1
|
Razavi R, Khajouei G, Divsalar F, Dawi E, Amiri M. Recent advances on brain drug delivery via nanoparticles: alternative future materials for neuroscience applications; a review. Rev Neurosci 2025:revneuro-2024-0086. [PMID: 39829237 DOI: 10.1515/revneuro-2024-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025]
Abstract
Essentially, the blood-brain barrier (BBB) serves as a line of demarcation between neural tissues and the bloodstream. A unique and protective characteristic of the blood-brain barrier is its ability to maintain cerebral homeostasis by regulating the flux of molecules and ions. The inability to uphold proper functioning in any of these constituents leads to the disruption of this specialized multicellular arrangement, consequently fostering neuroinflammation and neurodegeneration. Recent advancements in nanomedicine have been regarded as a promising avenue for improving the delivery of drugs to the central nervous system in the modern era. A major benefit of this innovation is that it allows drugs to accumulate selectively within the cerebral area by circumventing the blood-brain barrier. Although brain-targeted nanomedicines have demonstrated impressive achievements, certain limitations in targeting specificity still exist. In this examination, we scrutinize the distinctive physical and chemical attributes of nanoparticles (NPs) contributing to their facilitation in BBB traversal. We explore the various mechanisms governing NP passage over the BBB, encompassing paracellular conveyance, mediated transport, as well as adsorptive- and receptor-mediated transcytosis. The therapeutic success of NPs for the treatment of brain tumors has been extensively investigated through the use of various categories of NPs. Among these are polymeric nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, metallic nanoparticles, quantum dots, and nanogels. The potential utility of nanoparticles goes beyond their ability to transport pharmaceuticals. They can serve as adept imaging contrast agents, capable of being linked with imaging probes. This will facilitate tumor visualization, delineate lesion boundaries and margins, and monitor drug delivery and treatment response. Versatile nanoparticles can be engineered to effectively target neoplastic lesions, serving dual roles in diagnostic imaging and therapeutic interventions. Subsequently, this discourse explores the constraints associated with nanoparticles in the context of treating brain tumors.
Collapse
Affiliation(s)
- Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Ghazal Khajouei
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Fatemeh Divsalar
- Sina Hospital, Zarand Network and Health Center, 48463 Kerman University of Medical Sciences , Kerman, Iran
| | - Elmuez Dawi
- College of Humanities and Sciences, College of Humanities and Sciences, Department of Mathematics and Sciences, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Mahnaz Amiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| |
Collapse
|
2
|
Wu C, Hormuth DA, Christenson CD, Woodall RT, Abdelmalik MRA, Phillips WT, Hughes TJR, Brenner AJ, Yankeelov TE. Image-guided patient-specific optimization of catheter placement for convection-enhanced nanoparticle delivery in recurrent glioblastoma. Comput Biol Med 2024; 179:108889. [PMID: 39032243 DOI: 10.1016/j.compbiomed.2024.108889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Proper catheter placement for convection-enhanced delivery (CED) is required to maximize tumor coverage and minimize exposure to healthy tissue. We developed an image-based model to patient-specifically optimize the catheter placement for rhenium-186 (186Re)-nanoliposomes (RNL) delivery to treat recurrent glioblastoma (rGBM). METHODS The model consists of the 1) fluid fields generated via catheter infusion, 2) dynamic transport of RNL, and 3) transforming RNL concentration to the SPECT signal. Patient-specific tissue geometries were assigned from pre-delivery MRIs. Model parameters were personalized with either 1) individual-based calibration with longitudinal SPECT images, or 2) population-based assignment via leave-one-out cross-validation. The concordance correlation coefficient (CCC) was used to quantify the agreement between the predicted and measured SPECT signals. The model was then used to simulate RNL distributions from a range of catheter placements, resulting in a ratio of the cumulative RNL dose outside versus inside the tumor, the "off-target ratio" (OTR). Optimal catheter placement) was identified by minimizing OTR. RESULTS Fifteen patients with rGBM from a Phase I/II clinical trial (NCT01906385) were recruited to the study. Our model, with either individual-calibrated or population-assigned parameters, achieved high accuracy (CCC > 0.80) for predicting RNL distributions up to 24 h after delivery. The optimal catheter placements identified using this model achieved a median (range) of 34.56 % (14.70 %-61.12 %) reduction on OTR at the 24 h post-delivery in comparison to the original placements. CONCLUSIONS Our image-guided model achieved high accuracy for predicting patient-specific RNL distributions and indicates value for optimizing catheter placement for CED of radiolabeled liposomes.
Collapse
Affiliation(s)
- Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - David A Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA; Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Chase D Christenson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ryan T Woodall
- Division of Mathematical Oncology, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd, Duarte, CA, 91010, USA
| | - Michael R A Abdelmalik
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - William T Phillips
- Department of Radiology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Thomas J R Hughes
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew J Brenner
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Thomas E Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Oncology, The University of Texas at Austin, Austin, TX, 78712, USA; Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
3
|
Murray MA, Noronha KJ, Wang Y, Friedman AP, Paradkar S, Suh HW, Sundaram RK, Brenner C, Saltzman W, Bindra RS. Exploiting Metabolic Defects in Glioma with Nanoparticle-Encapsulated NAMPT Inhibitors. Mol Cancer Ther 2024; 23:1176-1187. [PMID: 38691846 PMCID: PMC11292319 DOI: 10.1158/1535-7163.mct-24-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The treatment of primary central nervous system tumors is challenging due to the blood-brain barrier and complex mutational profiles, which is associated with low survival rates. However, recent studies have identified common mutations in gliomas [isocitrate dehydrogenase (IDH)-wild-type and mutant, WHO grades II-IV; with grade IV tumors referred to as glioblastomas (GBM)]. These mutations drive epigenetic changes, leading to promoter methylation at the nicotinic acid phosphoribosyl transferase (NAPRT) gene locus, which encodes an enzyme involved in generating NAD+. Importantly, NAPRT silencing introduces a therapeutic vulnerability to inhibitors targeting another NAD+ biogenesis enzyme, nicotinamide phosphoribosyl transferase (NAMPT), rationalizing a treatment for these malignancies. Multiple systemically administered NAMPT inhibitors (NAMPTi) have been developed and tested in clinical trials, but dose-limiting toxicities-including bone marrow suppression and retinal toxicity-have limited their efficacy. Here, we report a novel approach for the treatment of NAPRT-silenced GBMs using nanoparticle (NP)-encapsulated NAMPTis administered by convection-enhanced delivery (CED). We demonstrate that GMX1778 (a NAMPTi) can be formulated in degradable polymer NPs with retention of potency for NAMPT inhibition and anticancer activity in vitro, plus sustained drug release in vitro and in vivo. Direct injection of these drugs via CED into the brain is associated with reduced retinal toxicity compared with systemic administration. Finally, we show that CED of NP-encapsulated GMX1778 to NAPRT-silenced intracranial GBM xenografts in mice exhibit significant tumor growth delay and extends survival. These data support an approach to treat gliomas harboring defects in NAD+ metabolism using CED of NP-encapsulated NAMPTis to greatly improve the therapeutic index and treatment efficacy for this class of drugs.
Collapse
Affiliation(s)
- Matthew A. Murray
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| | - Katelyn J. Noronha
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| | - Yazhe Wang
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| | - Anna P. Friedman
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Sateja Paradkar
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| | - Hee-Won Suh
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire.
| | - Ranjini K. Sundaram
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, City of Hope, Duarte, California.
| | - W.M. Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| | - Ranjit S. Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| |
Collapse
|
4
|
Amirrashedi M, Jensen AI, Tang Q, Straathof NJW, Ravn K, Pedersen CG, Langhorn L, Poulsen FR, Woolley M, Johnson D, Williams J, Kidd C, Thisgaard H, Halle B. The Influence of Size on the Intracranial Distribution of Biomedical Nanoparticles Administered by Convection-enhanced Delivery in Minipigs. ACS NANO 2024; 18:17869-17881. [PMID: 38925630 PMCID: PMC11238734 DOI: 10.1021/acsnano.4c04159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Because of the blood-brain barrier (BBB), successful drug delivery to the brain has long been a key objective for the medical community, calling for pioneering technologies to overcome this challenge. Convection-enhanced delivery (CED), a form of direct intraparenchymal microinfusion, shows promise but requires optimal infusate design and real-time distribution monitoring. The size of the infused substances appears to be especially critical, with current knowledge being limited. Herein, we examined the intracranial administration of polyethylene glycol (PEG)-coated nanoparticles (NPs) of various sizes using CED in groups of healthy minipigs (n = 3). We employed stealth liposomes (LIPs, 130 nm) and two gold nanoparticle designs (AuNPs) of different diameters (8 and 40 nm). All were labeled with copper-64 for quantitative and real-time monitoring of the infusion via positron emission tomography (PET). NPs were infused via two catheters inserted bilaterally in the putaminal regions of the animals. Our results suggest CED with NPs holds promise for precise brain drug delivery, with larger LIPs exhibiting superior distribution volumes and intracranial retention over smaller AuNPs. PET imaging alongside CED enabled dynamic visualization of the process, target coverage, timely detection of suboptimal infusion, and quantification of distribution volumes and concentration gradients. These findings may augment the therapeutic efficacy of the delivery procedure while mitigating unwarranted side effects associated with nonvisually monitored delivery approaches. This is of vital importance, especially for chronic intermittent infusions through implanted catheters, as this information enables informed decisions for modulating targeted infusion volumes on a catheter-by-catheter, patient-by-patient basis.
