1
|
Zhang N, Xiong G, Liu Z. Toxicity of metal-based nanoparticles: Challenges in the nano era. Front Bioeng Biotechnol 2022; 10:1001572. [PMID: 36619393 PMCID: PMC9822575 DOI: 10.3389/fbioe.2022.1001572] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
With the rapid progress of nanotechnology, various nanoparticles (NPs) have been applicated in our daily life. In the field of nanotechnology, metal-based NPs are an important component of engineered NPs, including metal and metal oxide NPs, with a variety of biomedical applications. However, the unique physicochemical properties of metal-based NPs confer not only promising biological effects but also pose unexpected toxic threats to human body at the same time. For safer application of metal-based NPs in humans, we should have a comprehensive understanding of NP toxicity. In this review, we summarize our current knowledge about metal-based NPs, including the physicochemical properties affecting their toxicity, mechanisms of their toxicity, their toxicological assessment, the potential strategies to mitigate their toxicity and current status of regulatory movement on their toxicity. Hopefully, in the near future, through the convergence of related disciplines, the development of nanotoxicity research will be significantly promoted, thereby making the application of metal-based NPs in humans much safer.
Collapse
Affiliation(s)
- Naiding Zhang
- Department of Vascular Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guiya Xiong
- Department of Science and Research, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenjie Liu
- Department of Vascular Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Zhenjie Liu,
| |
Collapse
|
2
|
Romero-Rodríguez A, Martínez de la Peña C, Troncoso-Cotal S, Guzmán C, Sánchez S. Emerging alternatives against Clostridioides difficile infection. Anaerobe 2022; 78:102638. [DOI: 10.1016/j.anaerobe.2022.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
|
3
|
Opportunities for Nanomedicine in Clostridioides difficile Infection. Antibiotics (Basel) 2021; 10:antibiotics10080948. [PMID: 34438998 PMCID: PMC8388953 DOI: 10.3390/antibiotics10080948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
Clostridioides difficile, a spore-forming bacterium, is a nosocomial infectious pathogen which can be found in animals as well. Although various antibiotics and disinfectants were developed, C. difficile infection (CDI) remains a serious health problem. C. difficile spores have complex structures and dormant characteristics that contribute to their resistance to harsh environments, successful transmission and recurrence. C. difficile spores can germinate quickly after being exposed to bile acid and co-germinant in a suitable environment. The vegetative cells produce endospores, and the mature spores are released from the hosts for dissemination of the pathogen. Therefore, concurrent elimination of C. difficile vegetative cells and inhibition of spore germination is essential for effective control of CDI. This review focused on the molecular pathogenesis of CDI and new trends in targeting both spores and vegetative cells of this pathogen, as well as the potential contribution of nanotechnologies for the effective management of CDI.
Collapse
|
4
|
Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Front Bioeng Biotechnol 2021; 9:707319. [PMID: 34249894 PMCID: PMC8267819 DOI: 10.3389/fbioe.2021.707319] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Polymeric nanoparticles have been widely used as carriers of drugs and bioimaging agents due to their excellent biocompatibility, biodegradability, and structural versatility. The principal application of polymeric nanoparticles in medicine is for cancer therapy, with increased tumor accumulation, precision delivery of anticancer drugs to target sites, higher solubility of pharmaceutical properties and lower systemic toxicity. Recently, the stimuli-responsive polymeric nanoplatforms attracted more and more attention because they can change their physicochemical properties responding to the stimuli conditions, such as low pH, enzyme, redox agents, hypoxia, light, temperature, magnetic field, ultrasound, and so on. Moreover, the unique properties of stimuli-responsive polymeric nanocarriers in target tissues may significantly improve the bioactivity of delivered agents for cancer treatment. This review introduces stimuli-responsive polymeric nanoparticles and their applications in tumor theranostics with the loading of chemical drugs, nucleic drugs and imaging molecules. In addition, we discuss the strategy for designing multifunctional polymeric nanocarriers and provide the perspective for the clinical applications of these stimuli-responsive polymeric nanoplatforms.
Collapse
Affiliation(s)
- Di Chang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yuanyuan Ma
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xiaoxuan Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
5
|
Huang X, Ma Y, Li Y, Han F, Lin W. Targeted Drug Delivery Systems for Kidney Diseases. Front Bioeng Biotechnol 2021; 9:683247. [PMID: 34124026 PMCID: PMC8193852 DOI: 10.3389/fbioe.2021.683247] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases have gradually become a global health burden. Along with the development of nanotechnology, many hybrids or nanomaterials have been utilized to promote treatment efficiency with negligible side effects. These therapeutic agents have been successfully applied in many fields. In particular, some efforts have also been made to ameliorate the treatment of kidney diseases through targeted delivery nanomaterials. Though most of the delivery systems have not yet been transmitted into clinical use or even still at an early stage, they have shown great potential in carrying immunosuppressants like tacrolimus and triptolide, antioxidants, or siRNAs. Excitingly, some of them have achieved significant treatment effectiveness and reduced systemic side effect in kidney disease animal models. Here, we have reviewed the recent advances and presented nanotherapeutic devices designed for kidney targeted delivery.
