1
|
Zhong H, Chen Z, Huang J, Yu X, Wang C, Zheng Y, Peng M, Yuan Z. Spray-drying-engineered CS/HA-bilayer microneedles enable sequential drug release for wound healing. J Mater Chem B 2025; 13:4819-4829. [PMID: 40152787 DOI: 10.1039/d5tb00121h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
High incidence and mortality rates of chronic wounds place a heavy burden on global healthcare systems. Achieving phased delivery of antimicrobial and regenerative drugs is crucial for promoting chronic wound healing. Herein, a microneedle (MN) patch with a biphasic release system was developed using a combination of solvent casting and spraying methods. Additionally, a copper/PDMS mold was introduced to address the issue of deformation in the chitosan material during drying on polydimethylsiloxane (PDMS). The MNs have a bilayer structure, with a hyaluronic acid (HA) coating loaded with doxycycline (DOX) for antibacterial action and a chitosan (CS) core loaded with vascular endothelial growth factor (VEGF) for promoting cell migration and proliferation. Notably, in vitro drug release studies showed that the coating drug was released by 98.8% within 10 hours, while the release of the core drug could be sustained for up to 70 hours. In vivo studies showed that chronic wounds on C57 mice treated with CS/HA-bilayer MNs achieved nearly complete healing by day 9. These wounds exhibited reduced inflammatory cell infiltration, increased epithelial tissue regeneration, and enhanced collagen deposition. This work integrates the staged management of bacterial infection and angiogenesis and offers promising prospects for enhancing chronic wound healing.
Collapse
Affiliation(s)
- Haowen Zhong
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zongyou Chen
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiahao Huang
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao Yu
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chengyong Wang
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yue Zheng
- Nanfang Hospital, Southern Medical University, Guangzhou, 510006, China
| | - Mengran Peng
- Department of Dermatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhishan Yuan
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
2
|
Wang T, Liu H, Li M, Ji Z, Zhang X, Wang N, Chen Y, Sun J, Liu F. Microneedle-based nanodrugs for tumor immunotherapy. J Control Release 2025; 380:539-562. [PMID: 39923854 DOI: 10.1016/j.jconrel.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/08/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Microneedles have emerged as a promising and effective method for delivering therapeutic drugs and immunobiologics to treat various diseases. It is widely recognized that immune therapy has limited efficacy in solid tumors due to physical barriers and the immunosuppressive tumor microenvironment. Microneedle-based nanodrugs (NDMNs) offer a novel approach to overcome these limitations. These tiny needles are designed to load a variety of inorganic and organic nanoparticles, antigen vaccines, gene drugs, oncolytic viruses, and more. Utilizing microneedle arrays, NDMNs can effectively penetrate the skin barrier, delivering drugs precisely to the tumor site or immunoactive regions within the skin. Additionally, by designing and optimizing the microneedle structure, shape, and functionality, NDMNs enable precise drug release and efficient penetration, thereby enhancing the efficacy of tumor immunotherapy. In this review, we comprehensively discuss the pivotal role of NDMNs in cancer immunotherapy, summarizing innovative microneedle design strategies, mechanisms of immune activation, and delivery strategies of various nanodrugs. Furthermore, we explore the current clinical realities, limitations, and future prospects of NDMNs in tumor immunotherapy.
Collapse
Affiliation(s)
- Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China; Department of General Surgery, The First Hospital of Dalian Medical University, Dalian 116000, China
| | - Hongyu Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Meng Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Zao Ji
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Xinyuan Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Nan Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Ying Chen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China; Liaoning Province Clinical Research Center for Cancer, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang 110001, China.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems Ministry of Education, Shenyang 110016, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China; Phase I Clinical Trails Center, The First Hospital, China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Long W, George Joy J, Lee SJ, Kim JC. Collagen- and Hyaluronic Acid-Based Microneedles With Thiolated Pectin for Redox-Responsive Drug Delivery. J Biomed Mater Res A 2025; 113:e37903. [PMID: 40156176 DOI: 10.1002/jbm.a.37903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Microneedles have emerged as an effective strategy to bypass the stratum corneum by creating microchannels in the skin, allowing for enhanced drug permeation with minimal invasiveness. Pectin, a natural polysaccharide, when modified with thiol (-SH) groups, exhibits redox-sensitive behavior, making it responsive to reducing agents such as glutathione and dithiothreitol (DTT). The objective of this study was to investigate the transdermal delivery efficacy of redox-responsive microneedle-containing thiolated pectin. Various molar ratios of thiolated pectin were synthesized through the ring-opening reaction followed by nucleophilic substitution of propylene sulfide with pectin. MN matrices were formulated with thiolated pectin at various molar ratios, hyaluronic acid, collagen, and trehalose. The stiffness and mechanical strength of the microneedles increased with higher thiol-containing pectin molecules. The in vitro skin permeation release showed a large amount of FITC release when no thiol group was conjugated to pectin. MN-thio: pectin (20:10) with H2O2 showed greater release at higher DTT concentrations, and in the absence of DTT, the release was 50 times less than without thiol. In summary, the redox-responsive microneedle containing thiolated pectin may be a promising vehicle for transdermal drug delivery by harvesting the reducing agents in the human body.