Collapse
Affiliation(s)
- Mahsa Amirrashedi
- Department
of Nuclear Medicine, Odense University Hospital, Odense 5000, Denmark
- Department
of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby 2800, Denmark
- Danish
Research Centre for Magnetic Resonance, Centre for Functional and
Diagnostic Imaging and Research, Copenhagen
University Hospital Amager and Hvidovre, Copenhagen 2650, Denmark
| | - Andreas Ingemann Jensen
- The
Hevesy Laboratory, Department of Health Technology, Technical University of Denmark, Roskilde 4000, Denmark
| | - Qing Tang
- The
Hevesy Laboratory, Department of Health Technology, Technical University of Denmark, Roskilde 4000, Denmark
| | | | - Katharina Ravn
- The
Hevesy Laboratory, Department of Health Technology, Technical University of Denmark, Roskilde 4000, Denmark
| | | | - Louise Langhorn
- Biomedical
Laboratory, University of Southern Denmark, Odense 5000, Denmark
| | - Frantz Rom Poulsen
- Department
of Clinical Research and BRIDGE (Brain Research - Interdisciplinary
Guided Excellence), University of Southern
Denmark, Odense 5230, Denmark
- Department
of Neurosurgery, Odense University Hospital, Odense 5000, Denmark
| | - Max Woolley
- Renishaw
Neuro Solutions Ltd (RNS), Gloucestershire GL12 8SP, United Kingdom
| | - David Johnson
- Renishaw
Neuro Solutions Ltd (RNS), Gloucestershire GL12 8SP, United Kingdom
| | - Julia Williams
- Renishaw
Neuro Solutions Ltd (RNS), Gloucestershire GL12 8SP, United Kingdom
| | - Charlotte Kidd
- Renishaw
Neuro Solutions Ltd (RNS), Gloucestershire GL12 8SP, United Kingdom
| | - Helge Thisgaard
- Department
of Nuclear Medicine, Odense University Hospital, Odense 5000, Denmark
- Department
of Clinical Research and BRIDGE (Brain Research - Interdisciplinary
Guided Excellence), University of Southern
Denmark, Odense 5230, Denmark
| | - Bo Halle
- Department
of Clinical Research and BRIDGE (Brain Research - Interdisciplinary
Guided Excellence), University of Southern
Denmark, Odense 5230, Denmark
- Department
of Neurosurgery, Odense University Hospital, Odense 5000, Denmark
| |
Collapse
|
5
|
Wehn AC, Krestel E, Harapan BN, Klymchenko A, Plesnila N, Khalin I. To see or not to see: In vivo nanocarrier detection methods in the brain and their challenges. J Control Release 2024; 371:216-236. [PMID: 38810705 DOI: 10.1016/j.jconrel.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Nanoparticles have a great potential to significantly improve the delivery of therapeutics to the brain and may also be equipped with properties to investigate brain function. The brain, being a highly complex organ shielded by selective barriers, requires its own specialized detection system. However, a significant hurdle to achieve these goals is still the identification of individual nanoparticles within the brain with sufficient cellular, subcellular, and temporal resolution. This review aims to provide a comprehensive summary of the current knowledge on detection systems for tracking nanoparticles across the blood-brain barrier and within the brain. We discuss commonly employed in vivo and ex vivo nanoparticle identification and quantification methods, as well as various imaging modalities able to detect nanoparticles in the brain. Advantages and weaknesses of these modalities as well as the biological factors that must be considered when interpreting results obtained through nanotechnologies are summarized. Finally, we critically evaluate the prevailing limitations of existing technologies and explore potential solutions.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Eva Krestel
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany.
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Andrey Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin - CS 60024, 67401 Illkirch Cedex, France.
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14 074 Bd Henri Becquerel, 14000 Caen, France.
| |
Collapse
|
6
|
Anchordoquy T, Artzi N, Balyasnikova IV, Barenholz Y, La-Beck NM, Brenner JS, Chan WCW, Decuzzi P, Exner AA, Gabizon A, Godin B, Lai SK, Lammers T, Mitchell MJ, Moghimi SM, Muzykantov VR, Peer D, Nguyen J, Popovtzer R, Ricco M, Serkova NJ, Singh R, Schroeder A, Schwendeman AA, Straehla JP, Teesalu T, Tilden S, Simberg D. Mechanisms and Barriers in Nanomedicine: Progress in the Field and Future Directions. ACS NANO 2024; 18:13983-13999. [PMID: 38767983 PMCID: PMC11214758 DOI: 10.1021/acsnano.4c00182] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic. At the recent conference workshop "Mechanisms and Barriers in Nanomedicine" in May 2023 in Colorado, U.S.A., leading experts discussed the formulation, physiological, immunological, regulatory, clinical, and educational barriers. This position paper invites open, unrestricted, nonproprietary discussion among senior faculty, young investigators, and students to trigger ideas and concepts to move the field forward.
Collapse
Affiliation(s)
- Thomas Anchordoquy
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Natalie Artzi
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02215, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University; Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Yechezkel Barenholz
- Membrane and Liposome Research Lab, IMRIC, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| | - Ninh M La-Beck
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas 79601, United States
| | - Jacob S Brenner
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, 16163 Genova, Italy
| | - Agata A Exner
- Departments of Radiology and Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Alberto Gabizon
- The Helmsley Cancer Center, Shaare Zedek Medical Center and The Hebrew University of Jerusalem-Faculty of Medicine, Jerusalem, 9103102, Israel
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, Texas 77030, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine College (WCMC), New York, New York 10065, United States
- Department of Biomedical Engineering, Texas A&M, College Station, Texas 7784,3 United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Center for Biohybrid Medical Systems, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
- Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, Colorado 80045, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Madison Ricco
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Natalie J Serkova
- Department of Radiology, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina 27101, United States
| | - Avi Schroeder
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Anna A Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48108; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48108, United States
| | - Joelle P Straehla
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts 02115 United States
- Koch Institute for Integrative Cancer Research at MIT, Cambridge Massachusetts 02139 United States
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Scott Tilden
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dmitri Simberg
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
7
|
Mao M, Wu Y, He Q. Recent advances in targeted drug delivery for the treatment of glioblastoma. NANOSCALE 2024; 16:8689-8707. [PMID: 38606460 DOI: 10.1039/d4nr01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Glioblastoma multiforme (GBM) is one of the highly malignant brain tumors characterized by significant morbidity and mortality. Despite the recent advancements in the treatment of GBM, major challenges persist in achieving controlled drug delivery to tumors. The management of GBM poses considerable difficulties primarily due to unresolved issues in the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB) and GBM microenvironment. These factors limit the uptake of anti-cancer drugs by the tumor, thus limiting the therapeutic options. Current breakthroughs in nanotechnology provide new prospects concerning unconventional drug delivery approaches for GBM treatment. Specifically, swimming nanorobots show great potential in active targeted delivery, owing to their autonomous propulsion and improved navigation capacities across biological barriers, which further facilitate the development of GBM-targeted strategies. This review presents an overview of technological progress in different drug administration methods for GBM. Additionally, the limitations in clinical translation and future research prospects in this field are also discussed. This review aims to provide a comprehensive guideline for researchers and offer perspectives on further development of new drug delivery therapies to combat GBM.
Collapse
Affiliation(s)
- Meng Mao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
8
|
Kim J, Eygeris Y, Ryals RC, Jozić A, Sahay G. Strategies for non-viral vectors targeting organs beyond the liver. NATURE NANOTECHNOLOGY 2024; 19:428-447. [PMID: 38151642 DOI: 10.1038/s41565-023-01563-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/01/2023] [Indexed: 12/29/2023]
Abstract
In recent years, nanoparticles have evolved to a clinical modality to deliver diverse nucleic acids. Rising interest in nanomedicines comes from proven safety and efficacy profiles established by continuous efforts to optimize physicochemical properties and endosomal escape. However, despite their transformative impact on the pharmaceutical industry, the clinical use of non-viral nucleic acid delivery is limited to hepatic diseases and vaccines due to liver accumulation. Overcoming liver tropism of nanoparticles is vital to meet clinical needs in other organs. Understanding the anatomical structure and physiological features of various organs would help to identify potential strategies for fine-tuning nanoparticle characteristics. In this Review, we discuss the source of liver tropism of non-viral vectors, present a brief overview of biological structure, processes and barriers in select organs, highlight approaches available to reach non-liver targets, and discuss techniques to accelerate the discovery of non-hepatic therapies.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Renee C Ryals
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Antony Jozić
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA.
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA.
- Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
9
|
Tian M, Ma Z, Yang GZ. Micro/nanosystems for controllable drug delivery to the brain. Innovation (N Y) 2024; 5:100548. [PMID: 38161522 PMCID: PMC10757293 DOI: 10.1016/j.xinn.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
Drug delivery to the brain is crucial in the treatment for central nervous system disorders. While significant progress has been made in recent years, there are still major challenges in achieving controllable drug delivery to the brain. Unmet clinical needs arise from various factors, including controlled drug transport, handling large drug doses, methods for crossing biological barriers, the use of imaging guidance, and effective models for analyzing drug delivery. Recent advances in micro/nanosystems have shown promise in addressing some of these challenges. These include the utilization of microfluidic platforms to test and validate the drug delivery process in a controlled and biomimetic setting, the development of novel micro/nanocarriers for large drug loads across the blood-brain barrier, and the implementation of micro-intervention systems for delivering drugs through intraparenchymal or peripheral routes. In this article, we present a review of the latest developments in micro/nanosystems for controllable drug delivery to the brain. We also delve into the relevant diseases, biological barriers, and conventional methods. In addition, we discuss future prospects and the development of emerging robotic micro/nanosystems equipped with directed transportation, real-time image guidance, and closed-loop control.
Collapse
Affiliation(s)
- Mingzhen Tian
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Moore TL, Pannuzzo G, Costabile G, Palange AL, Spanò R, Ferreira M, Graziano ACE, Decuzzi P, Cardile V. Nanomedicines to treat rare neurological disorders: The case of Krabbe disease. Adv Drug Deliv Rev 2023; 203:115132. [PMID: 37918668 DOI: 10.1016/j.addr.2023.115132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
The brain remains one of the most challenging therapeutic targets due to the low and selective permeability of the blood-brain barrier and complex architecture of the brain tissue. Nanomedicines, despite their relatively large size compared to small molecules and nucleic acids, are being heavily investigated as vehicles to delivery therapeutics into the brain. Here we elaborate on how nanomedicines may be used to treat rare neurodevelopmental disorders, using Krabbe disease (globoid cell leukodystrophy) to frame the discussion. As a monogenetic disorder and lysosomal storage disease affecting the nervous system, the lessons learned from examining nanoparticle delivery to the brain in the context of Krabbe disease can have a broader impact on the treatment of various other neurodevelopmental and neurodegenerative disorders. In this review, we introduce the epidemiology and genetic basis of Krabbe disease, discuss current in vitro and in vivo models of the disease, as well as current therapeutic approaches either approved or at different stage of clinical developments. We then elaborate on challenges in particle delivery to the brain, with a specific emphasis on methods to transport nanomedicines across the blood-brain barrier. We highlight nanoparticles for delivering therapeutics for the treatment of lysosomal storage diseases, classified by the therapeutic payload, including gene therapy, enzyme replacement therapy, and small molecule delivery. Finally, we provide some useful hints on the design of nanomedicines for the treatment of rare neurological disorders.
Collapse
Affiliation(s)
- Thomas Lee Moore
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy.
