1
|
Huang Q, Yan P, Li Y, Ding J. A novel orodispersible film load with dual-coated sustained-release microparticles for pediatric drug delivery. Int J Pharm 2025; 677:125654. [PMID: 40306443 DOI: 10.1016/j.ijpharm.2025.125654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Orodispersible films (ODFs), easy to administer, flexible in dosage, and free of choking and aspiration risks, have drawn widespread attention as pediatric formulations. However, it is a great challenge to endow ODFs with sustained release due to their fast disintegration. Herein, we designed a novel orodispersible film load with dual-coated sustained-release microparticles (SRMPs) for children using topiramate as a model drug. SRMPs with a particle size of 98.32 ± 0.22 µm, fabricated with a pellet core, a drug layer, and a coating layer, were prepared by two microparticle coating steps. The sustained-release orodispersible films (SRODFs) with uniform distribution of SRMPs and favorable disintegration time showed good formability, mechanical properties, and palatability. The factors affecting drug release of the SRMPs and the SRODFs were further explored. More importantly, pharmacokinetics study in human demonstrated that, although the SRODFs had a longer mean retention time, they were bioequivalence compared with the commercially available extended-release products (Qudexy® XR). A strong in vivo-in vitro correlation of the SRODFs was established. Notably, the SRODFs can be loaded with other drugs other than topiramate, offering a promising formulation option for pediatric patients with different diseases.
Collapse
Affiliation(s)
- Qianmeng Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410006, China
| | - Peng Yan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410006, China
| | - Youshan Li
- Changsha Jingyi Pharmaceutical Technology Co., LTD., Changsha, Hunan 410006, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410006, China; Changsha Jingyi Pharmaceutical Technology Co., LTD., Changsha, Hunan 410006, China.
| |
Collapse
|
2
|
Martínez E, Gamboa J, Finkielstein CV, Cañas AI, Osorio MA, Vélez Y, Llinas N, Castro CI. Oral dosage forms for drug delivery to the colon: an existing gap between research and commercial applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:24. [PMID: 40042550 PMCID: PMC11882727 DOI: 10.1007/s10856-025-06868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
Oral drug administration is the preferred route for pharmaceuticals, accounting for ~90% of the global pharmaceutical market due to its convenience and cost-effectiveness. This study provides a comprehensive scientific and technological analysis of the latest advances in oral dosage forms for colon-targeted drug delivery. Utilizing scientific and patent databases, along with a bibliometric analysis and bibliographical review, we compared the oral dosage forms (technology) with the specific application of the technology (colon delivery) using four search equations. Our findings reveal a gap in the publications and inventions associated with oral dosage forms for colon release compared to oral dosage forms for general applications. While tablets and capsules were found the most used dosage forms, other platforms such as nanoparticles, microparticles, and emulsions have been also explored. Enteric coatings are the most frequently applied excipient to prevent the early drug release in the stomach with pH-triggered systems being the predominant release mechanism. In summary, this review provides a comprehensive analysis of the last advancements and high-impact resources in the development of oral dosage forms for colon-targeted drug delivery, providing insights into the technological maturity of these approaches.
Collapse
Affiliation(s)
- Estefanía Martínez
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Jennifer Gamboa
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Blacksburg, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Ana Isabel Cañas
- Micología médica y experimental, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Marlon Andrés Osorio
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
- Grupo de Investigación Biología de Sistemas, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Yesid Vélez
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Néstor Llinas
- Departamento de Oncología Clínica, Clínica Vida, Fundación Colombiana de Cancerología, Medellín, Colombia
| | - Cristina Isabel Castro
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia.
| |
Collapse
|
3
|
Xu H, Zhang L, Fang L, He D, York P, Sun L, Niu J, Liu Q, Xu M, Xue Y, Peng G, Xiao T, Basang Z, Yin X, Wu L, Zhang J. "3D channel maze" to control drug release from multiple unit tablets. J Control Release 2025; 378:236-246. [PMID: 39667568 DOI: 10.1016/j.jconrel.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/31/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Diffusion is defined as general mechanism for drug release from advanced delivery systems, yet dynamic structure of dosage form intrinsically plays an unknown role. The synchrotron radiation X-ray micro-computed tomography (SR-μCT) three-dimensional (3D) imaging and in-depth analysis of 3D structures were applied to readily differentiate materials and accurately capture internal structure changes of multiple unit pellet system (MUPS) and the constituent pellets, visualizing internal 3D structure of a MUPS of theophylline tablets for their 3 levels hierarchy structures: pellets with rapid drug release characteristics, a protective cushion layer and a matrix layer. Drug release pathways were extracted from SR-μCT images and a 3D maze network was constructed using pore network analysis to quantify the internal structural evolution during drug release. In the initial stage of dissolution about 1 h, theophylline release from the MUPS is dominated by diffusion from the matrix layer, whilst the second phase of 23 h constant release kinetics is dominated by a 3D channel maze architecture with outlets/channels connecting pellets in the remains of the MUPS, which forms the 3D channel maze as pore networks. The random walking of the dissolved theophylline molecules retarded by the tortuous 3D channel maze which led to the observed controlled release profile as a whole. Based on SR-μCT investigations and 3D structure analysis, a new approach to control drug release via a 3D channel maze structure was discovered.
Collapse
Affiliation(s)
- Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Longwei Fang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; High Altitude Health Science Research Centre, Tibet University, Lhasa, Tibet Autonomous, Region 850000, China
| | - Dunwei He
- Shandong Hi-Qual Pharmatech Co., Ltd.; Zibo 255035, China
| | - Peter York
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Lixin Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianzhao Niu
- National Institute for Food and Drug Control, Beijing 100050, China
| | - Qian Liu
- National Institute for Food and Drug Control, Beijing 100050, China
| | - Mingdi Xu
- National Institute for Food and Drug Control, Beijing 100050, China
| | - Yanling Xue
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Guanyun Peng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Tiaoqiao Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zhuoma Basang
- High Altitude Health Science Research Centre, Tibet University, Lhasa, Tibet Autonomous, Region 850000, China
| | | | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Thio DR, Ong YM, Veronica N, Heng PWS, Chan LW. Native starch derived from different botanical sources as an effective co-cushioning agent in MUPS tablets. Int J Pharm 2025; 670:125131. [PMID: 39725092 DOI: 10.1016/j.ijpharm.2024.125131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/08/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Compaction of sustained release coated pellets into multi-unit pellet system (MUPS) tablets has been associated with damage to the functional polymer layer, leading to a loss in desired sustained release function. Many filler materials and complex processes have been studied on their ability to mitigate compaction-induced pellet coat damage. Among these, native or unprocessed starches included in the filler material have not been explored well despite being a simple strategy. Sustained release pellets with ethylcellulose or acrylic coats were compacted into MUPS tablets with different filler materials, containing microcrystalline cellulose and native starch at 25 %, w/w or 40 %, w/w derived from rice, tapioca, corn, or potato. The MUPS tablet tensile strength and the extent of pellet coat damage were evaluated. Although starch weakened the tablets, rice and tapioca starch significantly mitigated pellet coat damage the most by 10 - 44 % (p < 0.008). Higher starch concentrations and higher compaction pressures led to a greater cushioning effect, which was indicated to result from reduced plastic deformation and increased particle rearrangement of the filler material. Pellets coated with acrylic benefitted more from starch and experienced less coat damage than pellets with ethylcellulose coats. This research demonstrates the use of native starches as a simple method to mitigate pellet coat damage in MUPS tablets.
Collapse
Affiliation(s)
- Daniel Robin Thio
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Yu Min Ong
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Natalia Veronica
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Lai Wah Chan
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
5
|
Manna S, Sarkar S, Sahu R, Dua TK, Paul P, Jana S, Nandi G. Characterization of Taro (Colocasia esculenta) stolon polysaccharide and evaluation of its potential as a tablet binder in the formulation of matrix tablet. Int J Biol Macromol 2024; 280:135901. [PMID: 39313047 DOI: 10.1016/j.ijbiomac.2024.135901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
This investigation focuses on the extraction, characterization, and evaluation of taro (Colocasia esculenta) stolon polysaccharide (TSP) as a tablet binding agent, which is obtained from edible taro stolon. TSP was subjected to phytochemical screening and characterized by FTIR, DSC, TGA, DTA, XRD, particle size, polydispersity index, zeta potential, rheological behavior, and SEM. The tablets prepared with varying concentrations of TSP (2.5 %, 5 %, 7.5 %, and 10 % w/w) and diclofenac sodium (DS) were evaluated and compared with the same concentrations of gum acacia and PVP K-30. The presence of carbohydrates was confirmed by Molisch's test. The FTIR spectra established the compatibility of the drug with excipients. The SEM images revealed asymmetric and elongated particles of TSP powder. The hydration kinetics study showed matrix hydration and water penetration velocity within the range of 0.602-0.753 g/g and 0.112-0.189 cm/g.h, respectively. The tablets showed drug release of >75 % at 45 min. The release-exponent value above 0.89 indicated a super case II drug transport combining matrix erosion and diffusion. Optimum tablet hardness and very low friability, even at 2.5 % binder concentration, suggested the potential application of the novel TSP as a tablet binder in the formulation of the tablets.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, University of North Bengal, Dist. - Darjeeling 734013, West Bengal, India; Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Saurav Sarkar
- Department of Pharmaceutical Technology, University of North Bengal, Dist. - Darjeeling 734013, West Bengal, India
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Dist. - Darjeeling 734013, West Bengal, India
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Dist. - Darjeeling 734013, West Bengal, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Dist. - Darjeeling 734013, West Bengal, India
| | - Sougata Jana
- Department of Health and Family Welfare, Directorate of Health Services, Kolkata, India
| | - Gouranga Nandi
- Department of Pharmaceutical Technology, University of North Bengal, Dist. - Darjeeling 734013, West Bengal, India.
