1
|
Li L, Jiang C. Electrodeposited coatings for neural electrodes: A review. Biosens Bioelectron 2025; 282:117492. [PMID: 40288311 DOI: 10.1016/j.bios.2025.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/27/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Neural electrodes play a pivotal role in ensuring safe stimulation and high-quality recording for various bioelectronics such as neuromodulation devices and brain-computer interfaces. With the miniaturization of electrodes and the increasing demand for multi-functionality, the incorporation of coating materials via electrodeposition to enhance electrodes performance emerges as a highly effective strategy. These coatings not only substantially improve the stimulation and recording performance of electrodes but also introduce additional functionalities. This review began by outlining the application scenarios and critical requirements of neural electrodes. It then delved into the deposition principles and key influencing factors. Furthermore, the advancements in the electrochemical performance and adhesion stability of these coatings were reviewed. Ultimately, the latest innovative works in the electrodeposited coating applications were highlighted, and future perspectives were summarized.
Collapse
Affiliation(s)
- Linze Li
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China.
| | - Changqing Jiang
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Liang Q, Xiang H, Xin M, Li R, Zhou Y, Pang D, Jia X, Yuan H, Chao D. A wearable iontophoresis enables dual-responsive transdermal delivery for atopic dermatitis treatment. J Colloid Interface Sci 2025; 678:908-919. [PMID: 39222610 DOI: 10.1016/j.jcis.2024.08.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Atopic dermatitis is a chronic, inflammation skin disease that remains a major public health challenge. The current drug-loading hydrogel dressings offer numerous benefits with enhanced loading capacity and a moist-rich environment. However, their development is still limited by the accessibility of a suitable driven source outside the clinical environment for precise control over transdermal delivery kinetics. Here, we prepare a sulfonated poly(3,4-ethylenedioxythiophene) (PEDOT) polyelectrolyte hydrogel drug reservoir that responds to different stimuli-both endogenous cue (body temperature) and exogenous cue (electrical stimulation), for wearable on-demand transdermal delivery with enhanced efficacy. Functioned as both the drug reservoir and cathode in a Zn battery-powered iontophoresis patch, this dual-responsive hydrogel achieves high drug release efficiency (68.4 %) at 37 °C. Evaluation in hairless mouse skin demonstrates the efficacy of this technology by facilitating transdermal transport of 12.2 μg cm-2 dexamethasone phosphate when discharged with a 103 Ω external resistor for 3 h. The Zn battery-driven iontophoresis results in an effective treatment of atopic dermatitis, displaying reductions in epidermal thickness, mast cell infiltration inhibition, and a decrease in IgE levels. This work provides a new treatment modality for chronic epidermal diseases that require precise drug delivery in a non-invasive way.
Collapse
Affiliation(s)
- Qin Liang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongyong Xiang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Meiying Xin
- Jilin Provincial Key Laboratory of Pediatric Neurology, Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Runan Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yan Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Hongming Yuan
- College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Yang S, Xu Y, Zhu M, Yu Y, Hu W, Zhang T, Gao J. Engineering the Functional Expansion of Microneedles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411112. [PMID: 39498731 DOI: 10.1002/adma.202411112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Indexed: 11/07/2024]
Abstract
Microneedles (MNs), composed of an array of micro-sized needles and a supporting base, have transcended their initial use to replace hypodermic needles in drug delivery and fluid collection, advancing toward multifunctional platforms. In this review, four major areas are summarized in interdisciplinary engineering approaches combined with MNs technology. First, electronics engineering, the most extensively researched field, enables applications in biomonitoring, electrical stimulation, and closed-loop theranostics through the generation, transmission, and transformation of electrical signals. Second, in electromagnetic engineering, the responsiveness of electromagnetic induction offers prospects for remote and programmable therapeutic applications. Third, photonic engineering endows MNs with novel functionalities, such as waveguiding and photonic manipulation to enhance optical therapeutic capabilities and facilitate the visualization of disease progression and treatment processes. Lastly, it reviewed the role of mechanical engineering in conferring shape adaptability and programmable motion features necessary for various MNs applications. This review focuses on the functionalities that emerge from the intersection of MNs with complementary engineering technologies, aiming to inspire further research and innovation in microneedle technology for biomedical applications.
Collapse
Affiliation(s)
- Shengfei Yang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yihua Xu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Mingjian Zhu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yawei Yu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weitong Hu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou, 213149, China
| |
Collapse
|
4
|
Abdel Aziz I, Gladisch J, Griggs S, Moser M, Biesmans H, Beloqui A, McCulloch I, Berggren M, Stavrinidou E. Drug delivery via a 3D electro-swellable conjugated polymer hydrogel. J Mater Chem B 2024; 12:4029-4038. [PMID: 38586978 DOI: 10.1039/d3tb02592f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Spatiotemporal controlled drug delivery minimizes side-effects and enables therapies that require specific dosing patterns. Conjugated polymers (CP) can be used for electrically controlled drug delivery; however so far, most demonstrations were limited to molecules up to 500 Da. Larger molecules could be incorporated only during the CP polymerization and thus limited to a single delivery. This work harnesses the record volume changes of a glycolated polythiophene p(g3T2) for controlled drug delivery. p(g3T2) undergoes reversible volumetric changes of up to 300% during electrochemical doping, forming pores in the nm-size range, resulting in a conducting hydrogel. p(g3T2)-coated 3D carbon sponges enable controlled loading and release of molecules spanning molecular weights of 800-6000 Da, from simple dyes up to the hormone insulin. Molecules are loaded as a combination of electrostatic interactions with the charged polymer backbone and physical entrapment in the porous matrix. Smaller molecules leak out of the polymer while larger ones could not be loaded effectively. Finally, this work shows the temporally patterned release of molecules with molecular weight of 1300 Da and multiple reloading and release cycles without affecting the on/off ratio.
