1
|
Wang Q, Chen C, Zhao H, Jiao Y, Chen H, Wang P, Song T. Magnetotactic bacteria-mediated integrated magnetic targeted hyperthermia for in-situ deep-seated tumor. Colloids Surf B Biointerfaces 2025; 252:114658. [PMID: 40168695 DOI: 10.1016/j.colsurfb.2025.114658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/28/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Unlike hyperthermia after intratumoral injection, the method of integrated magnetic targeted hyperthermia (iMTH) guides magnetic medium to the target site and then directly performs in-situ heating, showing great potential for effective treatment of deep-seated tumors in the body. Magnetotactic bacteria (MTB), having chain-like arranged magnetic nanoparticles within its body and active movement along an external magnetic field, are considered as a very fitted material for iMTH. However, the amount of MTB concentrated on the deep-seated tumor posed a significant challenge for the successful implementation of iMTH. Herein, we aim to validate the strategy of integrating magnetic targeting and hyperthermia. An in-situ liver tumor model in mouse was developed as deep-seated tumors. After administering the polar MTB MO-1 intravenously via the tail vein, a focusing magnetic field navigated these bacteria to effectively accumulate at the deep-seated tumor site. Immediately afterwards, this targeted aggregation of MO-1 cells triggered a localized magnetic hyperthermia directly at the cancer site under an applied alternating magnetic field. Our findings demonstrated that this hyperthermia induced by the bacteria led to the death of liver cancer cells, thereby effectively curbing the progression and growth of the cancer. These promising results suggested that an iMTH approach was developed, harnessing the power of MTB. This method stands as an exciting and potential therapeutic strategy for the treatment of deep-seated tumors, offering new hope in the fight against cancer.
Collapse
Affiliation(s)
- Qingmeng Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing, China
| | - Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing, China.
| | - Haoyu Zhao
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangkun Jiao
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing, China
| | - Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing, China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Fernández-Méndez L, Fernández-Afonso Y, Martínez-Vicente P, Urkola-Arsuaga A, Miranda-Pérez de Alejo C, L de la Pisa I, Plaza-García S, Ruíz-Cabello J, Ramos-Cabrer P, Gutiérrez L, Carregal-Romero S. NIR-II Photoresponsive Magnetoliposomes for Remote-Controlled Release and Magnetic Resonance Imaging. ACS APPLIED BIO MATERIALS 2025. [PMID: 40400474 DOI: 10.1021/acsabm.5c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Magnetic nanoparticles, especially iron oxide nanoparticles, have become versatile and widely used tools in nanomedicine due to their unique magnetic properties, biocompatibility, and tunable functionality. Liposomes have further enhanced the potential of iron oxide nanoparticles by serving as effective nanocarriers with advantages such as drug coencapsulation and enhanced molecular imaging properties. In this study, we present magnetoliposomes composed of ultrasmall free-floating iron oxide nanoparticles inside liposomes (LP-IONPs) and thermoresponsive phospholipids, which were designed as dual T2-T1 magnetic resonance imaging (MRI) contrast agents for image-guided liposome degradation and infrared light-responsive nanocarriers in the second biological window for remote-controlled drug delivery. We demonstrated a dynamic shift from T2 to T1 MRI contrast during intracellular degradation of LP-IONPs, along with successful light-activated drug release in cancer cells. Biodistribution studies using MRI and histological analysis confirmed their potential for in vivo applications. These results highlight the potential of LP-IONPs as image-guided and remote-controlled drug delivery systems.
Collapse
Affiliation(s)
- Laura Fernández-Méndez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia 20014, Spain
- Euskal HerrikoUnibertsitatea (UPV/EHU), Donostia 20018, Spain
| | - Yilian Fernández-Afonso
- Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC), Madrid 28049, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Pablo Martínez-Vicente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50018, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Huesca 22002, Spain
| | - Ainhize Urkola-Arsuaga
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia 20014, Spain
| | - Claudia Miranda-Pérez de Alejo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia 20014, Spain
- Euskal HerrikoUnibertsitatea (UPV/EHU), Donostia 20018, Spain
| | - Irati L de la Pisa
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia 20014, Spain
- Euskal HerrikoUnibertsitatea (UPV/EHU), Donostia 20018, Spain
| | - Sandra Plaza-García
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia 20014, Spain
| | - Jesús Ruíz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia 20014, Spain
- Ikerbasque, Basque Foundation for Science Ikerbasque, Bilbao 48013, Spain
- Centro de investigación en red de enfermedades respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid 28029, Spain
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Pedro Ramos-Cabrer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia 20014, Spain
- Ikerbasque, Basque Foundation for Science Ikerbasque, Bilbao 48013, Spain
| | - Lucía Gutiérrez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50018, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza 50019, Spain
| | - Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia 20014, Spain
- Ikerbasque, Basque Foundation for Science Ikerbasque, Bilbao 48013, Spain
- Centro de investigación en red de enfermedades respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
3
|
Dubrova A, Cavaniol C, Van de Walle A, Mathieu P, Fusilier Z, Yaacoub N, Lalatonne Y, Descroix S, Wilhelm C. Magnetite Nanoparticle Photothermal Therapy in a Pancreatic Tumor-on-Chip: A Dual-Action Approach Targeting Cancer Cells and their Microenvironment. ACS NANO 2025. [PMID: 40397413 DOI: 10.1021/acsnano.5c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The application of magnetite nanoparticles (MagNPs) for photothermal therapy (MagNP-PTT) has recently expanded to cancer treatment. This study introduces MagNP-PTT in a tumor-on-a-chip model to target highly aggressive pancreatic ductal adenocarcinoma (PDAC). A tumor-on-chip system was developed using PANC-1 PDAC cells embedded in a collagen type I extracellular matrix and cultured for 1 week to form tumor spheroids. This platform offers a framework for applying PTT in a model system that aims to mimic the native tumor microenvironment. MagNPs efficiently penetrate the tumor spheroids, achieving controlled heating via near-infrared (NIR) light. By adjusting nanoparticle concentration and laser power, temperature increments of 2 °C between 38-48 °C were established. Temperatures above 44 °C significantly increased cell death, while lower temperatures allowed partial recovery. Beyond inducing cancer cell death, MagNP-PTT altered the extracellular matrix and triggered a slight epithelial-mesenchymal transition marked by increased vimentin expression. These findings highlight MagNP-PTT as a dual-action therapy, targeting both tumor cells and their microenvironment, offering an alternative approach for overcoming stromal barriers in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Anastasiia Dubrova
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, 75005 Paris, France
| | - Charles Cavaniol
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, 75005 Paris, France
| | - Aurore Van de Walle
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, 75005 Paris, France
| | - Paul Mathieu
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, Bobigny F-93017, France
| | - Zoé Fusilier
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Nader Yaacoub
- Institut des Molécules et Materiaux du Mans, CNRS UMR-6283, Le Mans Université, F-72085 Le Mans, France
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, Bobigny F-93017, France
- Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne F- 93009, Bobigny, France
| | - Stephanie Descroix
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, 75005 Paris, France
| | - Claire Wilhelm
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, 75005 Paris, France
| |
Collapse
|
4
|
Richards BA, Ristoff N, Smits J, Perez AJ, Fescenko I, Aiello MD, Hubert F, Silani Y, Mosavian N, Ziabari MS, Berzins A, Damron JT, Kehayias P, Egbebunmi D, Shield JE, Huber DL, Mounce AM, Lilly MP, Karaulanov T, Jarmola A, Laraoui A, Acosta VM. Time-Resolved Diamond Magnetic Microscopy of Superparamagnetic Iron-Oxide Nanoparticles. ACS NANO 2025; 19:10048-10058. [PMID: 40053430 DOI: 10.1021/acsnano.4c16703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Superparamagnetic iron-oxide nanoparticles (SPIONs) are promising probes for biomedical imaging, but the heterogeneity of their magnetic properties is difficult to characterize with existing methods. Here, we perform wide-field imaging of the stray magnetic fields produced by hundreds of isolated ∼30 nm SPIONs using a magnetic microscope based on nitrogen-vacancy centers in diamond. By analyzing the SPION magnetic field patterns as a function of the applied magnetic field, we observe substantial field-dependent transverse magnetization components that are typically obscured with ensemble characterization methods. We found negligible hysteresis in each of the three magnetization components for nearly all SPIONs in our sample. Most SPIONs exhibit a sharp Langevin saturation curve, enumerated by a characteristic polarizing applied field, Bc. The Bc distribution is highly asymmetric, with a standard deviation (σc = 1.4 mT) that is larger than the median (0.6 mT). Using time-resolved magnetic microscopy, we directly record SPION Néel relaxation, after switching off a 31 mT applied field, with a temporal resolution of ∼60 ms, which is limited by the ring-down time of the electromagnet coils. For small bias fields |Bhold| = 1.5-3.5 mT, we observe a broad range of SPION Néel relaxation times - from milliseconds to seconds - that are consistent with an exponential dependence on Bhold. Our time-resolved diamond magnetic microscopy study reveals rich SPION sample heterogeneity and may be extended to other fundamental studies of nanomagnetism.
Collapse
Affiliation(s)
- Bryan A Richards
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Nathaniel Ristoff
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Janis Smits
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Amilcar Jeronimo Perez
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Ilja Fescenko
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
- Laser Center of the University of Latvia, Riga LV-1004, Latvia
| | - Maxwell D Aiello
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Forrest Hubert
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Yaser Silani
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Nazanin Mosavian
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Maziar Saleh Ziabari
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Andris Berzins
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Joshua T Damron
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Pauli Kehayias
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Daniel Egbebunmi
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Jeffrey E Shield
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Dale L Huber
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Andrew M Mounce
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Michael P Lilly
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Andrey Jarmola
- ODMR Technologies Inc., El Cerrito, California 94530, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Abdelghani Laraoui
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588, United States
- Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Victor M Acosta
- Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| |
Collapse
|
5
|
Shakeri-Zadeh A, Bulte JWM. Imaging-guided precision hyperthermia with magnetic nanoparticles. NATURE REVIEWS BIOENGINEERING 2025; 3:245-260. [PMID: 40260131 PMCID: PMC12011369 DOI: 10.1038/s44222-024-00257-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 04/23/2025]
Abstract
Magnetic nanoparticles, including those formed of superparamagnetic iron oxides (SPIOs), are employed in various magnetic imaging and therapeutic techniques. In vivo imaging techniques based on the detection of magnetic nanoparticles inside the body include magnetic resonance imaging (MRI), magnetic particle imaging (MPI), magneto-motive ultrasonography (MMUS) and magneto-photoacoustic imaging (MPAI). Preclinical data indicate that the conditions required to heat up magnetic nanoparticles, including energy considerations, particle modifications, localization and exposure time, can be dynamically modulated during a single treatment procedure by monitoring imaging data acquired from the same magnetic nanoparticles. This Review explores the potential use of magnetic-nanoparticle-mediated imaging techniques combined with magnetic fluid hyperthermia (MFH) to selectively and precisely heat tumour locations while avoiding damage to surrounding healthy tissue. Imaging-guided MFH could provide individualized treatment plans based on information about the biodistribution of magnetic nanoparticles within the tumour and adjacent organs, as well as the volumetric distribution of the thermal dose. Requirements for the clinical translation of MFH-enabled magnetic imaging techniques are also discussed - the development of magnetic nanoparticle formulations with a favourable biosafety profile, optimal magnetic heating properties and maximal magnetic imaging signals; and the integration of magnetic imaging and heating hardware into a single platform.