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy
| | - Gabriella Costabile
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy; Department of Pharmacy, Università degli Studi di Napoli Federico II, Naples 80131, NA, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Miguel Ferreira
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy; Facolta di Medicina e Chirurgia, Università degli Studi di Enna "Kore", Enna 94100, EN, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy.
| |
Collapse
|
11
|
Khang M, Lee JH, Lee T, Suh HW, Lee S, Cavaliere A, Rushing A, Geraldo LH, Belitzky E, Rossano S, de Feyter HM, Shin K, Huttner A, Roussel MF, Thomas JL, Carson RE, Marquez-Nostra B, Bindra RS, Saltzman WM. Intrathecal delivery of nanoparticle PARP inhibitor to the cerebrospinal fluid for the treatment of metastatic medulloblastoma. Sci Transl Med 2023; 15:eadi1617. [PMID: 37910601 PMCID: PMC11078331 DOI: 10.1126/scitranslmed.adi1617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
The morbidity associated with pediatric medulloblastoma, in particular in patients who develop leptomeningeal metastases, remains high in the absence of effective therapies. Administration of substances directly into the cerebrospinal fluid (CSF) is one approach to circumvent the blood-brain barrier and focus delivery of drugs to the site of tumor. However, high rates of CSF turnover prevent adequate drug accumulation and lead to rapid systemic clearance and toxicity. Here, we show that PLA-HPG nanoparticles, made with a single-emulsion, solvent evaporation process, can encapsulate talazoparib, a PARP inhibitor (BMN-673). These degradable polymer nanoparticles improve the therapeutic index when delivered intrathecally and lead to sustained drug retention in the tumor as measured with PET imaging and fluorescence microscopy. We demonstrate that administration of these particles into the CSF, alone or in combination with systemically administered temozolomide, is a highly effective therapy for tumor regression and prevention of leptomeningeal spread in xenograft mouse models of medulloblastoma. These results provide a rationale for harnessing nanoparticles for the delivery of drugs limited by brain penetration and therapeutic index and demonstrate important advantages in tolerability and efficacy for encapsulated drugs delivered locoregionally.
Collapse
Affiliation(s)
- Minsoo Khang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Ju Hyun Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Teresa Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Supum Lee
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Alessandra Cavaliere
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Amy Rushing
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Luiz H. Geraldo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06510, USA
| | - Erika Belitzky
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Samantha Rossano
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Henk M. de Feyter
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Kwangsoo Shin
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Anita Huttner
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Martine F. Roussel
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38103, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Paris Brain Institute, Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Paris, France
| | - Richard E. Carson
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | | | - Ranjit S. Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06520, USA
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06510, USA
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06511, USA
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
12
|
Beola L, Iturrioz-Rodríguez N, Pucci C, Bertorelli R, Ciofani G. Drug-Loaded Lipid Magnetic Nanoparticles for Combined Local Hyperthermia and Chemotherapy against Glioblastoma Multiforme. ACS NANO 2023; 17:18441-18455. [PMID: 37698887 PMCID: PMC10540267 DOI: 10.1021/acsnano.3c06085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Glioblastoma multiforme (GBM) is a devastating tumor of the central nervous system, currently missing an effective treatment. The therapeutic gold standard consists of surgical resection followed by chemotherapy (usually with temozolomide, TMZ) and/or radiotherapy. TMZ does not, however, provide significant survival benefit after completion of treatment because of development of chemoresistance and of heavy side effects of systemic administration. Improvement of conventional treatments and complementary therapies are urgently needed to increase patient survival and quality of life. Stimuli-responsive lipid-based drug delivery systems offer promising prospects to overcome the limitations of the current treatments. In this work, multifunctional lipid-based magnetic nanovectors functionalized with the peptide angiopep-2 and loaded with TMZ (Ang-TMZ-LMNVs) were tested to enhance specific GBM therapy on an in vivo model. Exposure to alternating magnetic fields (AMFs) enabled magnetic hyperthermia to be performed, that works in synergy with the chemotherapeutic agent. Studies on orthotopic human U-87 MG-Luc2 tumors in nude mice have shown that Ang-TMZ-LMNVs can accumulate and remain in the tumor after local administration without crossing over into healthy tissue, effectively suppressing tumor invasion and proliferation and significantly prolonging the median survival time when combined with the AMF stimulation. This powerful synergistic approach has proven to be a robust and versatile nanoplatform for an effective GBM treatment.
Collapse
Affiliation(s)
- Lilianne Beola
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Nerea Iturrioz-Rodríguez
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Carlotta Pucci
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Rosalia Bertorelli
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Gianni Ciofani
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| |
Collapse
|
13
|
Wang Y, Malik S, Suh HW, Xiao Y, Deng Y, Fan R, Huttner A, Bindra RS, Singh V, Saltzman WM, Bahal R. Anti-seed PNAs targeting multiple oncomiRs for brain tumor therapy. SCIENCE ADVANCES 2023; 9:eabq7459. [PMID: 36753549 PMCID: PMC9908025 DOI: 10.1126/sciadv.abq7459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Glioblastoma (GBM) is one of the most lethal malignancies with poor survival and high recurrence rates. Here, we aimed to simultaneously target oncomiRs 10b and 21, reported to drive GBM progression and invasiveness. We designed short (8-mer) γ-modified peptide nucleic acids (sγPNAs), targeting the seed region of oncomiRs 10b and 21. We entrapped these anti-miR sγPNAs in nanoparticles (NPs) formed from a block copolymer of poly(lactic acid) and hyperbranched polyglycerol (PLA-HPG). The surface of the NPs was functionalized with aldehydes to produce bioadhesive NPs (BNPs) with superior transfection efficiency and tropism for tumor cells. When combined with temozolomide, sγPNA BNPs administered via convection-enhanced delivery (CED) markedly increased the survival (>120 days) of two orthotopic (intracranial) mouse models of GBM. Hence, we established that BNPs loaded with anti-seed sγPNAs targeting multiple oncomiRs are a promising approach to improve the treatment of GBM, with a potential to personalize treatment based on tumor-specific oncomiRs.
Collapse
Affiliation(s)
- Yazhe Wang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Yong Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Ranjit S. Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06510, USA
| | - Vijender Singh
- Computational Biology Core, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Kurawattimath V, Wilson B, Geetha KM. Nanoparticle-based drug delivery across the blood-brain barrier for treating malignant brain glioma. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
15
|
Josowitz AD, Bindra RS, Saltzman WM. Polymer nanocarriers for targeted local delivery of agents in treating brain tumors. NANOTECHNOLOGY 2022; 34:10.1088/1361-6528/ac9683. [PMID: 36179653 PMCID: PMC9940943 DOI: 10.1088/1361-6528/ac9683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Glioblastoma (GBM), the deadliest brain cancer, presents a multitude of challenges to the development of new therapies. The standard of care has only changed marginally in the past 17 years, and few new chemotherapies have emerged to supplant or effectively combine with temozolomide. Concurrently, new technologies and techniques are being investigated to overcome the pharmacokinetic challenges associated with brain delivery, such as the blood brain barrier (BBB), tissue penetration, diffusion, and clearance in order to allow for potent agents to successful engage in tumor killing. Alternative delivery modalities such as focused ultrasound and convection enhanced delivery allow for the local disruption of the BBB, and the latter in particular has shown promise in achieving broad distribution of agents in the brain. Furthermore, the development of polymeric nanocarriers to encapsulate a variety of cargo, including small molecules, proteins, and nucleic acids, have allowed for formulations that protect and control the release of said cargo to extend its half-life. The combination of local delivery and nanocarriers presents an exciting opportunity to address the limitations of current chemotherapies for GBM toward the goal of improving safety and efficacy of treatment. However, much work remains to establish standard criteria for selection and implementation of these modalities before they can be widely implemented in the clinic. Ultimately, engineering principles and nanotechnology have opened the door to a new wave of research that may soon advance the stagnant state of GBM treatment development.
Collapse
Affiliation(s)
- Alexander D Josowitz
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, United States of America
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, United States of America
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, United States of America
- Department of Dermatology, Yale University, New Haven, CT, United States of America
| |
Collapse
|
16
|
Qiu Z, Yu Z, Xu T, Wang L, Meng N, Jin H, Xu B. Novel Nano-Drug Delivery System for Brain Tumor Treatment. Cells 2022; 11:cells11233761. [PMID: 36497021 PMCID: PMC9737081 DOI: 10.3390/cells11233761] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
As the most dangerous tumors, brain tumors are usually treated with surgical removal, radiation therapy, and chemotherapy. However, due to the aggressive growth of gliomas and their resistance to conventional chemoradiotherapy, it is difficult to cure brain tumors by conventional means. In addition, the higher dose requirement of chemotherapeutic drugs caused by the blood-brain barrier (BBB) and the untargeted nature of the drug inevitably leads to low efficacy and systemic toxicity of chemotherapy. In recent years, nanodrug carriers have attracted extensive attention because of their superior drug transport capacity and easy-to-control properties. This review systematically summarizes the major strategies of novel nano-drug delivery systems for the treatment of brain tumors in recent years that cross the BBB and enhance brain targeting, and compares the advantages and disadvantages of several strategies.
Collapse
Affiliation(s)
- Ziyi Qiu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenhua Yu
- Sun Yat-Sen University First Affiliated Hospital, Guangzhou 510060, China
| | - Ting Xu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liuyou Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Nanxin Meng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huawei Jin
- Sun Yat-Sen University First Affiliated Hospital, Guangzhou 510060, China
- Correspondence: (H.J.); (B.X.)
| | - Bingzhe Xu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Correspondence: (H.J.); (B.X.)