| |
Collapse
|
6
|
Wu S, Zhou G, Wang X, Zhang X, Guo S, Ma Y, Liu H, Li W. Development of Sinomenine Hydrochloride Sustained-release Pellet With Multiple Release Characteristics. AAPS PharmSciTech 2024; 25:224. [PMID: 39322795 DOI: 10.1208/s12249-024-02949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Due to the gastrointestinal side effects, the clinical application of sinomenine hydrochloride (SH) in rheumatoid arthritis is limited. The elderly population constitutes the primary group affected by this disease, and within this demographic, there are significant variations in gastric emptying time. To reduce the influence of individual differences on drug efficacy and concurrently alleviate gastrointestinal side effects, the SH sustained-release pellets with multiple release characteristics were developed, which comprised both regular sustained-release pellets and enteric-coated sustained-release pellets. The drug-loaded layer formulation was optimized by full factorial design. With the optimal formulation, the drug-loaded pellets achieved a yield of 96.05%, an encapsulation efficiency of 83.36% for SH, a relative standard deviation of 3.26% in SH content distribution, an average roundness of 0.971 for the pellets, and the particle size span of 0.808. The pellets with a 4 h SH release profile in an acidic environment and pellets displaying 4 h acid resistance followed by an 8 h SH release behavior in the intestinal environment were individually prepared through in vitro dissolution tests. The results demonstrated stable and compliant dissolution behavior of the formulation, along with excellent stability and physical appearance. This research offers novel insights and references for the innovative formulation of SH.
Collapse
Affiliation(s)
- Sijun Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guoming Zhou
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xi Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoyang Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shubo Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yongqiang Ma
- Xinyite Science and Technology Co., Ltd, Guangdong, 518083, China
| | - Hai Liu
- Xinyite Science and Technology Co., Ltd, Guangdong, 518083, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
7
|
Sarkar S, Manna S, Das E, Jana P, Mukherjee S, Sahu R, Dua TK, Paul P, Kaity S, Nandi G. Fabrication and optimization of extended-release beads of diclofenac sodium based on Ca ++ cross-linked Taro (Colocasia esculenta) stolon polysaccharide and pectin by quality-by-design approach. Int J Biol Macromol 2024; 271:132606. [PMID: 38788875 DOI: 10.1016/j.ijbiomac.2024.132606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The present investigation was aimed to fabricate and optimize extended-release beads of diclofenac sodium based on an ion-cross-linked matrix of pectin (PTN) and taro (Colocasia esculenta) stolon polysaccharide (TSP) with 23 full factorial design. Total polysaccharide concentration (TPC), polysaccharide ratio (PR), and cross-linker concentration ([CaCl2]) were taken as independent factors with two levels of each. Initially, TSP was extracted, purified, and characterized. Fourier-transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) showed drug-polymer compatibility. The study also revealed the significant positive effect of TSP on drug entrapment efficiency (DEE) and sustaining drug release. The response variables (DEE, cumulative % drug-release at 1, 2, 4, 6, and 10 h, release-constant, time for 50 % and 90 % drug release (T50%, T90%), release-similarity factor (f2), and difference factor (f1) were analyzed, and subsequently, independent fabrication variables were numerically optimized by Design-Expert software (Version-13; Stat-Ease Inc., Minneapolis). The optimized batch exhibited appreciable DEE of 88.5 % (± 2.2) and an extended-release profile with significantly higher T50%, T90%, and release-similarity factor (f2) of 4.7 h, 11.4 h, and 71.6, respectively. Therefore, the study exhibited successful incorporation of the novel TSP as a potential alternative adjunct polysaccharide in the pectin-based ion-cross-linked inter-penetrating polymeric network for extended drug release.
Collapse
Affiliation(s)
- Saurav Sarkar
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Sreejan Manna
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India; Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Esha Das
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Piu Jana
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Saptarshi Mukherjee
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Santanu Kaity
- National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Gouranga Nandi
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India.
| |
Collapse
|
8
|
Plano D, Kibler S, Rudolph N, Zett O, Dressman J. Silicon-Based Piezo Micropumps Enable Fully Flexible Drug Delivery Patterns. J Pharm Sci 2024; 113:1555-1565. [PMID: 38232804 DOI: 10.1016/j.xphs.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Drug release plays a crucial role in drug delivery. While current formulation approaches are capable of coarse-tuning the release profile, their precision and reproducibility are limited by the physicochemical properties of the excipients and active pharmaceutical ingredient (API). Innovative and advanced approaches are urgently needed, especially for site-specific targeting of drugs and to address their pharmacological requirements for optimal therapy. The 5 × 5 × 0.6 mm3 piezoelectric micropump developed by Fraunhofer EMFT was designed to enable precise drug delivery in a low volume format. In this study, we investigated the ability of the micropump to deliver solutions of highly soluble APIs using a wide range of customized pump profiles. Additionally, we examined the ability of the micropump to deliver suspensions containing various defined particle sizes. While results for suspensions indicate that pumping performance is highly dependent on the size and concentration of the suspended particles, results with API solutions demonstrate high precision and reproducibility of release, coupled with maximum flexibility in the release profile of the API. The piezoelectric micropump thus lays the cornerstone in the development of a wide range of innovative drug delivery profiles, enabling customized release profiles to be programmed and thus paving the way to fully personalized medicine.
Collapse
Affiliation(s)
- David Plano
- Fraunhofer Institute for Translational Medicines and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Sebastian Kibler
- Fraunhofer Institute for Electronic Microsystems and Solid-State Technologies EMFT, Hansastrasse 27d, 80686 Munich, Germany
| | - Niklas Rudolph
- Fraunhofer Institute for Translational Medicines and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Oliver Zett
- Fraunhofer Institute for Electronic Microsystems and Solid-State Technologies EMFT, Hansastrasse 27d, 80686 Munich, Germany
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicines and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Thio DR, Veronica N, Heng PWS, Chan LW. Tableting of coated multiparticulates: Influences of punch face configurations. Int J Pharm 2024; 653:123863. [PMID: 38307400 DOI: 10.1016/j.ijpharm.2024.123863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The influences of the punch face design on multi-unit pellet system (MUPS) tablets were investigated. Drug-loaded pellets coated with sustained release polymer based on ethylcellulose or acrylic were compacted into MUPS tablets. Punch face designs used include standard concave, deep concave, flat-faced bevel edge and flat-faced radius edge. MUPS tablets compacted at 2 or 8 kN were characterized for their tensile strength. The extent of pellet coat damage after tableting was evaluated from drug release profiles. Biconvex tablets were weaker by 0.01-0.15 MPa, depending on the pellet type used, and had 1-17 % higher elastic recovery (p < 0.000) than flat-faced tablets. At higher compaction force, the use of the deep concave punch showed a 13-26 % lower extent of pellet coat damage, indicated by a relatively higher mean dissolution time, compared to other punch face configurations (p < 0.000). This was attributed to increased rearrangement energy of the compacted material due to the high punch concavity, which sequestered compaction stress exerted on pellet coats. Although the deep concave punch reduced the stress, the resultant tablets containing pellets coated with acrylic were weaker (p = 0.01). Overall, the punch face configuration significantly affected the quality of MUPS tablets.
Collapse
Affiliation(s)
- Daniel Robin Thio
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Natalia Veronica
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Lai Wah Chan
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
10
|
Moutaharrik S, Palugan L, Cerea M, Filippin I, Maroni A, Gazzaniga A, Foppoli A. Cushion-coated pellets for tableting without external excipients. Int J Pharm 2024; 653:123874. [PMID: 38316318 DOI: 10.1016/j.ijpharm.2024.123874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Multiple-unit dosage forms prepared by compacting pellets offer important manufacturing and compliance advantages over pellet-filled capsules. However, compaction may negatively affect the release control mechanism of pellets, and subunits may not be readily available after intake. Application of a cushioning layer to the starting units is here proposed as a strategy to obtain tablets with satisfactory mechanical strength, rapid disintegration and maintenance of the expected release profile of individual subunits while avoiding the use of mixtures of pellets and excipients to promote compaction and limit the impact of the forces involved. Cushion-coating with PEG1500, a soft and soluble material, was proved feasible provided that the processing temperature was adequately controlled. Cushioned gastro-resistant pellets were shown to consolidate under relatively low compaction pressures, which preserved their inherent release performance after tablet disintegration. Adhesion problems associated with the use of PEG1500 were overcome by applying an outer Kollicoat® IR film. Through design of experiment (DoE), robustness of the proposed approach was demonstrated, and the formulation as well as tableting conditions were optimized. The tableted cushion-coated pellet systems manufactured would allow a relatively high load of modified-release units to be conveyed, thus setting out a versatile and scalable approach to oral administration of multiple-unit dosage forms.