Collapse
Affiliation(s)
- Ali Shakeri-Zadeh
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Inc., Baltimore, MD, USA
| |
Collapse
|
6
|
Curcio A, Curé G, Espinosa A, Menguy N, Galarreta‐Rodriguez I, Abou‐Hassan A, Piquet B, Motte L, Lalatonne Y, Wilhelm C, Van de Walle A. Elucidating the Dynamics of Biodegradation and Biosynthesis of Magnetic Nanoparticles in Human Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407034. [PMID: 39439159 PMCID: PMC11656690 DOI: 10.1002/smll.202407034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Iron oxide nanoparticles, due to their magnetic properties, are versatile tools for biomedical applications serving both diagnostic and therapeutic roles. Their performance is intricately intertwined with their fate in the demanding biological environment. Once inside cells, these nanoparticles can be degraded, implying a loss of magnetic efficacy, but also transformed into neo-synthesized magnetic nanoparticles, potentially restoring functionality. This study aims to delineate biological features governing these processes. Magnetic nanoparticles are internalized in human mesenchymal stem cells (hMSCs), and their biotransformations are investigated from nano- to micro-scale using electron microscopy (STEM-HAADF, HRTEM, SAED), a benchtop magnetic sensor, and fine structural characterizations (synchrotron XRD, VSM). Results evidence a delicate equilibrium between the biodegradation and biosynthesis of magnetic nanoparticles, with biotransformation kinetics depending on cell density at magnetic labeling and on spatial cell configuration (monolayers vs spheroids). The biotransformed nanoparticles, composed of magnetite or maghemite, are localized within endosomal/lysosomal compartments and associated with the recruitment of ferritin proteins.
Collapse
Affiliation(s)
- Alberto Curcio
- Laboratoire Physique des Cellules et CancerInstitut CurieCNRSUniversité PSLParis75005France
| | - Guilhem Curé
- Laboratoire Physique des Cellules et CancerInstitut CurieCNRSUniversité PSLParis75005France
| | - Ana Espinosa
- Instituto de Ciencia de Materiales de MadridICMM‐CSICMadrid28049Spain
| | - Nicolas Menguy
- Sorbonne UniversitéUMR CNRS 7590MNHNde physique des matériaux et de cosmochimie (IMPMC)Paris75005France
| | - Itziar Galarreta‐Rodriguez
- Instituto de Ciencia de Materiales de MadridICMM‐CSICMadrid28049Spain
- Spanish CRG beamline at the European Synchrotron (ESRF)B.P. 220GrenobleF‐38043France
| | - Ali Abou‐Hassan
- CNRSPhysicochimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX)Sorbonne UniversitéParisF‐75005France
- Institut Universitaire de France (IUF)Paris75231 Cedex 05France
| | - Bérénice Piquet
- Electron Microscopy PlatformMuséum National d'Histoire NaturelleCP 39, 12 rue BuffonParis75231 CEDEX 05France
| | - Laurence Motte
- INSERM, LVTSUniversité Sorbonne Paris Nord and Université Paris CitéParisF‐75018France
| | - Yoann Lalatonne
- INSERM, LVTSUniversité Sorbonne Paris Nord and Université Paris CitéParisF‐75018France
- Service de Biophysique et Médecine NucléaireHôpital Avicenne AP‐HPBobignyF‐93009France
| | - Claire Wilhelm
- Laboratoire Physique des Cellules et CancerInstitut CurieCNRSUniversité PSLParis75005France
| | - Aurore Van de Walle
- Laboratoire Physique des Cellules et CancerInstitut CurieCNRSUniversité PSLParis75005France
| |
Collapse
|
7
|
Wang Y, Liu Z, Li W, Cui H, Huang Y, Qin S. High-yield magnetosome production of Magnetospirillum magneticum strain AMB-1 in flask fermentation through simplified processing and optimized iron supplementation. Biotechnol Lett 2024; 46:1069-1083. [PMID: 39031272 DOI: 10.1007/s10529-024-03507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 07/22/2024]
Abstract
OBJECTIVES Developing a simplified flask fermentation strategy utilizing magnetotactic bacterium AMB-1 and optimized iron supplementation for high-yield magnetosome production to address the challenges associated with magnetosome acquisition. RESULTS A reliable processing for the pure culture of AMB-1 was established using standard laboratory consumables and equipment. Subsequently, the medium and iron supplementation were optimized to enhance the yield of AMB-1 magnetosomes. The mSLM supported higher biomass accumulation in flask fermentation, reaching an OD565 of ~ 0.7. The premixed solution of ferric quinate and EDTA-Fe (at a ratio of 0.5:0.5 and a concentration of 0.4 mmol/L) stabilized Fe3+ and significantly increased the reductase activity of AMB-1. Flask fermentations with an initial volume of 15 L were then conducted employing the optimized fermentation strategy. After two rounds of iron and nutrient supplementation, the magnetosome yield reached 185.7 ± 9.5 mg/batch (approximately 12 mg/L), representing the highest AMB-1 flask fermentation yield to our knowledge. CONCLUSION A flask fermentation strategy for high-yield magnetsome production was developed, eliminating the need for bioreactors and greatly simplifying the process of magnetosome acquisition.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 17, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengyi Liu
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 17, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Li
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 17, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 17, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yandi Huang
- School of Life Sciences, Yantai University, Shandong, 264003, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 17, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Nguyen TN, Chebbi I, Le Fèvre R, Guyot F, Alphandéry E. Stable pharmaceutical composition of cryo-protected non-pyrogenic isotonic chains of magnetosomes for efficient tumor cell destruction at 45 ± 1 °C under alternating magnetic field or ultrasound application. NANOSCALE 2024; 16:18984-18997. [PMID: 39297787 DOI: 10.1039/d4nr02284j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
We report a method to prepare biocompatible, stable, and highly pure iron oxide nano-minerals by following the steps consisting of: (i) amplifying magnetotactic bacteria in non-toxic minimal growth media; (ii) extracting magnetosomes from magnetotactic bacteria under alkaline lysis; (iii) heating magnetosomes above 400 °C to yield sterile magnetosome minerals, M-uncoated, devoid of active non-denatured bacterial organic material; (iv) coating M-uncoated with biocompatible carboxymethyl-dextran (CMD) compounds to yield stable M-CMD; (v) adding 5% sorbitol to M-CMD; and (vi) lyophilizing these mixtures, resulting in formulated nano-minerals in powder forms, designated as (M-CMD)F. The long-term stability of the final products is demonstrated by re-suspending (M-CMD)F in water after 12 months of storage, and by showing that these formulated magnetosomes have preserved their stability in suspension, chain arrangement, carbon content, surface charge, and surface composition. Furthermore, the formulation is optimized to yield an isotonic magnetosome suspension with an osmolality of between 275 and 290 mOsm kg-1 H2O upon reconstitution. On one hand, these formulated magnetosomes are fully biocompatible, i.e. sterile, non-pyrogenic, and non-cytotoxic towards 3T3, L929, and V79 healthy cells up to 1 mg mL-1 NP concentration iron. On the other hand, when they are brought into the presence of PC3-Luc prostate tumor cells and heated moderately at ∼41-46 °C for 20-30 minutes under low-intensity ultrasound or alternating magnetic field conditions, they efficiently destroy these tumor cells.
Collapse
Affiliation(s)
- Tieu Ngoc Nguyen
- Nanobacterie SAS, 36 boulevard Flandrin, 75116, Paris, France
- Institut de minéralogie de physique des matériaux et de cosmochimie, Sorbonne Université UMR 7590 CNRS, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle. 4 Place Jussieu, 75005 Paris, France.
| | - Imène Chebbi
- Nanobacterie SAS, 36 boulevard Flandrin, 75116, Paris, France
| | | | - François Guyot
- Institut de minéralogie de physique des matériaux et de cosmochimie, Sorbonne Université UMR 7590 CNRS, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle. 4 Place Jussieu, 75005 Paris, France.
| | - Edouard Alphandéry
- Nanobacterie SAS, 36 boulevard Flandrin, 75116, Paris, France
- Institut de minéralogie de physique des matériaux et de cosmochimie, Sorbonne Université UMR 7590 CNRS, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle. 4 Place Jussieu, 75005 Paris, France.
- Institute of Anatomy, UZH University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
9
|
Sola-Leyva A, Jabalera Y, Jimenez-Carretero M, Lázaro M, Pozo-Gualda T, García-Vargas PJ, Luque-Navarro PM, Fasiolo A, López-Cara LC, Iglesias GR, Paz Carrasco-Jiménez M, Jiménez-López C. Directing novel ChoKα1 inhibitors using MamC-mediated biomimetic magnetic nanoparticles: a way to improve specificity and efficiency. Bioorg Chem 2024; 151:107693. [PMID: 39116523 DOI: 10.1016/j.bioorg.2024.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Targeting phospholipid biosynthesis, specifically phosphatidylcholine (PC), which is enhanced in tumor cells, has been proven a suitable antitumor strategy. In fact, the overexpression of the choline kinase α1 (ChoKα1) isoform has been found in malignant cells and tumors, thus becoming an excellent antitumor target. ChoKα1 inhibitors are being synthesized at the present that show a large inhibitory activity. Two of them have been chosen in this study as representatives of different structural families: a biscationic biphenyl derivative of thieno[3,2-d]pyrimidinium substituted with a cyclic amine (here referred to as Fa22) and a biscationic biphenyl thioethano derivative of 7-chloro-quinolinium substituted with a pyrrolidinic moiety (here referred to as PL48). However, the potential use of these types of compounds in systemic treatments is hampered because of their low specificity. In fact, to enter the cell and reach their target, these inhibitors use choline transporters and inhibit choline uptake, being that one of the causes of their toxicity. One way to solve this problem could be allowing their entrance into the cells by alternative ways. With this goal, MamC-mediated magnetic nanoparticles (BMNPs), already proven effective drug nanocarriers, have been used to immobilize Fa22 and PL48. The idea is to let BMNPs enter the cell (they enter the cell by endocytosis) carrying these molecules, and, therefore, offering another way in for these compounds. In the present study, we demonstrate that the coupling of Fa22 and PL48 to BMNPs allows these molecules to enter the tumoral cell without completely inhibiting choline uptake, so, therefore, the use of Fa22 and PL48 in these nanoformulations reduces the toxicity compared to that of the soluble drugs. Moreover, the nanoassemblies Fa22-BMNPs and PL48-BMNPs allow the combination of chemotherapy and local hyperthermia therapies for a enhanced cytotoxic effect on the tumoral HepG2 cell line. The consistency of the results, independently of the drug structure, may indicate that this behavior could be extended to other ChoKα1 inhibitors, opening up a possibility for their potential use in clinics.
Collapse
Affiliation(s)
- Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain.
| | - Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain.
| | | | - Marina Lázaro
- NanoMag Lab. Department of Applied Physic, Faculty of Science, University of Granada, Granada 18071, Spain
| | - Tamara Pozo-Gualda
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Pedro J García-Vargas
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Pilar M Luque-Navarro
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada 18071, Spain
| | - Alberto Fasiolo
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada 18071, Spain
| | - Luisa C López-Cara
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada 18071, Spain.
| | - Guillermo R Iglesias
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain; NanoMag Lab. Department of Applied Physic, Faculty of Science, University of Granada, Granada 18071, Spain; MNat Unit of Excellence, University of Granada, Granada 18071, Spain.
| | - María Paz Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain.
| | | |
Collapse
|
10
|
Gubieda AG, Gandarias L, Pósfai M, Pattammattel A, Fdez-Gubieda ML, Abad-Díaz-de-Cerio A, García-Prieto A. Temporal and spatial resolution of magnetosome degradation at the subcellular level in a 3D lung carcinoma model. J Nanobiotechnology 2024; 22:529. [PMID: 39218876 PMCID: PMC11367995 DOI: 10.1186/s12951-024-02788-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Magnetic nanoparticles offer many exciting possibilities in biomedicine, from cell imaging to cancer treatment. One of the currently researched nanoparticles are magnetosomes, magnetite nanoparticles of high chemical purity synthesized by magnetotactic bacteria. Despite their therapeutic potential, very little is known about their degradation in human cells, and even less so of their degradation within tumours. In an effort to explore the potential of magnetosomes for cancer treatment, we have explored their degradation process in a 3D human lung carcinoma model at the subcellular level and with nanometre scale resolution. We have used state of the art hard X-ray probes (nano-XANES and nano-XRF), which allow for identification of distinct iron phases in each region of the cell. Our results reveal the progression of magnetite oxidation to maghemite within magnetosomes, and the biosynthesis of magnetite and ferrihydrite by ferritin.