Collapse
Affiliation(s)
- Xiaohan Huang
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Zhejiang University School of Medicine, The First Affiliated Hospital, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Yanhong Ma
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Zhejiang University School of Medicine, The First Affiliated Hospital, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Yangyang Li
- Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Han
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Zhejiang University School of Medicine, The First Affiliated Hospital, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Department of Nephrology, The Fourth Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
6
|
Kulkarni M, Sawant N, Kolapkar A, Huprikar A, Desai N. Borneol: a Promising Monoterpenoid in Enhancing Drug Delivery Across Various Physiological Barriers. AAPS PharmSciTech 2021; 22:145. [PMID: 33913042 DOI: 10.1208/s12249-021-01999-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Incorporation of permeation enhancers is one of the most widely employed approaches for delivering drugs across biological membranes. Permeation enhancers aid in delivering drugs across various physiological barriers such as brain capillary endothelium, stratum corneum, corneal epithelium, and mucosal membranes that pose resistance to the entry of a majority of drugs. Borneol is a natural, plant-derived, lipophilic, volatile, bicyclic monoterpenoid belonging to the class of camphene. It has been used under the names "Bing Pian" or "Long Nao" in Traditional Chinese Medicine for more than 1000 years. Borneol has been incorporated predominantly as an adjuvant in the traditional Chinese formulations of centrally acting drugs to improve drug delivery to the brain. This background knowledge and anecdotal evidence have led to extensive research in establishing borneol as a permeation enhancer across the blood-brain barrier. Alteration in cell membrane lipid structures and modulation of multiple ATP binding cassette transporters as well as tight junction proteins are the major contributing factors to blood-brain barrier opening functions of borneol. Owing to these mechanisms of altering membrane properties, borneol has also shown promising potential to improve drug delivery across other physiological barriers as well. The current review focuses on the role of borneol as a permeation enhancer across the blood-brain barrier, mucosal barriers including nasal and gastrointestinal linings, transdermal, transcorneal, and blood optic nerve barrier.
Collapse
|
7
|
Liu K, Wang X, Li-Blatter X, Wolf M, Hunziker P. Systematic and Quantitative Structure-Property Relationships of Polymeric Medical Nanomaterials: From Systematic Synthesis and Characterization to Computer Modeling and Nano-Bio Interaction and Toxicity. ACS APPLIED BIO MATERIALS 2020; 3:6919-6931. [PMID: 35019353 DOI: 10.1021/acsabm.0c00808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanomaterials allow designing targeted therapies, facilitate molecular diagnostics, and are therefore enabling platforms for personalized medicine. A systematic science and a predictive understanding of molecular/supramolecular structure relationships and nanoparticle structure/biological property relationships are needed for rational design and clinical progress but are hampered by the anecdotal nature, nonsystematic and nonrepresentative nanomaterial assortment, and oligo-disciplinary approach of many publications. Here, we find that a systematic and comprehensive multidisciplinary approach to production and exploration of molecular-structure/nanostructure relationship and nano-bio structure/function relationship of medical nanomaterials can be achieved by combining systematic chemical synthesis, thorough physicochemical analysis, computer modeling, and biological experiments, as shown in a nanomaterial family of amphiphilic, micelle-forming oxazoline/siloxane block copolymers suited for the clinical application. This comprehensive interdisciplinary approach leads to improved understanding of nanomaterial structures, allows good insights into binding modes for the nanomaterial protein corona, induces the design of minimal cell-binding materials, and yields rational strategies to avoid toxicity. Thus, this work contributes to a systematic and scientific basis for rational design of medical nanomaterials.
Collapse
Affiliation(s)
- Kegang Liu
- Nanomedicine Research Lab CLINAM, University of Basel, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland
| | - Xueya Wang
- Nanomedicine Research Lab CLINAM, University of Basel, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland
| | - Xiaochun Li-Blatter
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Marc Wolf
- Nanomedicine Research Lab CLINAM, University of Basel, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland
| | - Patrick Hunziker
- Nanomedicine Research Lab CLINAM, University of Basel, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland.,Intensive Care Clinic, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.,CLINAM Foundation for Nanomedicine, Alemannengasse, 4058 Basel, Switzerland
| |
Collapse
|
8
|
Kaushal S, Nanda SS, Yi DK, Ju H. Effects of Aspect Ratio Heterogeneity of an Assembly of Gold Nanorod on Localized Surface Plasmon Resonance. J Phys Chem Lett 2020; 11:5972-5979. [PMID: 32631062 DOI: 10.1021/acs.jpclett.0c01507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We examine the effects of aspect ratio (AR) heterogeneity of an assembly of gold nanorods (GNRs) in a colloid on the total cross-section for its light scattering via localized surface plasmons at visible wavelengths. We observe the extraordinary broadening of the extinction spectrum of light through an assembly of GNRs, a colloidal mixture of those having two different ARs. The interparticle distance estimated as ∼1.2-1.3 μm, being greater than the incident wavelength, allows the radiative dipolar coupling to govern the long-range interaction between GNRs. We find that the coupling enhanced local fields can activate the nonresonant polarization of GNRs to turn into a quasi-resonant one. These higher-order effects for GNR polarization can produce the deviation of total cross-section of GNRs assembly beyond the simple sum of an individual cross-section of GNRs that are assumed to have no such long-range coupling. The extraordinary properties of the extinction spectrum need to be taken into account for modulating the spectral distribution of electromagnetic field in photonic devices where an assembly of GNRs is utilized for field enhancement such as those for surface-enhanced spectroscopy, highly efficient photovoltaics, photothermal nanotherapy, and ultrathin absorption filters.