Collapse
Affiliation(s)
- Wenting Long
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jomon George Joy
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Seung-Jun Lee
- Department of Pharmaceutical Science and Engineering, Seowon University, Cheongju, Chungbuk, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
4
|
Gu Z, Song K, An H, Sun D, Ma Y, Wang H, Chen Y, Gu Q, Wen Y. Advances in adhesion of microneedles for bioengineering. J Mater Chem B 2025; 13:2592-2610. [PMID: 39876666 DOI: 10.1039/d4tb02517b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Microneedles have provided promising platforms in various fields thanks to their safety, painlessness, minimal invasiveness and ease of operation. The excellent adhesion of microneedles is the key characteristic to achieve long-term and comfortable treatment. However, a complex environment, such as the roughness of skin, various bodily fluids in vivo, and the movement of the body, presents great challenges to the adhesion characteristics of microneedles. This review mainly reports the remarkable adhesion properties of microneedles based on interlocking by shape effects, chemical bonds, and suction forces. Firstly, the main mechanisms of adhesion and various types of microneedles are introduced, with an emphasis on the progress in adhesive microneedles. Combined with the preparation and application of microneedles, the challenges and future trends of adhesive microneedles are discussed.
Collapse
Affiliation(s)
- Zhen Gu
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Kaiyu Song
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Heng An
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Dadi Sun
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Yinglei Ma
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Hanyu Wang
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Yanxia Chen
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, P. R. China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| |
Collapse
|
5
|
Lin Y, Dervisevic M, Yoh HZ, Guo K, Voelcker NH. Tailoring Design of Microneedles for Drug Delivery and Biosensing. Mol Pharm 2025; 22:678-707. [PMID: 39813711 DOI: 10.1021/acs.molpharmaceut.4c01266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microneedles (MNs) are emerging as versatile tools for both therapeutic drug delivery and diagnostic monitoring. Unlike hypodermic needles, MNs achieve these applications with minimal or no pain and customizable designs, making them suitable for personalized medicine. Understanding the key design parameters and the challenges during contact with biofluids is crucial to optimizing their use across applications. This review summarizes the current fabrication techniques and design considerations tailored to meet the distinct requirements for drug delivery and biosensing applications. We further underscore the current state of theranostic MNs that integrate drug delivery and biosensing and propose future directions for advancing MNs toward clinical use.
Collapse
Affiliation(s)
- Yuexi Lin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Muamer Dervisevic
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Hao Zhe Yoh
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Keying Guo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Faculty of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
6
|
Zhang A, Zhang X, Chen J, Shi X, Yu X, He Z, Sun J, Sun M, Liu Z. Approaches and applications in transdermal and transpulmonary gene drug delivery. Front Bioeng Biotechnol 2025; 12:1519557. [PMID: 39881959 PMCID: PMC11775749 DOI: 10.3389/fbioe.2024.1519557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Gene therapy has emerged as a pivotal component in the treatment of diverse genetic and acquired human diseases. However, effective gene delivery remains a formidable challenge to overcome. The presence of degrading enzymes, acidic pH conditions, and the gastrointestinal mucus layer pose significant barriers for genetic therapy, necessitating exploration of alternative therapeutic options. In recent years, transdermal and transpulmonary gene delivery modalities offer promising avenues with multiple advantages, such as non-invasion, avoided liver first-pass effect and improved patient compliance. Considering the rapid development of gene therapeutics via transdermal and transpulmonary administration, here we aim to summarize the nearest advances in transdermal and transpulmonary gene drug delivery. In this review, we firstly elaborate on current delivery carrier in gene therapy. We, further, describe approaches and applications for enhancing transdermal and transpulmonary gene delivery encompassing microneedles, chemical enhancers, physical methods for transdermal administration as well as nebulized formulations, dry powder formulations, and pressurized metered dose formulations for efficient transpulmonary delivery. Last but not least, the opportunities and outlooks of gene therapy through both administrated routes are highlighted.
Collapse
Affiliation(s)
- Anni Zhang
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xuran Zhang
- Department of Orthopedics, Fuxin Center Hospital, Fuxin, Liaoning, China
| | - Jiahui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xijuan Yu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Zhijun Liu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Qin Y, Cui F, Lu Y, Yang P, Gou W, Tang Z, Lu S, Zhou HS, Luo G, Lyu X, Zhang Q. Toward precision medicine: End-to-end design and construction of integrated microneedle-based theranostic systems. J Control Release 2025; 377:354-375. [PMID: 39577466 DOI: 10.1016/j.jconrel.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024]
Abstract
With the growing demand for precision medicine and advancements in microneedle technology, microneedle-based drug delivery systems have evolved into integrated theranostic platforms. However, the development of these systems is currently limited by the absence of clear conclusions and standardized construction strategies. The end-to-end concept offers an innovative approach to theranostic systems by creating a seamless process that integrates target sampling, sensing, analysis, and on-demand drug delivery. This approach optimizes each step based on data from the others, effectively eliminating the traditional separation between drug delivery and disease monitoring. Furthermore, by incorporating artificial intelligence and machine learning, these systems can enhance reliability and efficiency in disease management, paving the way for more personalized and effective healthcare solutions. Based on the concept of end-to-end and recent advancements in theranostic systems, nanomaterials, electronic components, micro-composites, and data science, we propose a modular strategy for constructing integrated microneedle-based theranostic systems by detailing the methods and functions of each critical component, including monitoring, decision-making, and on-demand drug delivery units, though the total number of units might vary depending on the specific application. Notably, decision-making units are emerging trends for fully automatic and seamless systems and featured for integrated microneedle-based theranostic systems, which serve as a bridge of real-time monitoring, on-demand drug delivery, advanced electronic engineering, and data science for personalized disease management and remote medical application. Additionally, we discuss the challenges and prospects of integrated microneedle-based theranostic systems for precision medicine and clinical application.