Collapse
Affiliation(s)
- Alicia G Gubieda
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain.
| | - Lucía Gandarias
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
- Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Aix-Marseille Université, CNRS, CEA-UMR 7265, Saint-Paul-les-Durance, 13108, France
| | - Mihály Pósfai
- Research Center of Biomolecular and Chemical Engineering, University of Pannonia Veszprém, Veszprém, Hungary
- HUN-REN-PE Environmental Mineralogy Research Group, Veszprém, Hungary
| | - Ajith Pattammattel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - M Luisa Fdez-Gubieda
- Department of Electricity and Electronics, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
| | - Ana Abad-Díaz-de-Cerio
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain.
| | - Ana García-Prieto
- Department of Applied Physics, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain.
| |
Collapse
|
11
|
Shen K, Li L, Tan F, Ang CCL, Jin T, Xue Z, Wu S, Chee MY, Yan Y, Lew WS. NIR and magnetism dual-response multi-core magnetic vortex nanoflowers for boosting magneto-photothermal cancer therapy. NANOSCALE 2024; 16:10428-10440. [PMID: 38742446 DOI: 10.1039/d4nr00104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Due to the relatively low efficiency of magnetic hyperthermia and photothermal conversion, it is rather challenging for magneto-photothermal nanoagents to be used as an effective treatment during tumor hyperthermal therapy. The advancement of magnetic nanoparticles exhibiting a vortex-domain structure holds great promise as a viable strategy to enhance the application performance of conventional magnetic nanoparticles while retaining their inherent biocompatibility. Here, we report the development of Mn0.5Zn0.5Fe2O4 nanoflowers with ellipsoidal magnetic cores, and show them as effective nanoagents for magneto-photothermal synergistic therapy. Comparative studies were conducted on the heating performance of anisometric Mn0.5Zn0.5Fe2O4 (MZF) nanoparticles, including nanocubes (MZF-C), hollow spheres (MZF-HS), nanoflowers consisting of ellipsoidal magnetic cores (MZF-NFE), and nanoflowers consisting of needle-like magnetic cores (MZF-NFN). MZF-NFE exhibits an intrinsic loss parameter (ILP) of up to 15.3 N h m2 kg-1, which is better than that of commercial equivalents. Micromagnetic simulations reveal the magnetization configurations and reversal characteristics of the various MZF shapes. Additionally, all nanostructures displayed a considerable photothermal conversion efficiency rate of more than 18%. Our results demonstrated that by combining the dual exposure of MHT and PTT for hyperthermia treatments induced by MZF-NFE, BT549, MCF-7, and 4T1 cell viability can be significantly decreased by ∼95.7% in vitro.
Collapse
Affiliation(s)
- Kaiming Shen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Funan Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Calvin Ching Lan Ang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Tianli Jin
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Zongguo Xue
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Shuo Wu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Mun Yin Chee
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Yunfei Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Wen Siang Lew
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| |
Collapse
|
12
|
Jiao W, Wen N, Wang S, Zhou G, Lu Q, Su Z, Wang X, Hu S, Xie Y, Zhang N, Liu X. Effect of surface modification on the distribution of magnetic nanorings in hepatocellular carcinoma and immune cells. J Mater Chem B 2024; 12:2628-2638. [PMID: 38376513 DOI: 10.1039/d3tb02560h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Magnetic nanomaterial-mediated magnetic hyperthermia is a localized heating treatment modality that has been applied to treat aggressive cancer in clinics. In addition to being taken up by tumor cells to function in cancer therapy, magnetic nanomaterials can also be internalized by immune cells in the tumor microenvironment, which may contribute to regulating the anti-tumor immune effects. However, there exists little studies on the distribution of magnetic nanomaterials in different types of cells within tumor tissue. Herein, ferrimagnetic vortex-domain iron oxide nanorings (FVIOs) with or without the liver-cancer-targeting peptide SP94 have been successfully synthesized as a model system to investigate the effect of surface modification of FVIOs (with or without SP94) on the distribution of tumor cells and different immune cells in hepatocellular carcinoma (HCC) microenvironment of a mouse. The distribution ratio of FVIO-SP94s in tumor cells was 1.3 times more than that of FVIOs. Immune cells in the liver tumor microenvironment took up fewer FVIO-SP94s than FVIOs. In addition, myeloid cells were found to be much more amenable than lymphoid cells in terms of their ability to phagocytose nanoparticles. Specifically, the distributions of FVIOs/FVIO-SP94s in tumor-associated macrophages, dendritic cells, and myeloid-derived suppressor cells were 13.8%/12%, 3.7%/0.9%, and 6.3%/1.2%, respectively. While the distributions of FVIOs/FVIO-SP94s in T cells, B cells, and natural killer cells were 5.5%/0.7%, 3.0%/0.7%, and 0.4%/0.3%, respectively. The results described in this article enhance our understanding of the distribution of nanomaterials in the tumor microenvironment and provide a strategy for rational design of magnetic hyperthermia agents that can effectively regulate anti-tumor immune effects.
Collapse
Affiliation(s)
- Wangbo Jiao
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Nana Wen
- School of Science and Chemical Engineering, Ningxia Institute of Science and Technology, Shizuishan, Ningxia 753000, China
| | - Siyao Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Guxiang Zhou
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qiaoyi Lu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zijun Su
- School of materials, Sun Yat-Sen University, Shen Zhen, Guangdong 529406, China
| | - Xinxin Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shuwei Hu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Youbang Xie
- Department of Hematology and Rheumatology, Qinghai Provincial People's Hospital, 2 Gonghe Road, Xining, Qinghai 810007, China
| | - Nan Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoli Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
13
|
Chades T, Le Fèvre R, Chebbi I, Blondeau K, Guyot F, Alphandéry E. Set-up of a pharmaceutical cell bank of Magnetospirillum gryphiswaldense MSR1 magnetotactic bacteria producing highly pure magnetosomes. Microb Cell Fact 2024; 23:70. [PMID: 38419080 PMCID: PMC10903015 DOI: 10.1186/s12934-024-02313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
We report the successful fabrication of a pharmaceutical cellular bank (PCB) containing magnetotactic bacteria (MTB), which belong to the Magnetospirillum gryphiswaldense MSR1 species. To produce such PCB, we amplified MTB in a minimal growth medium essentially devoid of other heavy metals than iron and of CMR (Carcinogenic, mutagenic and reprotoxic) products. The PCB enabled to acclimate MTB to such minimal growth conditions and then to produce highly pure magnetosomes composed of more than 99.9% of iron. The qualification of the bank as a PCB relies first on a preserved identity of the MTB compared with the original strain, second on genetic bacterial stability observed over 100 generations or under cryo-preservation for 16 months, third on a high level of purity highlighted by an absence of contaminating microorganisms in the PCB. Furthermore, the PCB was prepared under high-cell load conditions (9.108 cells/mL), allowing large-scale bacterial amplification and magnetosome production. In the future, the PCB could therefore be considered for commercial as well as research orientated applications in nanomedicine. We describe for the first-time conditions for setting-up an effective pharmaceutical cellular bank preserving over time the ability of certain specific cells, i.e. Magnetospirillum gryphiswaldense MSR1 MTB, to produce nano-minerals, i.e. magnetosomes, within a pharmaceutical setting.
Collapse
Affiliation(s)
- Théo Chades
- Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France
- Institut de biologie intégrative de la cellule, UMR 9198, Université Paris Saclay, 1 Av. de la Terrasse, 91198, Gif sur Yvette, France
| | | | - Imène Chebbi
- Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France
| | - Karine Blondeau
- Institut de biologie intégrative de la cellule, UMR 9198, Université Paris Saclay, 1 Av. de la Terrasse, 91198, Gif sur Yvette, France
| | - François Guyot
- Institut de minéralogie de physique des matériaux et de cosmochimie UMR 7590, Sorbonne Université, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, 4 Place Jussieu, 75005, Paris, France
| | - Edouard Alphandéry
- Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France.
- Institut de minéralogie de physique des matériaux et de cosmochimie UMR 7590, Sorbonne Université, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
14
|
Lázaro M, Lupiáñez P, Sola-Leyva A, Pozo-Gualda T, Oltolina F, Jimenez-Carretero M, Jimenez-Lopez C, Carrasco-Jiménez MP, Iglesias GR. The importance of cell uptake in photothermal treatments mediated by biomimetic magnetic nanoparticles. Colloids Surf B Biointerfaces 2024; 234:113722. [PMID: 38160473 DOI: 10.1016/j.colsurfb.2023.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Biomimetic magnetic nanoparticles (BMNPs) mediated by MamC have proven to be photothermal agents able to allow an optimized cytotoxicity against tumoral cells when used simultaneously as drug nanotransporters and as hyperthermia agents. However, it remains unclear whether BMNPs need to be internalized by the cells and/or if there is a threshold for internal Fe concentration for the photothermal therapy to be effective. In this study, three different situations for photothermal treatments have been simulated to disentangle the effect of BMNPs cell uptake on cell viability after photothermal treatments. Human hepatoblastoma (HepG2) cell line was treated with suspensions of BMNPs, and protocols were developed to have only intracellular BMNPs, only extracellular BMNPs or both, followed by photothermal exposure of the treated cell cultures. Our data demonstrate that: (1) Although the heating efficiency of the photothermal agent is not altered by its location (intra/extracellular), the intracellular location of BMNPs is crucial to ensure the cytotoxic effect of photothermal treatments, especially at low Fe concentration. In fact, the concentration of BMNPs needed to reach the same cytotoxic effect following upon laser irradiation of 0.2 W/cm2 is three times larger if BMNPs are located extracellularly compared to that needed if BMNPs are located intracellularly; (2) For a given location of the BMNPs, cell death increases with BMNPs (or Fe) concentration. When BMNPs are located intracellularly, there is a threshold for Fe concentration (∼ 0.5 mM at laser power intensities of 0.1 W/cm2) needed to affect cell viability following upon cell exposure to photothermia. (3) Bulk temperature rise is not the only factor accounting for cell death. Actually, temperature increases inside the cells cause more damage to cell structures and trigger cell death more efficiently than an increase in the temperature outside the cell.
Collapse
Affiliation(s)
- M Lázaro
- NanoMag Laboratory. Department of Applied Physics, Edificio I+D Josefina Castro, University of Granada, Instituto de Investigación Biosanitaria, Av. de Madrid, 28, Granada 18012, Spain
| | - P Lupiáñez
- NanoMag Laboratory. Department of Applied Physics, Edificio I+D Josefina Castro, University of Granada, Instituto de Investigación Biosanitaria, Av. de Madrid, 28, Granada 18012, Spain
| | - A Sola-Leyva
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, 18071 Granada, Spain
| | - T Pozo-Gualda
- Department of Microbiology, Faculty of Sciences, 18071 Granada, Spain
| | - F Oltolina
- Department of Microbiology, Faculty of Sciences, 18071 Granada, Spain
| | | | - C Jimenez-Lopez
- Department of Microbiology, Faculty of Sciences, 18071 Granada, Spain.
| | - M P Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, 18071 Granada, Spain.
| | - G R Iglesias
- NanoMag Laboratory. Department of Applied Physics, Edificio I+D Josefina Castro, University of Granada, Instituto de Investigación Biosanitaria, Av. de Madrid, 28, Granada 18012, Spain
| |
Collapse
|
15
|
Van de Walle A, Figuerola A, Espinosa A, Abou-Hassan A, Estrader M, Wilhelm C. Emergence of magnetic nanoparticles in photothermal and ferroptotic therapies. MATERIALS HORIZONS 2023; 10:4757-4775. [PMID: 37740347 DOI: 10.1039/d3mh00831b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
With their distinctive physicochemical features, nanoparticles have gained recognition as effective multifunctional tools for biomedical applications, with designs and compositions tailored for specific uses. Notably, magnetic nanoparticles stand out as first-in-class examples of multiple modalities provided by the iron-based composition. They have long been exploited as contrast agents for magnetic resonance imaging (MRI) or as anti-cancer agents generating therapeutic hyperthermia through high-frequency magnetic field application, known as magnetic hyperthermia (MHT). This review focuses on two more recent applications in oncology using iron-based nanomaterials: photothermal therapy (PTT) and ferroptosis. In PTT, the iron oxide core responds to a near-infrared (NIR) excitation and generates heat in its surrounding area, rivaling the efficiency of plasmonic gold-standard nanoparticles. This opens up the possibility of a dual MHT + PTT approach using a single nanomaterial. Moreover, the iron composition of magnetic nanoparticles can be harnessed as a chemotherapeutic asset. Degradation in the intracellular environment triggers the release of iron ions, which can stimulate the production of reactive oxygen species (ROS) and induce cancer cell death through ferroptosis. Consequently, this review emphasizes these emerging physical and chemical approaches for anti-cancer therapy facilitated by magnetic nanoparticles, combining all-in-one functionalities.