| |
Collapse
|
17
|
Ahmad F, Varghese R, Panda S, Ramamoorthy S, Areeshi MY, Fagoonee S, Haque S. Smart Nanoformulations for Brain Cancer Theranostics: Challenges and Promises. Cancers (Basel) 2022; 14:5389. [PMID: 36358807 PMCID: PMC9655255 DOI: 10.3390/cancers14215389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Despite their low prevalence, brain tumors are among the most lethal cancers. They are extremely difficult to diagnose, monitor and treat. Conventional anti-cancer strategies such as radio- and chemotherapy have largely failed, and to date, the development of even a single effective therapeutic strategy against central nervous system (CNS) tumors has remained elusive. There are several factors responsible for this. Brain cancers are a heterogeneous group of diseases with variable origins, biochemical properties and degrees of invasiveness. High-grade gliomas are amongst the most metastatic and invasive cancers, which is another reason for therapeutic failure in their case. Moreover, crossing the blood brain and the blood brain tumor barriers has been a significant hindrance in the development of efficient CNS therapeutics. Cancer nanomedicine, which encompasses the application of nanotechnology for diagnosis, monitoring and therapy of cancers, is a rapidly evolving field of translational medicine. Nanoformulations, because of their extreme versatility and manipulative potential, are emerging candidates for tumor targeting, penetration and treatment in the brain. Moreover, suitable nanocarriers can be commissioned for theranostics, a combinatorial personalized approach for simultaneous imaging and therapy. This review first details the recent advances in novel bioengineering techniques that provide promising avenues for circumventing the hurdles of delivering the diagnostic/therapeutic agent to the CNS. The authors then describe in detail the tremendous potential of utilizing nanotechnology, particularly nano-theranostics for brain cancer imaging and therapy, and outline the different categories of recently developed next-generation smart nanoformulations that have exceptional potential for making a breakthrough in clinical neuro-oncology therapeutics.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Ressin Varghese
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Siva Ramamoorthy
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Mohammad Y. Areeshi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, 10126 Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
18
|
Bhandari A, Jaiswal K, Singh A, Zhan W. Convection-Enhanced Delivery of Antiangiogenic Drugs and Liposomal Cytotoxic Drugs to Heterogeneous Brain Tumor for Combination Therapy. Cancers (Basel) 2022; 14:cancers14174177. [PMID: 36077714 PMCID: PMC9454524 DOI: 10.3390/cancers14174177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although developed anticancer drugs have shown desirable effects in preclinical trials, the clinical efficacy of chemotherapy against brain cancer remains disappointing. One of the important obstacles is the highly heterogeneous environment in tumors. This study aims to evaluate the performance of an emerging treatment using antiangiogenic and cytotoxic drugs. Our mathematical modelling confirms the advantage of this combination therapy in homogenizing the intratumoral environment for better drug delivery outcomes. In addition, the effects of local microvasculature and cell density on this therapy are also discussed. The results would contribute to the development of more effective treatments for brain cancer. Abstract Although convection-enhanced delivery can successfully bypass the blood-brain barrier, its clinical performance remains disappointing. This is primarily attributed to the heterogeneous intratumoral environment, particularly the tumor microvasculature. This study investigates the combined convection-enhanced delivery of antiangiogenic drugs and liposomal cytotoxic drugs in a heterogeneous brain tumor environment using a transport-based mathematical model. The patient-specific 3D brain tumor geometry and the tumor’s heterogeneous tissue properties, including microvascular density, porosity and cell density, are extracted from dynamic contrast-enhanced magnetic resonance imaging data. Results show that antiangiogenic drugs can effectively reduce the tumor microvascular density. This change in tissue structure would inhibit the fluid loss from the blood to prevent drug concentration from dilution, and also reduce the drug loss by blood drainage. The comparisons between different dosing regimens demonstrate that the co-infusion of liposomal cytotoxic drugs and antiangiogenic drugs has the advantages of homogenizing drug distribution, increasing drug accumulation, and enlarging the volume where tumor cells can be effectively killed. The delivery outcomes are susceptible to the location of the infusion site. This combination treatment can be improved by infusing drugs at higher microvascular density sites. In contrast, infusion at a site with high cell density would lower the treatment effectiveness of the whole brain tumor. Results obtained from this study can deepen the understanding of this combination therapy and provide a reference for treatment design and optimization that can further improve survival and patient quality of life.
Collapse
Affiliation(s)
- Ajay Bhandari
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
- Correspondence: (A.B.); (W.Z.)
| | - Kartikey Jaiswal
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Wenbo Zhan
- School of Engineering, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK
- Correspondence: (A.B.); (W.Z.)
| |
Collapse
|
19
|
Caraway CA, Gaitsch H, Wicks EE, Kalluri A, Kunadi N, Tyler BM. Polymeric Nanoparticles in Brain Cancer Therapy: A Review of Current Approaches. Polymers (Basel) 2022; 14:2963. [PMID: 35890738 PMCID: PMC9322801 DOI: 10.3390/polym14142963] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
Translation of novel therapies for brain cancer into clinical practice is of the utmost importance as primary brain tumors are responsible for more than 200,000 deaths worldwide each year. While many research efforts have been aimed at improving survival rates over the years, prognosis for patients with glioblastoma and other primary brain tumors remains poor. Safely delivering chemotherapeutic drugs and other anti-cancer compounds across the blood-brain barrier and directly to tumor cells is perhaps the greatest challenge in treating brain cancer. Polymeric nanoparticles (NPs) are powerful, highly tunable carrier systems that may be able to overcome those obstacles. Several studies have shown appropriately-constructed polymeric NPs cross the blood-brain barrier, increase drug bioavailability, reduce systemic toxicity, and selectively target central nervous system cancer cells. While no studies relating to their use in treating brain cancer are in clinical trials, there is mounting preclinical evidence that polymeric NPs could be beneficial for brain tumor therapy. This review includes a variety of polymeric NPs and how their associated composition, surface modifications, and method of delivery impact their capacity to improve brain tumor therapy.
Collapse
Affiliation(s)
- Chad A. Caraway
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Hallie Gaitsch
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
- NIH-Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Elizabeth E. Wicks
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
- University of Mississippi School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Anita Kalluri
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Navya Kunadi
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Betty M. Tyler
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| |
Collapse
|
20
|
Rathi S, Griffith JI, Zhang W, Zhang W, Oh JH, Talele S, Sarkaria JN, Elmquist WF. The influence of the blood-brain barrier in the treatment of brain tumours. J Intern Med 2022; 292:3-30. [PMID: 35040235 DOI: 10.1111/joim.13440] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain tumours have a poor prognosis and lack effective treatments. The blood-brain barrier (BBB) represents a major hurdle to drug delivery to brain tumours. In some locations in the tumour, the BBB may be disrupted to form the blood-brain tumour barrier (BBTB). This leaky BBTB enables diagnosis of brain tumours by contrast enhanced magnetic resonance imaging; however, this disruption is heterogeneous throughout the tumour. Thus, relying on the disrupted BBTB for achieving effective drug concentrations in brain tumours has met with little clinical success. Because of this, it would be beneficial to design drugs and drug delivery strategies to overcome the 'normal' BBB to effectively treat the brain tumours. In this review, we discuss the role of BBB/BBTB in brain tumour diagnosis and treatment highlighting the heterogeneity of the BBTB. We also discuss various strategies to improve drug delivery across the BBB/BBTB to treat both primary and metastatic brain tumours. Recognizing that the BBB represents a critical determinant of drug efficacy in central nervous system tumours will allow a more rapid translation from basic science to clinical application. A more complete understanding of the factors, such as BBB-limited drug delivery, that have hindered progress in treating both primary and metastatic brain tumours, is necessary to develop more effective therapies.
Collapse
Affiliation(s)
- Sneha Rathi
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jessica I Griffith
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Wenjuan Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Wenqiu Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ju-Hee Oh
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Zha S, Wong K, All AH. Intranasal Delivery of Functionalized Polymeric Nanomaterials to the Brain. Adv Healthc Mater 2022; 11:e2102610. [PMID: 35166052 DOI: 10.1002/adhm.202102610] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Indexed: 12/16/2022]
Abstract
Intravenous delivery of nanomaterials containing therapeutic agents and various cargos for treating neurological disorders is often constrained by low delivery efficacy due to difficulties in passing the blood-brain barrier (BBB). Nanoparticles (NPs) administered intranasally can move along olfactory and trigeminal nerves so that they do not need to pass through the BBB, allowing non-invasive, direct access to selective neural pathways within the brain. Hence, intranasal (IN) administration of NPs can effectively deliver drugs and genes into targeted regions of the brain, holding potential for efficacious disease treatment in the central nervous system (CNS). In this review, current methods for delivering conjugated NPs to the brain are primarily discussed. Distinctive potential mechanisms of therapeutic nanocomposites delivered via IN pathways to the brain are then discussed. Recent progress in developing functional NPs for applications in multimodal bioimaging, drug delivery, diagnostics, and therapeutics is also reviewed. This review is then concluded by discussing existing challenges, new directions, and future perspectives in IN delivery of nanomaterials.
Collapse
Affiliation(s)
- Shuai Zha
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR 000000 P. R. China
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| | - Angelo H. All
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| |
Collapse
|
22
|
Naki T, Aderibigbe BA. Efficacy of Polymer-Based Nanomedicine for the Treatment of Brain Cancer. Pharmaceutics 2022; 14:1048. [PMID: 35631634 PMCID: PMC9145018 DOI: 10.3390/pharmaceutics14051048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Malignant brain tumor is a life-threatening disease with a low survival rate. The therapies available for the treatment of brain tumor is limited by poor uptake via the blood-brain barrier. The challenges with the chemotherapeutics used for the treatment of brain tumors are poor distribution, drug toxicity, and their inability to pass via the blood-brain barrier, etc. Several researchers have investigated the potential of nanomedicines for the treatment of brain cancer. Nanomedicines are designed with nanosize particle sizes with a large surface area and are loaded with bioactive agents via encapsulation, immersion, conjugation, etc. Some nanomedicines have been approved for clinical use. The most crucial part of nanomedicine is that they promote drug delivery across the blood-brain barrier, display excellent specificity, reduce drug toxicity, enhance drug bioavailability, and promote targeted drug release mechanisms. The aforementioned features make them promising therapeutics for brain targeting. This review reports the in vitro and in vivo results of nanomedicines designed for the treatment of brain cancers.
Collapse
Affiliation(s)
- Tobeka Naki
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa;
| | | |
Collapse
|
23
|
Role of Tissue Hydraulic Permeability in Convection-Enhanced Delivery of Nanoparticle-Encapsulated Chemotherapy Drugs to Brain Tumour. Pharm Res 2022; 39:877-892. [PMID: 35474156 PMCID: PMC9160122 DOI: 10.1007/s11095-022-03261-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Tissue hydraulic permeability of brain tumours can vary considerably depending on the tissue microstructure, compositions in interstitium and tumour cells. Its effects on drug transport and accumulation remain poorly understood. METHODS Mathematical modelling is applied to predict the drug delivery outcomes in tumours with different tissue permeability upon convection-enhanced delivery. The modelling is based on a 3-D realistic tumour model that is extracted from patient magnetic resonance images. RESULTS Modelling results show that infusing drugs into a permeable tumour can facilitate a more favourable hydraulic environment for drug transport. The infused drugs will exhibit a relatively uniform distribution and cover a larger tumour volume for effective cell killing. Cross-comparisons show the delivery outcomes are more sensitive to the changes in tissue hydraulic permeability and blood pressure than the fluid flow from the brain ventricle. Quantitative analyses demonstrate that increasing the fluid gain from both the blood and brain ventricle can further improve the interstitial fluid flow, and thereby enhance the delivery outcomes. Furthermore, similar responses to the changes in tissue hydraulic permeability can be found for different types of drugs. CONCLUSIONS Tissue hydraulic permeability as an intrinsic property can influence drug accumulation and distribution. Results from this study can deepen the understanding of the interplays between drug and tissues that are involved in the drug delivery processes in chemotherapy.