Collapse
Affiliation(s)
- Sandeep Kaushal
- Department of Chemistry, Myongji University, 17058 Yongin, Republic of Korea
| | | | - Dong Kee Yi
- Department of Chemistry, Myongji University, 17058 Yongin, Republic of Korea
| | - Heongkyu Ju
- Department of Physics, College of Bionano Technology, Gachon University, 13120 Seongnam, Republic of Korea
| |
Collapse
|
9
|
Chen HY, Deng J, Wang Y, Wu CQ, Li X, Dai HW. Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater 2020; 112:1-13. [PMID: 32470527 DOI: 10.1016/j.actbio.2020.05.028] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Biomimetic nanotechnology through camouflaging synthetic nanoparticles (NPs) with natural cell membranes, which bestows with immune evasion and superior targeting capacity, has been extensively used in drug delivery systems (DDS) over the last decades. These biomimetic NPs not only retain the physicochemical features of the synthetic vehicles but also inherit the cell membranes' intrinsic functionalities. Combined with these benefits, optimized nano-biomimetic DDS allow maximum delivery efficacy. Compared to erythrocyte/cancer single cell membrane, the hybrid cell membrane expressing CD47 membrane protein and self-recognition molecules, from erythrocytes and cancer cells, provides remarkable features to the synthetic vehicles, such as immune evasion, long-term circulation, and homotypic targeting. In this review, we describe the preparation strategies, the camouflaging mechanism, and the antitumor applications of hybrid cell membrane-camouflaged NPs. Moreover, we discuss further modification of the hybrid cell membrane and the surface properties of fusion cellular membranes. Finally, we summarize the primary challenges and opportunities associated with these NPs. STATEMENT OF SIGNIFICANCE: Camouflaging synthetic nanoparticles with hybrid cell membrane has been extensively highlighted in recent years. The resultant biomimetic nanoparticles not only reserve the physicochemical properties of the synthetic nanoparticles but also inherit the biological functions of source cells. Compared with single cell membrane, hybrid cell membrane can endow synthetic nanoparticles with multiple biofunctions derived from the original source cells. To provide a timely review of this rapidly developing subject of research, this paper summarized recent progress on the hybrid cell membrane-camouflaged nanoparticles as drug delivery systems for cancer diagnosis and treatment. In this review, we focused primarily on five different types of hybrid cell membrane-camouflaged nanoparticles with the preparation strategies, the camouflaging mechanism, and the antitumor applications. Moreover, further modification of the hybrid cell membrane was also discussed for isolating effectively circulating tumor cells.
Collapse
|
10
|
Yang J, An HW, Wang H. Self-Assembled Peptide Drug Delivery Systems. ACS APPLIED BIO MATERIALS 2020; 4:24-46. [DOI: 10.1021/acsabm.0c00707] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jia Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
11
|
Baboci L, Capolla S, Di Cintio F, Colombo F, Mauro P, Dal Bo M, Argenziano M, Cavalli R, Toffoli G, Macor P. The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target. JOURNAL OF ONCOLOGY 2020; 2020:4638192. [PMID: 32184825 PMCID: PMC7060440 DOI: 10.1155/2020/4638192] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
The development of nanostructures for therapeutic purpose is rapidly growing, following the results obtained in vivo in animal models and in the clinical trials. Unfortunately, the potential therapeutic efficacy is not completely exploited, yet. This is mainly due to the fast clearance of the nanostructures in the body. Nanoparticles and the liver have a unique interaction because the liver represents one of the major barriers for drug delivery. This interaction becomes even more relevant and complex when the drug delivery strategies employing nanostructures are proposed for the therapy of liver diseases, such as hepatocellular carcinoma (HCC). In this case, the selective delivery of therapeutic nanoparticles to the tumor microenvironment collides with the tendency of nanostructures to be quickly eliminated by the organ. The design of a new therapeutic approach based on nanoparticles to treat HCC has to particularly take into consideration passive and active mechanisms to avoid or delay liver elimination and to specifically address cancer cells or the cancer microenvironment. This review will analyze the different aspects concerning the dual role of the liver, both as an organ carrying out a clearance activity for the nanostructures and as target for therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Federico Colombo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Prisca Mauro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Paolo Macor
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
12
|
Oroojalian F, Charbgoo F, Hashemi M, Amani A, Yazdian-Robati R, Mokhtarzadeh A, Ramezani M, Hamblin MR. Recent advances in nanotechnology-based drug delivery systems for the kidney. J Control Release 2020; 321:442-462. [PMID: 32067996 DOI: 10.1016/j.jconrel.2020.02.027] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022]
Abstract
The application of nanotechnology in medicine has the potential to make a great impact on human health, ranging from prevention to diagnosis and treatment of disease. The kidneys are the main organ of the human urinary system, responsible for filtering the blood, and concentrating metabolic waste into urine by means of the renal glomerulus. The glomerular filtration apparatus presents a barrier against therapeutic agents based on charge and/or molecular size. Therefore, drug delivery to the kidneys faces significant difficulties resulting in treatment failure in several renal disorders. Accordingly, different strategies have recently being explored for enhancing the delivery of therapeutic agents across the filtration barrier of the glomerulus. Nanosystems with different physicochemical properties, including size, shape, surface, charge, and possessing biological features such as high cellular internalization, low cytotoxicity, controllable pharmacokinetics and biodistribution, have shown promising results for renal therapy. Different types of nanoparticles (NPs) have been used to deliver drugs to the kidney. In this review, we discuss nanotechnology-based drug delivery approaches for acute kidney injury, chronic kidney disease, renal fibrosis, renovascular hypertension and kidney cancer.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fahimeh Charbgoo