Collapse
Affiliation(s)
- Saliha Moutaharrik
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy.
| | - Luca Palugan
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Matteo Cerea
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Ilaria Filippin
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Alessandra Maroni
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Andrea Gazzaniga
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Anastasia Foppoli
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| |
Collapse
|
11
|
Kállai-Szabó N, Farkas D, Lengyel M, Basa B, Fleck C, Antal I. Microparticles and multi-unit systems for advanced drug delivery. Eur J Pharm Sci 2024; 194:106704. [PMID: 38228279 DOI: 10.1016/j.ejps.2024.106704] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Microparticles have unique benefits in the formulation of multiparticulate and multi-unit type pharmaceutical dosage forms allowing improved drug safety and efficacy with favorable pharmacokinetics and patient centricity. On the other hand, the above advantages are served by high and well reproducible quality attributes of the medicinal product where even flexible design and controlled processability offer success as well as possible longer product life-cycle for the manufacturers. Moreover, the specific demands of patients can be taken into account, including simplified dosing regimens, flexible dosage, drug combinations, palatability, and ease of swallowing. In the more than 70 years since the first modified-release formulation appeared on the market, many new formulations have been marketed and many publications have appeared in the literature. More unique and newer pharmaceutical technologies and excipients have become available for producing tailor-made particles with micrometer dimensions and beyond. All these have contributed to the fact that the sub-units (e.g. minitablets, pellets, microspheres) that make up a multiparticulate system can vary widely in composition and properties. Some units have mucoadhesive properties and others can float to contribute to a suitable release profile that can be designed for the multiparticulate formula as a whole. Nowadays, there are some available formulations on the market, which are able to release the active substance even for several months (3 or 6 months depending on the type of treatment). In this review, the latest developments in technologies that have been used for a long time are presented, as well as innovative solutions such as the applicability of 3D printing to produce subunits of multiparticulate systems. Furthermore, the diversity of multiparticulate systems, different routes of administration are also presented, touching the ones which are capable of carrying the active substance as well as the relevant, commercially available multiparticle-based medical devices. The versatility in size from 1 µm and multiplicity of formulation technologies promise a solid foundation for the future applications of dosage form design and development.
Collapse
Affiliation(s)
- Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - Dóra Farkas
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - Miléna Lengyel
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - Bálint Basa
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - Christian Fleck
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary.
| |
Collapse
|
12
|
Wilkins CA, Hamman H, Hamman JH, Steenekamp JH. Fixed-Dose Combination Formulations in Solid Oral Drug Therapy: Advantages, Limitations, and Design Features. Pharmaceutics 2024; 16:178. [PMID: 38399239 PMCID: PMC10892518 DOI: 10.3390/pharmaceutics16020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Whilst monotherapy is traditionally the preferred treatment starting point for chronic conditions such as hypertension and diabetes, other diseases require the use of multiple drugs (polytherapy) from the onset of treatment (e.g., human immunodeficiency virus acquired immunodeficiency syndrome, tuberculosis, and malaria). Successful treatment of these chronic conditions is sometimes hampered by patient non-adherence to polytherapy. The options available for polytherapy are either the sequential addition of individual drug products to deliver an effective multi-drug regimen or the use of a single fixed-dose combination (FDC) therapy product. This article intends to critically review the use of FDC drug therapy and provide an insight into FDC products which are already commercially available. Shortcomings of FDC formulations are discussed from multiple perspectives and research gaps are identified. Moreover, an overview of fundamental formulation considerations is provided to aid formulation scientists in the design and development of new FDC products.
Collapse
Affiliation(s)
| | | | | | - Jan H. Steenekamp
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.A.W.); (H.H.); (J.H.H.)
| |
Collapse
|
13
|
Zhdanov VP. Release of molecules from nanocarriers. Phys Chem Chem Phys 2023; 25:28955-28964. [PMID: 37855700 DOI: 10.1039/d3cp01855e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Release of drugs or vaccine molecules from macro-, micro-, and nano-sized carriers is usually considered to be limited by diffusion and/or carrier dissolution and/or erosion. The corresponding experimentally observed kinetics are customarily fitted by using the empirical Weibull and Korsemeyer-Peppas expressions. With decreasing size of carriers down to about 100 nm, the timescale of diffusion decreases, and accordingly the release can be kinetically limited, i.e., controlled by jumps of molecules located near the carrier-solution interface. In addition, nanocarriers (e.g., lipid nanoparticles) are often structurally heterogeneous so that the absorption of molecules there can be interpreted in terms of energetic heterogeneity, i.e., distribution of energies corresponding to binding sites and activation barriers for release. Herein, I present a general kinetic model aimed at such situations. For illustration, the deviation of the molecule binding energy from the maximum value was considered to be about 4-8 kcal mol-1. With this physically reasonable (for non-covalent interaction) scale of energetic heterogeneity, the predicted kinetics (i) are linear in the very beginning and then, with increasing time, become logarithmic and (ii) can be nearly perfectly fitted by employing the Weibull or Korsmeyer-Peppas expressions with the exponent in the range from 0.6 to 0.75. Such values of the exponent are often obtained in experiments and customarily associated with non-Fickian diffusion. My analysis shows that the energetic heterogeneity can be operative here as well.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
14
|
Cho HJ, Kim JS, Jin SG, Choi HG. Development of Novel Tamsulosin Pellet-Loaded Oral Disintegrating Tablet Bioequivalent to Commercial Capsule in Beagle Dogs Using Microcrystalline Cellulose and Mannitol. Int J Mol Sci 2023; 24:15393. [PMID: 37895073 PMCID: PMC10607519 DOI: 10.3390/ijms242015393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we developed a tamsulosin pellet-loaded orally disintegrating tablet (ODT) that is bioequivalent to commercially available products and has improved patient compliance using microcrystalline cellulose (MCC) and mannitol. Utilizing the fluid bed technique, the drug, sustained release (SR) layer, and enteric layer were sequentially prepared by coating MCC pellets with the drug, HPMC, Kollicoat, and a mixture of Eudragit L and Eudragit NE, respectively, resulting in the production of tamsulosin pellets. The tamsulosin pellet, composed of the MCC pellet, drug layer, SR layer, and enteric layer at a weight ratio of 20:0.8:4.95:6.41, was selected because its dissolution was equivalent to that of the commercial capsule. Tamsulosin pellet-loaded ODTs were prepared using tamsulosin pellets and various co-processed excipients. The tamsulosin pellet-loaded ODT composed of tamsulosin pellets, mannitol-MCC mixture, silicon dioxide, and magnesium stearate at a weight ratio of 32.16:161.84:4.0:2.0 gave the best protective effect on the coating process and a dissolution profile similar to that of the commercial capsule. Finally, no significant differences in beagle dogs were observed in pharmacokinetic parameters, suggesting that they were bioequivalent. In conclusion, tamsulosin pellet-loaded ODTs could be a potential alternative to commercial capsules, improving patient compliance.
Collapse
Affiliation(s)
- Hyuk Jun Cho
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
- Pharmaceutical Research Centre, Hanmi Pharmaceutical Co., Ltd., Paltan-Myeon, Hwaseong 18536, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
15
|
Thio DR, Aguilera Q, Yeoh JKX, Sia Heng PW, Chan LW. An evaluation of microcrystalline cellulose attributes affecting compaction-induced pellet coat damage through a multi-faceted analysis. Int J Pharm 2023; 643:123245. [PMID: 37467819 DOI: 10.1016/j.ijpharm.2023.123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/21/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Pellet coat damage in multi-unit pellet system (MUPS) tablets has previously been studied and addressed with limited success. The effects of lactose filler material attributes on pellet coat damage have been relatively well-studied but a similar understanding of microcrystalline cellulose (MCC) is lacking notwithstanding its high cushioning potential. Hence, the relationships between MCC attributes and pellet coat damage were investigated. Single pellet in minitablets (SPIMs) were used to isolate pellet-filler effects and reveal the under-unexplored impact of risk factors found in MUPS tablets. MUPS tablets and SPIMs were prepared with various grades of MCC and pellets with an ethylcellulose or acrylic coat at various compaction pressures. Subsequently, the extent of pellet coat damage was determined by dissolution test and quantified using two indicators to differentiate the nature of the damage. A multi-faceted analytical approach incorporated linear regression, correlations and a classification and regression tree algorithm and evaluated how MCC attributes, such as flowability, particle size and plastic deformability, exert various influences on the extent of ethylcellulose and acrylic pellet coat damage. This analysis improved the understanding of the different mechanisms by which pellet coat damage to these two polymer types occurs which can help enhance future pellet coat damage mitigation strategies.