Collapse
Affiliation(s)
- Aurore Van de Walle
- Laboratory Physical Chemistry Curie (PCC), UMR168, Curie Institute and CNRS, 75005 Paris, France.
| | - Albert Figuerola
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Martí i Franques 1, E-08028 Barcelona, Spain
| | - Ana Espinosa
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain
| | - Ali Abou-Hassan
- Sorbonne Université, UMR CNRS 8234, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), F-75005, Paris, France
- Institut Universitaire de France (IUF), 75231 Cedex 05, Paris, France
| | - Marta Estrader
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Martí i Franques 1, E-08028 Barcelona, Spain
| | - Claire Wilhelm
- Laboratory Physical Chemistry Curie (PCC), UMR168, Curie Institute and CNRS, 75005 Paris, France.
| |
Collapse
|
16
|
Ren G, Zhou X, Long R, Xie M, Kankala RK, Wang S, Zhang YS, Liu Y. Biomedical applications of magnetosomes: State of the art and perspectives. Bioact Mater 2023; 28:27-49. [PMID: 37223277 PMCID: PMC10200801 DOI: 10.1016/j.bioactmat.2023.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/25/2023] Open
Abstract
Magnetosomes, synthesized by magnetotactic bacteria (MTB), have been used in nano- and biotechnological applications, owing to their unique properties such as superparamagnetism, uniform size distribution, excellent bioavailability, and easily modifiable functional groups. In this review, we first discuss the mechanisms of magnetosome formation and describe various modification methods. Subsequently, we focus on presenting the biomedical advancements of bacterial magnetosomes in biomedical imaging, drug delivery, anticancer therapy, biosensor. Finally, we discuss future applications and challenges. This review summarizes the application of magnetosomes in the biomedical field, highlighting the latest advancements and exploring the future development of magnetosomes.
Collapse
Affiliation(s)
- Gang Ren
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xia Zhou
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Maobin Xie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, Fujian, 361021, China
| | - Shibin Wang
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, Fujian, 361021, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yuangang Liu
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, Fujian, 361021, China
| |
Collapse
|
17
|
Gandarias L, Gubieda AG, Gorni G, Mathon O, Olivi L, Abad-Díaz-de-Cerio A, Fdez-Gubieda ML, Muela A, García-Prieto A. Intracellular transformation and disposal mechanisms of magnetosomes in macrophages and cancer cells. Biotechnol J 2023; 18:e2300173. [PMID: 37337924 DOI: 10.1002/biot.202300173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Magnetosomes are magnetite nanoparticles biosynthesized by magnetotactic bacteria. Given their potential clinical applications for the diagnosis and treatment of cancer, it is essential to understand what becomes of them once they are within the body. With this aim, here we have followed the intracellular long-term fate of magnetosomes in two cell types: cancer cells (A549 cell line), because they are the actual target for the therapeutic activity of the magnetosomes, and macrophages (RAW 264.7 cell line), because of their role at capturing foreign agents. It is shown that cells dispose of magnetosomes using three mechanisms: splitting them into daughter cells, excreting them to the surrounding environment, and degrading them yielding less or non-magnetic iron products. A deeper insight into the degradation mechanisms by means of time-resolved X-ray absorption near-edge structure (XANES) spectroscopy has allowed us to follow the intracellular biotransformation of magnetosomes by identifying and quantifying the iron species occurring during the process. In both cell types there is a first oxidation of magnetite to maghemite and then, earlier in macrophages than in cancer cells, ferrihydrite starts to appear. Given that ferrihydrite is the iron mineral phase stored in the cores of ferritin proteins, this suggests that cells use the iron released from the degradation of magnetosomes to load ferritin. Comparison of both cellular types evidences that macrophages are more efficient at disposing of magnetosomes than cancer cells, attributed to their role in degrading external debris and in iron homeostasis.
Collapse
Affiliation(s)
- Lucía Gandarias
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco - UPV/EHU, Leioa, Spain
- Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), UMR7265, Aix-Marseille Université, CNRS, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Alicia G Gubieda
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco - UPV/EHU, Leioa, Spain
| | - Giulio Gorni
- BL22-CLAESS Beamline, ALBA Synchrotron, Barcelona, Spain
- Institute of Optics (IO-CSIC), c/ Serrano 121, Madrid, Spain
| | | | - Luca Olivi
- XAFS Beamline, Elettra Sincrotrone, Trieste, Italy
| | - Ana Abad-Díaz-de-Cerio
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco - UPV/EHU, Leioa, Spain
| | - M Luisa Fdez-Gubieda
- Dpto. Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, Leioa, Spain
| | - Alicia Muela
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco - UPV/EHU, Leioa, Spain
| | - Ana García-Prieto
- Dpto. Física Aplicada, Universidad del País Vasco - UPV/EHU, Bilbao, Spain
| |
Collapse
|
18
|
Veloso SRS, Marta ES, Rodrigues PV, Moura C, Amorim CO, Amaral VS, Correa-Duarte MA, Castanheira EMS. Chitosan/Alginate Nanogels Containing Multicore Magnetic Nanoparticles for Delivery of Doxorubicin. Pharmaceutics 2023; 15:2194. [PMID: 37765164 PMCID: PMC10538132 DOI: 10.3390/pharmaceutics15092194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, multicore-like iron oxide (Fe3O4) and manganese ferrite (MnFe2O4) nanoparticles were synthesized and combined with nanogels based on chitosan and alginate to obtain a multimodal drug delivery system. The nanoparticles exhibited crystalline structures and displayed sizes of 20 ± 3 nm (Fe3O4) and 11 ± 2 nm (MnFe2O4). The Fe3O4 nanoparticles showed a higher saturation magnetization and heating efficiency compared with the MnFe2O4 nanoparticles. Functionalization with citrate and bovine serum albumin was found to improve the stability and modified surface properties. The nanoparticles were encapsulated in nanogels, and provided high drug encapsulation efficiencies (~70%) using doxorubicin as a model drug. The nanogels exhibited sustained drug release, with enhanced release under near-infrared (NIR) laser irradiation and acidic pH. The nanogels containing BSA-functionalized nanoparticles displayed improved sustained drug release at physiological pH, and the release kinetics followed a diffusion-controlled mechanism. These results demonstrate the potential of synthesized nanoparticles and nanogels for controlled drug delivery, offering opportunities for targeted and on-demand release in biomedical applications.
Collapse
Affiliation(s)
- Sérgio R. S. Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Eva S. Marta
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Pedro V. Rodrigues
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), University of Minho, 4804-533 Guimarães, Portugal
| | - Cacilda Moura
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Carlos O. Amorim
- Physics Department and CICECO, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (V.S.A.)
| | - Vítor S. Amaral
- Physics Department and CICECO, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (V.S.A.)
| | - Miguel A. Correa-Duarte
- Centro de Investigación en Nanomateriais e Biomedicina (CINBIO), Universidad de Vigo, 36310 Vigo, Spain
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
19
|
Fromain A, Perez JE, Van de Walle A, Lalatonne Y, Wilhelm C. Photothermia at the nanoscale induces ferroptosis via nanoparticle degradation. Nat Commun 2023; 14:4637. [PMID: 37532698 PMCID: PMC10397343 DOI: 10.1038/s41467-023-40258-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
The Fe(II)-induced ferroptotic cell death pathway is an asset in cancer therapy, yet it calls into question the biocompatibility of magnetic nanoparticles. In the latter, Fe(II) is sequestered within the crystal structure and is released only upon nanoparticle degradation, a transition that is not well understood. Here, we dissect the chemical environment necessary for nanoparticle degradation and subsequent Fe(II) release. Importantly, temperature acts as an accelerator of the process and can be triggered remotely by laser-mediated photothermal conversion, as evidenced by the loss of the nanoparticles' magnetic fingerprint. Remarkably, the local hot-spot temperature generated at the nanoscale can be measured in operando, in the vicinity of each nanoparticle, by comparing the photothermal-induced nanoparticle degradation patterns with those of global heating. Further, remote photothermal irradiation accelerates degradation inside cancer cells in a tumor spheroid model, with efficiency correlating with the endocytosis progression state of the nanoparticles. High-throughput imaging quantification of Fe2+ release, ROS generation, lipid peroxidation and cell death at the spheroid level confirm the synergistic thermo-ferroptotic therapy due to the photothermal degradation at the nanoparticle level.
Collapse
Affiliation(s)
- Alexandre Fromain
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Jose Efrain Perez
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Aurore Van de Walle
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F‑ 93017, Bobigny, France
- Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, F‑ 93009, Bobigny, France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France.
| |
Collapse
|
20
|
Yan W, Guo B, Wang Z, Yang J, Zhong Z, Meng F. RGD-directed 24 nm micellar docetaxel enables elevated tumor-liver ratio, deep tumor penetration and potent suppression of solid tumors. J Control Release 2023; 360:304-315. [PMID: 37356754 DOI: 10.1016/j.jconrel.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Nanomedicines while showing a great potential in improving the performance of chemotherapeutics like docetaxel (DTX) are distressed by a high liver deposition and poor tumor penetration, which might not only cause liver toxicity but also moderate therapeutic effect. Herein, we report that cRGD-directed 24 nm disulfide-crosslinked micellar docetaxel (cRGD-MDTX) presents low liver accumulation, high tumor uptake, and deep tumor penetration, leading to the potent suppression of different solid tumors. cRGD-MDTX was optimized with a cRGD density of 4% and DTX loading of 10 wt%. Interestingly, cRGD-MDTX enabled an extraordinary tumor-liver ratio of 2.8/1 with a DTX uptake of 8.3 %ID/g in αvβ3 over-expressing PC3 prostate tumor. The therapeutic studies demonstrated striking antitumor effects of cRGD-MDTX toward PC3 prostate tumor, prostate cancer patient-derived xenografts (PDX), orthotopic A549-Luc lung cancer and orthotopic SKOV3-Luc ovarian tumor models, in which tumor growth was effectually inhibited and 6-8 times better improvement of median survival time over free DTX was observed. This small disulfide-crosslinked micellar drug capable of relegating liver deposition opens a new avenue to nanomedicines for targeted therapy.
Collapse
Affiliation(s)
- Wencheng Yan
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Zhe Wang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Jiangtao Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
21
|
Feng C, Tan P, Nie G, Zhu M. Biomimetic and bioinspired nano-platforms for cancer vaccine development. EXPLORATION (BEIJING, CHINA) 2023; 3:20210263. [PMID: 37933383 PMCID: PMC10624393 DOI: 10.1002/exp.20210263] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2023]
Abstract
The advent of immunotherapy has revolutionized the treating modalities of cancer. Cancer vaccine, aiming to harness the host immune system to induce a tumor-specific killing effect, holds great promises for its broad patient coverage, high safety, and combination potentials. Despite promising, the clinical translation of cancer vaccines faces obstacles including the lack of potency, limited options of tumor antigens and adjuvants, and immunosuppressive tumor microenvironment. Biomimetic and bioinspired nanotechnology provides new impetus for the designing concepts of cancer vaccines. Through mimicking the stealth coating, pathogen recognition pattern, tissue tropism of pathogen, and other irreplaceable properties from nature, biomimetic and bioinspired cancer vaccines could gain functions such as longstanding, targeting, self-adjuvanting, and on-demand cargo release. The specific behavior and endogenous molecules of each type of living entity (cell or microorganism) offer unique features to cancer vaccines to address specific needs for immunotherapy. In this review, the strategies inspired by eukaryotic cells, bacteria, and viruses will be overviewed for advancing cancer vaccine development. Our insights into the future cancer vaccine development will be shared at the end for expediting the clinical translation.