Collapse
Affiliation(s)
- Ilaria Abdel Aziz
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, 20018, Gipuzkoa, Spain
| | - Johannes Gladisch
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| | - Sophie Griggs
- Department of Chemistry, Oxford University, Oxford, UK
| | | | - Hanne Biesmans
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | | | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| |
Collapse
|
5
|
Alkahtani ME, Elbadawi M, Chapman CAR, Green RA, Gaisford S, Orlu M, Basit AW. Electroactive Polymers for On-Demand Drug Release. Adv Healthc Mater 2024; 13:e2301759. [PMID: 37861058 PMCID: PMC11469020 DOI: 10.1002/adhm.202301759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/16/2023] [Indexed: 10/21/2023]
Abstract
Conductive materials have played a significant role in advancing society into the digital era. Such materials are able to harness the power of electricity and are used to control many aspects of daily life. Conductive polymers (CPs) are an emerging group of polymers that possess metal-like conductivity yet retain desirable polymeric features, such as processability, mechanical properties, and biodegradability. Upon receiving an electrical stimulus, CPs can be tailored to achieve a number of responses, such as harvesting energy and stimulating tissue growth. The recent FDA approval of a CP-based material for a medical device has invigorated their research in healthcare. In drug delivery, CPs can act as electrical switches, drug release is achieved at a flick of a switch, thereby providing unprecedented control over drug release. In this review, recent developments in CP as electroactive polymers for voltage-stimuli responsive drug delivery systems are evaluated. The review demonstrates the distinct drug release profiles achieved by electroactive formulations, and both the precision and ease of stimuli response. This level of dynamism promises to yield "smart medicines" and warrants further research. The review concludes by providing an outlook on electroactive formulations in drug delivery and highlighting their integral roles in healthcare IoT.
Collapse
Affiliation(s)
- Manal E. Alkahtani
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
- Department of PharmaceuticsCollege of PharmacyPrince Sattam bin Abdulaziz UniversityAlkharj11942Saudi Arabia
| | - Moe Elbadawi
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonE1 4NSUK
| | - Christopher A. R. Chapman
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
- Centre for Bioengineering, School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Rylie A. Green
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Simon Gaisford
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Mine Orlu
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Abdul W. Basit
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| |
Collapse
|
6
|
Mokhtar SMA, Derrick-Roberts ALK, Evans DR, Strudwick XL. Cell Viability Assessment of PEDOT Conducting Polymer-Coated Microneedles for Skin Sampling. ACS APPLIED BIO MATERIALS 2023; 6:4662-4671. [PMID: 37902811 DOI: 10.1021/acsabm.3c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Recently, transdermal monitoring and drug delivery have gained much interest, owing to the introduction of the minimally invasive microneedle (MN) device. The advancement of electroactive MNs electrically assisted in the capture of biomarkers or the triggering of drug release. Recent works have combined conducting polymers (CPs) onto MNs owing to the soft nature of the polymers and their tunable ionic and electronic conductivity. Though CPs are reported to work safely in the body, their biocompatibility in the skin has been insufficiently investigated. Furthermore, during electrical biasing of CPs, they undergo reduction or oxidation, which in practical terms leads to release/exchange of ions, which could pose biological risks. This work investigates the viability and proliferation of skin cells upon exposure to an electrochemically biased MN pair comprising two differently doped poly(3,4-ethylenedioxy-thiophene) (PEDOT) polymers that have been designed for skin sampling use. The impact of biasing on human keratinocytes and dermal fibroblasts was determined at different initial cell seeding densities and incubation periods. Indirect testing was employed, whereby the culture media was first exposed to PEDOTs prior to the addition of this extract to cells. In all conditions, both unbiased and biased PEDOT extracts showed no cytotoxicity, but the viability and proliferation of cells cultured at a low cell seeding density were lower than those of the control after 48 h of incubation.
Collapse
Affiliation(s)
- Siti Musliha Ajmal Mokhtar
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
- College of Engineering, Universiti Teknologi MARA, Johor Branch, Pasir Gudang Campus, Masai, Johor 81750, Malaysia
| | | | - Drew R Evans
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
7
|
Kuznetsova LS, Arlyapov VA, Plekhanova YV, Tarasov SE, Kharkova AS, Saverina EA, Reshetilov AN. Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells. Polymers (Basel) 2023; 15:3783. [PMID: 37765637 PMCID: PMC10536614 DOI: 10.3390/polym15183783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Conductive polymers and their composites are excellent materials for coupling biological materials and electrodes in bioelectrochemical systems. It is assumed that their relevance and introduction to the field of bioelectrochemical devices will only grow due to their tunable conductivity, easy modification, and biocompatibility. This review analyzes the main trends and trends in the development of the methodology for the application of conductive polymers and their use in biosensors and biofuel elements, as well as describes their future prospects. Approaches to the synthesis of such materials and the peculiarities of obtaining their nanocomposites are presented. Special emphasis is placed on the features of the interfaces of such materials with biological objects.