Collapse
Affiliation(s)
- Daniel Robin Thio
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Quinton Aguilera
- Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6DE, UK
| | - Janice Ke Xin Yeoh
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Lai Wah Chan
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
16
|
Mohsen AM, Nagy YI, Shehabeldine AM, Okba MM. Thymol-Loaded Eudragit RS30D Cationic Nanoparticles-Based Hydrogels for Topical Application in Wounds: In Vitro and In Vivo Evaluation. Pharmaceutics 2022; 15:pharmaceutics15010019. [PMID: 36678648 PMCID: PMC9861126 DOI: 10.3390/pharmaceutics15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Natural medicines formulated using nanotechnology-based systems are a rich source of new wound-treating therapeutics. This study aims to develop thymol-loaded cationic polymeric nanoparticles (CPNPs) to enhance the skin retention and wound healing efficacy of thymol. The developed materials exhibited entrapment efficiencies of 56.58 to 68.97%, particle sizes of 36.30 to 99.41 nm, and positively charged zeta potential. In Vitro sustained release of thymol up to 24 h was achieved. Selected thymol CPNPs (F5 and C2) were mixed with methylcellulose to form hydrogels (GF5 and GC2). An In Vivo skin-retention study revealed that GF5 and GC2 showed 3.3- and 3.6-fold higher retention than free thymol, respectively. An In Vitro scratch-wound healing assay revealed a significant acceleration in wound closure at 24 h by 58.09% (GF5) and 57.45% (GC2). The potential for free thymol hydrogel, GF5, and GC2 to combat MRSA in a murine skin model was evaluated. The bacterial counts, recovered from skin lesions and the spleen, were assessed. Although a significant reduction in the bacterial counts recovered from the skin lesions was shown by all three formulations, only GF5 and GC2 were able to reduce the bacterial dissemination to the spleen. Thus, our study suggests that Eudragit RS30D nanoparticles-based hydrogels are a potential delivery system for enhancing thymol skin retention and wound healing activity.
Collapse
Affiliation(s)
- Amira Mohamed Mohsen
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo 12622, Egypt
| | - Yosra Ibrahim Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr M. Shehabeldine
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mona M. Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy, Cairo 11562, Egypt
- Correspondence:
| |
Collapse
|
17
|
Thio DR, Heng PWS, Chan LW. MUPS Tableting-Comparison between Crospovidone and Microcrystalline Cellulose Core Pellets. Pharmaceutics 2022; 14:pharmaceutics14122812. [PMID: 36559308 PMCID: PMC9785026 DOI: 10.3390/pharmaceutics14122812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Multi-unit pellet system (MUPS) tablets were fabricated by compacting drug-loaded pellets of either crospovidone or microcrystalline cellulose core. These pellets were produced by extrusion-spheronization and coated with ethylcellulose (EC) for a sustained drug release function. Coat damage due to the MUPS tableting process could undermine the sustained release function of the EC-coated pellets. Deformability of the pellet core is a factor that can impact the extent of pellet coat damage. Thus, this study was designed to evaluate the relative performance of drug-loaded pellets prepared with either microcrystalline cellulose (MCC) or crospovidone (XPVP) as a spheronization aid and were comparatively evaluated for their ability to withstand EC pellet coat damage when compacted. These pellets were tableted at various compaction pressures and pellet volume fractions. The extent of pellet coat damage was assessed by the change in drug release after compaction. The findings from this study demonstrated that pellets spheronized with XPVP had slightly less favorable physical properties and experienced comparatively more pellet coat damage than the pellets with MCC. However, MUPS tablets of reasonable quality could successfully be produced from pellets with XPVP, albeit their performance did not match that of vastly mechanically stronger pellets with MCC at higher compaction pressure.
Collapse
|
18
|
Park HR, Seok SH, Park ES. Complexation of levocetirizine with ion-exchange resins and its effect on the stability of powder mixtures containing levocetirizine and montelukast. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Development of sinomenine hydrochloride sustained-release pellet using a novel whirlwind fluidized bed. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Natural polysaccharides and proteins applied to the development of gastroresistant multiparticulate systems for anti-inflammatory drug delivery – A systematic review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Bridging the structure gap between pellets in artificial dissolution media and in gastro-intestinal tract in rats. Acta Pharm Sin B 2022; 12:326-338. [PMID: 35127389 PMCID: PMC8799995 DOI: 10.1016/j.apsb.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/02/2022] Open
Abstract
Changes in structure of oral solid dosage forms (OSDF) elementally determine the drug release and its therapeutic effects. In this research, synchrotron radiation X-ray micro-computed tomography was utilized to visualize the 3D structure of enteric coated pellets recovered from the gastrointestinal tract of rats. The structures of pellets in solid state and in vitro compendium media were measured. Pellets in vivo underwent morphological and structural changes which differed significantly from those in vitro compendium media. Thus, optimizations of the dissolution media were performed to mimic the appropriate in vivo conditions by introducing pepsin and glass microspheres in media. The sphericity, pellet volume, pore volume and porosity of the in vivo esomeprazole magnesium pellets in stomach for 2 h were recorded 0.47, 1.55 × 108 μm3, 0.44 × 108 μm3 and 27.6%, respectively. After adding pepsin and glass microspheres, the above parameters in vitro reached to 0.44, 1.64 × 108 μm3, 0.38 × 108 μm3 and 23.0%, respectively. Omeprazole magnesium pellets behaved similarly. The structural features of pellets between in vitro media and in vivo condition were bridged successfully in terms of 3D structures to ensure better design, characterization and quality control of advanced OSDF.
Collapse
|
22
|
Yoshihara N, Kimata R, Terukina T, Kanazawa T, Kondo H. Novel preparation approach with a 2-step process for spherical particles with high drug loading and controlled size distribution using melt granulation: MALCORE®. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
23
|
Parhi R, Jena GK. An updated review on application of 3D printing in fabricating pharmaceutical dosage forms. Drug Deliv Transl Res 2021; 12:2428-2462. [PMID: 34613595 DOI: 10.1007/s13346-021-01074-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 01/22/2023]
Abstract
The concept of "one size fits all" followed by the conventional healthcare system has drawbacks in providing precise pharmacotherapy due to variation in the pharmacokinetics of different patients leading to serious consequences such as side effects. In this regard, digital-based three-dimensional printing (3DP), which refers to fabricating 3D printed pharmaceutical dosage forms with variable geometry in a layer-by-layer fashion, has become one of the most powerful and innovative tools in fabricating "personalized medicine" to cater to the need of therapeutic benefits for patients to the maximum extent. This is achieved due to the tremendous potential of 3DP in tailoring various drug delivery systems (DDS) in terms of size, shape, drug loading, and drug release. In addition, 3DP has a huge impact on special populations including pediatrics, geriatrics, and pregnant women with unique or frequently changing medical needs. The areas covered in the present article are as follows: (i) the difference between traditional and 3DP manufacturing tool, (ii) the basic processing steps involved in 3DP, (iii) common 3DP methods with their pros and cons, (iv) various DDS fabricated by 3DP till date with discussing few research studies in each class of DDS, (v) the drug loading principles into 3D printed dosage forms, and (vi) regulatory compliance.
Collapse
Affiliation(s)
- Rabinarayan Parhi
- Department of Pharmaceutical Sciences, Susruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar-788011, Assam, India.
| | - Goutam Kumar Jena
- Roland Institute of Pharmaceutical Sciences, Berhampur-7600010, Odisha, India
| |
Collapse
|
24
|
Handattu MS, Thirumaleshwar S, Prakash GM, Somareddy HK, Veerabhadrappa GH. A Comprehensive Review on Pellets as a Dosage Form in Pharmaceuticals. Curr Drug Targets 2021; 22:1183-1195. [PMID: 33475056 DOI: 10.2174/1389450122999210120204248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
Oral route of administration is widely accepted and desired because of its versatility, convenience, and, most importantly, patient compliance. Multiparticulate systems like granules and pellets are more advantageous when compared to single-unit dosage forms, as they are capable of distributing the drug more evenly in the gastrointestinal tract. The current paper focuses on pellets, the merits and demerits associated, various pelletization techniques, and their characterization. It also focuses on how pellets can be employed for drug delivery is controlled and sustained release formulations. It gives a complete emphasis on the drug and excipients that can be used in pellet formation, the marketed formulations, and the research pertaining to pellets.
Collapse
Affiliation(s)
- Maithri S Handattu
- Department of Pharmaceutics, Industrial Pharmacy, JSS College of Pharmacy, Sri Shivarathreeshwara Nagara, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru-570015, Karnataka, India
| | - Shailesh Thirumaleshwar
- Department of Pharmaceutics, Industrial Pharmacy, JSS College of Pharmacy, Sri Shivarathreeshwara Nagara, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru-570015, Karnataka, India
| | - Gowrav M Prakash
- Department of Pharmaceutics, Industrial Pharmacy, JSS College of Pharmacy, Sri Shivarathreeshwara Nagara, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru-570015, Karnataka, India
| | - Hemanth K Somareddy
- Department of Pharmaceutics, Industrial Pharmacy, JSS College of Pharmacy, Sri Shivarathreeshwara Nagara, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru-570015, Karnataka, India
| | - Gangadharappa H Veerabhadrappa
- Department of Pharmaceutics, Industrial Pharmacy, JSS College of Pharmacy, Sri Shivarathreeshwara Nagara, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru-570015, Karnataka, India
| |
Collapse
|
25
|
Zakowiecki D, Frankiewicz M, Hess T, Cal K, Gajda M, Dabrowska J, Kubiak B, Paszkowska J, Wiater M, Hoc D, Garbacz G, Haznar-Garbacz D. Development of a Biphasic-Release Multiple-Unit Pellet System with Diclofenac Sodium Using Novel Calcium Phosphate-Based Starter Pellets. Pharmaceutics 2021; 13:pharmaceutics13060805. [PMID: 34071381 PMCID: PMC8228657 DOI: 10.3390/pharmaceutics13060805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022] Open
Abstract
Novel calcium phosphate-based starter pellets were used to develop a biphasic-release multiple-unit pellet system (MUPS) with diclofenac sodium as a model drug in the form of hard gelatin capsules. For comparative purposes, corresponding formulations based on the inert cores made of microcrystalline cellulose, sucrose and isomalt were prepared. The developed system consisted of two types of drug-layered pellets attaining different release patterns: delayed-release (enteric-coated) and extended-release. Dissolution characteristics were examined using both compendial and biorelevant methods, which reflected fed and fasting conditions. The results were collated with an equivalent commercial product but prepared with the direct pelletization technique.