Collapse
Affiliation(s)
- Yiming Qin
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Department of Dermatology and Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feiyun Cui
- School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Peng Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Weiming Gou
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zixuan Tang
- School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Shan Lu
- School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - H Susan Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Xiaoyan Lyu
- Department of Dermatology and Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qing Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
8
|
Tang H, Cheng X, Liang L, Chen BZ, Liu C, Wang Y. A stimulus responsive microneedle-based drug delivery system for cancer therapy. Biomater Sci 2024; 12:6274-6283. [PMID: 39501760 DOI: 10.1039/d4bm00741g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The intricate nature of the tumor microenvironment (TME) results in the inefficient delivery of anticancer drugs within tumor tissues, significantly compromising the therapeutic effect of cancer treatment. To address this issue, transdermal drug delivery microneedles (MNs) with high mechanical strength have emerged. Such MNs penetrate the skin barrier, enabling efficient drug delivery to tumor tissues. This approach enhances drug bioavailability, while also mitigating concerns such as liver and kidney toxicity associated with intravenous and oral drug administration. Notably, stimulus responsive MNs designed for drug delivery have the capacity to respond to various biological signals and pathological changes. This adaptability enables them to exert therapeutic effects within the TME, exploiting biochemical variations and tailoring treatment strategies to suit tumor characteristics. The present review surveys recent advancements in responsive MN systems. This comprehensive analysis serves as a valuable reference for the prospective application of smart MN drug delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Hongyu Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xueqing Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
9
|
Szabó A, De Decker I, Semey S, E.Y. Claes K, Blondeel P, Monstrey S, Dorpe JV, Van Vlierberghe S. Photo-crosslinkable polyester microneedles as sustained drug release systems toward hypertrophic scar treatment. Drug Deliv 2024; 31:2305818. [PMID: 38424728 PMCID: PMC10956933 DOI: 10.1080/10717544.2024.2305818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024] Open
Abstract
Burn injuries can result in a significant inflammatory response, often leading to hypertrophic scarring (HTS). Local drug therapies e.g. corticoid injections are advised to treat HTS, although they are invasive, operator-dependent, extremely painful and do not permit extended drug release. Polymer-based microneedle (MN) arrays can offer a viable alternative to standard care, while allowing for direct, painless dermal drug delivery with tailorable drug release profile. In the current study, we synthesized photo-crosslinkable, acrylate-endcapped urethane-based poly(ε-caprolactone) (AUP-PCL) toward the fabrication of MNs. Physico-chemical characterization (1H-NMR, evaluation of swelling, gel fraction) of the developed polymer was performed and confirmed successful acrylation of PCL-diol. Subsequently, AUP-PCL, and commercially available PCL-based microneedle arrays were fabricated for comparative evaluation of the constructs. Hydrocortisone was chosen as model drug. To enhance the drug release efficiency of the MNs, Brij®35, a nonionic surfactant was exploited. The thermal properties of the MNs were evaluated via differential scanning calorimetry. Compression testing of the arrays confirmed that the MNs stay intact upon applying a load of 7 N, which correlates to the standard dermal insertion force of MNs. The drug release profile of the arrays was evaluated, suggesting that the developed PCL arrays can offer efficient drug delivery for up to two days, while the AUP-PCL arrays can provide a release up to three weeks. Finally, the insertion of MN arrays into skin samples was performed, followed by histological analysis demonstrating the AUP-PCL MNs outperforming the PCL arrays upon providing pyramidical-shaped perforations through the epidermal layer of the skin.
Collapse
Affiliation(s)
- Anna Szabó
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Ignace De Decker
- Burn Center, Ghent University Hospital, Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Sam Semey
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Karel E.Y. Claes
- Burn Center, Ghent University Hospital, Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Phillip Blondeel
- Burn Center, Ghent University Hospital, Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Stan Monstrey
- Burn Center, Ghent University Hospital, Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Cunha J, Ventura FV, Charrueau C, Ribeiro AJ. Alternative routes for parenteral nucleic acid delivery and related hurdles: highlights in RNA delivery. Expert Opin Drug Deliv 2024; 21:1415-1439. [PMID: 39271564 DOI: 10.1080/17425247.2024.2405207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Nucleic acid-based therapies are promising advancements in medicine. They offer unparalleled efficacy in treating previously untreatable diseases through precise gene manipulation techniques. However, the challenge of achieving targeted delivery to specific cells remains a significant obstacle. AREAS COVERED This review thoroughly examines the physicochemical properties of nucleic acids, focusing on their interaction with carriers and exploring various delivery routes, including oral, pulmonary, ocular, and dermal routes. It also examines the nonviral vector delivery efficiency of nucleic acids, focusing on RNA, and provides regulatory landscapes. EXPERT OPINION The role of carriers in improving the effectiveness of nucleic acid-based therapies is emphasized. The discussion of published results covers regulatory frameworks, including insights into European Medicines Agency guidelines. It highlights cutting-edge biotechnological innovations and a quality-by-design approach that could facilitate clinical translation and smooth regulatory obstacles.