Collapse
|
24
|
Chu S, Shi X, Tian Y, Gao F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front Oncol 2022; 12:855019. [PMID: 35392227 PMCID: PMC8980858 DOI: 10.3389/fonc.2022.855019] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
The complexity of the tumor microenvironment presents significant challenges to cancer therapy, while providing opportunities for targeted drug delivery. Using characteristic signals of the tumor microenvironment, various stimuli-responsive drug delivery systems can be constructed for targeted drug delivery to tumor sites. Among these, the pH is frequently utilized, owing to the pH of the tumor microenvironment being lower than that of blood and healthy tissues. pH-responsive polymer carriers can improve the efficiency of drug delivery in vivo, allow targeted drug delivery, and reduce adverse drug reactions, enabling multifunctional and personalized treatment. pH-responsive polymers have gained increasing interest due to their advantageous properties and potential for applicability in tumor therapy. In this review, recent advances in, and common applications of, pH-responsive polymer nanomaterials for drug delivery in cancer therapy are summarized, with a focus on the different types of pH-responsive polymers. Moreover, the challenges and future applications in this field are prospected.
Collapse
Affiliation(s)
- Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
25
|
Nance E, Pun SH, Saigal R, Sellers DL. Drug delivery to the central nervous system. NATURE REVIEWS. MATERIALS 2022; 7:314-331. [PMID: 38464996 PMCID: PMC10923597 DOI: 10.1038/s41578-021-00394-w] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 03/12/2024]
Abstract
Despite the rising global incidence of central nervous system (CNS) disorders, CNS drug development remains challenging, with high costs, long pathways to clinical use and high failure rates. The CNS is highly protected by physiological barriers, in particular, the blood-brain barrier and the blood-cerebrospinal fluid barrier, which limit access of most drugs. Biomaterials can be designed to bypass or traverse these barriers, enabling the controlled delivery of drugs into the CNS. In this Review, we first examine the effects of normal and diseased CNS physiology on drug delivery to the brain and spinal cord. We then discuss CNS drug delivery designs and materials that are administered systemically, directly to the CNS, intranasally or peripherally through intramuscular injections. Finally, we highlight important challenges and opportunities for materials design for drug delivery to the CNS and the anticipated clinical impact of CNS drug delivery.
Collapse
Affiliation(s)
- Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Rajiv Saigal
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Drew L. Sellers
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| |
Collapse
|
26
|
Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022; 182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
CNS tumors remain among the deadliest forms of cancer, resisting conventional and new treatment approaches, with mortality rates staying practically unchanged over the past 30 years. One of the primary hurdles for treating these cancers is delivering drugs to the brain tumor site in therapeutic concentration, evading the blood-brain (tumor) barrier (BBB/BBTB). Supramolecular nanomedicines (NMs) are increasingly demonstrating noteworthy prospects for addressing these challenges utilizing their unique characteristics, such as improving the bioavailability of the payloadsviacontrolled pharmacokinetics and pharmacodynamics, BBB/BBTB crossing functions, superior distribution in the brain tumor site, and tumor-specific drug activation profiles. Here, we review NM-based brain tumor targeting approaches to demonstrate their applicability and translation potential from different perspectives. To this end, we provide a general overview of brain tumor and their treatments, the incidence of the BBB and BBTB, and their role on NM targeting, as well as the potential of NMs for promoting superior therapeutic effects. Additionally, we discuss critical issues of NMs and their clinical trials, aiming to bolster the potential clinical applications of NMs in treating these life-threatening diseases.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
27
|
Amphiphilic Anionic Oligomer-Stabilized Calcium Phosphate Nanoparticles with Prospects in siRNA Delivery via Convection-Enhanced Delivery. Pharmaceutics 2022; 14:pharmaceutics14020326. [PMID: 35214058 PMCID: PMC8877163 DOI: 10.3390/pharmaceutics14020326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Convection-enhanced delivery (CED) has been introduced as a concept in cancer treatment to generate high local concentrations of anticancer therapeutics and overcome the limited diffusional distribution, e.g., in the brain. RNA interference provides interesting therapeutic options to fight cancer cells but requires nanoparticulate (NP) carriers with a size below 100 nm as well as a low zeta potential for CED application. In this study, we investigated calcium phosphate NPs (CaP-NPs) as siRNA carriers for CED application. Since CaP-NPs tend to aggregate, we introduced a new terpolymer (o14PEGMA(1:1:2.5) NH3) for stabilization of CaP-NPs intended for delivery of siRNA to brain cancer cells. This small terpolymer provides PEG chains for steric stabilization, and a fat alcohol to improve interfacial activity, as well as maleic anhydrides that allow for both labeling and high affinity to Ca(II) in the hydrolyzed state. In a systematic approach, we varied the Ca/P ratio as well as the terpolymer concentration and successfully stabilized NPs with the desired properties. Labeling of the terpolymer with the fluorescent dye Cy5 revealed the terpolymer’s high affinity to CaP. Importantly, we also determined a high efficiency of siRNA binding to the NPs that caused very effective survivin siRNA silencing in F98 rat brain cancer cells. Cytotoxicity investigations with a standard cell line resulted in minor and transient effects; no adverse effects were observed in organotypic brain slice cultures. However, more specific cytotoxicity investigations are required. This study provides a systematic and mechanistic analysis characterizing the effects of the first oligomer of a new class of stabilizers for siRNA-loaded CaP-NPs.
Collapse
|
28
|
Mena-Giraldo P, Orozco J. Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers (Basel) 2021; 13:3920. [PMID: 34833219 PMCID: PMC8621231 DOI: 10.3390/polym13223920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Smart polymer-based micro/nanoassemblies have emerged as a promising alternative for transporting and delivering a myriad of cargo. Cargo encapsulation into (or linked to) polymeric micro/nanocarrier (PC) strategies may help to conserve cargo activity and functionality when interacting with its surroundings in its journey to the target. PCs for cargo phototriggering allow for excellent spatiotemporal control via irradiation as an external stimulus, thus regulating the delivery kinetics of cargo and potentially increasing its therapeutic effect. Micromotors based on PCs offer an accelerated cargo-medium interaction for biomedical, environmental, and many other applications. This review collects the recent achievements in PC development based on nanomicelles, nanospheres, and nanopolymersomes, among others, with enhanced properties to increase cargo protection and cargo release efficiency triggered by ultraviolet (UV) and near-infrared (NIR) irradiation, including light-stimulated polymeric micromotors for propulsion, cargo transport, biosensing, and photo-thermal therapy. We emphasize the challenges of positioning PCs as drug delivery systems, as well as the outstanding opportunities of light-stimulated polymeric micromotors for practical applications.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 # 52-20, Medellin 050010, Colombia;
| |
Collapse
|
29
|
Simion V, Loussouarn C, Laurent Y, Roncali L, Gosset D, Reverchon F, Rousseau A, Martin F, Midoux P, Pichon C, Garcion E, Baril P. LentiRILES, a miRNA-ON sensor system for monitoring the functionality of miRNA in cancer biology and therapy. RNA Biol 2021; 18:198-214. [PMID: 34570661 DOI: 10.1080/15476286.2021.1978202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
A major unresolved challenge in miRNA biology is the capacity to monitor the spatiotemporal activity of miRNAs expressed in animal disease models. We recently reported that the miRNA-ON monitoring system called RILES (RNAi-inducible expression Luciferase system) implanted in lentivirus expression system (LentiRILES) offers unique opportunity to decipher the kinetics of miRNA activity in vitro, in relation with their intracellular trafficking in glioblastoma cells. In this study, we describe in detail the method for the production of LentiRILES stable cell lines and employed it in several applications in the field of miRNA biology and therapy. We show that LentiRILES is a robust, highly specific and sensitive miRNA sensor system that can be used in vitro as a single-cell miRNA monitoring method, cell-based screening platform for miRNA therapeutics and as a tool to analyse the structure-function relationship of the miRNA duplex. Furthermore, we report the kinetics of miRNA activity upon the intracranial delivery of miRNA mimics in an orthotopic animal model of glioblastoma. This information is exploited to evaluate the tumour suppressive function of miRNA-200c as locoregional therapeutic modality to treat glioblastoma. Our data provide evidence that LentiRILES is a robust system, well suited to resolve the activity of endogenous and exogenously expressed miRNAs from basic research to gene and cell therapy.
Collapse
Affiliation(s)
- Viorel Simion
- Centre De Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Orléans, France
| | - Claire Loussouarn
- Université d'Angers, Université de Nantes, Inserm, CRCINA, Angers, France
| | - Yoan Laurent
- Centre De Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Orléans, France
| | - Loris Roncali
- Université d'Angers, Université de Nantes, Inserm, CRCINA, Angers, France
| | - David Gosset
- Centre De Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Orléans, France
| | - Flora Reverchon
- Centre De Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Orléans, France
| | - Audrey Rousseau
- Université d'Angers, Université de Nantes, Inserm, CRCINA, Angers, France
| | - Francisco Martin
- GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Patrick Midoux
- Centre De Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Orléans, France
| | - Chantal Pichon
- Centre De Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Orléans, France
| | - Emmanuel Garcion
- Université d'Angers, Université de Nantes, Inserm, CRCINA, Angers, France
| | - Patrick Baril
- Centre De Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Orléans, France
| |
Collapse
|
30
|
Ulasov IV, Borovjagin A, Laevskaya A, Kamynina M, Timashev P, Cerchia L, Rozhkova EA. The IL13α 2R paves the way for anti-glioma nanotherapy. Genes Dis 2021; 10:89-100. [PMID: 37013057 PMCID: PMC10066331 DOI: 10.1016/j.gendis.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive (grade IV) gliomas characterized by a high rate of recurrence, resistance to therapy and a grim survival prognosis. The long-awaited improvement in GBM patients' survival rates essentially depends on advances in the development of new therapeutic approaches. Recent preclinical studies show that nanoscale materials could greatly contribute to the improvement of diagnosis and management of brain cancers. In the current review, we will discuss how specific features of glioma pathobiology can be employed for designing efficient targeting approaches. Moreover, we will summarize the main evidence for the potential of the IL-13R alpha 2 receptor (IL13α2R) targeting in GBM early diagnosis and experimental therapy.