Collapse
Affiliation(s)
- Daniel Zakowiecki
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany;
- Correspondence:
| | - Maja Frankiewicz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Gdansk, al. Gen. J. Hallera 107, 80-416 Gdansk, Poland; (M.F.); (K.C.)
| | - Tobias Hess
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany;
| | - Krzysztof Cal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Gdansk, al. Gen. J. Hallera 107, 80-416 Gdansk, Poland; (M.F.); (K.C.)
| | - Maciej Gajda
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.G.); (D.H.-G.)
- Adamed Pharma S.A., Pienkow, ul. Mariana Adamkiewicza 6A, 05-152 Czosnow, Poland; (J.D.); (B.K.)
| | - Justyna Dabrowska
- Adamed Pharma S.A., Pienkow, ul. Mariana Adamkiewicza 6A, 05-152 Czosnow, Poland; (J.D.); (B.K.)
| | - Bartlomiej Kubiak
- Adamed Pharma S.A., Pienkow, ul. Mariana Adamkiewicza 6A, 05-152 Czosnow, Poland; (J.D.); (B.K.)
| | - Jadwiga Paszkowska
- Physiolution Polska sp. z o.o., Skarbowcow 81/7, 53-025 Wroclaw, Poland; (J.P.); (M.W.); (D.H.); (G.G.)
| | - Marcela Wiater
- Physiolution Polska sp. z o.o., Skarbowcow 81/7, 53-025 Wroclaw, Poland; (J.P.); (M.W.); (D.H.); (G.G.)
| | - Dagmara Hoc
- Physiolution Polska sp. z o.o., Skarbowcow 81/7, 53-025 Wroclaw, Poland; (J.P.); (M.W.); (D.H.); (G.G.)
| | - Grzegorz Garbacz
- Physiolution Polska sp. z o.o., Skarbowcow 81/7, 53-025 Wroclaw, Poland; (J.P.); (M.W.); (D.H.); (G.G.)
- Physiolution GmbH, Walther-Rathenau-Strasse 49a, 17489 Greifswald, Germany
| | - Dorota Haznar-Garbacz
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.G.); (D.H.-G.)
| |
Collapse
|
26
|
Lam M, Nokhodchi A. Producing High-Dose Liqui-Tablet (Ketoprofen 100 mg) for Enhanced Drug Release Using Novel Liqui-Mass Technology. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09561-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Purpose
Liqui-Tablet is a dosage form derived from Liqui-Mass technology. It has proven to be a promising approach to improve drug dissolution rate of poorly water-soluble drugs. So far, Liqui-Tablet is feasible for low-dose drugs. In this study, an attempt was made to produce high-dose Liqui-Tablet, whilst maintaining ideal physicochemical properties for ease of manufacturing.
Methods
Liqui-Tablets containing 100 mg of ketoprofen were produced using various liquid vehicles including PEG 200, Span 80, Kolliphor EL, PG, and Tween 85. Investigations that were carried out included saturation solubility test, dissolution test, tomographic study, and typical quality control tests for assessing flowability, particle size distribution, friability, and tablet hardness.
Results
The weight of these Liqui-Tablets was acceptable for swallowing (483.8 mg), and the saturation solubility test showed PEG 200 to be the most suitable liquid vehicle (493 mg/mL). Tests investigating physicochemical properties such as flowability, particle size distribution, friability, and tablet hardness have shown no issue concerning quality control and manufacturability. The drug release test of the best formulation has shown extremely rapid drug release at pH 7.4 (100% after 5 min). At pH 1.2 the drug release was reasonable considering the formulation was yet to be optimized.
Conclusion
Despite the high amount of API and liquid vehicle, it is possible to produce a high-dose dosage form with acceptable size and weight for swallowing using the novel Liqui-Mass technology. This has the potential to diversify the technology by removing the restriction of high dose drug that has been seen in liquisolid technology.
Collapse
|
27
|
Lam M, Asare-Addo K, Nokhodchi A. Liqui-Tablet: the Innovative Oral Dosage Form Using the Newly Developed Liqui-Mass Technology. AAPS PharmSciTech 2021; 22:85. [PMID: 33650023 PMCID: PMC7921041 DOI: 10.1208/s12249-021-01943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/24/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, an attempt was made to produce Liqui-Tablets for the first time. This was carried out through the compaction of naproxen Liqui-Pellets. The incentive to convert the novel Liqui-Pellet into Liqui-Tablet was due to the array of inherent advantages of the popular and preferred tablet dosage form. The study showed that naproxen Liqui-Tablet could be successfully produced and the rapid drug release rate (100% drug release ~ 20 min) could be achieved under pH 1.2, where naproxen is insoluble. It was observed that the different pH of the dissolution medium affected the trend of drug release from formulations with varying amounts of liquid vehicle. The order of the fastest drug-releasing formulations was different depending on the pH used. The presence of Neusilin US2 showed considerable enhancement in the drug release rate as well as improving Liqui-Tablet robustness and hardness. Furthermore, images from X-ray micro-tomography displayed a uniform distribution of components in the Liqui-Tablet. The accelerated stability studies showed acceptable stability in terms of dissolution profile.
Collapse
|
28
|
An investigation into applicability of different compression behaviour assessment approaches for multiparticulate units characterization. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.10.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Fang D, Yang Y, Cui M, Pan H, Wang L, Li P, Wu W, Qiao S, Pan W. Three-Dimensional (3D)-Printed Zero-Order Released Platform: a Novel Method of Personalized Dosage Form Design and Manufacturing. AAPS PharmSciTech 2021; 22:37. [PMID: 33409925 DOI: 10.1208/s12249-020-01886-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
In 2017, there are 451 million people with diabetes worldwide. These figures were expected to increase to 693 million by 2045. The research and development of hypoglycemic drugs has become a top priority. Among them, sulfonylurea hypoglycemic drugs such as glipizide are commonly used in non-insulin-dependent type II diabetes. In order to adapt to the wide range of hypoglycemic drugs and the different individual needs of patients, this topic used glipizide as a model drug, and prepared glipizide preparations with 3D printing technology. The purpose of this study was to investigate the prescription applicability and control-release behavior of structure and explore the application prospects of 3D printing personalized drug delivery formulations. This article aims to establish a production process for personalized preparations based on 3D printing technology. The process is easy to obtain excipients, universal prescriptions, flexible dosages, exclusive customization, and integrated automation. In this paper, the UV method was used to determine the in vitro release and content analysis method of glipizide; the physical and chemical properties of the glipizide were investigated. The established analysis method was inspected and evaluated, and the experimental results met the methodological requirements. Glipizide controlled-release tablets were prepared by the semisolid extrusion (SSE) method using traditional pharmaceutical excipients combined with 3D printing technology. The formulation composition, in vitro release, and printing process parameters of the preparation were investigated, and the final prescription and process parameters (traveling speed 6.0-7.7 mm/s and extruding speed 0.0060-0.0077 mm/s) were selected through comprehensive analysis. The routine analysis results of the preparation showed that the performance of the preparation meets the requirements. In order for 3D printing technology to play a better role in community medicine and telemedicine, this article further explored the universality of the above prescription and determined the scope of application of prescription drugs and dosages. Glipizide, gliclazide, lornoxicam, puerarin, and theophylline were used as model drugs, and the range of drug loading percentage was investigated. The results showed when the solubility of the drug is 9.45 -8.34 mg/mL, and the drug loading is 3-43%; the release behavior is similar.
Collapse
|
30
|
Sántha K, Kállai-Szabó N, Fülöp V, Jakab G, Gordon P, Kállai-Szabó B, Balogh E, Antal I. Comparative Evaluation of Pellet Cushioning Agents by Various Imaging Techniques and Dissolution Studies. AAPS PharmSciTech 2020; 22:14. [PMID: 33377174 PMCID: PMC7772162 DOI: 10.1208/s12249-020-01902-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Most of the commercially available pharmaceutical products for oral administration route are marketed in the tablet dosage forms. However, compression of multiparticulate systems is a challenge for the pharmaceutical research and industry, especially if the individual unit is a coated particle, as the release of the active ingredient depends on the integrity of the coating. In the present study, polymer-coated pellets tableted with different types of excipients (powder, granules, pellets) then were investigated by various tablet-destructive (microscopic) and tablet non-destructive (microfocus X-ray; microCT) imaging methods. The information obtained from the independent evaluation of the in vitro drug release profiles model is confirmed by the results obtained by image analysis, regardless of whether X-ray or stereomicroscopic images of the coated, tableted pellets were used for image analysis. The results of this study show that the novel easy-to-use, fast, and non-destructive MFX method is a good alternative to the already used microscopic image analysis methods regarding the characterization of particulates, compressed into tablets.