Collapse
Affiliation(s)
- Lyubov S. Kuznetsova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Vyacheslav A. Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Yulia V. Plekhanova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei E. Tarasov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anna S. Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Evgeniya A. Saverina
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
- Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - Anatoly N. Reshetilov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
8
|
Farkas NI, Marincaș L, Barbu-Tudoran L, Barabás R, Turdean GL. Investigation of the Real-Time Release of Doxycycline from PLA-Based Nanofibers. J Funct Biomater 2023; 14:331. [PMID: 37367295 DOI: 10.3390/jfb14060331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023] Open
Abstract
Electrospun mats of PLA and PLA/Hap nanofibers produced by electrospinning were loaded with doxycycline (Doxy) through physical adsorption from a solution with initial concentrations of 3 g/L, 7 g/L, and 12 g/L, respectively. The morphological characterization of the produced material was performed using scanning electron microscopy (SEM). The release profiles of Doxy were studied in situ using the differential pulse voltammetry (DPV) electrochemical method on a glassy carbon electrode (GCE) and validated through UV-VIS spectrophotometric measurements. The DPV method has been shown to be a simple, rapid, and advantageous analytical technique for real-time measurements, allowing accurate kinetics to be established. The kinetics of the release profiles were compared using model-dependent and model-independent analyses. The diffusion-controlled mechanism of Doxy release from both types of fibers was confirmed by a good fit to the Korsmeyer-Peppas model.
Collapse
Affiliation(s)
- Noémi-Izabella Farkas
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Laura Marincaș
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 Mihail Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Réka Barabás
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Graziella Liana Turdean
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Khrystonko O, Rimpelová S, Burianová T, Švorčík V, Lyutakov O, Elashnikov R. Smart multi stimuli-responsive electrospun nanofibers for on-demand drug release. J Colloid Interface Sci 2023; 648:338-347. [PMID: 37301158 DOI: 10.1016/j.jcis.2023.05.181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Here, we report poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-AAc) microgel-loaded polycaprolactone (PCL) nanofibers as temperature-, pH- and electro-responsive materials. First, the PNIPAm-co-AAc microgels were prepared by precipitation polymerization and then electrospun with PCL. The morphology of the prepared materials, analysed by scanning electron microscopy, showed a narrow nanofiber distribution in the range of 500-800 nm, depending on microgel content. Refractometry measurements, performed at pH4 and 6.5, as well as in distilled water, indicated the thermo- and pH-responsive behaviour of the nanofibers between 31 and 34 °C. After being thoroughly characterized, the prepared nanofibers were loaded with crystal violet (CV) or gentamicin as model drugs. The application of a pulsed voltage led to a pronounced increase in drug release kinetics, which was also dependent on microgel content. In addition, long-term temperature- and pH-responsive release was demonstrated. Next, the prepared materials displayed switchable antibacterial activity against S. aureus and E. coli. Finally, cell compatibility tests showed that NIH 3T3 fibroblasts spread evenly over the nanofiber surface, confirming that the nanofibers serve as a favourable support for cell growth. Overall, the prepared nanofibers offer switchable drug release and appear to have considerable biomedical potential, particularly in wound healing.
Collapse
Affiliation(s)
- Olena Khrystonko
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, The Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, The Czech Republic
| | - Terezie Burianová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, The Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, The Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, The Czech Republic
| | - Roman Elashnikov
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, The Czech Republic.
| |
Collapse
|
10
|
Hsiao YS, Quiñones ED, Yen SC, Yu J, Fang JT, Chen P, Juang RS. PEDOT:PSS-Based Bioelectrodes for Multifunctional Drug Release and Electric Cell-Substrate Impedance Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21953-21964. [PMID: 37129106 DOI: 10.1021/acsami.3c02769] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Electric cell-substrate impedance sensing (ECIS) is an innovative approach for the label-free and real-time detection of cell morphology, growth, and apoptosis, thereby playing an essential role as both a viable alternative and valuable complement to conventional biochemical/pharmaceutical analysis in the field of diagnostics. Constant improvements are naturally sought to further improve the effective range and reliability of this technology. In this study, we developed poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) conducting polymer (CP)-based bioelectrodes integrated into homemade ECIS cell-culture chamber slides for the simultaneous drug release and real-time biosensing of cancer cell viability under drug treatment. The CP comprised tailored PEDOT:PSS, poly(ethylene oxide) (PEO), and (3-glycidyloxypropyl)trimethoxysilane (GOPS) capable of encapsulating antitumor chemotherapeutic agents such as doxorubicin (DOX), docetaxel (DTX), and a DOX/DTX combination. This device can reliably monitor impedance signal changes correlated with cell viability on chips generated by cell adhesion onto a predetermined CP-based working electrode while simultaneously exhibiting excellent properties for both drug encapsulation and on-demand release from another CP-based counter electrode under electrical stimulation (ES) operation. Cyclic voltammetry curves and surface profile data of different CP-based coatings (without or with drugs) were used to analyze the changes in charge capacity and thickness, respectively, thereby further revealing the correlation between their drug-releasing performance under ES operation (determined using ultraviolet-visible (UV-vis) spectroscopy). Finally, antitumor drug screening tests (DOX, DTX, and DOX/DTX combination) were performed on MCF-7 and HeLa cells using our developed CP-based ECIS chip system to monitor the impedance signal changes and their related cell viability results.
