. These results suggest that Ceramide-PEG is more appropriate for siRNA delivery compared to DSPE-PEG. In conclusion, the right balance between cytotoxicity and siRNA effectiveness has been found with the transfection of lipoplexes coated with 20% of Ceramide-PEG2000. This new nanovector could have a high potential against multiple mucosal diseases, such as human papillomavirus-induced genital lesions.
Collapse
Affiliation(s)
- Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium; Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium.
| | - Tania Furst
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| |
Collapse
|