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Amani
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
13
|
Zhang P, Zhang X, Li C, Zhou S, Wu W, Jiang X. Target-Amplified Drug Delivery of Polymer Micelles Bearing Staudinger Ligation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32697-32705. [PMID: 31411033 DOI: 10.1021/acsami.9b10295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bioorthogonal chemistry together with biomarker-installing techniques is very promising in the amplification of the tumor targeting efficiency of nanomedicine. In this work, we newly synthesized an amphiphilic block copolymer polyoxazoline-block-polycaprolactone (POX-PCL) in which a certain number of amino groups were dangled in the side chain of the POX block and then functionalized into triarylphosphine groups for active tumor targeting via Staudinger ligation. By using the block copolymer self-assembly, the Staudinger ligation reagent-containing and drug-loaded reactive micelles were prepared with a hydrodynamic diameter of ∼74 nm. Such drug-loaded reactive POX-PCL micelles exhibited significant tumor target ability through the Staudinger ligation between the micelles and the tumors metabolically labeled with azide group, as demonstrated by a series of in vitro and in vivo evaluations. In this work, a novel method was proposed for the application of Staudinger ligation in the nanomedicine for amplifying the tumor targeting ability and antitumor activity of nanodrugs.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Xiaoke Zhang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Cheng Li
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Sensen Zhou
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Wei Wu
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
14
|
Internalization Characterization of Si Nanorod with Camouflaged Cell Membrane Proteins Reveals ATXN2 as a Negative Regulator. Cells 2019; 8:cells8080931. [PMID: 31430912 PMCID: PMC6721741 DOI: 10.3390/cells8080931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
The fabrication of shape-controlled nanocarriers is critical for efficient delivery of biomolecules across the cell membrane. Surface coating of the nanocarrier can improve internalization efficiency. Here, we developed a facile method of silicon nanorod fabrication leading to a controlled size and shape. We then systematically evaluated five surface modifications with membrane proteins from different cancer cell lines including MCF7, MD231, Hela, Panc-PDX, and Panc-1. We demonstrated that silicon nanorods coated with either a homolytic or heterolytic membrane protein coating have significantly improved internalization efficiency as compared with uncoated Si nanorods. To elucidate the molecular mechanism of the improved efficiency associated with a modified coating, we analyzed the coating membrane proteins derived from five cell lines with proteomics and identified 601 proteins shared by different cell sources. These proteins may function as cell-substrate adhesion molecules that contribute to the enhanced internalization. We also tested the internalization efficiency of nanorods with different coatings in each of the five cell lines to determine the influencing factors from target cells. We found that the internalization efficiency varied among different target cells, and the ranking of the average efficiency was as follows: Hela > Panc-PDX > MD231 > MCF7 > Panc-1. The bioinformatics analysis suggested that the low internalization efficiency in Panc-1 cells might be associated with the upregulation of ATXN2, which is a negative regulator of endocytosis. We further demonstrated that ATXN2 knockdown with specific siRNA significantly improved nanorod internalization efficiency in Panc-1 cells suggesting that ATXN2 can be a reference for efficiency prediction of nanoparticle delivery to tumor cells. Thus, we studied the effect of different cancer cell membrane proteins on nanorod uptake efficiencies. These results can improve nanorod internalization to cancer cells, including a fundamental understanding of the internalization efficiency of cancer cells.
Collapse
|
15
|
de Freitas CF, Montanha MC, Pellosi DS, Kimura E, Caetano W, Hioka N. "Biotin-targeted mixed liposomes: A smart strategy for selective release of a photosensitizer agent in cancer cells". MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109923. [PMID: 31499973 DOI: 10.1016/j.msec.2019.109923] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
Abstract
The high incidence of cancer, necessity of treatment, and prognosis times are urgent issues that need to be addressed. In this work, we present DPPC liposomes coated with F127 triblock copolymers as a promising alternative in drug delivery systems for cancer therapy. The proposed mixed liposomes exhibit adequate size, high stability, and passive targeting that result from the EPR effect. An interesting strategy to obtain both passive and active targeting is the vectorization with a covalent bond between F127 and Biotin (a vitamin). Cancer cells can overexpress Biotin receptors, such as Avidin. Here, we evaluate the cytotoxic effects of the erythrosine-decyl ester (ERYDEC). This is a photosensitizer that can be utilized in photodynamic therapy (PDT) and incorporated in DPPC liposomes coated with F127 (F127/DPPC) and the biotinylated-F127 (F127-B/DPPC). The results showed that DPPC liposomes were efficiently mixed with common F127 or F127B, exhibiting adequate physical properties with simple and low-cost preparation. An HABA/Avidin assay showed the amount of Biotin available at the liposome surface. In addition, ERYDEC interaction with lipid vesicles showed high encapsulating efficiency and slow release kinetics. The ERYDEC monomeric species are represented by high light absorption and high singlet oxygen generation (1O2), which confirm the presence of the drug in its monomeric state, as required for PDT. The ERYDEC/liposome system showed high stability and absence of significant cytotoxic effects (absence of light) in fibroblasts of the Mus musculus cell line. In addition, phototoxicity studies showed that ERYDEC/liposomes were able to inhibit cancer cells. However, in the biotinylated system, the effect was much greater than the common F127 coating. This dramatically decreased the inhibitory concentration of CC50 and CC90. In addition, cellular uptake studies based on fluorescence properties of ERYDEC showed that a two-hour incubation period was enough for the uptake by the cell. Therefore, the new vectorized-coated liposome is a potential system for use in cancer treatments, considering that it is a theranostic platform.