Collapse
Affiliation(s)
- Yu-Sheng Hsiao
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Edgar Daniel Quiñones
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Shih-Chieh Yen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10607, Taiwan
| | - Ji-Tseng Fang
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ruey-Shin Juang
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei City, 24301, Taiwan
| |
Collapse
|
11
|
Electro-stimulated drug release by methacrylated hyaluronic acid-based conductive hydrogel with enhanced mechanical properties. Int J Biol Macromol 2023; 231:123297. [PMID: 36646353 DOI: 10.1016/j.ijbiomac.2023.123297] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/17/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Recently, the design of stimuli-responsive hydrogels for controlled drug delivery systems has been extensively investigated to meet therapeutic needs and optimize the release pattern of the drug. Being a natural polyelectrolyte, hyaluronic acid (HA) is excellent potential to generate new opportunities for electro-responsive drug carrier applications. In the current study, HA-based electroconductive hydrogel was developed as a novel smart drug carrier for anti-inflammatory drug release by the combination of in-situ and post polymerization mechanisms. HA was modified through methacrylation reaction to introduce photocrosslinkable groups into its structure and then reduced graphene oxide (rGO) was encapsulated into methacrylated HA (HA/MA) hydrogel by using the photopolymerization technique. In the post polymerization process, polyaniline (PANI) was incorporated/loaded into HA/MA-rGO polymeric network produced in previous step. The produced HA/MA-rGO-PANI hydrogel exhibited sufficient electrical conductivity providing the desirable electro-responsive ability for Ibuprofen (IBU) release. Furthermore, it has superior mechanical performance compared to pure (HA/MA) and rGO containing (HA/MA-rGO) hydrogels. IBU release from the hydrogel was successfully triggered by electrical stimulation and the cumulative drug release also enhanced by increasing of the applied voltage. These results highlighted that the novel HA/MA-rGO-PANI hydrogel could be a promising candidate for electrical-stimulated anti-inflammatory release systems in neural implant applications.
Collapse
|
12
|
Cheah E, Bansal M, Nguyen L, Chalard A, Malmström J, O'Carroll SJ, Connor B, Wu Z, Svirskis D. Electrically responsive release of proteins from conducting polymer hydrogels. Acta Biomater 2023; 158:87-100. [PMID: 36640949 DOI: 10.1016/j.actbio.2023.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Electrically modulated delivery of proteins provides an avenue to target local tissues specifically and tune the dose to the application. This approach prolongs and enhances activity at the target site whilst reducing off-target effects associated with systemic drug delivery. The work presented here explores an electrically active composite material comprising of a biocompatible hydrogel, gelatin methacryloyl (GelMA) and a conducting polymer, poly(3,4-ethylenedioxythiophene), generating a conducting polymer hydrogel. In this paper, the key characteristics of electroactivity, mechanical properties, and morphology are characterized using electrochemistry techniques, atomic force, and scanning electron microscopy. Cytocompatibility is established through exposure of human cells to the materials. By applying different electrical-stimuli, the short-term release profiles of a model protein can be controlled over 4 h, demonstrating tunable delivery patterns. This is followed by extended-release studies over 21 days which reveal a bimodal delivery mechanism influenced by both GelMA degradation and electrical stimulation events. This data demonstrates an electroactive and cytocompatible material suitable for the delivery of protein payloads over 3 weeks. This material is well suited for use as a treatment delivery platform in tissue engineering applications where targeted and spatio-temporal controlled delivery of therapeutic proteins is required. STATEMENT OF SIGNIFICANCE: Growth factor use in tissue engineering typically requires sustained and tunable delivery to generate optimal outcomes. While conducting polymer hydrogels (CPH) have been explored for the electrically responsive release of small bioactives, we report on a CPH capable of releasing a protein payload in response to electrical stimulus. The composite material combines the benefits of soft hydrogels acting as a drug reservoir and redox-active properties from the conducting polymer enabling electrical responsiveness. The CPH is able to sustain protein delivery over 3 weeks, with electrical stimulus used to modulate release. The described material is well suited as a treatment delivery platform to deliver large quantities of proteins in applications where spatio-temporal delivery patterns are paramount.
Collapse
Affiliation(s)
- Ernest Cheah
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Mahima Bansal
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Linh Nguyen
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Anaïs Chalard
- Department of Chemical and Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jenny Malmström
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
13
|
Huang J, Yap N, Walter M, Green A, Smith C, Johnson J, Saigal R. 3D-Printed Polypyrrole Microneedle Arrays for Electronically Controlled Transdural Drug Release. ACS Biomater Sci Eng 2022; 8:1544-1553. [PMID: 35294162 DOI: 10.1021/acsbiomaterials.1c01305] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
After the spinal cord injury, inflammation and cytotoxicity cause further damage to neural cells. The progression of this secondary injury might be reduced by the administration of anti-inflammatory drugs. To allow the local delivery of such drugs while minimizing dural opening, we have created a polypyrrole (PPy)-coated microneedle array using a microscale three-dimensional (3D) printing technology that facilitates electronically controlled encapsulation and the transdural release of drugs. PPy microneedles demonstrated an electronically controlled release of steroid dexamethasone (Dexa) in a novel in vitro transdural model and in vivo. The biological activity of the device was then tested by the electronic release of Dexa into an in vitro model of neuroinflammation, using activated microglia. Following electrically activated Dexa release, inflammation was reduced, as demonstrated by a decrease in nitric oxide and proinflammatory cytokines Il-6 and MCP-1. These results demonstrate the feasibility of PPy-coated microneedles for the transdural delivery of anti-inflammatory drugs to the central nervous system.