Collapse
Affiliation(s)
- Ilya V. Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
- Corresponding author.
| | - Anton Borovjagin
- Department of BioMedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anastasia Laevskaya
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
- Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 4 Kosygin St, Moscow 119991, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russia
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Naples 80131, Italy
| | - Elena A. Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
31
|
Chen S, Qiu Q, Wang D, She D, Yin B, Chai M, He H, Heo DN, Wang J. Long acting carmustine loaded natural extracellular matrix hydrogel for inhibition of glioblastoma recurrence after tumor resection. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R, Kumeria T, Ziegler DS, Kavallaris M, Mazzieri R, Popat A. Frontiers in the treatment of glioblastoma: Past, present and emerging. Adv Drug Deliv Rev 2021; 171:108-138. [PMID: 33486006 DOI: 10.1016/j.addr.2021.01.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/13/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive cancers of the brain. Despite extensive research over the last several decades, the survival rates for GBM have not improved and prognosis remains poor. To date, only a few therapies are approved for the treatment of GBM with the main reasons being: 1) significant tumour heterogeneity which promotes the selection of resistant subpopulations 2) GBM induced immunosuppression and 3) fortified location of the tumour in the brain which hinders the delivery of therapeutics. Existing therapies for GBM such as radiotherapy, surgery and chemotherapy have been unable to reach the clinical efficacy necessary to prolong patient survival more than a few months. This comprehensive review evaluates the current and emerging therapies including those in clinical trials that may potentially improve both targeted delivery of therapeutics directly to the tumour site and the development of agents that may specifically target GBM. Particular focus has also been given to emerging delivery technologies such as focused ultrasound, cellular delivery systems nanomedicines and immunotherapy. Finally, we discuss the importance of developing novel materials for improved delivery efficacy of nanoparticles and therapeutics to reduce the suffering of GBM patients.
Collapse
|
33
|
The biomedical significance of multifunctional nanobiomaterials: The key components for site-specific delivery of therapeutics. Life Sci 2021; 277:119400. [PMID: 33794255 DOI: 10.1016/j.lfs.2021.119400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 01/07/2023]
Abstract
The emergence of nanotechnology has provided the possibilities to overcome the potential problems associated with the development of pharmaceuticals including the low solubility, non-specific cellular uptake or action, and rapid clearance. Regarding the biomaterials (BMs), huge efforts have been made for improving their multi-functionalities via incorporation of various nanomaterials (NMs). Nanocomposite hydrogels with suitable properties could exhibit a variety of beneficial effects in biomedicine particularly in the delivery of therapeutics or tissue engineering. NMs including the silica- or carbon-based ones are capable of integration into various BMs that might be due to their special compositions or properties such as the hydrophilicity, hydrophobicity, magnetic or electrical characteristics, and responsiveness to various stimuli. This might provide multi-functional nanobiomaterials against a wide variety of disorders. Meanwhile, inappropriate distribution or penetration into the cells or tissues, bio-nano interface complexity, targeting ability loss, or any other unpredicted phenomena are the serious challenging issues. Computational simulations and models enable development of NMs with optimal characteristics and provide a deeper knowledge of NM interaction with biosystems. This review highlights the biomedical significance of the multifunctional NMs particularly those applied for the development of 2-D or 3-D BMs for a variety of applications including the site-specific delivery of therapeutics. The powerful impacts of the computational techniques on the design process of NMs, quantitation and prediction of protein corona formation, risk assessment, and individualized therapy for improved therapeutic outcomes have also been discussed.
Collapse
|
34
|
Brachi G, Ruiz-Ramírez J, Dogra P, Wang Z, Cristini V, Ciardelli G, Rostomily RC, Ferrari M, Mikheev AM, Blanco E, Mattu C. Intratumoral injection of hydrogel-embedded nanoparticles enhances retention in glioblastoma. NANOSCALE 2020; 12:23838-23850. [PMID: 33237080 PMCID: PMC8062960 DOI: 10.1039/d0nr05053a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/24/2020] [Indexed: 05/07/2023]
Abstract
Intratumoral drug delivery is a promising approach for the treatment of glioblastoma multiforme (GBM). However, drug washout remains a major challenge in GBM therapy. Our strategy, aimed at reducing drug clearance and enhancing site-specific residence time, involves the local administration of a multi-component system comprised of nanoparticles (NPs) embedded within a thermosensitive hydrogel (HG). Herein, our objective was to examine the distribution of NPs and their cargo following intratumoral administration of this system in GBM. We hypothesized that the HG matrix, which undergoes rapid gelation upon increases in temperature, would contribute towards heightened site-specific retention and permanence of NPs in tumors. BODIPY-containing, infrared dye-labeled polymeric NPs embedded in a thermosensitive HG (HG-NPs) were fabricated and characterized. Retention and distribution dynamics were subsequently examined over time in orthotopic GBM-bearing mice. Results demonstrate that the HG-NPs system significantly improved site-specific, long-term retention of both NPs and BODIPY, with co-localization analyses showing that HG-NPs covered larger areas of the tumor and the peri-tumor region at later time points. Moreover, NPs released from the HG were shown to undergo uptake by surrounding GBM cells. Findings suggest that intratumoral delivery with HG-NPs has immense potential for GBM treatment, as well as other strategies where site-specific, long-term retention of therapeutic agents is warranted.
Collapse
Affiliation(s)
- Giulia Brachi
- Politecnico di Torino
, DIMEAS
,
C.so Duca degli Abruzzi 24
, 10129 Torino
, Italy
.
; Tel: +390110906792
- Department of Nanomedicine
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Javier Ruiz-Ramírez
- Mathematics in Medicine Program
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Prashant Dogra
- Mathematics in Medicine Program
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Zhihui Wang
- Mathematics in Medicine Program
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Gianluca Ciardelli
- Politecnico di Torino
, DIMEAS
,
C.so Duca degli Abruzzi 24
, 10129 Torino
, Italy
.
; Tel: +390110906792
| | - Robert C. Rostomily
- Department of Neurosurgery
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Mauro Ferrari
- Department of Nanomedicine
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Andrei M. Mikheev
- Department of Neurosurgery
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Elvin Blanco
- Department of Nanomedicine
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Clara Mattu
- Politecnico di Torino
, DIMEAS
,
C.so Duca degli Abruzzi 24
, 10129 Torino
, Italy
.
; Tel: +390110906792
- Department of Nanomedicine
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| |
Collapse
|
35
|
Cha GD, Kang T, Baik S, Kim D, Choi SH, Hyeon T, Kim DH. Advances in drug delivery technology for the treatment of glioblastoma multiforme. J Control Release 2020; 328:350-367. [PMID: 32896613 DOI: 10.1016/j.jconrel.2020.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is a particularly aggressive and malignant type of brain tumor, notorious for its high recurrence rate and low survival rate. The treatment of GBM is challenging mainly because several issues associated with the GBM microenvironment have not yet been resolved. These obstacles originate from a variety of factors such as genetics, anatomy, and cytology, all of which collectively hinder the treatment of GBM. Recent advances in materials and device engineering have presented new perspectives with regard to unconventional drug administration methods for GBM treatment. Such novel drug delivery approaches, based on the clear understanding of the intrinsic properties of GBM, have shown promise in overcoming some of the obstacles. In this review, we first recapitulate the first-line therapy and clinical challenges in the current treatment of GBM. Afterwards, we introduce the latest technological advances in drug delivery strategies to improve the efficiency for GBM treatment, mainly focusing on materials and devices. We describe such efforts by classifying them into two categories, systemic and local drug delivery. Finally, we discuss unmet challenges and prospects for the clinical translation of these drug delivery technologies.
Collapse
Affiliation(s)
- Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taegyu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan 15588, Republic of Korea
| | - Seung Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
36
|
Particulate systems for improving therapeutic efficacy of pharmaceuticals against central nervous system-related diseases. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Xu Y, Wei L, Wang H. Progress and perspectives on nanoplatforms for drug delivery to the brain. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Spencer AP, Torrado M, Custódio B, Silva-Reis SC, Santos SD, Leiro V, Pêgo AP. Breaking Barriers: Bioinspired Strategies for Targeted Neuronal Delivery to the Central Nervous System. Pharmaceutics 2020; 12:E192. [PMID: 32102252 PMCID: PMC7076453 DOI: 10.3390/pharmaceutics12020192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/01/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022] Open
Abstract
Central nervous system (CNS) disorders encompass a vast spectrum of pathological conditions and represent a growing concern worldwide. Despite the high social and clinical interest in trying to solve these pathologies, there are many challenges to bridge in order to achieve an effective therapy. One of the main obstacles to advancements in this field that has hampered many of the therapeutic strategies proposed to date is the presence of the CNS barriers that restrict the access to the brain. However, adequate brain biodistribution and neuronal cells specific accumulation in the targeted site also represent major hurdles to the attainment of a successful CNS treatment. Over the last few years, nanotechnology has taken a step forward towards the development of therapeutics in neurologic diseases and different approaches have been developed to surpass these obstacles. The versatility of the designed nanocarriers in terms of physical and chemical properties, and the possibility to functionalize them with specific moieties, have resulted in improved neurotargeted delivery profiles. With the concomitant progress in biology research, many of these strategies have been inspired by nature and have taken advantage of physiological processes to achieve brain delivery. Here, the different nanosystems and targeting moieties used to achieve a neuronal delivery reported in the open literature are comprehensively reviewed and critically discussed, with emphasis on the most recent bioinspired advances in the field. Finally, we express our view on the paramount challenges in targeted neuronal delivery that need to be overcome for these promising therapeutics to move from the bench to the bedside.
Collapse
Affiliation(s)
- Ana P. Spencer
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Marília Torrado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Beatriz Custódio
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sara C. Silva-Reis
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sofia D. Santos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P. Pêgo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
39
|
Shirvalilou S, Khoei S, Khoee S, Mahdavi SR, Raoufi NJ, Motevalian M, Karimi MY. Enhancement radiation-induced apoptosis in C6 glioma tumor-bearing rats via pH-responsive magnetic graphene oxide nanocarrier. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111827. [PMID: 32120183 DOI: 10.1016/j.jphotobiol.2020.111827] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 11/26/2022]
Abstract
5-iodo-2-deoxyuridine (IUdR) has been demonstrated to induce an appreciable radiosensitizing effect on glioblastoma patients, but due to the short circulation half-life times and failure to pass through the blood-brain barrier (BBB), its clinical use is limited. Accordingly, in this study, we used magnetic graphene oxide (NGO/SPIONs) nanoparticles coated with PLGA polymer as a dynamic nanocarrier for IUdR and, evaluated its sensitizing enhancement ratio in combination with a single dose X-ray at clinically megavoltage energies for treatment of C6 glioma rats. Nanoparticles were characterized using Zetasizer and TEM microscopy, and in vitro biocompatibility of nanoparticles was assessed with MTT assay. IUdR/MNPs were intravenously administered under a magnetic field (1.3 T) on day 13 after the implantation of C6 cells. After a day following the injection, rats exposed with radiation (8 Gy). ICP-OES analysis data indicated an effective magnetic targeting, leading to remarkably improved penetration through the BBB. In vivo release analysis with HPLC indicated sustained release of IUdR and, prolonged the lifespan in plasma (P < .01). In addition, our findings revealed a synergistic effect for IUdR/MNPs coupled with radiation, which significantly inhibited the tumor expansion (>100%), prolonged the survival time (>100%) and suppressed the anti-apoptotic response of glioma rats by increasing Bax/Bcl-2 ratio (2.13-fold) in compared with the radiation-only. In conclusion, besides high accumulation in targeted tumor sites, the newly developed IUdR/MNPs, also exhibited the ability of IUdR/MNPs to significantly enhance radiosensitizing effect, improve therapeutic efficacy and increase toxicity for glioma-bearing rats.