Collapse
Affiliation(s)
- Camila Fabiano de Freitas
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87.020-900 Maringá, Paraná, Brazil
| | - Maiara Camotti Montanha
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87.020-900 Maringá, Paraná, Brazil
| | - Diogo Silva Pellosi
- Department of Chemistry, Universidade Federal de São Paulo, Campus Diadema, Unidade José de Filippi, R. Prof. Artur Riedel, 275 - Jd. Eldorado, 09972-270 Diadema, São Paulo, Brazil
| | - Elza Kimura
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87.020-900 Maringá, Paraná, Brazil
| | - Wilker Caetano
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87.020-900 Maringá, Paraná, Brazil
| | - Noboru Hioka
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87.020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
16
|
Itoh T, Kojima K, Shimomoto H, Ihara E. Control of lengths and densities of surface-attached chains on polymer particles prepared by dispersion polymerization using macromonomer stabilizer. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Shutava TG, Livanovich KS, Sharamet AA. Layer-by-layer films of polysaccharides modified with polyethylene glycol and dextran. Colloids Surf B Biointerfaces 2018; 173:412-420. [PMID: 30321799 DOI: 10.1016/j.colsurfb.2018.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/07/2018] [Accepted: 10/04/2018] [Indexed: 01/18/2023]
Abstract
Layer-by-layer (LbL) films with enhanced resistance to protein adsorption were obtained on the basis of N-grafted copolymers of chitosan with polyethylene glycol (PEG) or dextran (DEX). The copolymers with the backbone molecular weight of 18 and 450 kDa, side chains of PEG of 5.0 and 0.9 kDa, DEX of 6.0 kDa and the degree of amine groups substitution χSub as high as ∼0.25 were alternated with dextran sulfate (DS) to assemble up to 10 bilayer films. The film material contains 85±5% of water with virtually no effect of the copolymer structure. By utilizing the graft copolymers and applying suitable number of copolymer/DS bilayers to the surface, the mass of adsorbed fetal bovine serum proteins was decreased by 70-85% as compared to that on unmodified chitosan/DS film. In terms of overlapping side chains on the LbL surface the copolymers of PEG and DEX are equally effective in tailoring protein-resistant materials.
Collapse
Affiliation(s)
- Tatsiana G Shutava
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus.
| | - Kanstantsin S Livanovich
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Anastasiya A Sharamet
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
18
|
Nanotechnology-Based Cardiac Targeting and Direct Cardiac Reprogramming: The Betrothed. Stem Cells Int 2017; 2017:4940397. [PMID: 29375623 PMCID: PMC5742458 DOI: 10.1155/2017/4940397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases represent the first cause of morbidity in Western countries, and chronic heart failure features a significant health care burden in developed countries. Efforts in the attempt of finding new possible strategies for the treatment of CHF yielded several approaches based on the use of stem cells. The discovery of direct cardiac reprogramming has unveiled a new approach to heart regeneration, allowing, at least in principle, the conversion of one differentiated cell type into another without proceeding through a pluripotent intermediate. First developed for cancer treatment, nanotechnology-based approaches have opened new perspectives in many fields of medical research, including cardiovascular research. Nanotechnology could allow the delivery of molecules with specific biological activity at a sustained and controlled rate in heart tissue, in a cell-specific manner. Potentially, all the mediators and structural molecules involved in the fibrotic process could be selectively targeted by nanocarriers, but to date, only few experiences have been made in cardiac research. This review highlights the most prominent concepts that characterize both the field of cardiac reprogramming and a nanomedicine-based approach to cardiovascular diseases, hypothesizing a possible synergy between these two very promising fields of research in the treatment of heart failure.
Collapse
|
19
|
Qiao ZY, Zhao WJ, Gao YJ, Cong Y, Zhao L, Hu Z, Wang H. Reconfigurable Peptide Nanotherapeutics at Tumor Microenvironmental pH. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30426-30436. [PMID: 28828864 DOI: 10.1021/acsami.7b09033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptide nanomaterials have recently attracted considerable interest in the biomedical field. However, their poor bioavailability and less powerful therapeutic efficacy hamper their further applications. Herein, we discovered reconfigurable and activated nanotherapeutics in the tumor microenvironment. Two peptides, that is, a pH-responsive peptide HLAH and a matrix metalloprotease-2 (MMP2)-sensitive peptide with a poly(ethylene glycol) (PEG) terminal were conjugated onto the hydrophobic poly(β-thioester)s backbones to gain the copolymer P-S-H. The therapeutic activity of the HLAH peptide could be activated in tumors owing to its reconfiguration under microenvironmental pH. The resultant copolymers self-assembled into nanoparticles under physiological condition, with HLAH in cores protected by PEG shells. The moderate size (∼100 nm) and negative potential enabled the stable circulation of P-S-H in the bloodstream. Once arrived at the tumor site, the P-S-H nanoparticles were stimulated by overexpressed MMP2 and acidic pH, and subsequently the shedding of the PEG shell and protonation of the HLAH peptide induced the reassembly of nanoparticles, resulting in the formation of nanoparticles with activated cytotoxic peptides on the surface. In vivo experiments demonstrated that the reorganized nanoassembly contained three merits: (1) effective accumulation in the tumor site, (2) enhanced antitumor capacity, and (3) no obvious toxic effect at the treatment dose. This on-site reorganization strategy provides an avenue for developing high-performance peptide nanomaterials in cancer treatment.