Collapse
Affiliation(s)
- Joyce Huang
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, Washington, United States
| | - Natalie Yap
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, Washington, United States
| | - Maximilian Walter
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, Washington, United States
| | - Abbey Green
- Department of Neurological Surgery, University of Washington, Seattle 98104-2499, Washington, United States
| | - Charles Smith
- Center for Neurotechnology, University of Washington, Seattle 98195, Washington, United States
| | - Jessica Johnson
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, Washington, United States
| | - Rajiv Saigal
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, Washington, United States.,Department of Neurological Surgery, University of Washington, Seattle 98104-2499, Washington, United States
| |
Collapse
|
14
|
Czerwińska-Główka D, Skonieczna M, Barylski A, Golba S, Przystaś W, Zabłocka-Godlewska E, Student S, Cwalina B, Krukiewicz K. Bifunctional conducting polymer matrices with antibacterial and neuroprotective effects. Bioelectrochemistry 2022; 144:108030. [PMID: 34896782 DOI: 10.1016/j.bioelechem.2021.108030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/24/2021] [Accepted: 11/29/2021] [Indexed: 11/02/2022]
Abstract
Current trends in the field of neural tissue engineering include the design of advanced biomaterials combining excellent electrochemical performance with versatile biological characteristics. The purpose of this work was to develop an antibacterial and neuroprotective coating based on a conducting polymer - poly(3,4-ethylenedioxypyrrole) (PEDOP), loaded with an antibiotic agent - tetracycline (Tc). Employing an electrochemical technique to immobilize Tc within a growing polymer matrix allowed to fabricate robust PEDOP/Tc coatings with a high charge storage capacity (63.65 ± 6.05 mC/cm2), drug release efficiency (629.4 µg/cm2 ± 62.7 µg/cm2), and low charge transfer resistance (2.4 ± 0.1 kΩ), able to deliver a stable electrical signal. PEDOP/Tc were found to exhibit strong antimicrobial effects against Gram-negative bacteria Escherichia coli, expressed through negligible adhesion, reduction in viability, and a characteristic elongation of bacterial cells. Cytocompatibility and neuroprotective effects were evaluated using a rat neuroblastoma B35 cell line, and were analyzed using MTT, cell cycle, and Annexin-V apoptosis assays. The presence of Tc was found to enhance neural cell viability and neurite outgrowth. The results confirmed that PEDOP/Tc can serve as an efficient neural electrode coating able to enhance charge transfer, as well as to exhibit bifunctional biological characteristics, different for eukaryotic and prokaryotic cells.
Collapse
Affiliation(s)
- Dominika Czerwińska-Główka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland
| | - Magdalena Skonieczna
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty, 41-500 Chorzow, Poland
| | - Sylwia Golba
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty, 41-500 Chorzow, Poland
| | - Wioletta Przystaś
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland; Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, S. Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ewa Zabłocka-Godlewska
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland; Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, S. Konarskiego 22B, 44-100 Gliwice, Poland
| | - Sebastian Student
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Beata Cwalina
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland; Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, S.Konarskiego 18, 44-100 Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland.
| |
Collapse
|
15
|
Berggren M, Głowacki ED, Simon DT, Stavrinidou E, Tybrandt K. In Vivo Organic Bioelectronics for Neuromodulation. Chem Rev 2022; 122:4826-4846. [PMID: 35050623 PMCID: PMC8874920 DOI: 10.1021/acs.chemrev.1c00390] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The nervous system poses a grand challenge for integration with modern electronics and the subsequent advances in neurobiology, neuroprosthetics, and therapy which would become possible upon such integration. Due to its extreme complexity, multifaceted signaling pathways, and ∼1 kHz operating frequency, modern complementary metal oxide semiconductor (CMOS) based electronics appear to be the only technology platform at hand for such integration. However, conventional CMOS-based electronics rely exclusively on electronic signaling and therefore require an additional technology platform to translate electronic signals into the language of neurobiology. Organic electronics are just such a technology platform, capable of converting electronic addressing into a variety of signals matching the endogenous signaling of the nervous system while simultaneously possessing favorable material similarities with nervous tissue. In this review, we introduce a variety of organic material platforms and signaling modalities specifically designed for this role as "translator", focusing especially on recent implementation in in vivo neuromodulation. We hope that this review serves both as an informational resource and as an encouragement and challenge to the field.
Collapse
Affiliation(s)
- Magnus Berggren
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Eric D. Głowacki
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
- Bioelectronics
Materials and Devices, Central European
Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech
Republic
| | - Daniel T. Simon
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| |
Collapse
|
16
|
Ajmal Mokhtar SM, Alvarez de Eulate E, Sethumadhavan V, Yamada M, Prow TW, Evans DR. Electrochemical stability of
PEDOT
for wearable
on‐skin
application. J Appl Polym Sci 2021. [DOI: 10.1002/app.51314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siti Musliha Ajmal Mokhtar
- Future Industries Institute University of South Australia Mawson Lakes Australia
- Faculty of Electrical Engineering Universiti Teknologi Mara, Johor Branch, Pasir Gudang Campus Masai Malaysia
| | | | | | - Miko Yamada
- Future Industries Institute University of South Australia Mawson Lakes Australia
| | - Tarl W. Prow
- Future Industries Institute University of South Australia Mawson Lakes Australia
| | - Drew R. Evans
- Future Industries Institute University of South Australia Mawson Lakes Australia
| |
Collapse
|
17
|
Tran PHL, Tran TTD. The Use of Natural Materials in Film Coating for Controlled Oral Drug Release. Curr Med Chem 2021; 28:1829-1840. [PMID: 32164506 DOI: 10.2174/0929867327666200312113547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although synthetic materials have been used in film coating processes for drug delivery for many years, substantial studies on natural materials have also been conducted because of their biodegradable and unique properties. METHODS Because of the ability to form and modify films for controlled oral drug delivery, increasing attention has been shown to these materials in the design of film coating systems in recent research. RESULTS This review aims to provide an overview of natural materials focusing on film coating for oral delivery, specifically in terms of their classification and their combinations in film coating formulations for adjusting the desired properties for controlled drug delivery. CONCLUSIONS Discussing natural materials and their potential applications in film coating would benefit the optimization of processes and strategies for future utilization.