Collapse
Affiliation(s)
- Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samideh Khoei
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Khoee
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Seied Rabi Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nida Jamali Raoufi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Razi Drug Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
40
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, Sahib S, Bryukhovetskiy I, Bryukhovetskiy A, Buzoianu AD, Patnaik R, Wiklund L, Sharma A. Pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:1-66. [PMID: 32448602 DOI: 10.1016/bs.irn.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Juthani R, Madajewski B, Yoo B, Zhang L, Chen PM, Chen F, Turker MZ, Ma K, Overholtzer M, Longo VA, Carlin S, Aragon-Sanabria V, Huse J, Gonen M, Zanzonico P, Rudin CM, Wiesner U, Bradbury MS, Brennan CW. Ultrasmall Core-Shell Silica Nanoparticles for Precision Drug Delivery in a High-Grade Malignant Brain Tumor Model. Clin Cancer Res 2019; 26:147-158. [PMID: 31515460 DOI: 10.1158/1078-0432.ccr-19-1834] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Small-molecule inhibitors have revolutionized treatment of certain genomically defined solid cancers. Despite breakthroughs in treating systemic disease, central nervous system (CNS) metastatic progression is common, and advancements in treating CNS malignancies remain sparse. By improving drug penetration across a variably permeable blood-brain barrier and diffusion across intratumoral compartments, more uniform delivery and distribution can be achieved to enhance efficacy. EXPERIMENTAL DESIGN Ultrasmall fluorescent core-shell silica nanoparticles, Cornell prime dots (C' dots), were functionalized with αv integrin-binding (cRGD), or nontargeting (cRAD) peptides, and PET labels (124I, 89Zr) to investigate the utility of dual-modality cRGD-C' dots for enhancing accumulation, distribution, and retention (ADR) in a genetically engineered mouse model of glioblastoma (mGBM). mGBMs were systemically treated with 124I-cRGD- or 124I-cRAD-C' dots and sacrificed at 3 and 96 hours, with concurrent intravital injections of FITC-dextran for mapping blood-brain barrier breakdown and the nuclear stain Hoechst. We further assessed target inhibition and ADR following attachment of dasatinib, creating nanoparticle-drug conjugates (Das-NDCs). Imaging findings were confirmed with ex vivo autoradiography, fluorescence microscopy, and p-S6RP IHC. RESULTS Improvements in brain tumor delivery and penetration, as well as enhancement in the ADR, were observed following administration of integrin-targeted C' dots, as compared with a nontargeted control. Furthermore, attachment of the small-molecule inhibitor, dasatinib, led to its successful drug delivery throughout mGBM, demonstrated by downstream pathway inhibition. CONCLUSIONS These results demonstrate that highly engineered C' dots are promising drug delivery vehicles capable of navigating the complex physiologic barriers observed in a clinically relevant brain tumor model.
Collapse
Affiliation(s)
- Rupa Juthani
- Department of Neurosurgery, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Brian Madajewski
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Barney Yoo
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York. .,Department of Chemistry, Hunter College, The City University of New York, New York, New York
| | - Li Zhang
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Pei-Ming Chen
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Feng Chen
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Melik Z Turker
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York
| | - Kai Ma
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York
| | - Michael Overholtzer
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York.,BCMB Allied Program, Weill Cornell Medical College, New York, New York
| | - Valerie A Longo
- Small-Animal Imaging Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean Carlin
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York
| | | | - Jason Huse
- Human Oncology & Pathogenesis Program, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Pat Zanzonico
- Department of Medical Physics, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Charles M Rudin
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ulrich Wiesner
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York.
| | - Michelle S Bradbury
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York. .,Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Cameron W Brennan
- Department of Neurosurgery, Sloan Kettering Institute for Cancer Research, New York, New York.
| |
Collapse
|
42
|
Established and Emerging Strategies for Drug Delivery Across the Blood-Brain Barrier in Brain Cancer. Pharmaceutics 2019; 11:pharmaceutics11050245. [PMID: 31137689 PMCID: PMC6572140 DOI: 10.3390/pharmaceutics11050245] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/05/2019] [Accepted: 05/20/2019] [Indexed: 12/25/2022] Open
Abstract
Brain tumors are characterized by very high mortality and, despite the continuous research on new pharmacological interventions, little therapeutic progress has been made. One of the main obstacles to improve current treatments is represented by the impermeability of the blood vessels residing within nervous tissue as well as of the new vascular net generating from the tumor, commonly referred to as blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), respectively. In this review, we focused on established and emerging strategies to overcome the blood-brain barrier to increase drug delivery for brain cancer. To date, there are three broad strategies being investigated to cross the brain vascular wall and they are conceived to breach, bypass, and negotiate the access to the nervous tissue. In this paper, we summarized these approaches highlighting their working mechanism and their potential impact on the quality of life of the patients as well as their current status of development.
Collapse
|
43
|
Seo YE, Suh HW, Bahal R, Josowitz A, Zhang J, Song E, Cui J, Noorbakhsh S, Jackson C, Bu T, Piotrowski-Daspit A, Bindra R, Saltzman WM. Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma. Biomaterials 2019; 201:87-98. [PMID: 30802686 PMCID: PMC6451656 DOI: 10.1016/j.biomaterials.2019.02.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 01/27/2023]
Abstract
Glioblastoma (GBM) is the most common and deadly form of malignant brain tumor in the United States, and current therapies fail to provide significant improvement in survival. Local delivery of nanoparticles is a promising therapeutic strategy that bypasses the blood-brain barrier, minimizes systemic toxicity, and enhances intracranial drug distribution and retention. Here, we developed nanoparticles loaded with agents that inhibit miR-21, an oncogenic microRNA (miRNA) that is strongly overexpressed in GBM compared to normal brain tissue. We synthesized, engineered, and characterized two different delivery systems. One was designed around an anti-miR-21 composed of RNA and employed a cationic poly(amine-co-ester) (PACE). The other was designed around an anti-miR-21 composed of peptide nucleic acid (PNA) and employed a block copolymer of poly(lactic acid) and hyperbranched polyglycerol (PLA-HPG). We show that both nanoparticle products facilitate efficient intracellular delivery and miR-21 suppression that leads to PTEN upregulation and apoptosis of human GBM cells. Further, when administered by convection-enhanced delivery (CED) to animals with intracranial gliomas, they both induced significant miR-21 knockdown and provided chemosensitization, resulting in improved survival when combined with chemotherapy. The challenges involved in optimizing the two delivery systems differed, and despite offering distinct advantages and limitations, results showed significant therapeutic efficacy with both methods of treatment. This study demonstrates the feasibility and promise of local administration of miR-21 inhibiting nanoparticles as an adjuvant therapy for GBM.
Collapse
Affiliation(s)
- Young-Eun Seo
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Alexander Josowitz
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Junwei Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Eric Song
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Jiajia Cui
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Seth Noorbakhsh
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Christopher Jackson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Tom Bu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | | | - Ranjit Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States.
| |
Collapse
|
44
|
Halle B, Mongelard K, Poulsen FR. Convection-enhanced Drug Delivery for Glioblastoma: A Systematic Review Focused on Methodological Differences in the Use of the Convection-enhanced Delivery Method. Asian J Neurosurg 2019; 14:5-14. [PMID: 30937002 PMCID: PMC6417332 DOI: 10.4103/ajns.ajns_302_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma (GBM) is a leading cause of brain cancer-related death. The blood–brain barrier (BBB) prevents the transport of most systemic delivered molecules to the brain. This constitutes a major problem in the therapy of brain tumors. In the last decade, numerous different drug-delivery approaches have been developed to overcome the BBB. The objective of this study is to provide an overview of the methodological aspects used in all preclinical and clinical studies published from 2011 to 2016 where convection-enhanced delivery (CED) was used for drug delivery in the treatment of GBM. A systematic review of English articles published in the past 5 years was undertaken using PubMed and Embase. The search terms (brain tumor [MeSH Terms]) AND (CED OR convection enhanced delivery) were used in PubMed and a similar search was carried out in Embase using their “multi-field search.” All studies using CED on an intracranial GBM model were included. The search resulted in 151 hits after duplicates were removed. In total, 30 studies were included in the review. Of these, two publications studied the technical aspects of the CED method. Furthermore, only one study was a clinical study. The research field is focused on preclinical drug development trials and less emphasis is placed on the CED technique itself. However, it is important that future studies focus on establishing optimal protocols for the use of CED in rodents as well as for big brain models to be able to use the CED method in patients with GBM.