Collapse
Affiliation(s)
- Zeng-Ying Qiao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Wen-Jing Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Yu-Juan Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Yong Cong
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Zhiyuan Hu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| |
Collapse
|
20
|
Campos J, Varas-Godoy M, Haidar ZS. Physicochemical characterization of chitosan-hyaluronan-coated solid lipid nanoparticles for the targeted delivery of paclitaxel: a proof-of-concept study in breast cancer cells. Nanomedicine (Lond) 2017; 12:473-490. [DOI: 10.2217/nnm-2016-0371] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To investigate the potential of modified solid lipid nanoparticles (SLN) for the delivery of paclitaxel (PAX). Materials & methods: SLN loaded with PAX were prepared via modified high-pressure hot homogenization. Formulation parameters were optimized to obtain a high-quality delivery system. SLN cores were coated, layer-by-layer, with a chitosan and hyaluronan (HA) shell. Selectivity toward HA receptors was tested in a breast cancer cell line, MCF-7. Results: Stable and reproducible nano-sized and negatively charged nanoparticles resulted. Findings reveal that chitosan-HA-coated SLN facilitated the targeting, cellular uptake and the time-/dose-controlled delivery and release of PAX, enhancing intrinsic chemotherapeutic activities. Conclusion: SLN are suitable carrier candidates for nano-oncology given their localized, and potent cytotoxic potential overcoming multidrug-resistant cancer cells.
Collapse
Affiliation(s)
- Javier Campos
- Biomaterials & Tissue Engineering Research Group (BioMAT'X), Centro de Investigación Biomédica, Universidad de los Andes, Monseñor Álvaro del Portillo 12.455, Las Condes, Santiago, Chile
- Programa de Mejoramiento Institucional (PMI), I+D+i, Dirección de Innovación, Universidad de los Andes, Monseñor Álvaro del Portillo 12.455, Las Condes, Santiago, Chile
| | - Manuel Varas-Godoy
- Programa de Mejoramiento Institucional (PMI), I+D+i, Dirección de Innovación, Universidad de los Andes, Monseñor Álvaro del Portillo 12.455, Las Condes, Santiago, Chile
- Laboratorio Biología de la Reproducción, Centro de Investigación Biomédica, Universidad de los Andes, Monseñor Álvaro del Portillo 12.455, Las Condes, Santiago, Chile
| | - Ziyad Samir Haidar
- Biomaterials & Tissue Engineering Research Group (BioMAT'X), Centro de Investigación Biomédica, Universidad de los Andes, Monseñor Álvaro del Portillo 12.455, Las Condes, Santiago, Chile
- Programa de Mejoramiento Institucional (PMI), I+D+i, Dirección de Innovación, Universidad de los Andes, Monseñor Álvaro del Portillo 12.455, Las Condes, Santiago, Chile
- Faculty of Dentistry, Universidad de los Andes, Monseñor Álvaro del Portillo 12.455, Las Condes, Santiago, Chile
| |
Collapse
|
21
|
Abstract
Copper is an essential trace metal that is required for several important biological processes, however, an excess of copper can be toxic to cells. Therefore, systemic and cellular copper homeostasis is tightly regulated, but dysregulation of copper homeostasis may occur in disease states, resulting either in copper deficiency or copper overload and toxicity. This chapter will give an overview on the biological roles of copper and of the mechanisms involved in copper uptake, storage, and distribution. In addition, we will describe potential mechanisms of the cellular toxicity of copper and copper oxide nanoparticles. Finally, we will summarize the current knowledge on the connection of copper toxicity with neurodegenerative diseases.
Collapse
Affiliation(s)
- Felix Bulcke
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Ivo Florin Scheiber
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology, Bremen, Germany.
| |
Collapse
|
22
|
Wen X, Ding S, Cai H, Wang J, Wen L, Yang F, Chen G. Nanomedicine strategy for optimizing delivery to outer hair cells by surface-modified poly(lactic/glycolic acid) nanoparticles with hydrophilic molecules. Int J Nanomedicine 2016; 11:5959-5969. [PMID: 27877041 PMCID: PMC5108623 DOI: 10.2147/ijn.s116867] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Targeted drug delivery to outer hair cells (OHCs) in the cochlea by nanomedicine strategies forms an effective therapeutic approach for treating hearing loss. Surface chemistry plays a deciding role in nanoparticle (NP) biodistribution, but its influence on such distribution in the cochlea remains largely unknown. Herein, we report the first systematic comparison of poly(lactic/glycolic acid) nanoparticles (PLGA NPs) with or without surface modification of hydrophilic molecules for optimizing the delivery to OHCs both in vitro and in vivo. NPs that were surface modified with poloxamer 407 (P407), chitosan, or methoxy poly(ethylene glycol) and the unmodified NPs were highly biocompatible with L929 and House Ear Institute-organ of Corti 1 cells as well as cochlear tissues. Interestingly, among all the examined NPs, P407-PLGA NPs showed the greatest cellular uptake and prominent fluorescence in cochlear imaging. More importantly, we provide novel evidence that the surface-modified NPs reached the organ of Corti and were transported into the OHCs at a higher level. Together, these observations suggest that surface modification with hydrophilic molecules will allow future clinical applications of PLGA NPs, especially P407-PLGA NPs, in efficient hearing loss therapy.