Collapse
Affiliation(s)
- Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Fátima V Ventura
- Medicines Evaluation Department, National Authority of Medicines and Health Products (INFARMED), Lisbon, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | | | - António José Ribeiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, i3s - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
12
|
Chu H, Xue J, Yang Y, Zheng H, Luo D, Li Z. Advances of Smart Stimulus-Responsive Microneedles in Cancer Treatment. SMALL METHODS 2024; 8:e2301455. [PMID: 38148309 DOI: 10.1002/smtd.202301455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Microneedles (MNs) have emerged as a highly promising technology for delivering drugs via the skin. They provide several benefits, including high drug bioavailability, non-invasiveness, painlessness, and high safety. Traditional strategies for intravenous delivery of anti-tumor drugs have risks of systemic toxicity and easy development of drug resistance, while MN technology facilitates precise delivery and on-demand release of drugs in local tissues. In addition, by further combining with stimulus-responsive materials, the construction of smart stimulus-responsive MNs can be achieved, which can respond to specific physical/chemical stimuli from the internal or external environment, thereby further improving the accuracy of tumor treatment and reducing toxicity to surrounding tissues/cells. This review systematically summarizes the classification, materials, and reaction mechanisms of stimulus-responsive MNs, outlines the benefits and challenges of various types of MNs, and details their application and latest progress in cancer treatment. Finally, the development prospects of smart MNs in tumor treatment are also discussed, bringing inspiration for future precision treatment of tumors.
Collapse
Affiliation(s)
- Huaqing Chu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Yang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
13
|
Zhang W, Jiao Y, Zhang Z, Zhang Y, Yu J, Gu Z. Transdermal gene delivery. J Control Release 2024; 371:516-529. [PMID: 38849095 DOI: 10.1016/j.jconrel.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Gene delivery has revolutionized conventional medical approaches to vaccination, cancer, and autoimmune diseases. However, current gene delivery methods are limited to either intravenous administration or direct local injections, failing to achieve well biosafety, tissue targeting, drug retention, and transfection efficiency for desired therapeutic outcomes. Transdermal drug delivery based on various delivery strategies can offer improved therapeutic potential and superior patient experiences. Recently, there has been increased foundational and clinical research focusing on the role of the transdermal route in gene delivery and exploring its impact on the efficiency of gene delivery. This review introduces the recent advances in transdermal gene delivery approaches facilitated by drug formulations and medical devices, as well as discusses their prospects.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Jiao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziru Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
14
|
Zhang Q, Liu X, He J. Applications and prospects of microneedles in tumor drug delivery. J Mater Chem B 2024; 12:3336-3355. [PMID: 38501172 DOI: 10.1039/d3tb02646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
As drug delivery devices, microneedles are used widely in the local administration of various drugs. Such drug-loaded microneedles are minimally invasive, almost painless, and have high drug delivery efficiency. In recent decades, with advancements in microneedle technology, an increasing number of adaptive, engineered, and intelligent microneedles have been designed to meet increasing clinical needs. This article summarizes the types, preparation materials, and preparation methods of microneedles, as well as the latest research progress in the application of microneedles in tumor drug delivery. This article also discusses the current challenges and improvement strategies in the use of microneedles for tumor drug delivery.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
15
|
Wang X, Wang Z, Xiao M, Li Z, Zhu Z. Advances in biomedical systems based on microneedles: design, fabrication, and application. Biomater Sci 2024; 12:530-563. [PMID: 37971423 DOI: 10.1039/d3bm01551c] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Wearable devices have become prevalent in biomedical studies due to their convenient portability and potential utility in biomarker monitoring for healthcare. Accessing interstitial fluid (ISF) across the skin barrier, microneedle (MN) is a promising minimally invasive wearable technology for transdermal sensing and drug delivery. MN has the potential to overcome the limitations of conventional transdermal drug administration, making it another prospective mode of drug delivery after oral and injectable. Subsequently, combining MN with multiple sensing approaches has led to its extensive application to detect biomarkers in ISF. In this context, employing MN platforms and control schemes to merge diagnostic and therapeutic capabilities into theranostic systems will facilitate on-demand therapy and point-of-care diagnostics, paving the way for future MN technologies. A comprehensive analysis of the growing advances of microneedles in biomedical systems is presented in this review to summarize the latest studies for academics in the field and to offer for reference the issues that need to be addressed in MN application for healthcare. Covering an array of novel studies, we discuss the following main topics: classification of microneedles in the biomedical field, considerations of MN design, current applications of microneedles in diagnosis and therapy, and the regulatory landscape and prospects of microneedles for biomedical applications. This review sheds light on the significance of microneedle-based innovations, presenting an analysis of their potential implications and contributions to the community of wearable healthcare technologies. The review provides a comprehensive understanding of the field's current state and potential, making it a valuable resource for academics and clinicians seeking to harness the full potential of MN applications.