Collapse
Affiliation(s)
- Bo Halle
- Department of Neurosurgery, Odense University Hospital and BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kristian Mongelard
- Department of Neurosurgery, Odense University Hospital and BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital and BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
45
|
Chen EM, Quijano AR, Seo YE, Jackson C, Josowitz AD, Noorbakhsh S, Merlettini A, Sundaram RK, Focarete ML, Jiang Z, Bindra RS, Saltzman WM. Biodegradable PEG-poly(ω-pentadecalactone-co-p-dioxanone) nanoparticles for enhanced and sustained drug delivery to treat brain tumors. Biomaterials 2018; 178:193-203. [PMID: 29936153 PMCID: PMC6082184 DOI: 10.1016/j.biomaterials.2018.06.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 11/18/2022]
Abstract
Intracranial delivery of therapeutic agents is limited by penetration beyond the blood-brain barrier (BBB) and rapid metabolism of the drugs that are delivered. Convection-enhanced delivery (CED) of drug-loaded nanoparticles (NPs) provides for local administration, control of distribution, and sustained drug release. While some investigators have shown that repeated CED procedures are possible, longer periods of sustained release could eliminate the need for repeated infusions, which would enhance safety and translatability of the approach. Here, we demonstrate that nanoparticles formed from poly(ethylene glycol)-poly(ω-pentadecalactone-co-p-dioxanone) block copolymers [PEG-poly(PDL-co-DO)] are highly efficient nanocarriers that provide long-term release: small nanoparticles (less than 100 nm in diameter) continuously released a radiosensitizer (VE822) over a period of several weeks in vitro, provided widespread intracranial drug distribution during CED, and yielded significant drug retention within the brain for over 1 week. One advantage of PEG-poly(PDL-co-DO) nanoparticles is that hydrophobicity can be tuned by adjusting the ratio of hydrophobic PDL to hydrophilic DO monomers, thus making it possible to achieve a wide range of drug release rates and drug distribution profiles. When administered by CED to rats with intracranial RG2 tumors, and combined with a 5-day course of fractionated radiation therapy, VE822-loaded PEG-poly(PDL-co-DO) NPs significantly prolonged survival when compared to free VE822. Thus, PEG-poly(PDL-co-DO) NPs represent a new type of versatile nanocarrier system with potential for sustained intracranial delivery of therapeutic agents to treat brain tumors.
Collapse
Affiliation(s)
- Evan M Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Amanda R Quijano
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Young-Eun Seo
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Christopher Jackson
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Alexander D Josowitz
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Seth Noorbakhsh
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Andrea Merlettini
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, 40126, Bologna, Italy
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Maria Letizia Focarete
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, 40126, Bologna, Italy
| | - Zhaozhong Jiang
- Department of Biomedical Engineering, Yale University, West Haven, CT, 06516, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
46
|
Shirvalilou S, Khoei S, Khoee S, Raoufi NJ, Karimi MR, Shakeri-Zadeh A. Development of a magnetic nano-graphene oxide carrier for improved glioma-targeted drug delivery and imaging: In vitro and in vivo evaluations. Chem Biol Interact 2018; 295:97-108. [PMID: 30170108 DOI: 10.1016/j.cbi.2018.08.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 11/30/2022]
Abstract
To overcome the obstacles inflicted by the BBB in Glioblastoma multiforme (GBM) we investigated the use of Multifunctional nanoparticles that designed with a Nano-graphene oxide (NGO) sheet functionalized with magnetic poly (lactic-co-glycolic acid) (PLGA) and was used for glioma targeting delivery of radiosensitizing 5-iodo-2-deoxyuridine (IUdR). In vitro biocompatibility of nanocomposite has been studied by the MTT assay. In vivo efficacy of magnetic targeting on the amount and selectivity of magnetic nanoparticles accumulation in glioma-bearing rats under an external magnetic field (EMF) density of 0.5 T was easily monitored with MRI. IUdR-loaded magnetic NGO/PLGA with a diameter of 71.8 nm, a zeta potential of -33.07 ± 0.07 mV, and a drug loading content of 3.04 ± 0.46% presented superior superparamagnetic properties with a saturation magnetization (Ms) of 15.98 emu/g. Furthermore, Prussian blue staining showed effective magnetic targeting, leading to remarkably improved tumor inhibitory efficiency of IUdR. The tumor volume of rats after treatment with IUdR/NGO/SPION/PLGA + MF was decreased significantly compared to the rats treated with buffer saline, IUdR and SPION/IUdR/NGO/PLGA. Most importantly, our data demonstrate that IUdR/NGO/SPION/PLGA at the present magnetic field prolongs the median survival time of animals bearing gliomas (38 days, p < 0.01). Nanoparticles also had high thermal sensitivities under the alternating magnetic field. In conclusion, we developed magnetic IUdR/NGO/PLGA, which not only achieved to high accumulation at the targeted tumor site by magnetic targeting but also indicated significantly enhanced therapeutic efficiency and toxicity for glioma both in vitro and in vivo. This innovation increases the possibility of improving clinical efficiency of IUdR as a radiosensitizer, or lowering the total drug dose to decrease systemic toxicity.
Collapse
Affiliation(s)
- Sakine Shirvalilou
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samideh Khoei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Khoee
- Department of Polymer Chemistry, School of Sciences, University of Tehran, Tehran, Iran
| | - Nida Jamali Raoufi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Karimi
- Department of Polymer Chemistry, School of Sciences, University of Tehran, Tehran, Iran
| | - Ali Shakeri-Zadeh
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Zhan W, Wang CH. Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumour therapy. J Control Release 2018; 285:212-229. [PMID: 30009891 DOI: 10.1016/j.jconrel.2018.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/04/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
Convection enhanced delivery is promising to overcome the blood brain barrier. However, the treatment is less efficient in clinic due to the rapid elimination of small molecular drugs in brain tumours. In this study, numerical simulation is applied to investigate the convection enhanced delivery of liposome encapsulated doxorubicin under various conditions, based on a 3-D brain tumour model that is reconstructed from magnetic resonance images. Treatment efficacy is evaluated in terms of the tumour volume where the free doxorubicin concentration is above LD90. Simulation results denote that intracerebral infusion is effective in increasing the interstitial fluid velocity and inhibiting the fluid leakage from blood around the infusion site. Comparisons with direct doxorubicin infusion demonstrate the advantages of liposomes in enhancing the doxorubicin accumulation and penetration in the brain tumour. Delivery outcomes are determined by both the intratumoural environment and properties of therapeutic agents. The treatment efficacy can be improved by either increasing the liposome solution concentration and infusion rate, administrating liposomes in the tumour with normalised microvasculature density, or using liposomes with low vascular permeability. The delivery is less sensitive to liposome diffusivity in the examined range (E-11~E-7 cm2/s) as convective transport is dominative in determining the liposome migration. Drug release rate is able to be optimised by keeping a trade-off between enhancing the drug penetration and providing sufficient free doxorubicin for effective cell killing. Results from this study can be used to improve the regimen of CED treatments.
Collapse
Affiliation(s)
- Wenbo Zhan
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom.
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore.
| |
Collapse
|
48
|
Qian M, Du Y, Wang S, Li C, Jiang H, Shi W, Chen J, Wang Y, Wagner E, Huang R. Highly Crystalline Multicolor Carbon Nanodots for Dual-Modal Imaging-Guided Photothermal Therapy of Glioma. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4031-4040. [PMID: 29328618 DOI: 10.1021/acsami.7b19716] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Imaging-guided site-specific photothermal therapy (PTT) of glioma and other tumors in central nervous system presents a great challenge for the current nanomaterial design. Herein, an in situ solid-state transformation method was developed for the preparation of multicolor highly crystalline carbon nanodots (HCCDs). The synthesis yields 6-8 nm-sized HCCDs containing a highly crystalline carbon nanocore and a hydrophilic surface, which therefore simultaneously provide strong photoacoustic and photothermal performances as well as tunable fluorescence emission. In vitro and in vivo results demonstrate that the novel HCCDs have high water dispersity and good biocompatibility, but potent tumor cell killing upon near-infrared irradiation. As demonstrated in U87 glioma-bearing mice, HCCDs specifically accumulate in brain tumors and facilitate dual-modal imaging-guided PTT, with therapeutic antitumoral effects without any apparent damage to normal tissues.
Collapse
Affiliation(s)
- Min Qian
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University , Shanghai 201203, China
| | - Yilin Du
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University , Shanghai 201203, China
| | - Shanshan Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University , Shanghai 201203, China
| | - Chengyi Li
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University , Shanghai 201203, China
| | - Huiling Jiang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University , Shanghai 201203, China
| | - Wei Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University , Nantong 226001, China
| | - Jian Chen
- Department of Neurosurgery, Affiliated Hospital of Nantong University , Nantong 226001, China
| | - Yi Wang
- Center for Advanced Low-Dimension Materials, Donghua University , Shanghai 201620, China
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München , Munich 81377, Germany
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University , Shanghai 201203, China
| |
Collapse
|
49
|
Convection enhanced delivery of chemotherapeutic drugs into brain tumour. J Control Release 2017; 271:74-87. [PMID: 29274437 DOI: 10.1016/j.jconrel.2017.12.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/18/2017] [Accepted: 12/20/2017] [Indexed: 01/17/2023]
Abstract
Convection enhanced delivery (CED) of chemotherapeutic drugs can successfully bypass the blood-brain barrier (BBB). However, the treatment efficacy is significantly variable in clinic owing to the absence of proper drugs and the lack of understanding on the local drug transport. In this study, mathematical modelling is employed to investigate the suitability of six chemotherapeutic drugs from the perspective of intratumoural transport, including fluorouracil, carmustine, cisplatin, methotrexate, doxorubicin and paclitaxel. The convection/diffusion/reaction model coupled with Darcy's law is applied to a 3-D realistic brain tumour model that is extracted from magnetic resonance (MR) images. The modelling demonstrates the advantages of CED in enhancing the convective flow of interstitial fluid and reducing the drug concentration dilution caused by the fluid loss from blood stream in the tumour region around the infusion site. The delivery outcomes of the drug in CED treatments are strongly dependent on its physicochemical properties. Convection is more effective in determining the transport of paclitaxel and methotrexate in brain tumour. Paclitaxel exhibits its superiority in drug penetration and accumulation, resulting in the largest effective delivery volume as compared to the other studied drugs. Nanocarrier and diagnostic ultrasound are able to enhance the drug penetration for achieving improved delivery outcomes. Results obtained in this study can serve as a guide for optimising CED treatment regimens.
Collapse
|
50
|
Seo YE, Bu T, Saltzman WM. Nanomaterials for convection-enhanced delivery of agents to treat brain tumors. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 4:1-12. [PMID: 29333521 DOI: 10.1016/j.cobme.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanomaterials represent a promising and versatile platform for the delivery of therapeutics to the brain. Treatment of brain tumors has been a long-standing challenge in the field of neuro-oncology. The current standard of care - a multimodal approach of surgery, radiation and chemotherapy - yields only a modest therapeutic benefit for patients with malignant gliomas. A major obstacle for treatment is the failure to achieve sufficient delivery of therapeutics at the tumor site. Recent advances in local drug delivery techniques, along with the development of highly effective brain-penetrating nanocarriers, have significantly improved treatment and imaging of brain tumors in preclinical studies. The major advantage of this combined strategy is the ability to optimize local therapy, by maintaining an effective and sustained concentration of therapeutics in the brain with minimal systemic toxicity. This review highlights some of the latest developments, significant advancements and current challenges in local delivery of nanomaterials for the treatment of brain tumors.
Collapse
Affiliation(s)
- Young-Eun Seo
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Tom Bu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| |
Collapse
|