Collapse
|
31
|
Drumond N, Stegemann S. Better Medicines for Older Patients: Considerations between Patient Characteristics and Solid Oral Dosage Form Designs to Improve Swallowing Experience. Pharmaceutics 2020; 13:pharmaceutics13010032. [PMID: 33379258 PMCID: PMC7824227 DOI: 10.3390/pharmaceutics13010032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Oral drug administration provided as solid oral dosage forms (SODF) remains the major route of drug therapy in primary and secondary care. There is clear evidence for a growing number of clinically relevant swallowing issues (e.g., dysphagia) in the older patient population, especially when considering the multimorbid, frail, and polymedicated patients. Swallowing impairments have a negative impact on SODF administration, which leads to poor adherence and inappropriate alterations (e.g., crushing, splitting). Different strategies have been proposed over the years in order to enhance the swallowing experience with SODF, by using conventional administration techniques or applying swallowing aids and devices. Nevertheless, new formulation designs must be considered by implementing a patient centric approach in order to efficiently improve SODF administration by older patient populations. Together with appropriate SODF size reductions, innovative film coating materials that can be applied to SODF and provide swallowing safety and efficacy with little effort being required by the patients are still needed. With that in mind, a literature review was conducted in order to identify the availability of patient centric coating materials claiming to shorten esophageal transit times and improve the overall SODF swallowing experience for older patients. The majority of coating technologies were identified in patent applications, and they mainly included well-known water soluble polymers that are commonly applied into pharmaceutical coatings. Nevertheless, scientific evidence demonstrating the benefits of given SODF coating materials in the concerned patient populations are still very limited. Consequently, the availability for safe, effective, and clinically proven solutions to address the increasing prevalence of swallowing issues in the older patient population is still limited.
Collapse
Affiliation(s)
- Nélio Drumond
- Correspondence: (N.D.); (S.S.); Tel.: +49-178-2144689 (N.D.); +49-172-6054869 (S.S.)
| | - Sven Stegemann
- Correspondence: (N.D.); (S.S.); Tel.: +49-178-2144689 (N.D.); +49-172-6054869 (S.S.)
| |
Collapse
|
32
|
Anti-obesity effect with reduced adverse effect of the co-administration of mini-tablets containing orlistat and mini-tablets containing xanthan gum: In vitro and in vivo evaluation. Int J Pharm 2020; 591:119998. [PMID: 33115696 DOI: 10.1016/j.ijpharm.2020.119998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 12/27/2022]
Abstract
The purpose of this study was to develop an oral dosage form of orlistat for the treatment of obesity with reduced adverse effects, for example, fatty and oily stool that have been reported to be associated with the mechanism of action of orlistat. Based on the in vitro results obtained in this study, xanthan gum was selected as an oil-entrapping agent. Thus, the co-administration of mini-tablets containing orlistat and mini-tablets containing xanthan gum was proposed as the optimized dosage form for orlistat. The prepared mini-tablets showed an equivalent drug release profile with a similarity factor value, f2, more than 50 to that of commercially marketed orlistat immediate-release capsules, Xenical® capsules. In addition, the optimized formulation also showed the in vivo anti-obesity effects similar to those of Xenical® capsules. In particular, the analysis of feces excreted by Sprague-Dawley rats revealed that the optimized formulation resulted in significantly less oily stool, steatorrhea, than Xenical® capsules (P < 0.05). Consequently, the proposed formulation, the co-administration of mini-tablets containing orlistat and mini-tablets containing xanthan gum, may be considered as a promising anti-obesity treatment with reduced adverse effects related to orlistat.
Collapse
|
33
|
Arévalo-Pérez R, Maderuelo C, Lanao JM. Recent advances in colon drug delivery systems. J Control Release 2020; 327:703-724. [DOI: 10.1016/j.jconrel.2020.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022]
|
34
|
Karolak M, Pałkowski Ł, Kubiak B, Błaszczyński J, Łunio R, Sawicki W, Słowiński R, Krysiński J. Application of Dominance-Based Rough Set Approach for Optimization of Pellets Tableting Process. Pharmaceutics 2020; 12:pharmaceutics12111024. [PMID: 33114730 PMCID: PMC7692369 DOI: 10.3390/pharmaceutics12111024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 11/29/2022] Open
Abstract
Multiple-unit pellet systems (MUPS) offer many advantages over conventional solid dosage forms both for the manufacturers and patients. Coated pellets can be efficiently compressed into MUPS in classic tableting process and enable controlled release of active pharmaceutical ingredient (APIs). For patients MUPS are divisible without affecting drug release and convenient to swallow. However, maintaining API release profile during the compression process can be a challenge. The aim of this work was to explore and discover relationships between data describing: composition, properties, process parameters (condition attributes) and quality (decision attribute, expressed as similarity factor f2) of MUPS containing pellets with verapamil hydrochloride as API, by applying a dominance-based rough ret approach (DRSA) mathematical data mining technique. DRSA generated decision rules representing cause–effect relationships between condition attributes and decision attribute. Similar API release profiles from pellets before and after tableting can be ensured by proper polymer coating (Eudragit® NE, absence of ethyl cellulose), compression force higher than 6 kN, microcrystalline cellulose (Avicel® 102) as excipient and tablet hardness ≥42.4 N. DRSA can be useful for analysis of complex technological data. Decision rules with high values of confirmation measures can help technologist in optimal formulation development.
Collapse
Affiliation(s)
- Maciej Karolak
- Department of Pharmaceutical Technology, Collegium Medicum, Nicolaus Copernicus University, 85-089 Bydgoszcz, Poland; (Ł.P.); (J.K.)
- Correspondence: ; Tel.: +48-52-585-3927
| | - Łukasz Pałkowski
- Department of Pharmaceutical Technology, Collegium Medicum, Nicolaus Copernicus University, 85-089 Bydgoszcz, Poland; (Ł.P.); (J.K.)
| | | | - Jerzy Błaszczyński
- Institute of Computing Science, Poznań University of Technology, 60-965 Poznań, Poland; (J.B.); (R.S.)
| | - Rafał Łunio
- Polpharma SA, 83-200 Starogard Gdański, Poland;
| | - Wiesław Sawicki
- Department of Physical Chemistry, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | - Roman Słowiński
- Institute of Computing Science, Poznań University of Technology, 60-965 Poznań, Poland; (J.B.); (R.S.)
- Systems Research Institute, Polish Academy of Sciences, 01-447 Warsaw, Poland
| | - Jerzy Krysiński
- Department of Pharmaceutical Technology, Collegium Medicum, Nicolaus Copernicus University, 85-089 Bydgoszcz, Poland; (Ł.P.); (J.K.)
| |
Collapse
|
35
|
Elsergany RN, Chan LW, Heng PWS. Cushioning pellets based on microcrystalline cellulose - Crospovidone blends for MUPS tableting. Int J Pharm 2020; 586:119573. [PMID: 32599135 DOI: 10.1016/j.ijpharm.2020.119573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022]
Abstract
Compaction of multiple-unit pellet system (MUPS) tablets has been extensively reported to be potentially challenging. Thus, there is a need for non-segregating cushioning agents to mitigate the deleterious effect of the compaction forces. This study was designed to investigate the use of porous pellets as cushioning agents using different drying techniques to prepare pellets of various porosities and of different formulations. The pellets fabricated were characterized for their porosity and crushing strength. Subsequently, MUPS tablets were prepared using blends of polymer-coated pellets and custom-designed cushioning pellets by compacting at different pressures. The effects of pellet volume fraction and dwell time on the pellet coat damage, as well as the tensile strength of the resultant MUPS tablets were also investigated. Compacts with coated pellet volume fraction of 0.21 exhibited the best cushioning effect when tableted at different compression speeds with both gravity and force feeders. The findings from this study showed that cushioning pellet porosity was highest when drying was carried out by freeze drying, followed by fluid bed drying and oven drying. There was an inverse relationship between cushioning pellet porosity and strength. The tensile strength of tablets prepared from freeze dried pellets was highest. The protective effect of the cushioning pellets was principally dependent on their porosity. Also, pellet volume fraction in the compacts and compaction pressure used had remarkable effect on pellet coat damage. When unprocessed powders were compacted by automatic die filling, capping and lamination problems were observed. However, tablets of reasonable quality were made with the cushioning pellets. Freeze dried pellets containing crospovidone were found to be promising as cushioning agents and had enabled the production of MUPS tablets even at higher compaction pressures, beyond the intrinsic crushing strength of the coated pellets.