Collapse
Affiliation(s)
| | - Thao Truong-Dinh Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
18
|
Puiggalí-Jou A, Ordoño J, Del Valle LJ, Pérez-Amodio S, Engel E, Alemán C. Tuning multilayered polymeric self-standing films for controlled release of L-lactate by electrical stimulation. J Control Release 2021; 330:669-683. [PMID: 33388340 DOI: 10.1016/j.jconrel.2020.12.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
We examine different approaches for the controlled release of L-lactate, which is a signaling molecule that participates in tissue remodeling and regeneration, such as cardiac and muscle tissue. Robust, flexible, and self-supported 3-layers films made of two spin-coated poly(lactic acid) (PLA) layers separated by an electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) layer, are used as loading and delivery systems. Films with outer layers prepared using homochiral PLA and with nanoperforations of diameter 146 ± 70 experience more bulk erosion, which also contributes to the release of L-lactic acid, than those obtained using heterochiral PLA and with nanoperforations of diameter 66 ± 24. Moreover, the release of L-lactic acid as degradation product is accelerated by applying biphasic electrical pulses. The four approaches used for loading extra L-lactate in the 3-layered films were: incorporation of L-lactate at the intermediate PEDOT layer as primary dopant agent using (1) organic or (2) basic water solutions as reaction media; (3) substitution at the PEDOT layer of the ClO4- dopant by L-lactate using de-doping and re-doping processes; and (4) loading of L-lactate at the outer PLA layers during the spin-coating process. Electrical stimuli were applied considering biphasic voltage pulses and constant voltages (both negative and positive). Results indicate that the approach used to load the L-lactate has a very significant influence in the release regulation process, affecting the concentration of released L-lactate up to two orders of magnitude. Among the tested approaches, the one based on the utilization of the outer layers for loading, approach (4), can be proposed for situations requiring prolonged and sustained L-lactate release over time. The biocompatibility and suitability of the engineered films for cardiac tissue engineering has also been confirmed using cardiac cells.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, Ed. C, 08019 Barcelona, Spain.
| | - Jesús Ordoño
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain
| | - Luis J Del Valle
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, Ed. C, 08019 Barcelona, Spain
| | - Soledad Pérez-Amodio
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain; Materials Science and Metallurgical Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain; Materials Science and Metallurgical Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, Ed. C, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
19
|
Li M, Niu B, Guo X, Rao C, Li W. Hyaluronic acid-amorphous calcium phosphate nanoparticles for drug delivery and anticancer. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1860982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Min Li
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Baolong Niu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, PR China
| | - Xia Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Chaohui Rao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Wenfeng Li
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| |
Collapse
|
20
|
The Bioactive Polypyrrole/Polydopamine Nanowire Coating with Enhanced Osteogenic Differentiation Ability with Electrical Stimulation. COATINGS 2020. [DOI: 10.3390/coatings10121189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polypyrrole (PPy) is a promising conducting polymer in bone regeneration; however, due to the biological inertia of the PPy surface, it has poor cell affinity and bioactivity. Based on the excellent adhesion capacity, biocompatibility, and bioactivity of polydopamine (PDA), the PDA is used as a functional coating in tissue repair and regeneration. Herein, we used a two-step method to construct a functional conductive coating of polypyrrole/polydopamine (PPy/PDA) nanocomposite for bone regeneration. PPy nanowires (NWs) are used as the morphologic support layer, and a layer of highly bioactive PDA is introduced on the surface of PPy NWs by solution oxidation. By controlling the depositing time of PDA within 5 h, the damage of nano morphology and conductivity of the PPy NWs caused by the coverage of PDA deposition layer can be effectively avoided, and the thin PDA layer also significantly improve the hydrophilicity, adhesion, and biological activity of PPy NWs coating. The PPy/PDA NWs coating performs better biocombaitibility and bioactivity than pure PPy NWs and PDA, and has benefits for the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells cultured on the surface. In addition, PPy/PDA NWs can significantly promote the osteogenesis of MC3T3-E1 in combination with micro galvanostatic electrical stimulation (ES).
Collapse
|
21
|
Alvarado-Hidalgo F, Ramírez-Sánchez K, Starbird-Perez R. Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue Engineering. Molecules 2020; 25:E5286. [PMID: 33202707 PMCID: PMC7697121 DOI: 10.3390/molecules25225286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Recently, tissue engineering and regenerative medicine studies have evaluated smart biomaterials as implantable scaffolds and their interaction with cells for biomedical applications. Porous materials have been used in tissue engineering as synthetic extracellular matrices, promoting the attachment and migration of host cells to induce the in vitro regeneration of different tissues. Biomimetic 3D scaffold systems allow control over biophysical and biochemical cues, modulating the extracellular environment through mechanical, electrical, and biochemical stimulation of cells, driving their molecular reprogramming. In this review, first we outline the main advantages of using polysaccharides as raw materials for porous scaffolds, as well as the most common processing pathways to obtain the adequate textural properties, allowing the integration and attachment of cells. The second approach focuses on the tunable characteristics of the synthetic matrix, emphasizing the effect of their mechanical properties and the modification with conducting polymers in the cell response. The use and influence of polysaccharide-based porous materials as drug delivery systems for biochemical stimulation of cells is also described. Overall, engineered biomaterials are proposed as an effective strategy to improve in vitro tissue regeneration and future research directions of modified polysaccharide-based materials in the biomedical field are suggested.