Collapse
Affiliation(s)
- Chenchao Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Peng Tan
- Klarman Cell ObservatoryBroad Institute of MIT and HarvardCambridgeUSA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
- GBA Research Innovation Institute for NanotechnologyGuangzhouChina
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
| |
Collapse
|
22
|
Sanati M, Afshari AR, Aminyavari S, Kesharwani P, Jamialahmadi T, Sahebkar A. RGD-engineered nanoparticles as an innovative drug delivery system in cancer therapy. J Drug Deliv Sci Technol 2023; 84:104562. [DOI: 10.1016/j.jddst.2023.104562] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
|
23
|
Chen X, Teng S, Li J, Qiao X, Zhao W, Xue Z, Shi X, Wang Y, Yang W, Wang T. Gadolinium (III)-Chelated Deformable Mesoporous Organosilica Nanoparticles as Magnetic Resonance Imaging Contrast Agent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211578. [PMID: 36880582 DOI: 10.1002/adma.202211578] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/21/2023] [Indexed: 05/19/2023]
Abstract
Magnetic resonance imaging (MRI) contrast agents, such as Magnevist (Gd-DTPA), are routinely used for detecting tumors at an early stage. However, the rapid clearance by the kidney of Gd-DTPA leads to short blood circulation time, which limits further improvement of the contrast between tumorous and normal tissue. Inspired by the deformability of red blood cells, which improves their blood circulation, this work fabricates a novel MRI contrast agent by incorporating Gd-DTPA into deformable mesoporous organosilica nanoparticles (D-MON). In vivo distribution shows that the novel contrast agent is able to depress rapid clearance by the liver and spleen, and the mean residence time is 20 h longer than Gd-DTPA. Tumor MRI studies demonstrated that the D-MON-based contrast agent is highly enriched in the tumor tissue and achieves prolonged high-contrast imaging. D-MON significantly improves the performance of clinical contrast agent Gd-DTPA, exhibiting good potential in clinical applications.
Collapse
Affiliation(s)
- Xiangyu Chen
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130022, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Shiyong Teng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130022, P. R. China
| | - Jinming Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Weidong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Zhengjie Xue
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Xudong Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, 100021, P. R. China
| | - Yuguang Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing, 100081, P. R. China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130022, P. R. China
| | - Tie Wang
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
Freis B, Ramirez MDLA, Kiefer C, Harlepp S, Iacovita C, Henoumont C, Affolter-Zbaraszczuk C, Meyer F, Mertz D, Boos A, Tasso M, Furgiuele S, Journe F, Saussez S, Bégin-Colin S, Laurent S. Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties—From Suspension to In Vitro Studies. Pharmaceutics 2023; 15:pharmaceutics15041104. [PMID: 37111590 PMCID: PMC10143744 DOI: 10.3390/pharmaceutics15041104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Functionalized iron oxide nanoparticles (IONPs) are increasingly being designed as a theranostic nanoplatform combining specific targeting, diagnosis by magnetic resonance imaging (MRI), and multimodal therapy by hyperthermia. The effect of the size and the shape of IONPs is of tremendous importance to develop theranostic nanoobjects displaying efficient MRI contrast agents and hyperthermia agent via the combination of magnetic hyperthermia (MH) and/or photothermia (PTT). Another key parameter is that the amount of accumulation of IONPs in cancerous cells is sufficiently high, which often requires the grafting of specific targeting ligands (TLs). Herein, IONPs with nanoplate and nanocube shapes, which are promising to combine magnetic hyperthermia (MH) and photothermia (PTT), were synthesized by the thermal decomposition method and coated with a designed dendron molecule to ensure their biocompatibility and colloidal stability in suspension. Then, the efficiency of these dendronized IONPs as contrast agents (CAs) for MRI and their ability to heat via MH or PTT were investigated. The 22 nm nanospheres and the 19 nm nanocubes presented the most promising theranostic properties (respectively, r2 = 416 s−1·mM−1, SARMH = 580 W·g−1, SARPTT = 800 W·g−1; and r2 = 407 s−1·mM−1, SARMH = 899 W·g−1, SARPTT = 300 W·g−1). MH experiments have proven that the heating power mainly originates from Brownian relaxation and that SAR values can remain high if IONPs are prealigned with a magnet. This raises hope that heating will maintain efficient even in a confined environment, such as in cells or in tumors. Preliminary in vitro MH and PTT experiments have shown the promising effect of the cubic shaped IONPs, even though the experiments should be repeated with an improved set-up. Finally, the grafting of a specific peptide (P22) as a TL for head and neck cancers (HNCs) has shown the positive impact of the TL to enhance IONP accumulation in cells.
Collapse
|
25
|
Kasparis G, Sangnier AP, Wang L, Efstathiou C, LaGrow AP, Sergides A, Wilhelm C, Thanh NTK. Zn doped iron oxide nanoparticles with high magnetization and photothermal efficiency for cancer treatment. J Mater Chem B 2023; 11:787-801. [PMID: 36472454 PMCID: PMC9890495 DOI: 10.1039/d2tb01338j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic nanoparticles (NPs) are powerful agents to induce hyperthermia in tumours upon the application of an alternating magnetic field or an infrared laser. Dopants have been investigated to alter different properties of materials. Herein, the effect of zinc doping into iron oxide NPs on their magnetic properties and structural characteristics has been investigated in-depth. A high temperature reaction with autogenous pressure was used to prepare iron oxide and zinc ferrite NPs of same size and morphology for direct comparison. Pressure was key in obtaining high quality nanocrystals with reduced lattice strain (27% less) and enhanced magnetic properties. Zn0.4Fe2.6O4 NPs with small size of 10.2 ± 2.5 nm and very high saturation magnetisation of 142 ± 9 emu gFe+Zn-1 were obtained. Aqueous dispersion of the NPs showed long term magnetic (up to 24 months) and colloidal stability (at least 6 d) at physiologically mimicking conditions. The samples had been kept in the fridge and had been stable for four years. The biocompatibility of Zn0.4Fe2.6O4 NPs was next evaluated by metabolic activity, membrane integrity and clonogenic assays, which show an equivalence to that of iron oxide NPs. Zinc doping decreased the bandgap of the material by 22% making it a more efficient photothermal agent than iron oxide-based ones. Semiconductor photo-hyperthermia was shown to outperform magneto-hyperthermia in cancer cells, reaching the same temperature 17 times faster whilst using 20 times less material (20 mgFe+Zn ml-1vs. 1 mgFe+Zn ml-1). Magnetothermal conversion was minimally hindered in the cellular confinement whilst photothermal efficiency remained unchanged. Photothermia treatment alone achieved 100% cell death after 10 min of treatment compared to only 30% cell death achieved with magnetothermia at clinically relevant settings for each at their best performing concentration. Altogether, these results suggest that the biocompatible and superparamagnetic zinc ferrite NPs could be a next biomaterial of choice for photo-hyperthermia, which could outperform current iron oxide NPs for magnetic hyperthermia.
Collapse
Affiliation(s)
- Georgios Kasparis
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower street, London WC1E 6BT, UK. .,UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle street, London W1S 4BS, UK
| | - Anouchka Plan Sangnier
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.,Inserm, U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, Bobigny F-93017, France.
| | - Lilin Wang
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower street, London WC1E 6BT, UK. .,UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle street, London W1S 4BS, UK
| | - Christoforos Efstathiou
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle streetLondon W1S 4BSUK
| | - Alec P. LaGrow
- Biophysics Group, Department of Physics and Astronomy, University College LondonGower streetLondon WC1E 6BTUK,UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle streetLondon W1S 4BSUK
| | - Andreas Sergides
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower street, London WC1E 6BT, UK. .,UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle street, London W1S 4BS, UK
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University75005 ParisFrance
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower street, London WC1E 6BT, UK. .,UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle street, London W1S 4BS, UK
| |
Collapse
|
26
|
Amor M, Mosselmans JFW, Scoppola E, Li C, Faivre D, Chevrier DM. Crystal-Chemical and Biological Controls of Elemental Incorporation into Magnetite Nanocrystals. ACS NANO 2023; 17:927-939. [PMID: 36595434 DOI: 10.1021/acsnano.2c05469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Magnetite nanoparticles possess numerous fundamental, biomedical, and industrial applications, many of which depend on tuning the magnetic properties. This is often achieved by the incorporation of trace and minor elements into the magnetite lattice. Such incorporation was shown to depend strongly on the magnetite formation pathway (i.e., abiotic vs biological), but the mechanisms controlling element partitioning between magnetite and its surrounding precipitation solution remain to be elucidated. Here, we used a combination of theoretical modeling (lattice and crystal field theories) and experimental evidence (high-resolution inductively coupled plasma-mass spectrometry and X-ray absorption spectroscopy) to demonstrate that element incorporation into abiotic magnetite nanoparticles is controlled principally by cation size and valence. Elements from the first series of transition metals (Cr to Zn) constituted exceptions to this finding, as their incorporation appeared to be also controlled by the energy levels of their unfilled 3d orbitals, in line with crystal field mechanisms. We finally show that element incorporation into biological magnetite nanoparticles produced by magnetotactic bacteria (MTB) cannot be explained by crystal-chemical parameters alone, which points to the biological control exerted by the bacteria over the element transfer between the MTB growth medium and the intracellular environment. This screening effect generates biological magnetite with a purer chemical composition in comparison to the abiotic materials formed in a solution of similar composition. Our work establishes a theoretical framework for understanding the crystal-chemical and biological controls of trace and minor cation incorporation into magnetite, thereby providing predictive methods to tailor the composition of magnetite nanoparticles for improved control over magnetic properties.
Collapse
Affiliation(s)
- Matthieu Amor
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108Saint-Paul-lez-Durance, France
| | | | - Ernesto Scoppola
- Biomaterials, Hierarchical Structure of Biological and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| | - Chenghao Li
- Biomaterials, Hierarchical Structure of Biological and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| | - Damien Faivre
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108Saint-Paul-lez-Durance, France
| | - Daniel M Chevrier
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108Saint-Paul-lez-Durance, France
| |
Collapse
|
27
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
28
|
Wu C, Jiao Q, Wang C, Zheng Y, Pan X, Zhong W, Xu K. Nanofibrillar peptide hydrogels for self-delivery of lonidamine and synergistic photodynamic therapy. Acta Biomater 2023; 155:139-153. [PMID: 36371006 DOI: 10.1016/j.actbio.2022.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
The use of lonidamine (LND) in photodynamic therapy (PDT) provides a viable approach to develop low-dose PDT modules with high efficacy, for LND potentiates cytotoxicity of photosensitizers through dysregulation of mitochondrial function. Yet, the efficacy of LND is restricted by its low accumulation in cancer cells, especially in the mitochondrial compartments. To address the problem, we design an LND-derived self-assembling peptide molecule (LND-K) that dually targets integrin receptors and mitochondria of cancer cells. The targeted cellular delivery of LND-K gives higher efficacy in ablation of mitochondrial function in melanoma cells A375, as compared to free LND or the control molecule that lacks mitochondria-targeting moieties. To integrate LND-K in a typical PDT module, we develop a nanofibrillar hydrogel system through co-assembly of LND-K and TPPS4, an anionic photosensitizer that forms tight electrostatic interactions with cationic residues of LND-K. Notably, hydrogel formulation of LND-K/TPPS4 facilitates slow release of TPPS4 over 14 days in vitro, and displays a longer retention time than aqueous solution of TPPS4in vivo. By integrating a mitochondria-targeted molecule (LND-K) in a typical PDT module, we achieve synergistic killing of A375 cells with dual drugs, where LND-K not only serves as a chemotherapeutic drug, but also potentiates the cytotoxicities of TPPS4 toward A375 cells in vitro and in vivo. The peptide-based drug self-delivery system promises the development of efficacious combination treatments against cancer, that integrate cell sensitization with existing anticancer modules (e.g., chemotherapy and PDT) for enhanced therapeutic efficacy. STATEMENT OF SIGNIFICANCE: This study reports the design and synthesis of a lonidamine (LND)-derived self-assembling peptide (LND-K) that dually targets integrin receptors and mitochondria of cancer cells. Under the precision guidance of a mitochondria-targeting sequence, LND-K-containing nanofibers target mitochondria and ablate mitochondrial functions. On one hand, the targeted delivery of LND-K reduces cell viabilities through a chemotherapy route; on the other hand, LND-K sensitizes cancer cells for subsequent PDT treatment with enhanced efficacy, which is mediated by induction of ROS, loss of mitochondrial membrane potential, and decrease of cellular ATP level. We believe that the design of mitochondria-targeted drug delivery systems with a self-assembling molecule provides a new approach to potentiate cytotoxicity of photosensitizers in a low-dose PDT module.