Collapse
Affiliation(s)
- Xingxing Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shan Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Hui Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Junyi Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Fan Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Gang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
23
|
Zagorodko O, Arroyo-Crespo JJ, Nebot VJ, Vicent MJ. Polypeptide-Based Conjugates as Therapeutics: Opportunities and Challenges. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600316] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/02/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Oleksandr Zagorodko
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - Juan José Arroyo-Crespo
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - Vicent J. Nebot
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
- Polypeptide Therapeutic Solutions SL; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| |
Collapse
|
24
|
Parlea L, Puri A, Kasprzak W, Bindewald E, Zakrevsky P, Satterwhite E, Joseph K, Afonin KA, Shapiro BA. Cellular Delivery of RNA Nanoparticles. ACS COMBINATORIAL SCIENCE 2016; 18:527-47. [PMID: 27509068 PMCID: PMC6345529 DOI: 10.1021/acscombsci.6b00073] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RNA nanostructures can be programmed to exhibit defined sizes, shapes and stoichiometries from naturally occurring or de novo designed RNA motifs. These constructs can be used as scaffolds to attach functional moieties, such as ligand binding motifs or gene expression regulators, for nanobiology applications. This review is focused on four areas of importance to RNA nanotechnology: the types of RNAs of particular interest for nanobiology, the assembly of RNA nanoconstructs, the challenges of cellular delivery of RNAs in vivo, and the delivery carriers that aid in the matter. The available strategies for the design of nucleic acid nanostructures, as well as for formulation of their carriers, make RNA nanotechnology an important tool in both basic research and applied biomedical science.
Collapse
Affiliation(s)
- Lorena Parlea
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Anu Puri
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wojciech Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Paul Zakrevsky
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Emily Satterwhite
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kenya Joseph
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte North Carolina 28223, United States
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
25
|
Das J, Choi YJ, Song H, Kim JH. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery. Hum Reprod Update 2016; 22:588-619. [PMID: 27385359 DOI: 10.1093/humupd/dmw020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/16/2016] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Engineered nanoparticles (ENPs) offer technological advantages for a variety of industrial and consumer products as well as show promise for biomedical applications. Recent progress in the field of nanotechnology has led to increased exposure to nanoparticles by humans. To date, little is known about the adverse effects of these ENPs on reproductive health, although interest in nanotechnology area is growing. A few biocompatible ENPs have a high loading capacity for exogenous substances, including drugs, DNA or proteins, and can selectively deliver molecular cargo into cells; however, they represent a potential tool for gene delivery into gametes and embryos. OBJECTIVE AND RATIONALE Understanding the reprotoxicological aspects of these ENPs is of the utmost importance to reliably estimate its potential impact on human health. In addition, a search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Therefore, in this review we summarize the toxic effects of a few ENPs (metal and metal oxides, carbon-based nanoparticles, quantum dots and chitosan) in mammalian germ cells and developing embryos, and propose some treatment strategies that could mitigate nanoparticle-mediated toxicity. In addition, we outline the anticipated applications of ENPs in transgenic animal production in order to generate models for investigations into the mechanisms for human disease. SEARCH METHODS A literature search was performed using the National Center for Biotechnology Information PubMed database up until March 2016 and relevant keywords were used to obtain information regarding mammalian germ cell-specific toxicity and embryotoxicity of ENPs, possible treatment strategies, as well as the anticipated applications of nanoparticles in gene delivery in germ cells and embryos. Only English language publications were included. OUTCOMES Here, we demonstrate the toxicological effects of ENPs in mammalian germ cells and developing embryos by considering both in vitro and in vivo experimental models based on the existing literature. The biodistribution and cellular uptake of ENPs and the observed toxicities are mostly dependent on ENP size and surface-coating agents (surface functional groups/surface charge). ENPs have been shown to induce toxicity via oxidative stress, inflammation and DNA damage in both human and mouse germ cells. Use of antioxidant, anti-inflammatory drugs and selective metal chelators would be beneficial against nanoparticle-induced toxicity. WIDER IMPLICATIONS Our review provides the reproductive scientists a mechanistic insight into the reprotoxicological aspects of ENPs to reliably estimate its potential impact on human health and help to select/design protective agents to combat ENP-mediated toxicity. Furthermore, research regarding the detailed mechanism(s) of ENP toxicity in mammalian germ cells and developing embryos as well as the search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Furthermore, we anticipate that investigations into the possibility of applying nanovectors to gene delivery in germ cells and early embryos will open new horizons in reproductive biology.
Collapse
Affiliation(s)
- Joydeep Das
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
26
|
Gomes MJ, Fernandes C, Martins S, Borges F, Sarmento B. Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier - from Targeting to Safe Administration. J Neuroimmune Pharmacol 2016; 12:107-119. [PMID: 27209050 DOI: 10.1007/s11481-016-9685-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
Blood-brain barrier is a tightly packed layer of endothelial cells surrounding the brain that acts as the main obstacle for drugs enter the central nervous system (CNS), due to its unique features, as tight junctions and drug efflux systems. Therefore, since the incidence of CNS disorders is increasing worldwide, medical therapeutics need to be improved. Consequently, aiming to surpass blood-brain barrier and overcome CNS disabilities, silencing P-glycoprotein as a drug efflux transporter at brain endothelial cells through siRNA is considered a promising approach. For siRNA enzymatic protection and efficient delivery to its target, two different nanoparticles platforms, solid lipid (SLN) and poly-lactic-co-glycolic (PLGA) nanoparticles were used in this study. Polymeric PLGA nanoparticles were around 115 nm in size and had 50 % of siRNA association efficiency, while SLN presented 150 nm and association efficiency close to 52 %. Their surface was functionalized with a peptide-binding transferrin receptor, in a site-oriented manner confirmed by NMR, and their targeting ability against human brain endothelial cells was successfully demonstrated by fluorescence microscopy and flow cytometry. The interaction of modified nanoparticles with brain endothelial cells increased 3-fold compared to non-modified lipid nanoparticles, and 4-fold compared to non-modified PLGA nanoparticles, respectively. These nanosystems, which were also demonstrated to be safe for human brain endothelial cells, without significant cytotoxicity, bring a new hopeful breath to the future of brain diseases therapies.