Collapse
Affiliation(s)
- Fernando Alvarado-Hidalgo
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Master Program in Medical Devices Engineering, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Karla Ramírez-Sánchez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, CIET, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Ricardo Starbird-Perez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| |
Collapse
|
22
|
Puiggalí-Jou A, Cazorla E, Ruano G, Babeli I, Ginebra MP, García-Torres J, Alemán C. Electroresponsive Alginate-Based Hydrogels for Controlled Release of Hydrophobic Drugs. ACS Biomater Sci Eng 2020; 6:6228-6240. [PMID: 33449669 DOI: 10.1021/acsbiomaterials.0c01400] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stimuli-responsive biomaterials have attracted significant attention for the construction of on-demand drug release systems. The possibility of using external stimulation to trigger drug release is particularly enticing for hydrophobic compounds, which are not easily released by simple diffusion. In this work, an electrochemically active hydrogel, which has been prepared by gelling a mixture of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and alginate (Alg), has been loaded with curcumin (CUR), a hydrophobic drug with a wide spectrum of clinical applications. The PEDOT/Alg hydrogel is electrochemically active and organizes as segregated PEDOT- and Alg-rich domains, explaining its behavior as an electroresponsive drug delivery system. When loaded with CUR, the hydrogel demonstrates a controlled drug release upon application of a negative electrical voltage. Comparison with the release profiles obtained applying a positive voltage and in the absence of electrical stimuli indicates that the release mechanism dominating this system is complex because of not only the intermolecular interactions between the drug and the polymeric network but also the loading of a hydrophobic drug in a water-containing delivery system.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Barcelona 08019, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona 08930, Spain
| | - Eric Cazorla
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Barcelona 08019, Spain
| | - Guillem Ruano
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Barcelona 08019, Spain
| | - Ismael Babeli
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Barcelona 08019, Spain
| | - Maria-Pau Ginebra
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona 08930, Spain.,Biomaterials, Biomechanics and Tissue Engineering Group, Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya (UPC), Barcelona 08930, Spain
| | - Jose García-Torres
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona 08930, Spain.,Biomaterials, Biomechanics and Tissue Engineering Group, Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya (UPC), Barcelona 08930, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Barcelona 08019, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona 08930, Spain
| |
Collapse
|
23
|
Electrochemical Biosensors Based on Conducting Polymers: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186614] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conducting polymers are an important class of functional materials that has been widely applied to fabricate electrochemical biosensors, because of their interesting and tunable chemical, electrical, and structural properties. Conducting polymers can also be designed through chemical grafting of functional groups, nanostructured, or associated with other functional materials such as nanoparticles to provide tremendous improvements in sensitivity, selectivity, stability and reproducibility of the biosensor’s response to a variety of bioanalytes. Such biosensors are expected to play a growing and significant role in delivering the diagnostic information and therapy monitoring since they have advantages including their low cost and low detection limit. Therefore, this article starts with the description of electroanalytical methods (potentiometry, amperometry, conductometry, voltammetry, impedometry) used in electrochemical biosensors, and continues with a review of the recent advances in the application of conducting polymers in the recognition of bioanalytes leading to the development of enzyme based biosensors, immunosensors, DNA biosensors, and whole-cell biosensors.
Collapse
|
24
|
Ramírez Sánchez K, Ledezma-Espinoza A, Sánchez-Kopper A, Avendaño-Soto E, Prado M, Starbird Perez R. Polysaccharide κ-Carrageenan as Doping Agent in Conductive Coatings for Electrochemical Controlled Release of Dexamethasone at Therapeutic Doses. Molecules 2020; 25:molecules25092139. [PMID: 32375224 PMCID: PMC7249122 DOI: 10.3390/molecules25092139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Smart conductive materials are developed in regenerative medicine to promote a controlled release profile of charged bioactive agents in the vicinity of implants. The incorporation and the active electrochemical release of the charged compounds into the organic conductive coating is achieved due to its intrinsic electrical properties. The anti-inflammatory drug dexamethasone was added during the polymerization, and its subsequent release at therapeutic doses was reached by electrical stimulation. In this work, a Poly (3,4-ethylenedioxythiophene): κ-carrageenan: dexamethasone film was prepared, and κ-carrageenan was incorporated to keep the electrochemical and physical stability of the electroactive matrix. The presence of κ-carrageenan and dexamethasone in the conductive film was confirmed by µ-Raman spectroscopy and their effect in the topographic was studied using profilometry. The dexamethasone release process was evaluated by cyclic voltammetry and High-Resolution mass spectrometry. In conclusion, κ-carrageenan as a doping agent improves the electrical properties of the conductive layer allowing the release of dexamethasone at therapeutic levels by electrochemical stimulation, providing a stable system to be used in organic bioelectronics systems.
Collapse
Affiliation(s)
- Karla Ramírez Sánchez
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), School of Chemistry, Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Costa Rica; (A.L.-E.); (A.S.-K.)
- Centro de Investigación en Enfermedades Tropicales (CIET), Faculty of Microbiology, Universidad de Costa Rica, 11501-2060 San José, Costa Rica;
- Correspondence: (K.R.S.); (R.S.P.); Tel.: +506-25502731 (R.S.P.)
| | - Aura Ledezma-Espinoza
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), School of Chemistry, Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Costa Rica; (A.L.-E.); (A.S.-K.)
| | - Andrés Sánchez-Kopper
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), School of Chemistry, Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Costa Rica; (A.L.-E.); (A.S.-K.)
| | - Esteban Avendaño-Soto
- Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, 11501-2060 San José, Costa Rica;
- School of Physics, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Mónica Prado
- Centro de Investigación en Enfermedades Tropicales (CIET), Faculty of Microbiology, Universidad de Costa Rica, 11501-2060 San José, Costa Rica;
| | - Ricardo Starbird Perez
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), School of Chemistry, Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Costa Rica; (A.L.-E.); (A.S.-K.)