Collapse
Affiliation(s)
- Can Wu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qishu Jiao
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Chunlu Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yaxin Zheng
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaohui Pan
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
29
|
de la Encarnación C, Jimenez de Aberasturi D, Liz-Marzán LM. Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Adv Drug Deliv Rev 2022; 189:114484. [PMID: 35944586 DOI: 10.1016/j.addr.2022.114484] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Multicompartment nanoparticles have raised great interest for different biomedical applications, thanks to the combined properties of different materials within a single entity. These hybrid systems have opened new avenues toward diagnosis and combination therapies, thus becoming preferred theranostic agents. When hybrid nanoparticles comprise magnetic and plasmonic components, both magnetic and optical properties can be achieved, which are potentially useful for multimodal bioimaging, hyperthermal therapies and magnetically driven selective delivery. Nanostructures comprising iron oxide and gold are usually selected for biomedical applications, as they display size-dependent properties, biocompatibility, and unique physical and chemical characteristics that can be tuned through highly precise synthetic protocols. We provide herein an overview of the most recent synthetic protocols to prepare magnetic-plasmonic nanostructures made of iron oxide and gold, to then highlight the progress made on multifunctional magnetic-plasmonic bioimaging and heating-based therapies. We discuss the advantages and limitations of the various systems in these directions.
Collapse
Affiliation(s)
- Cristina de la Encarnación
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
30
|
Chen X, Zhang S, Li J, Huang X, Ye H, Qiao X, Xue Z, Yang W, Wang T. Influence of Elasticity of Hydrogel Nanoparticles on Their Tumor Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202644. [PMID: 35981891 PMCID: PMC9561785 DOI: 10.1002/advs.202202644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/25/2022] [Indexed: 05/28/2023]
Abstract
Polymeric nanocarriers have a broad range of clinical applications in recent years, but an inefficient delivery of polymeric nanocarriers to target tissues has always been a challenge. These results show that tuning the elasticity of hydrogel nanoparticles (HNPs) improves their delivery efficiency to tumors. Herein, a microfluidic system is constructed to evaluate cellular uptake of HNPs of different elasticity under flow conditions. It is found that soft HNPs are more efficiently taken up by cells than hard HNPs under flow conditions, owing to the greater adhesion between soft HNPs and cells. Furthermore, in vivo imaging reveals that soft HNPs have a more efficient tumor delivery than hard HNPs, and the greater targeting potential of soft HNPs is associated with both prolonged blood circulation and a high extent of cellular adhesion.
Collapse
Affiliation(s)
- Xiangyu Chen
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130022P. R. China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Shuwei Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
- Department of OrthopedicsChinese PLA General HospitalBeijing100853P. R. China
| | - Jinming Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Xiaobin Huang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Haochen Ye
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Zhenjie Xue
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
- Life and Health Intelligent Research InstituteTianjin University of TechnologyTianjin300384P. R. China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130022P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
- Life and Health Intelligent Research InstituteTianjin University of TechnologyTianjin300384P. R. China
| |
Collapse
|
31
|
Shivanna AT, Dash BS, Chen JP. Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies. MICROMACHINES 2022; 13:1279. [PMID: 36014201 PMCID: PMC9413965 DOI: 10.3390/mi13081279] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 05/14/2023]
Abstract
The multi-faceted nature of functionalized magnetic nanoparticles (fMNPs) is well-suited for cancer therapy. These nanocomposites can also provide a multimodal platform for targeted cancer therapy due to their unique magnetic guidance characteristics. When induced by an alternating magnetic field (AMF), fMNPs can convert the magnetostatic energy to heat for magnetic hyperthermia (MHT), as well as for controlled drug release. Furthermore, with the ability to convert near-infrared (NIR) light energy to heat energy, fMNPs have attracted interest for photothermal therapy (PTT). Other than MHT and PTT, fMNPs also have a place in combination cancer therapies, such as chemo-MHT, chemo-PTT, and chemo-PTT-photodynamic therapy, among others, due to their versatile properties. Thus, this review presents multifunctional nanocomposites based on fMNPs for cancer therapies, induced by an AMF or NIR light. We will first discuss the different fMNPs induced with an AMF for cancer MHT and chemo-MHT. Secondly, we will discuss fMNPs irradiated with NIR lasers for cancer PTT and chemo-PTT. Finally, fMNPs used for dual-mode AMF + NIR-laser-induced magneto-photo-hyperthermia (MPHT) will be discussed.
Collapse
Affiliation(s)
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
32
|
Vicentini M, Vassallo M, Ferrero R, Androulakis I, Manzin A. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 223:106975. [PMID: 35792363 DOI: 10.1016/j.cmpb.2022.106975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Magnetic hyperthermia is an oncological therapy that employs magnetic nanoparticles activated by alternating current (AC) magnetic fields with frequencies between 50 kHz and 1 MHz, to release heat in a diseased tissue and produce a local temperature increase of about 5 °C. To assess the treatment efficacy, in vivo tests on murine models (mice and rats) are typically performed. However, these are often carried out without satisfying the biophysical constraints on the electromagnetic (EM) field exposure, with consequent generation of hot spots and undesirable heating of healthy tissues. Here, we investigate possible adverse eddy current effects, to estimate AC magnetic field parameters (frequency and amplitude) that can potentially guarantee safe animal tests of magnetic hyperthermia. METHODS The analysis is performed through in silico modelling by means of finite element simulation tools, specifically developed to study eddy current effects in computational animal models, during magnetic hyperthermia treatments. The numerical tools enable us to locally evaluate the specific absorption rate (SAR) and the produced temperature increase, under different field exposure conditions. RESULTS The simulation outcomes demonstrate that in mice with weight lower than 30 g the thermal effects induced by AC magnetic fields are very weak, also when slightly overcoming the Hergt-Dutz limit, that is the product of the magnetic field amplitude and frequency should be lower than 5·109 A/(m·s). Conversely, we observe significant temperature increases in 500 g rats, amplified when the field is applied transversally to the body longitudinal axis. A strong mitigation of side-effects can be achieved by introducing water boluses or by applying focused fields. CONCLUSIONS The developed physics-based modelling approach has proved to be a useful predictive tool for the optimization of preclinical tests of magnetic hyperthermia, allowing the identification of proper EM field conditions and the design of setups that guarantee safe levels of field exposure during animal treatments. In such contest, the obtained results can be considered as valid indicators to assess reference levels for animal testing of biomedical techniques that involve EM fields, like magnetic hyperthermia, thus complying with the Directive 2010/63/EU on the protection of animals used for scientific purposes.
Collapse
Affiliation(s)
- Marta Vicentini
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy; Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Marta Vassallo
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy; Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Riccardo Ferrero
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy
| | - Ioannis Androulakis
- Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Alessandra Manzin
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy.
| |
Collapse
|
33
|
Li S, Yue H, Wang S, Li X, Wang X, Guo P, Ma G, Wei W. Advances of bacteria-based delivery systems for modulating tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114444. [PMID: 35817215 DOI: 10.1016/j.addr.2022.114444] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022]
Abstract
The components and hospitable properties of tumor microenvironment (TME) are associated with tumor progression. Recently, TME modulating vectors and strategies have garnished significant attention in cancer therapy. Although a pilot work has reviewed TME regulation via nanoparticle-based delivery systems, there is no systematical review that summarizes the natural bacteria-based anti-tumor system to modulate TME. In this review, we conclude the strategies of bacterial carriers (including whole bacteria, bacterial skeleton and bacterial components) to regulate TME from the perspective of TME components and hospitable properties, and the clinical trials of bacteria-mediated cancer therapy. Current challenges and future prospects for the design of bacteria-based carriers are also proposed that provide critical insights into this natural delivery system and related translation from the bench to the clinic.
Collapse
Affiliation(s)
- Shuping Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaojun Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
34
|
Włodarczyk A, Gorgoń S, Radoń A, Bajdak-Rusinek K. Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives. NANOMATERIALS 2022; 12:nano12111807. [PMID: 35683663 PMCID: PMC9182445 DOI: 10.3390/nano12111807] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Until now, strategies used to treat cancer are imperfect, and this generates the need to search for better and safer solutions. The biggest issue is the lack of selective interaction with neoplastic cells, which is associated with occurrence of side effects and significantly reduces the effectiveness of therapies. The use of nanoparticles in cancer can counteract these problems. One of the most promising nanoparticles is magnetite. Implementation of this nanoparticle can improve various treatment methods such as hyperthermia, targeted drug delivery, cancer genotherapy, and protein therapy. In the first case, its feature makes magnetite useful in magnetic hyperthermia. Interaction of magnetite with the altered magnetic field generates heat. This process results in raised temperature only in a desired part of a patient body. In other therapies, magnetite-based nanoparticles could serve as a carrier for various types of therapeutic load. The magnetic field would direct the drug-related magnetite nanoparticles to the pathological site. Therefore, this material can be used in protein and gene therapy or drug delivery. Since the magnetite nanoparticle can be used in various types of cancer treatment, they are extensively studied. Herein, we summarize the latest finding on the applicability of the magnetite nanoparticles, also addressing the most critical problems faced by smart nanomedicine in oncological therapies.
Collapse
Affiliation(s)
- Agnieszka Włodarczyk
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| | - Szymon Gorgoń
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, 901 87 Umeå, Sweden;
| | - Adrian Radoń
- Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100 Gliwice, Poland;
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
- Correspondence: ; Tel.: +48-32-208-8382
| |
Collapse
|
35
|
Kotakadi SM, Borelli DPR, Nannepaga JS. Therapeutic Applications of Magnetotactic Bacteria and Magnetosomes: A Review Emphasizing on the Cancer Treatment. Front Bioeng Biotechnol 2022; 10:789016. [PMID: 35547173 PMCID: PMC9081342 DOI: 10.3389/fbioe.2022.789016] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Magnetotactic bacteria (MTB) are aquatic microorganisms have the ability to biomineralize magnetosomes, which are membrane-enclosed magnetic nanoparticles. Magnetosomes are organized in a chain inside the MTB, allowing them to align with and traverse along the earth’s magnetic field. Magnetosomes have several potential applications for targeted cancer therapy when isolated from the MTB, including magnetic hyperthermia, localized medication delivery, and tumour monitoring. Magnetosomes features and properties for various applications outperform manufactured magnetic nanoparticles in several ways. Similarly, the entire MTB can be regarded as prospective agents for cancer treatment, thanks to their flagella’s ability to self-propel and the magnetosome chain’s ability to guide them. MTBs are conceptualized as nanobiots that can be guided and manipulated by external magnetic fields and are driven to hypoxic areas, such as tumor sites, while retaining the therapeutic and imaging characteristics of isolated magnetosomes. Furthermore, unlike most bacteria now being studied in clinical trials for cancer treatment, MTB are not pathogenic but might be modified to deliver and express certain cytotoxic chemicals. This review will assess the current and prospects of this burgeoning research field and the major obstacles that must be overcome before MTB can be successfully used in clinical treatments.