Collapse
Affiliation(s)
- Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
16
|
Nainggolan ADC, Anjani QK, Hartrianti P, Donnelly RF, Kurniawan A, Ramadon D. Microneedle-Mediated Transdermal Delivery of Genetic Materials, Stem Cells, and Secretome: An Update and Progression. Pharmaceutics 2023; 15:2767. [PMID: 38140107 PMCID: PMC10747930 DOI: 10.3390/pharmaceutics15122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Medical practitioners commonly use oral and parenteral dosage forms to administer drugs to patients. However, these forms have certain drawbacks, particularly concerning patients' comfort and compliance. Transdermal drug delivery presents a promising solution to address these issues. Nevertheless, the stratum corneum, as the outermost skin layer, can impede drug permeation, especially for macromolecules, genetic materials, stem cells, and secretome. Microneedles, a dosage form for transdermal delivery, offer an alternative approach, particularly for biopharmaceutical products. In this review, the authors will examine the latest research on microneedle formulations designed to deliver genetic materials, stem cells, and their derivatives. Numerous studies have explored different types of microneedles and evaluated their ability to deliver these products using preclinical models. Some of these investigations have compared microneedles with conventional dosage forms, demonstrating their significant potential for advancing the development of biotherapeutics in the future.
Collapse
Affiliation(s)
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Q.K.A.); (R.F.D.)
| | - Pietradewi Hartrianti
- School of Life Sciences, Indonesia International Institute of Life Sciences, Jakarta 13210, Indonesia;
| | - Ryan F. Donnelly
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Q.K.A.); (R.F.D.)
| | - Arief Kurniawan
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; (A.D.C.N.); (A.K.)
| | - Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; (A.D.C.N.); (A.K.)
| |
Collapse
|
17
|
Xu K, Weng J, Li J, Chen X. Advances in Intelligent Stimuli-Responsive Microneedle for Biomedical Applications. Macromol Biosci 2023; 23:e2300014. [PMID: 37055877 DOI: 10.1002/mabi.202300014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Microneedles (MNs) are a new type of drug delivery method that can be regarded as an alternative to traditional transdermal drug delivery systems. Recently, MNs have attracted widespread attention for their advantages of effectiveness, safety, and painlessness. However, the functionality of traditional MNs is too monotonous and limits their application. To improve the efficiency of disease treatment and diagnosis by combining the advantages of MNs, the concept of intelligent stimulus-responsive MNs is proposed. Intelligent stimuli-responsive MNs can exhibit unique biomedical functions according to the internal and external environment changes. This review discusses the classification and principles of intelligent stimuli-responsive MNs, such as magnet, temperature, light, electricity, reactive oxygen species, pH, glucose, and protein. This review also highlights examples of intelligent stimuli-responsive MNs for biomedical applications, such as on-demand drug delivery, tissue repair, bioimaging, detection and monitoring, and photothermal therapy. These intelligent stimuli-responsive MNs offer the advantages of high biocompatibility, targeted therapy, selective detection, and precision treatment. Finally, the prospects and challenges for the application of intelligent stimuli-responsive MNs are discussed.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xingyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
18
|
Wang H, Xu J, Xiang L. Microneedle-Mediated Transcutaneous Immunization: Potential in Nucleic Acid Vaccination. Adv Healthc Mater 2023; 12:e2300339. [PMID: 37115817 DOI: 10.1002/adhm.202300339] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Efforts aimed at exploring economical and efficient vaccination have taken center stage to combat frequent epidemics worldwide. Various vaccines have been developed for infectious diseases, among which nucleic acid vaccines have attracted much attention from researchers due to their design flexibility and wide application. However, the lack of an efficient delivery system considerably limits the clinical translation of nucleic acid vaccines. As mass vaccinations via syringes are limited by low patient compliance and high costs, microneedles (MNs), which can achieve painless, cost-effective, and efficient drug delivery, can provide an ideal vaccination strategy. The MNs can break through the stratum corneum barrier in the skin and deliver vaccines to the immune cell-rich epidermis and dermis. In addition, the feasibility of MN-mediated vaccination is demonstrated in both preclinical and clinical studies and has tremendous potential for the delivery of nucleic acid vaccines. In this work, the current status of research on MN vaccines is reviewed. Moreover, the improvements of MN-mediated nucleic acid vaccination are summarized and the challenges of its clinical translation in the future are discussed.
Collapse
Affiliation(s)
- Haochen Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junhua Xu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
19
|
Tao J, Wang B, Dong Y, Chen X, Li S, Jiang T, Zhao X. Photothermal and Acid-Responsive Fucoidan-CuS Bubble Pump Microneedles for Combined CDT/PTT/CT Treatment of Melanoma. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40267-40279. [PMID: 37594128 DOI: 10.1021/acsami.3c08368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Transdermal cancer therapy faces great challenges in clinical practice due to the low drug transdermal efficiency and the unsatisfactory effect of monotherapy. Herein, we develop a novel bubble pump microneedle system (BPMN-CuS/DOX) by embedding sodium bicarbonate (NaHCO3) into hyaluronic acid microneedles (MNs) loaded with fucoidan-based copper sulfide nanoparticles (Fuc-CuS NPs) and doxorubicin (DOX). BPMN-CuS/DOX can generate CO2 bubbles triggered by an acidic tumor microenvironment for deep and rapid intradermal drug delivery. Fuc-CuS NPs exhibit excellent photothermal effect and Fenton-like catalytic activity, producing more reactive oxygen species (ROS) by photothermal therapy (PTT) and chemodynamic therapy (CDT), which enhances the antitumor efficacy of DOX and reduces the dosage of its chemotherapy (CT). Simultaneously, DOX increases intracellular hydrogen peroxide (H2O2) supplementation and promotes the sustained production of ROS. BPMN-CuS/DOX significantly inhibits melanoma both in vitro and in vivo by the combination of CDT, PTT, and CT. In short, our study significantly enhances the effectiveness of transdermal drug delivery by constructing BPMNs and provides a promising novel strategy for transdermal cancer treatment with multiple therapies.