Collapse
Affiliation(s)
- Ramy N Elsergany
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Lai Wah Chan
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
36
|
Elsergany RN, Chan LW, Heng PWS. Influence of the porosity of cushioning excipients on the compaction of coated multi-particulates. Eur J Pharm Biopharm 2020; 152:218-228. [PMID: 32445966 DOI: 10.1016/j.ejpb.2020.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 11/28/2022]
Abstract
The compaction of multiple unit-pellet system (MUPS) tablets poses considerable challenges due to potential compaction-induced damage to the functional polymer coat and segregation of pellets from other excipients during the tableting process. This study was designed to investigate the impact of porous pellets as cushioning agent without issues related to segregation while tableting. Different drying techniques were applied to produce microcrystalline cellulose (MCC) pellets with various porosities. Sodium chloride was also added to the pellet formulation as a pore forming agent to generate a porous skeleton after production and aqueous extraction. The pellets fabricated were characterized for their porosity, crushing strength and yield pressure. Tablets were prepared using unlubricated pellets and their tensile strengths determined. Blends containing polymer-coated pellets and cushioning pellets of various porosities were compacted at different compaction pressures. The porous pellets exhibiting the best cushioning effect were used for MUPS tableting at different compression speeds with both gravity and force feeders. The findings from this study showed that pellet porosity was highest when drying was carried out in a freeze dryer, followed by fluid bed and least porous from the oven. There was an inverse relationship between pellet porosity and strength. The protective effect of cushioning pellets was mainly dependent on their porosity. The porosity of pellets manufactured by leaching NaCl from MCC-NaCl (1:1) pellets were 2.14-, 2.57- and 4.88-fold higher than that of MCC PH101 only pellets for oven, fluid bed and freeze dried pellets, respectively. Although the porosity of MCC PH101-NaCl (1:3) pellets was highest, they exhibited less cushioning effect than MCC PH101-NaCl (1:1). It was inferred that a good balance between porosity and bulk density of cushioning pellets was essential to be effective at protecting the coated pellets from damage during compaction. Compared with MUPS tablets prepared using unprocessed MCC PH105, the tablets prepared with the porous freeze dried MCC PH101 (NaCl fraction leached) pellets had improved drug content uniformity and were mechanically stronger.
Collapse
Affiliation(s)
- Ramy N Elsergany
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Lai Wah Chan
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
37
|
Evaluation of Experimental Multi-Particulate Polymer-Coated Drug Delivery Systems with Meloxicam. COATINGS 2020. [DOI: 10.3390/coatings10050490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objectives of this study are the development and evaluation of modified release multi-particulate drug delivery systems containing a BCS class II drug (meloxicam), formulated as polymer-coated pellets. Inert seeds containing microcrystalline cellulose, lactose monohydrate, and polyvinylpyrrolidone were prepared by extrusion-spheronization. The obtained cores were loaded with meloxicam using the drug layering technique, by spray coating in a fluidized bed with a liquid dispersion of the drug. The resulting drug pellets were film-coated with various polymers (Acryl-EZE® 93O, Eudragit® RS 30-D as well as experimental composite obtained by adding Methocel™ E5 Premium LV as pore forming agent to the extended release polymer Eudragit® RS 30-D). All experimental systems were evaluated by scanning electron microscopy and in vitro release testing, in an attempt to investigate the characteristics of the film coatings and their influence on drug release from the multi-particulate systems. The in vitro release study was performed in two stages, using two media with pH values corresponding to the gastric and intestinal environment (HCl 0.1N, pH = 1.2 for the first two hours of the test and phosphate buffer 50 mM, pH 6.8 for the next 4 h). The in vitro release data have highlighted the impact of the formulation factors on the drug release.
Collapse
|
38
|
Tran PH, Tran TT. Dosage form designs for the controlled drug release of solid dispersions. Int J Pharm 2020; 581:119274. [DOI: 10.1016/j.ijpharm.2020.119274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
|
39
|
Li L, Ning Z, Zhang X, Mayne J, Cheng K, Stintzi A, Figeys D. RapidAIM: a culture- and metaproteomics-based Rapid Assay of Individual Microbiome responses to drugs. MICROBIOME 2020; 8:33. [PMID: 32160905 PMCID: PMC7066843 DOI: 10.1186/s40168-020-00806-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/12/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Human-targeted drugs may exert off-target effects or can be repurposed to modulate the gut microbiota. However, our understanding of such effects is limited due to a lack of rapid and scalable assay to comprehensively assess microbiome responses to drugs. Drugs and other compounds can drastically change the overall abundance, taxonomic composition, and functions of a gut microbiome. RESULTS Here, we developed an approach to screen compounds against individual microbiomes in vitro, using metaproteomics to both measure absolute bacterial abundances and to functionally profile the microbiome. Our approach was evaluated by testing 43 compounds (including 4 antibiotics) against 5 individual microbiomes. The method generated technically highly reproducible readouts, including changes of overall microbiome abundance, microbiome composition, and functional pathways. Results show that besides the antibiotics, the compounds berberine and ibuprofen inhibited the accumulation of biomass during in vitro growth of the microbiota. By comparing genus and species level-biomass contributions, selective antibacterial-like activities were found with 35 of the 39 non-antibiotic compounds. Seven of the compounds led to a global alteration of the metaproteome, with apparent compound-specific patterns of functional responses. The taxonomic distributions of altered proteins varied among drugs, i.e., different drugs affect functions of different members of the microbiome. We also showed that bacterial function can shift in response to drugs without a change in the abundance of the bacteria. CONCLUSIONS Current drug-microbiome interaction studies largely focus on relative microbiome composition and microbial drug metabolism. In contrast, our workflow enables multiple insights into microbiome absolute abundance and functional responses to drugs. The workflow is robust, reproducible, and quantitative and is scalable for personalized high-throughput drug screening applications.
Collapse
Affiliation(s)
- Leyuan Li
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Janice Mayne
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Kai Cheng
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
- Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
40
|
Application of Eudragit RS 30D as a Potential Drug Release Retardant of Acetaminophen and Caffeine for Prolonged Duration of Comfort. INT J POLYM SCI 2019. [DOI: 10.1155/2019/3830670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objective of the study is to formulate an extended release matrix tablet dosage form containing acetaminophen and caffeine by applying polymer technology which will relieve all kinds of pain for about 12 hours. Considering the fact that there is no such formulation available in the pharmaceutical market, it is expected that this drug could be an effective introduction. Hydrophobic polymers have a great application in pharmaceutical sciences as they retard the release of water-soluble drugs and give prolonged effect. Eudragit RS 30D was used to prepare 3 formulations (EF1, EF2, and EF3) containing varying concentrations of polymer, through the wet granulation method. Each tablet contained 1000 mg of acetaminophen and 130 mg of caffeine including other suitable excipients. All pharmacopeial and nonpharmacopeial tests were conducted to determine the quality of dosage form and to identify optimized formulation among EF1-EF3. Dissolution was conducted on similar gastric conditions through which different kinetic models were applied using DDSolver. For 12 hrs of dissolution, caffeine was released from EF1, EF2, and EF3 with the percentage release in the range from 99.85% to 100.65%, 99.32% to 100.28%, and 98.09% to 100.77%, respectively. For acetaminophen, the percent release was from 99.81% to 100.91%, 100.24% to 100.91%, and 86.81% to 95.73% for EF1-EF3, respectively. Results concluded that EF2 is the most optimized drug having all physicochemical quality control tests within the specified limits. On applying different models like zero-order, Hixson-Crowell, Higuchi, and Korsmeyer-Peppas upon use, it is concluded that the formulation follows Korsmeyer-Peppas as it was the best-fitted model with the r2 value closest to 0.999. EF2 is considered as a potential drug to be manufactured that will give prolonged relief against pain and will decrease compliance issues related to dosing frequency.
Collapse
|
41
|
Development and evaluation of budesonide-based modified-release liquid oral dosage forms. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Zhdanov VP. Intracellular RNA delivery by lipid nanoparticles: Diffusion, degradation, and release. Biosystems 2019; 185:104032. [PMID: 31563119 DOI: 10.1016/j.biosystems.2019.104032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/15/2019] [Indexed: 01/09/2023]
Abstract
Various RNAs (siRNAs, miRNAs, or mRNAs) can be delivered into cells by lipid nanoparticles (LNPs) of 50-150 nm in diameter. The subsequent RNA release from LNPs may occur via various scenarios. Herein, two related kinetic models are proposed. The first model takes into account that LNPs are often porous so that RNA molecules diffuse in and detach from nanopores. The analysis is focused on RNA diffusion from a pore. The analytical expression obtained for the RNA escape rate constant is used to identify the difference in the release of siRNAs, miRNAs, and mRNAs. The key message here is that the mRNA diffusion from pores appears to be too slow, and accordingly the mRNA release seems to occur primarily via degradation of LNPs. The second coarse-grained model describes the diffusion-mediated release of RNA from a LNP in the situation when this process is accompanied by the LNP degradation at the lipid-solution interface. The corresponding kinetics are shown in detail at different relative rates of the RNA diffusion and LNP degradation. Potentially, this can help to interpret drug plasma levels after various dosing regimens.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
43
|
Babayeva M, Marfo AA, Wolfe R, Hlaing YCS, Loewy ZG, Selvi BA. Studying the factors that impact the dissolution characteristic of complex drug product. Pharm Dev Technol 2019; 24:1200-1209. [PMID: 31343377 DOI: 10.1080/10837450.2019.1647544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This article summarizes the critical factors involved in product development of a single dosage form formulated by compacting ethyl cellulose (EC) coated controlled release pellets into a tablet. The greatest challenge associated with this type of complex system is to minimize the effect of compression on the drug release. The effects of compression on the drug release were optimized with combination of the following factors (1) particle size of the core pellets, (2) the selection of the coating polymer's viscosity grade, and (3) emergence of cushioning agents. The optimization of these factors provided superior protection for the controlled release coated pellets; therefore, the desired drug release from the tablet was successfully achieved as designed. However, the drug release rates from the coated pellets before and after the compression were minimized and exhibited only a slight difference.