Collapse
Affiliation(s)
- Sai Manogna Kotakadi
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| | | | - John Sushma Nannepaga
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
- *Correspondence: John Sushma Nannepaga, , orcid.org/0000-0002-8739-9936
| |
Collapse
|
36
|
Bertuit E, Benassai E, Mériguet G, Greneche JM, Baptiste B, Neveu S, Wilhelm C, Abou-Hassan A. Structure-Property-Function Relationships of Iron Oxide Multicore Nanoflowers in Magnetic Hyperthermia and Photothermia. ACS NANO 2022; 16:271-284. [PMID: 34963049 DOI: 10.1021/acsnano.1c06212] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magnetite and maghemite multicore nanoflowers (NFs) synthesized using the modified polyol-mediated routes are to date among the most effective nanoheaters in magnetic hyperthermia (MHT). Recently, magnetite NFs have also shown high photothermal (PT) performances in the most desired second near-infrared (NIR-II) biological window, making them attractive in the field of nanoparticle-activated thermal therapies. However, what makes magnetic NFs efficient heating agents in both modalities still remains an open question. In this work, we investigate the role of many parameters of the polyol synthesis on the final NFs' size, shape, chemical composition, number of cores, and crystallinity. These nanofeatures are later correlated to the magnetic, optical, and electronic properties of the NFs as well as their collective macroscopic thermal properties in MHT and PT to find relationships between their structure, properties, and function. We evidence the critical role of iron(III) and heating ramps on the elaboration of well-defined NFs with a high number of multicores. While MHT efficiency is found to be proportional to the average number of magnetic cores within the assemblies, the optical responses of the NFs and their collective photothermal properties depend directly on the mean volume of the NFs (as supported by optical cross sections numerical simulations) and strongly on the structural disorder in the NFs, rather than the stoichiometry. The concentration of defects in the nanostructures, evaluated by photoluminescence and Urbach energy (EU), evidence a switch in the optical behavior for a limit value of EU = 0.4 eV where a discontinuous transition from high to poor PT efficiency is also observed.
Collapse
Affiliation(s)
- Enzo Bertuit
- Sorbonne Université, CNRS, PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| | - Emilia Benassai
- Sorbonne Université, CNRS, PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| | - Guillaume Mériguet
- Sorbonne Université, CNRS, PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| | - Jean-Marc Greneche
- Université du Maine, UMR CNRS 6283, Institut des Molécules et Matériaux du Mans (IMMM), Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Benoit Baptiste
- Sorbonne Université, UMR 7590 CNRS - Sorbonne Université - IRD-MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Case 115, 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - Sophie Neveu
- Sorbonne Université, CNRS, PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| | - Claire Wilhelm
- PSL Research University - Sorbonne Université - CNRS, UMR168, Laboratoire PhysicoChimie Curie, Institut Curie, 75005 Paris, France
| | - Ali Abou-Hassan
- Sorbonne Université, CNRS, PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| |
Collapse
|
37
|
Lopez S, Hallali N, Lalatonne Y, Hillion A, Antunes JC, Serhan N, Clerc P, Fourmy D, Motte L, Carrey J, Gigoux V. Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields. NANOSCALE ADVANCES 2022; 4:421-436. [PMID: 36132704 PMCID: PMC9417452 DOI: 10.1039/d1na00474c] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/18/2021] [Indexed: 05/15/2023]
Abstract
The destruction of cells using the mechanical activation of magnetic nanoparticles with low-frequency magnetic fields constitutes a recent and interesting approach in cancer therapy. Here, we showed that superparamagnetic iron oxide nanoparticles as small as 6 nm were able to induce the death of pancreatic cancer-associated fibroblasts, chosen as a model. An exhaustive screening of the amplitude, frequency, and type (alternating vs. rotating) of magnetic field demonstrated that the best efficacy was obtained for a rotating low-amplitude low-frequency magnetic field (1 Hz and 40 mT), reaching a 34% ratio in cell death induction; interestingly, the cell death was not maximized for the largest amplitudes of the magnetic field. State-of-the-art kinetic Monte-Carlo simulations able to calculate the torque undergone by assemblies of magnetic nanoparticles explained these features and were in agreement with cell death experiments. Simulations showed that the force generated by the nanoparticles once internalized inside the lysosome was around 3 pN, which is in principle not large enough to induce direct membrane disruption. Other biological mechanisms were explored to explain cell death: the mechanical activation of magnetic nanoparticles induced lysosome membrane permeabilization and the release of the lysosome content and cell death was mediated through a lysosomal pathway depending on cathepsin-B activity. Finally, we showed that repeated rotating magnetic field exposure halted drastically the cell proliferation. This study established a proof-of-concept that ultra-small nanoparticles can disrupt the tumor microenvironment through mechanical forces generated by mechanical activation of magnetic nanoparticles upon low-frequency rotating magnetic field exposure, opening new opportunities for cancer therapy.
Collapse
Affiliation(s)
- Sara Lopez
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers 1 Avenue du Professeur Jean Poulhes F-31432 Toulouse France
| | - Nicolas Hallali
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148 F-93000 Bobigny France
- Services de Biochimie et Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris F-93009 Bobigny France
| | - Arnaud Hillion
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
| | - Joana C Antunes
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148 F-93000 Bobigny France
| | - Nizar Serhan
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers 1 Avenue du Professeur Jean Poulhes F-31432 Toulouse France
| | - Pascal Clerc
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers 1 Avenue du Professeur Jean Poulhes F-31432 Toulouse France
| | - Daniel Fourmy
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers 1 Avenue du Professeur Jean Poulhes F-31432 Toulouse France
| | - Laurence Motte
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148 F-93000 Bobigny France
| | - Julian Carrey
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
| | - Véronique Gigoux
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers 1 Avenue du Professeur Jean Poulhes F-31432 Toulouse France
| |
Collapse
|
38
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Zeinoun M, Domingo-Diez J, Rodriguez-Garcia M, Garcia O, Vasic M, Ramos M, Serrano Olmedo JJ. Enhancing Magnetic Hyperthermia Nanoparticle Heating Efficiency with Non-Sinusoidal Alternating Magnetic Field Waveforms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3240. [PMID: 34947589 PMCID: PMC8704388 DOI: 10.3390/nano11123240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/26/2021] [Indexed: 01/23/2023]
Abstract
For decades now, conventional sinusoidal signals have been exclusively used in magnetic hyperthermia as the only alternating magnetic field waveform to excite magnetic nanoparticles. However, there are no theoretical nor experimental reasons that prevent the use of different waveforms. The only justifiable motive behind using the sinusoidal signal is its availability and the facility to produce it. Following the development of a configurable alternating magnetic field generator, we aim to study the effect of various waveforms on the heat production effectiveness of magnetic nanoparticles, seeking to prove that signals with more significant slope values, such as the trapezoidal and almost-square signals, allow the nanoparticles to reach higher efficiency in heat generation. Furthermore, we seek to point out that the nanoparticle power dissipation is dependent on the waveform's slope and not only the frequency, magnetic field intensity and the nanoparticle size. The experimental results showed a remarkably higher heat production performance of the nanoparticles when exposed to trapezoidal and almost-square signals than conventional sinusoidal signals. We conclude that the nanoparticles respond better to the trapezoidal and almost-square signals. On the other hand, the experimental results were used to calculate the normalized power dissipation value and prove its dependency on the slope. However, adjustments are necessary to the coil before proceeding with in vitro and in vivo studies to handle the magnetic fields required.
Collapse
Affiliation(s)
- Michael Zeinoun
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Javier Domingo-Diez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Miguel Rodriguez-Garcia
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Oscar Garcia
- Centro de Electrónica Industrial, Universidad Politécnica de Madrid (UPM), 28006 Madrid, Spain; (O.G.); (M.V.)
| | - Miroslav Vasic
- Centro de Electrónica Industrial, Universidad Politécnica de Madrid (UPM), 28006 Madrid, Spain; (O.G.); (M.V.)
| | - Milagros Ramos
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - José Javier Serrano Olmedo
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
40
|
Chen QW, Qiao JY, Liu XH, Zhang C, Zhang XZ. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev 2021; 50:12576-12615. [PMID: 34605834 DOI: 10.1039/d0cs01571g] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms have been extensively applied as active biotherapeutic agents or drug delivery vehicles for antitumor treatment because of their unparalleled bio-functionalities. Taking advantage of the living attributes of microorganisms, a new avenue has been opened in anticancer research. The integration of customized functional materials with living microorganisms has demonstrated unprecedented potential in solving existing questions and even conferring microorganisms with updated antitumor abilities and has also provided an innovative train of thought for enhancing the efficacy of microorganism-based tumor therapy. In this review, we have summarized the emerging development of customized materials-assisted microorganisms (MAMO) (including bacteria, viruses, fungi, microalgae, as well as their components) in tumor therapeutics with an emphasis on the rational utilization of chosen microorganisms and tailored materials, the ingenious design of biohybrid systems, and the efficacious antitumor mechanisms. The future perspectives and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
41
|
Hu B, Zhao Z, Gao X, Song X, Xu Z, Xu K, Tang B. Se-modified gold nanorods for enhancing the efficiency of photothermal therapy: avoiding the off-target problem induced by biothiols. J Mater Chem B 2021; 9:8832-8841. [PMID: 34636390 DOI: 10.1039/d1tb01392k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor-targeting gold nanorods (AuNRs) assembled through Au-S bonds have been widely used for photothermal therapy (PTT) via intravenous injection. However, with extended in vivo circulation times, biothiols can replace some S-modified targeting ligands on the surface of the AuNRs, which lowers their targeting efficacy towards cancer cells, resulting in a non-ideal PTT effect. To address this problem, herein, we utilized Se-modified AuNRs to establish a dual functional nanoprobe (Casp-RGD-Se-AuNRs) for improving the therapeutic effect and real-time monitoring of Caspase-9 levels to indicate the degree of cell apoptosis. The experiments demonstrated that the Casp-RGD-Se-AuNRs are better at avoiding interference from biothiols than the S-modified nanoprobe (Casp-RGD-S-AuNRs) for extended blood-circulation times after intravenous injection, significantly improving the PTT efficacy via more effectively targeting cancer cells. Simultaneously, the change of Caspase-9 levels visually shows the degree of apoptosis. Moreover, an in vivo study showed that, compared with the S-modified nanoprobe, the Se-modified nanoprobe exhibits a higher delivery efficiency to the tumor region after intravenous injection (accumulation in the tumor increased by 87%) and a better anticancer efficacy under NIR light irradiation (the tumor inhibition rate increased 6-fold). This work provides a valuable strategy to overcome the off-target problem, and new ideas for avoiding interference by biomolecules during blood circulation.