Collapse
Affiliation(s)
- Jiaojiao Tao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Yu Dong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - XiangYan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Shuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| |
Collapse
|
20
|
Wang M, Li X, Du W, Sun M, Ling G, Zhang P. Microneedle-mediated treatment for superficial tumors by combining multiple strategies. Drug Deliv Transl Res 2023; 13:1600-1620. [PMID: 36735217 PMCID: PMC9897165 DOI: 10.1007/s13346-023-01297-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
Superficial tumors are still challenging to overcome due to the high risk and toxicity of surgery and conventional chemotherapy. Microneedles (MNs) are widely used in the treatment of superficial skin tumors (SST) due to the high penetration rate of the stratum corneum (SC), excellent biocompatibility, simple preparation process, high patient compliance, and minimal invasion. Most importantly, MNs can provide not only efficient and rarely painful delivery carriers, but also combine multi-model strategies with photothermal therapy (PTT), immunotherapy, and gene therapy for synergistic efficacy. To promote an in-depth understanding of their superiorities, this paper systematically summarized the latest application progress of MNs in the treatment of SST by delivering various types of photosensitizers, immune signal molecules, genes, and chemotherapy drugs. Just as important, the advantages, limitations, and drug release mechanisms of MNs based on different materials are introduced in the paper. In addition, the application of MN technology to clinical practice is the ultimate goal of all the work. The obstacles and possible difficulties in expanding the production of MNs and achieving clinical transformation are briefly discussed in this paper. To be anticipated, our work will provide new insights into the precise and rarely painful treatment of SST in the future.
Collapse
Affiliation(s)
- Meng Wang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaodan Li
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Wenzhen Du
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Minge Sun
- Shenyang Narnia Biomedical Technology Company, Ltd, Shenyang, 110167, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
21
|
Liu X, Song H, Sun T, Wang H. Responsive Microneedles as a New Platform for Precision Immunotherapy. Pharmaceutics 2023; 15:1407. [PMID: 37242649 PMCID: PMC10220742 DOI: 10.3390/pharmaceutics15051407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Microneedles are a well-known transdermal or transdermal drug delivery system. Different from intramuscular injection, intravenous injection, etc., the microneedle delivery system provides unique characteristics for immunotherapy administration. Microneedles can deliver immunotherapeutic agents to the epidermis and dermis, where immune cells are abundant, unlike conventional vaccine systems. Furthermore, microneedle devices can be designed to respond to certain endogenous or exogenous stimuli including pH, reactive oxygen species (ROS), enzyme, light, temperature, or mechanical force, thereby allowing controlled release of active compounds in the epidermis and dermis. In this way, multifunctional or stimuli-responsive microneedles for immunotherapy could enhance the efficacy of immune responses to prevent or mitigate disease progression and lessen systemic adverse effects on healthy tissues and organs. Since microneedles are a promising drug delivery system for accurate delivery and controlled drug release, this review focuses on the progress of using reactive microneedles for immunotherapy, especially for tumors. Limitations of current microneedle system are summarized, and the controllable administration and targeting of reactive microneedle systems are examined.
Collapse
Affiliation(s)
- Xinyang Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haohao Song
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Tairan Sun
- The Second Affiliated Hospital of Hebei North University, Zhangjiakou 075100, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Fu J, Yu W, Qian X, Wang Y, Ji J. A photocatalytic carbon monoxide-generating effervescent microneedle patch for improved transdermal chemotherapy. J Mater Chem B 2023. [PMID: 36946621 DOI: 10.1039/d2tb02613a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Carbon monoxide (CO) is regarded as a promising therapeutic agent for chemotherapy sensitization. To simultaneously achieve controllable in situ CO production and efficient chemotherapeutics delivery is of great significance. Here, we presented a polyvinylpyrrolidone (PVP) core-shell microneedle (MN) system that encapsulated the effervescent component, photocatalyst, and doxorubicin hydrochloride (Dox·HCl) for CO-sensitized chemotherapy. Upon the insertion of MNs, the effervescent component, composed of sodium bicarbonate and tartaric acid, was exposed to interstitial fluid, leading to the burst release of carbon dioxide (CO2). The generated gas not only enhanced the diffusion of Dox·HCl but also served as a substrate for the photocatalytic generation of CO. From the experimental results, the photocatalyst CuS atomic layers (CAL) displayed an effective CO2 photoreduction performance, which could realize an irradiation time/intensity-dependent CO-controlled release. Ex vivo permeation studies demonstrated that effervescent CO2 production markedly enhanced the intradermal diffusion of Dox·HCl. Eventually, the robust antitumor efficacy of this versatile MN platform was proved in B16F10-bearing nude mice. This CO-sensitized chemotherapeutic MN system offered a novel strategy for transdermal gas/drug delivery, which might provide a new direction in tumor suppression.