Collapse
Affiliation(s)
- Maria João Gomes
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Biocarrier Group, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Carlos Fernandes
- CIQUP/Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Susana Martins
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, -5230, Odense, DK, Denmark
| | - Fernanda Borges
- CIQUP/Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Bruno Sarmento
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- INEB, Instituto de Engenharia Biomédica, Biocarrier Group, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Rua Central de Gandra, 1317, 4585-116, Gandra, Portugal.
| |
Collapse
|
27
|
Nekolla K, Kick K, Sellner S, Mildner K, Zahler S, Zeuschner D, Krombach F, Rehberg M. Influence of Surface Modifications on the Spatiotemporal Microdistribution of Quantum Dots In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2641-2651. [PMID: 27028603 DOI: 10.1002/smll.201600071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/20/2016] [Indexed: 06/05/2023]
Abstract
For biomedical applications of nanoconstructs, it is a general prerequisite to efficiently reach the desired target site. In this regard, it is crucial to determine the spatiotemporal distribution of nanomaterials at the microscopic tissue level. Therefore, the effect of different surface modifications on the distribution of microinjected quantum dots (QDs) in mouse skeletal muscle tissue has been investigated. In vivo real-time fluorescence microscopy and particle tracking reveal that carboxyl QDs preferentially attach to components of the extracellular matrix (ECM), whereas QDs coated with polyethylene glycol (PEG) show little interaction with tissue constituents. Transmission electron microscopy elucidates that carboxyl QDs adhere to collagen fibers as well as basement membranes, a type of ECM located on the basolateral side of blood vessel walls. Moreover, carboxyl QDs have been found in endothelial junctions as well as in caveolae of endothelial cells, enabling them to translocate into the vessel lumen. The in vivo QD distribution is confirmed by in vitro experiments. The data suggest that ECM components act as a selective barrier depending on QD surface modification. For future biomedical applications, such as targeting of blood vessel walls, the findings of this study offer design criteria for nanoconstructs that meet the requirements of the respective application.
Collapse
Affiliation(s)
- Katharina Nekolla
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr, 15, 81377, Munich, Germany
| | - Kerstin Kick
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Sabine Sellner
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr, 15, 81377, Munich, Germany
| | - Karina Mildner
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Stefan Zahler
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Dagmar Zeuschner
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr, 15, 81377, Munich, Germany
| | - Markus Rehberg
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr, 15, 81377, Munich, Germany
| |
Collapse
|
28
|
Lau BLT, Butler CS. Censored at the Nanoscale. Front Microbiol 2016; 7:253. [PMID: 26955373 PMCID: PMC4767895 DOI: 10.3389/fmicb.2016.00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Boris L T Lau
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst Amherst, MA, USA
| | - Caitlyn S Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst Amherst, MA, USA
| |
Collapse
|
29
|
Effect of Nanoparticle Surface on the HPLC Elution Profile of Liposomal Nanoparticles. Pharm Res 2016; 33:1440-6. [DOI: 10.1007/s11095-016-1886-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/16/2016] [Indexed: 11/26/2022]
|
30
|
Dobrovolskaia MA. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: Challenges, considerations and strategy. J Control Release 2015; 220:571-83. [PMID: 26348388 PMCID: PMC4688153 DOI: 10.1016/j.jconrel.2015.08.056] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023]
Abstract
Assorted challenges in physicochemical characterization, sterilization, depyrogenation, and in the assessment of pharmacology, safety, and efficacy profiles accompany pre-clinical development of nanotechnology-formulated drugs. Some of these challenges are not unique to nanotechnology and are common in the development of other pharmaceutical products. However, nanoparticle-formulated drugs are biochemically sophisticated, which causes their translation into the clinic to be particularly complex. An understanding of both the immune compatibility of nanoformulations and their effects on hematological parameters is now recognized as an important step in the (pre)clinical development of nanomedicines. An evaluation of nanoparticle immunotoxicity is usually performed as a part of a traditional toxicological assessment; however, it often requires additional in vitro and in vivo specialized immuno- and hematotoxicity tests. Herein, I review literature examples and share the experience with the NCI Nanotechnology Characterization Laboratory assay cascade used in the early (discovery-level) phase of pre-clinical development to summarize common challenges in the immunotoxicological assessment of nanomaterials, highlight considerations and discuss solutions to overcome problems that commonly slow or halt the translation of nanoparticle-formulated drugs toward clinical trials. Special attention will be paid to the grand-challenge related to detection, quantification and removal of endotoxin from nanoformulations, and practical considerations related to this challenge.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, MD 21702, United States.
| |
Collapse
|