Collapse
Affiliation(s)
- Bo Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Zengteng Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Xiaoxiao Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Zihao Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
42
|
Jabalera Y, Sola-Leyva A, Gaglio SC, Carrasco-Jiménez MP, Iglesias GR, Perduca M, Jimenez-Lopez C. Enhanced Cytotoxic Effect of TAT-PLGA-Embedded DOXO Carried by Biomimetic Magnetic Nanoparticles upon Combination with Magnetic Hyperthermia and Photothermia. Pharmaceutics 2021; 13:1168. [PMID: 34452129 PMCID: PMC8398382 DOI: 10.3390/pharmaceutics13081168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022] Open
Abstract
The synergy between directed chemotherapy and thermal therapy (both magnetic hyperthermia and photothermia) mediated by a nanoassembly composed of functionalized biomimetic magnetic nanoparticles (BMNPs) with the chemotherapeutic drug doxorubicin (DOXO) covered by the polymer poly(lactic-co-glycolic acid) (PLGA), decorated with TAT peptide (here referred to as TAT-PLGA(DOXO-BMNPs)) is explored in the present study. The rationale behind this nanoassembly lies in an optimization of the nanoformulation DOXO-BMNPs, already demonstrated to be more efficient against tumor cells, both in vitro and in vivo, than systemic traditional therapies. By embedding DOXO-BMNPs into PLGA, which is further functionalized with the cell-penetrating TAT peptide, the resulting nanoassembly is able to mediate drug transport (using DOXO as a drug model) and behaves as a hyperthermic agent (induced by an alternating magnetic field (AMF) or by laser irradiation with a laser power density of 2 W/cm2). Our results obtained using the HepG2 cell line show that there is a synergy between chemotherapy and thermal therapy that results in a stronger cytotoxic effect when compared to that caused by the soluble DOXO. This is probably due to the enhanced DOXO release occurring upon the application of the thermal therapy, as well as the induced local temperature rise mediated by BMNPs in the nanoassembly following exposition to AMF or to near-infrared (NIR) laser irradiation. These results represent a proof of concept demonstrating that TAT-PLGA(DOXO-BMNPs) can be used to efficiently combine therapies against tumor cells, which is a step forward in the transition from systemic to local treatments.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.Granada, 18014 Granada, Spain
| | | | | | - Guillermo R. Iglesias
- Department of Applied Physic, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | | |
Collapse
|
43
|
Sanad MF, Meneses-Brassea BP, Blazer DS, Pourmiri S, Hadjipanayis GC, El-Gendy AA. Superparamagnetic Fe/Au Nanoparticles and Their Feasibility for Magnetic Hyperthermia. APPLIED SCIENCES 2021; 11:6637. [DOI: 10.3390/app11146637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Today, magnetic hyperthermia constitutes a complementary way to cancer treatment. This article reports a promising aspect of magnetic hyperthermia addressing superparamagnetic and highly Fe/Au core-shell nanoparticles. Those nanoparticles were prepared using a wet chemical approach at room temperature. We found that the as-synthesized core shells assembled with spherical morphology, including face-centered-cubic Fe cores coated and Au shells. The high-resolution transmission microscope images (HRTEM) revealed the formation of Fe/Au core/shell nanoparticles. The magnetic properties of the samples showed hysteresis loops with coercivity (HC) close to zero, revealing superparamagnetic-like behavior at room temperature. The saturation magnetization (MS) has the value of 165 emu/g for the as-synthesized sample with a Fe:Au ratio of 2:1. We also studied the feasibility of those core-shell particles for magnetic hyperthermia using different frequencies and different applied alternating magnetic fields. The Fe/Au core-shell nanoparticles achieved a specific absorption rate of 50 W/g under applied alternating magnetic field with amplitude 400 Oe and 304 kHz frequency. Based on our findings, the samples can be used as a promising candidate for magnetic hyperthermia for cancer therapy.
Collapse
Affiliation(s)
- Mohamed F. Sanad
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA
| | | | - Dawn S. Blazer
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Shirin Pourmiri
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | | | - Ahmed A. El-Gendy
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
44
|
Cui G, Wu J, Lin J, Liu W, Chen P, Yu M, Zhou D, Yao G. Graphene-based nanomaterials for breast cancer treatment: promising therapeutic strategies. J Nanobiotechnology 2021; 19:211. [PMID: 34266419 PMCID: PMC8281664 DOI: 10.1186/s12951-021-00902-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women, and its incidence increases annually. Traditional therapies have several side effects, leading to the urgent need to explore new smart drug-delivery systems and find new therapeutic strategies. Graphene-based nanomaterials (GBNs) are potential drug carriers due to their target selectivity, easy functionalization, chemosensitization and high drug-loading capacity. Previous studies have revealed that GBNs play an important role in fighting breast cancer. Here, we have summarized the superior properties of GBNs and modifications to shape GBNs for improved function. Then, we focus on the applications of GBNs in breast cancer treatment, including drug delivery, gene therapy, phototherapy, and magnetothermal therapy (MTT), and as a platform to combine multiple therapies. Their advantages in enhancing therapeutic effects, reducing the toxicity of chemotherapeutic drugs, overcoming multidrug resistance (MDR) and inhibiting tumor metastasis are highlighted. This review aims to help evaluate GBNs as therapeutic strategies and provide additional novel ideas for their application in breast cancer therapy.
Collapse
Affiliation(s)
- Guangman Cui
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Lin
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China.
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
45
|
Yao Y, Wang D, Hu J, Yang X. Tumor-targeting inorganic nanomaterials synthesized by living cells. NANOSCALE ADVANCES 2021; 3:2975-2994. [PMID: 36133644 PMCID: PMC9419506 DOI: 10.1039/d1na00155h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/05/2021] [Indexed: 05/09/2023]
Abstract
Inorganic nanomaterials (NMs) have shown potential application in tumor-targeting theranostics, owing to their unique physicochemical properties. Some living cells in nature can absorb surrounding ions in the environment and then convert them into nanomaterials after a series of intracellular/extracellular biochemical reactions. Inspired by that, a variety of living cells have been used as biofactories to produce metallic/metallic alloy NMs, metalloid NMs, oxide NMs and chalcogenide NMs, which are usually automatically capped with biomolecules originating from the living cells, benefitting their tumor-targeting applications. In this review, we summarize the biosynthesis of inorganic nanomaterials in different types of living cells including bacteria, fungi, plant cells and animal cells, accompanied by their application in tumor-targeting theranostics. The mechanisms involving inorganic-ion bioreduction and detoxification as well as biomineralization are emphasized. Based on the mechanisms, we describe the size and morphology control of the products via the modulation of precursor ion concentration, pH, temperature, and incubation time, as well as cell metabolism by a genetic engineering strategy. The strengths and weaknesses of these biosynthetic processes are compared in terms of the controllability, scalability and cooperativity during applications. Future research in this area will add to the diversity of available inorganic nanomaterials as well as their quality and biosafety.
Collapse
Affiliation(s)
- Yuzhu Yao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Dongdong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
46
|
Synergistic Photothermal-Chemotherapy Based on the Use of Biomimetic Magnetic Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13050625. [PMID: 33924828 PMCID: PMC8144968 DOI: 10.3390/pharmaceutics13050625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/18/2022] Open
Abstract
MamC-mediated biomimetic magnetic nanoparticles (BMNPs) have emerged as one of the most promising nanomaterials due to their magnetic features (superparamagnetic character and large magnetic moment per particle), their novel surface properties determined by MamC, their biocompatibility and their ability as magnetic hyperthermia agents. However, the current clinical application of magnetic hyperthermia is limited due to the fact that, in order to be able to reach an effective temperature at the target site, relatively high nanoparticle concentration, as well as high magnetic field strength and/or AC frequency are needed. In the present study, the potential of BMNPs to increase the temperature upon irradiation of a laser beam in the near infrared, at a wavelength at which tissues become partially transparent, is explored. Moreover, our results also demonstrate the synergy between photothermia and chemotherapy in terms of drug release and cytotoxicity, by using BMNPs functionalized with doxorubicin, and the effectiveness of this combination therapy against tumor cells in in vitro experiments. Therefore, the findings of the present study open the possibility of a novel, alternative approach to fight localized tumors.
Collapse
|
47
|
Mostafavi E, Medina-Cruz D, Vernet-Crua A, Chen J, Cholula-Díaz JL, Guisbiers G, Webster TJ. Green nanomedicine: the path to the next generation of nanomaterials for diagnosing brain tumors and therapeutics? Expert Opin Drug Deliv 2021; 18:715-736. [PMID: 33332168 DOI: 10.1080/17425247.2021.1865306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Current brain cancer treatments, based on radiotherapy and chemotherapy, are sometimes successful, but they are not free of drawbacks.Areas covered: Traditional methods for the treatment of brain tumors are discussed here with new solutions presented, among which the application of nanotechnology has demonstrated promising results over the past decade. The traditional synthesis of nanostructures, which relies on the use of physicochemical methodologies are discussed, and their associated concerns in terms of environmental and health impact due to the production of toxic by-products, need for toxic catalysts, and their lack of biocompatibility are presented. An overview of the current situation for treating brain tumors using nanotechnological-based approaches is introduced, and some of the latest advances in the application of green nanomaterials (NMs) for the effective targeting of brain tumors are presented.Expert opinion: Green nanotechnology is introduced as a potential solution to toxic NMs through the application of environmentally friendly and cost-effective protocols using living organisms and biomolecules. The current status of this field, such as those involving clinical trials, is included, and the possible limitations of green-NMs and potential ways to avoid those limitations are discussed so that the field can potentially evolve.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ada Vernet-Crua
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Junjiang Chen
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Gregory Guisbiers
- Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
48
|
Taher Z, Legge C, Winder N, Lysyganicz P, Rawlings A, Bryant H, Muthana M, Staniland S. Magnetosomes and Magnetosome Mimics: Preparation, Cancer Cell Uptake and Functionalization for Future Cancer Therapies. Pharmaceutics 2021; 13:367. [PMID: 33802121 PMCID: PMC7998144 DOI: 10.3390/pharmaceutics13030367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Magnetic magnetite nanoparticles (MNP) are heralded as model vehicles for nanomedicine, particularly cancer therapeutics. However, there are many methods of synthesizing different sized and coated MNP, which may affect their performance as nanomedicines. Magnetosomes are naturally occurring, lipid-coated MNP that exhibit exceptional hyperthermic heating, but their properties, cancer cell uptake and toxicity have yet to be compared to other MNP. Magnetosomes can be mimicked by coating MNP in either amphiphilic oleic acid or silica. In this study, magnetosomes are directly compared to control MNP, biomimetic oleic acid and silica coated MNP of varying sizes. MNP are characterized and compared with respect to size, magnetism, and surface properties. Small (8 ± 1.6 nm) and larger (32 ± 9.9 nm) MNP are produced by two different methods and coated with either silica or oleic acid, increasing the size and the size dispersity of the MNP. The coated larger MNP are comparable in size (49 ± 12.5 nm and 61 ± 18.2 nm) to magnetosomes (46 ± 11.8 nm) making good magnetosome mimics. All MNP are assessed and compared for cancer cell uptake in MDA-MB-231 cells and importantly, all are readily taken up with minimal toxic effect. Silica coated MNP show the most uptake with greater than 60% cell uptake at the highest concentration, and magnetosomes showing the least with less than 40% at the highest concentration, while size does not have a significant effect on uptake. Finally, surface functionalization is demonstrated for magnetosomes and silica coated MNP using biotinylation and EDC-NHS, respectively, to conjugate fluorescent probes. The modified particles are visualized in MDA-MB-231 cells and demonstrate how both naturally biosynthesized magnetosomes and biomimetic silica coated MNP can be functionalized and readily up taken by cancer cells for realization as nanomedical vehicles.
Collapse
Affiliation(s)
- Zainab Taher
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
| | - Christopher Legge
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Natalie Winder
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Pawel Lysyganicz
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Andrea Rawlings
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
| | - Helen Bryant
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Sarah Staniland
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
| |
Collapse
|
49
|
Nanomagnetic Actuation of Hybrid Stents for Hyperthermia Treatment of Hollow Organ Tumors. NANOMATERIALS 2021; 11:nano11030618. [PMID: 33801426 PMCID: PMC7999083 DOI: 10.3390/nano11030618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
This paper describes a magnetic nanotechnology that locally enables hyperthermia treatment of hollow organ tumors by using polymer hybrid stents with incorporated magnetic nanoparticles (MNP). The hybrid stents are implanted and activated in an alternating magnetic field to generate therapeutically effective heat, thereby destroying the tumor. Here, we demonstrate the feasibility of nanomagnetic actuation of three prototype hybrid stents for hyperthermia treatment of hollow organ tumors. The results show that the heating efficiency of stent filaments increases with frequency from approximately 60 W/gFe (95 kHz) to approximately 250 W/gFe (270 kHz). The same trend is observed for the variation of magnetic field amplitude; however, heating efficiency saturates at approximately 30 kA/m. MNP immobilization strongly influences heating efficiency showing a relative difference in heating output of up to 60% compared to that of freely dispersed MNP. The stents showed uniformly distributed heat on their surface reaching therapeutically effective temperatures of 43 °C and were tested in an explanted pig bile duct for their biological safety. Nanomagnetic actuation of hybrid stents opens new possibilities in cancer treatment of hollow organ tumors.
Collapse
|
50
|
He Y, Yi C, Zhang X, Zhao W, Yu D. Magnetic graphene oxide: Synthesis approaches, physicochemical characteristics, and biomedical applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|