Collapse
Affiliation(s)
- Junzhe Fu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, P. R. China.
| | - Weijiang Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, P. R. China.
| | - Xuedan Qian
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, P. R. China.
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, P. R. China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, P. R. China.
| |
Collapse
|
23
|
Han W, Liu F, Liu G, Li H, Xu Y, Sun S. Research progress of physical transdermal enhancement techniques in tumor therapy. Chem Commun (Camb) 2023; 59:3339-3359. [PMID: 36815500 DOI: 10.1039/d2cc06219d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The advancement and popularity of transdermal drug delivery (TDD) based on the physical transdermal enhancement technique (PTET) has opened a new paradigm for local tumor treatment. The drug can be directly delivered to the tumor site through the skin, thus avoiding the toxic side effects caused by the first-pass effect and achieving high patient compliance. Further development of PTETs has provided many options for antitumor drugs and laid the foundation for future applications of wearable closed-loop targeting drug delivery systems. In this highlight, the different types of PTETs and related mechanisms, and applications of PTET-related tumor detection and therapy are highlighted. According to their type and characteristics, PTETs are categorized as follows: (1) iontophoresis, (2) electroporation, (3) ultrasound, (4) thermal ablation, and (5) microneedles. PTET-related applications in the local treatment of tumors are categorized as follows: (1) melanoma, (2) breast tumor, (3) squamous cell carcinoma, (4) cervical tumor, and (5) others. The challenges and future prospects of existing PTETs are also discussed. This highlight will provide guidance for the design of PTET-based wearable closed-loop targeting drug delivery systems and personalized therapy for tumors.
Collapse
Affiliation(s)
- Weiqiang Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116023, P. R. China.
| | - Guoxin Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
24
|
Li X, Xie X, Wu Y, Zhang Z, Liao J. Microneedles: structure, classification, and application in oral cancer theranostics. Drug Deliv Transl Res 2023:10.1007/s13346-023-01311-0. [PMID: 36892816 DOI: 10.1007/s13346-023-01311-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2023] [Indexed: 03/10/2023]
Abstract
Oral cancer is a malignant tumor that threatens the health of individuals on a global scale. Currently available clinical treatment methods, including surgery, radiotherapy, and chemotherapy, significantly impact the quality of life of patients with systemic side effects. In the treatment of oral cancer, local and efficient delivery of antineoplastic drugs or other substances (like photosensitizers) to improve the therapy effect is a potential way to optimize oral cancer treatments. As an emerging drug delivery system in recent years, microneedles (MNs) can be used for local drug delivery, offering the advantages of high efficiency, convenience, and noninvasiveness. This review briefly introduces the structures and characteristics of various types of MNs and summarizes MN preparation methods. An overview of the current research application of MNs in different cancer treatments is provided. Overall, MNs, as a means of transporting substances, demonstrate great potential in oral cancer treatments, and their promising future applications and perspectives of MNs are outlined in this review.
Collapse
Affiliation(s)
- Xintong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xi Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoyuan Zhang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Sun X, Wu T, Duan M, Yuan B, Zhu X, Wang H, Liu J. Flexible Skin Patch Enabled Tumor Hybrid Thermophysical Therapy and Adaptive Antitumor Immune Response. Adv Healthc Mater 2023; 12:e2202872. [PMID: 36515112 DOI: 10.1002/adhm.202202872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/03/2022] [Indexed: 12/15/2022]
Abstract
Innovations on materials and technologies have greatly promoted the rapid development of wearable electronics from disease diagnosis to therapeutics. For superficial skin tumors, skin-attachable patches possess the advantages of minimally invasive property, alleviative side effects, and high efficiency. The development of noninvasive techniques and devices is still in urgent demands. Here, a flexible skin patch fabricated through a facile preparation method is reported for noninvasive hybrid thermophysical therapy and adaptative immune function enhancement. The liquid metal enabled skin patch is demonstrated with high conductivity, certain stability, biocompatibility, and an enhanced adhesive merit on skin surfaces for cryoablation therapy and magnetic hyperthermia therapy. The skin patch exhibits remarkably conformable heating and cooling performance toward the treatment of 4T1 breast tumors. The magnetic resonance images also indicate the significant tumor ablation effect. Interestingly, a relatively stable proportion of both CD8+ T and CD4+ T cells in the peripheral blood is identified after tumor therapy in comparison with the decreased trend in the untreated group, representing an efficient antitumor immune response induced by the skin patch. The developed skin patch would provide a promising noninvasive approach for tumor therapies by direct tumor destruction and maintenance of the antitumor immune response.