Collapse
Affiliation(s)
- Mariana Babayeva
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy , New York , NY , USA
| | - Alexander A Marfo
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy , New York , NY , USA
| | - Ryan Wolfe
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy , New York , NY , USA
| | - Yin C S Hlaing
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy , New York , NY , USA
| | - Zvi G Loewy
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy , New York , NY , USA
| | - Bilge A Selvi
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy , New York , NY , USA
| |
Collapse
|
44
|
Development and In Vitro-In Vivo Evaluation of a Novel Sustained-Release Loxoprofen Pellet with Double Coating Layer. Pharmaceutics 2019; 11:pharmaceutics11060260. [PMID: 31195668 PMCID: PMC6631012 DOI: 10.3390/pharmaceutics11060260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022] Open
Abstract
This study aimed to develop a novel sustained release pellet of loxoprofen sodium (LXP) by coating a dissolution-rate controlling sub-layer containing hydroxypropyl methyl cellulose (HPMC) and citric acid, and a second diffusion-rate controlling layer containing aqueous dispersion of ethyl cellulose (ADEC) on the surface of a LXP conventional pellet, and to compare its performance in vivo with an immediate release tablet (Loxinon®). A three-level, three-factor Box-Behnken design and the response surface model (RSM) were used to investigate and optimize the effects of the citric acid content in the sub-layer, the sub-layer coating level, and the outer ADEC coating level on the in vitro release profiles of LXP sustained release pellets. The pharmacokinetic studies of the optimal sustained release pellets were performed in fasted beagle dogs using an immediate release tablet as a reference. The results illustrated that both the citric acid (CA) and ADEC as the dissolution- and diffusion-rate controlling materials significantly decreased the drug release rate. The optimal formulation showed a pH-independent drug release in media at pH above 4.5 and a slightly slow release in acid medium. The pharmacokinetic studies revealed that a more stable and prolonged plasma drug concentration profile of the optimal pellets was achieved, with a relative bioavaibility of 87.16% compared with the conventional tablets. This article provided a novel concept of two-step control of the release rate of LXP, which showed a sustained release both in vitro and in vivo.
Collapse
|
45
|
Nejati L, Kalantari F, Bavarsad N, Saremnejad F, Moghaddam PT, Akhgari A. Investigation of using pectin and chitosan as natural excipients in pellet formulation. Int J Biol Macromol 2018; 120:1208-1215. [DOI: 10.1016/j.ijbiomac.2018.08.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/09/2018] [Accepted: 08/25/2018] [Indexed: 01/14/2023]
|
46
|
Pohlen M, Pirker L, Luštrik M, Dreu R. A redispersible dry emulsion system with simvastatin prepared via fluid bed layering as a means of dissolution enhancement of a lipophilic drug. Int J Pharm 2018; 549:325-334. [DOI: 10.1016/j.ijpharm.2018.07.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/10/2018] [Accepted: 07/27/2018] [Indexed: 12/16/2022]
|
47
|
Dong L, Yang F, Zhu Z, Yang Y, Zhang X, Ye M, Pan W, Pan H. Preparation, Characterization and Pharmacokinetics Evaluation of the Compound Capsules of Ibuprofen Enteric-Coated Sustained-Release Pellets and Codeine Phosphate Immediate-Release Pellets. AAPS PharmSciTech 2018; 19:3057-3066. [PMID: 30091062 DOI: 10.1208/s12249-018-1119-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
The objective of this study was to prepare ibuprofen enteric-coated sustained-release pellets (IB-SRPs) and codeine phosphate immediate-release pellets (CP-IRPs) to play a synergistic role in analgesia. The pellets were developed by extrusion-spheronization and fluidized bed coating technology. The single-factor investigation was used to determine the optimal prescription and process. The sustained-release membrane of IB-SRPs was water-insoluble ethyl cellulose (EC), triethyl citrate (TEC) was used as plasticizer, and hydroxypropyl methylcellulose (HPMCP) was chose as porogen. Besides, the immediate-release layer of CP-IRPs was gastric-soluble coating film. The ibuprofen and codeine phosphate compound capsules (IB-CP SRCs) were prepared by IB-SRPs and CP-IRPs packed together in capsules with the optimum doses of 200 and 13 mg, respectively. The prepared pellets were evaluated by scanning electron microscopy and dissolution test. Pharmacokinetic studies in beagle dogs indicated that the optimized IB-CP SRCs had smaller individual differences and better reproducibility comparing with commercial available tablets. Additionally, IB-CP SRCs achieved consistency with in vivo and in vitro tests. Therefore, IB-CP SRCs could play a great role in rapid and long-term analgesic.
Collapse
|
48
|
Mazurek P, Brook MA, Skov AL. Glycerol-Silicone Elastomers as Active Matrices with Controllable Release Profiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11559-11566. [PMID: 30153731 DOI: 10.1021/acs.langmuir.8b02039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drug release regimes must be controlled for the optimal therapeutic effect. Although it is relatively straightforward to create first-order release matrices, it can be challenging to avoid an initial burst. Matrices with zero-order profiles are perceived to be beneficial in many cases but are even more difficult to formulate. We describe the straightforward synthesis of elastomeric composites prepared from silicone in which the active substance is dispersed in glycerol. The release of glycerol-soluble actives from the films of these materials was shown to be tunable with respect to the order of release (zero- or first-order) simply by changing the glycerol content. Importantly, release from the elastomers showed no burst effect. The discrete glycerol domains embedded within a silicone matrix act as reservoirs for active substances. Upon contact with aqueous media, the active substances are released from the matrices exhibiting zero-order, near zero-order, or first-order release kinetics. Various parameters that could influence the release process, including glycerol content, glycerol domain size, or membrane thickness, are thoroughly investigated, elucidating guidelines for creating matrices capable of delivering the active substances at desired rates. Additionally, the composites proved to absorb significant amounts of liquid water (up to 1850% of sample mass), a feature that can be tuned by the manipulation of the composite structure.
Collapse
Affiliation(s)
- Piotr Mazurek
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering , Technical University of Denmark , DK-2800 Kgs. Lyngby , Denmark
| | - Michael A Brook
- Department of Chemistry and Chemical Biology , McMaster University , 1280 Main Street, W. , Hamilton , Ontario L8S 4M1 , Canada
| | - Anne L Skov
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering , Technical University of Denmark , DK-2800 Kgs. Lyngby , Denmark
| |
Collapse
|
49
|
Shin TH, Im SH, Goh MS, Lee ES, Ho MJ, Kim CH, Kang MJ, Choi YW. Novel Extended-Release Multiple-Unit System of Imidafenacin Prepared by Fluid-Bed Coating Technique. AAPS PharmSciTech 2018; 19:2639-2645. [PMID: 29931609 DOI: 10.1208/s12249-018-1100-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to formulate once-a-day extended-release (ER) pellet system of imidafenacin (IDN), a recently approved urinary antispasmodic agent with twice-a-day dosing regimen. The sugar sphere pellets were firstly layered with IDN and hypromellose and then coated with Eudragit RS (copolymers of acrylic and methacrylic acid esters), employed as a release modifier, using a fluid-bed coater. Solid-state characterizations using solid-state X-ray diffraction and differential scanning calorimeter indicated that the antispasmodic agent was homogeneously layered onto the pellets in an amorphous state. Drug release from multiple-unit ER system was effectively retarded in proportion to the amount of Eudragit RS in the outer layer, with a high correlation value above 0.86. In a pharmacokinetic evaluation in beagle dogs, the plasma concentration profile of IDN was markedly protracted by ER pellets, exhibiting delayed the time needed to reach the maximum drug concentration and the elimination half-life in plasma, compared to the commercial immediate release form (Uritos® tablet, Kyorin Pharmaceutical Co., Ltd., Japan). Therefore, the novel ER pellets can be a promising tool for oral IDN therapy, providing a once-a-day dosing regimen, and thus, improving patient compliance.
Collapse
|
50
|
Shin TH, Ho MJ, Kim SR, Im SH, Kim CH, Lee S, Kang MJ, Choi YW. Formulation and in vivo pharmacokinetic evaluation of ethyl cellulose-coated sustained release multiple-unit system of tacrolimus. Int J Biol Macromol 2018; 109:544-550. [DOI: 10.1016/j.ijbiomac.2017.12.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 11/15/2022]
|