- Correspondence: (K.R.S.); (R.S.P.); Tel.: +506-25502731 (R.S.P.)
| |
Collapse
|
25
|
Jeong JO, Park JS, Kim YA, Yang SJ, Jeong SI, Lee JY, Lim YM. Gamma Ray-Induced Polymerization and Cross-Linking for Optimization of PPy/PVP Hydrogel as Biomaterial. Polymers (Basel) 2020; 12:E111. [PMID: 31948023 PMCID: PMC7023038 DOI: 10.3390/polym12010111] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
Conducting polymer (CP)-based hydrogels exhibit the behaviors of bending or contraction/relaxation due to electrical stimulation. They are similar in some ways to biological organs and have advantages regarding manipulation and miniaturization. Thus, these hydrogels have attracted considerable interest for biomedical applications. In this study, we prepared PPy/PVP hydrogel with different concentrations and content through polymerization and cross-linking induced by gamma-ray irradiation at 25 kGy to optimize the mechanical properties of the resulting PPy/PVP hydrogel. Optimization of the PPy/PVP hydrogel was confirmed by characterization using scanning electron microscopy, gel fraction, swelling ratio, and Fourier transform infrared spectroscopy. In addition, we assessed live-cell viability using live/dead assay and CCK-8 assay, and found good cell viability regardless of the concentration and content of Py/pTS. The conductivity of PPy/PVP hydrogel was at least 13 mS/cm. The mechanical properties of PPy/PVP hydrogel are important factors in their application for biomaterials. It was found that 0.15PPy/PVP20 (51.96 ± 6.12 kPa) exhibited better compressive strength than the other samples for use in CP-based hydrogels. Therefore, it was concluded that gamma rays can be used to optimize PPy/PVP hydrogel and that biomedical applications of CP-based hydrogels will be possible.
Collapse
Affiliation(s)
- Jin-Oh Jeong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup-si, Jeollabuk-do 56212, Korea; (J.-O.J.); (Y.-A.K.); (S.-J.Y.); (S.-I.J.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Jong-Seok Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup-si, Jeollabuk-do 56212, Korea; (J.-O.J.); (Y.-A.K.); (S.-J.Y.); (S.-I.J.)
| | - Young-Ah Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup-si, Jeollabuk-do 56212, Korea; (J.-O.J.); (Y.-A.K.); (S.-J.Y.); (S.-I.J.)
- Department of Polymer Science and Engineering, Chungnam National University, Deajeon 34134, Korea
| | - Su-Jin Yang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup-si, Jeollabuk-do 56212, Korea; (J.-O.J.); (Y.-A.K.); (S.-J.Y.); (S.-I.J.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Sung-In Jeong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup-si, Jeollabuk-do 56212, Korea; (J.-O.J.); (Y.-A.K.); (S.-J.Y.); (S.-I.J.)
| | - Jae-Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Youn-Mook Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup-si, Jeollabuk-do 56212, Korea; (J.-O.J.); (Y.-A.K.); (S.-J.Y.); (S.-I.J.)
| |
Collapse
|
26
|
Synthesis, characterization and electropolymerization of functionalized organic salt–anilinium saccharinate and electrochemically controlled release of saccharinate anions. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Woeppel KM, Zheng XS, Schulte ZM, Rosi NL, Cui XT. Nanoparticle Doped PEDOT for Enhanced Electrode Coatings and Drug Delivery. Adv Healthc Mater 2019; 8:e1900622. [PMID: 31583857 PMCID: PMC6842062 DOI: 10.1002/adhm.201900622] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/30/2019] [Indexed: 12/22/2022]
Abstract
In order to address material limitations of biologically interfacing electrodes, modified silica nanoparticles are utilized as dopants for conducting polymers. Silica precursors are selected to form a thiol modified particle (TNP), following which the particles are oxidized to sulfonate modified nanoparticles (SNPs). The selective inclusion of hexadecyl trimethylammonium bromide allows for synthesis of both porous and nonporous SNPs. Nonporous nanoparticle doped polyethylenedioxythiophene (PEDOT) films possess low interfacial impedance, high charge injection (4.8 mC cm-2 ), and improved stability under stimulation compared to PEDOT/poly(styrenesulfonate). Porous SNP dopants can serve as drug reservoirs and greatly enhance the capability of conducting polymer-based, electrically controlled drug release technology. Using the SNP dopants, drug loading and release is increased up to 16.8 times, in addition to greatly expanding the range of drug candidates to include both cationic and electroactive compounds, all while maintaining their bioactivity. Finally, the PEDOT/SNP composite is capable of precisely modulating neural activity in vivo by timed release of a glutamate receptor antagonist from coated microelectrode sites. Together, this work demonstrates the feasibility and potential of doping conducting polymers with engineered nanoparticles, creating countless options to produce composite materials for enhanced electrical stimulation, neural recording, chemical sensing, and on demand drug delivery.
Collapse
Affiliation(s)
- Kevin M. Woeppel
- 3501 Fifth ave, 5065, Pittsburgh, Pa 15213, United States of America
| | - X. Sally Zheng
- 3501 Fifth ave, 5065, Pittsburgh, Pa 15213, United States of America
| | | | - Nathaniel L. Rosi
- 3501 Fifth ave, 5065, Pittsburgh, Pa 15213, United States of America
| | - X. Tracy Cui
- 3501 Fifth ave, 5065, Pittsburgh, Pa 15213, United States of America
| |
Collapse
|
28
|
Abstract
The widespread use of conducting polymers, especially poly(3,4-ethylene dioxythiophene) (PEDOT), within the space of bioelectronics has enabled improvements, both in terms of electrochemistry and functional versatility, of conventional metallic electrodes. This short review aims to provide an overview of how PEDOT coatings have contributed to functionalizing existing bioelectronics, the challenges which meet conducting polymer coatings from a regulatory and stability point of view and the possibilities to bring PEDOT-based coatings into large-scale clinical applications. Finally, their potential use for enabling new technologies for the field of bioelectronics as biodegradable, stretchable and slow-stimulation materials will be discussed.
Collapse
Affiliation(s)
- Christian Boehler
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Zaid Aqrawe
- Department of Anatomy & Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Maria Asplund
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| |
Collapse
|