Collapse
Affiliation(s)
- Xuyang Sun
- School of Engineering Medicine, Beihang University, Beijing, 100191, P. R. China
| | - Tao Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Minghui Duan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Bo Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiyu Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Hongzhang Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
26
|
Mbituyimana B, Ma G, Shi Z, Yang G. Polymer-based microneedle composites for enhanced non-transdermal drug delivery. APPLIED MATERIALS TODAY 2022; 29:101659. [DOI: 10.1016/j.apmt.2022.101659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Mbituyimana B, Ma G, Shi Z, Yang G. Polymeric microneedles for enhanced drug delivery in cancer therapy. BIOMATERIALS ADVANCES 2022; 142:213151. [PMID: 36244246 DOI: 10.1016/j.bioadv.2022.213151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Microneedles (MNs) have attracted the interest of researchers. Polymeric MNs offer tremendous promise as drug delivery vehicles for bio-applications because of their high loading capacity, strong patient adherence, excellent biodegradability and biocompatibility, low toxicity, and extremely cheap cost. Incorporating enhanced-property nanomaterials into polymeric MNs matrix increases their features such as better mechanical strength, sustained drug delivery, lower toxicity, and higher therapeutic effects, therefore considerably increasing their biomedical application. This paper discusses polymeric MN fabrication techniques and the present status of polymeric MNs as a delivery method for enhanced drug delivery in cancer therapeutic applications. Furthermore, the opportunities and challenges of polymeric MNs for improved drug delivery in cancer therapy are highlighted.
Collapse
Affiliation(s)
- Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangrui Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
28
|
Karim Z, Karwa P, Hiremath SRR. Polymeric microneedles for transdermal drug delivery- a review of recent studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
29
|
Zhu T, Zhang W, Jiang P, Zhou S, Wang C, Qiu L, Shi H, Cui P, Wang J. Progress in Intradermal and Transdermal Gene Therapy with Microneedles. Pharm Res 2022; 39:2475-2486. [PMID: 36008737 DOI: 10.1007/s11095-022-03376-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/17/2022] [Indexed: 01/18/2023]
Abstract
Gene therapy is one of the most widely studied treatments and has the potential to treat a variety of intractable diseases. The skin's limited permeability, as the body's initial protective barrier, drastically inhibits the delivery effect of gene medicine. Given the potential adverse effects and physicochemical features of the medications, improving generic drug penetration into the skin barrier and achieving an effective level of target tissues remains a challenge. Microneedles have made tremendous improvements in aided gene transfer and medication delivery as a unique method. Microneedles offer the advantage of being minimally invasive and painless, as well as the ability to distribute gene medicines straight through the stratum corneum. Microneedles have been used to penetrate skin tissue with various nucleic acids and medicines in recent years, allowing for a wide range of applications in the treatment of skin ailments. This review focuses on skin-related disorders and immunity, and it primarily discusses the progress of microneedle transdermal gene therapy in recent years. It also complements the current major vectors and related microneedle gene therapy applications.
Collapse
Affiliation(s)
- Ting Zhu
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Wenya Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Honglei Shi
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, People's Republic of China.
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, People's Republic of China.
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China.
| |
Collapse
|
30
|
Furuno K, Suzuki K, Sakai S. Gelatin nanofiber mats with Lipofectamine/plasmid DNA complexes for in vitro genome editing. Colloids Surf B Biointerfaces 2022; 216:112561. [PMID: 35576881 DOI: 10.1016/j.colsurfb.2022.112561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Gelatin electrospun nanofiber mats are gaining interest for applications in biomaterials science, such as tissue engineering and drug/gene delivery systems. In this study, we report the use of electrospun gelatin nanofiber mats for plasmid DNA (pDNA) delivery. Gelatin nanofiber mats were insolubilized via cross-linking with glutaraldehyde. On the cross-linked mats, human embryonic kidney-derived HEK293 cells demonstrated high viability for 7 days of culture (>95%) and were able to proliferate during that time. The Lipofectamine/pDNA complexes were immobilized on the mats through immersion in a solution, and HEK293 cells cultured on these mats expressed GFP for 7 days. Furthermore, HEK293 cells did not express GFP via the pDNA complexes released from the mats because the ability to deliver pDNA into the cells was lost. Since the mats could be used to transfect multiple types of pDNA into the cells simultaneously, we have achieved targeted genome editing using the mats. These data highlight the potential of gelatin nanofiber mats with Lipofectamine/pDNA complexes for local gene therapy via pDNA delivery as well as genome editing.
Collapse
Affiliation(s)
- Kotoko Furuno
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Keiichiro Suzuki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan; Institute for Advanced Co-Creation Studies, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan; Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
31
|
Ali M, Namjoshi S, Benson HAE, Mohammed Y, Kumeria T. Dissolvable polymer microneedles for drug delivery and diagnostics. J Control Release 2022; 347:561-589. [PMID: 35525331 DOI: 10.1016/j.jconrel.2022.04.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Dissolvable transdermal microneedles (μND) are promising micro-devices used to transport a wide selection of active compounds into the skin. To provide an effective therapeutic outcome, μNDs must pierce the human stratum corneum (~10 to 20 μm), without rupturing or bending during penetration, then release their cargo at the predetermined area and time. The ability of dissolvable μND arrays/patches to sufficiently pierce the skin is a crucial requirement, which depends on the material composition, μND geometry and fabrication techniques. This comprehensive review not only provides contemporary knowledge on the μND design approaches, but also the materials science facilitating these delivery systems and the opportunities these advanced materials can provide to enhance clinical outcomes.
Collapse
Affiliation(s)
- Masood Ali
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
| | - Sarika Namjoshi
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia; Vaxxas Pty Ltd, Brisbane, Woolloongabba, QLD 4102, Australia
| | - Heather A E Benson
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; Basil Hetzel institute for Translational Health Research, Adelaide, SA 5001, Australia.
| | - Yousuf Mohammed
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney. NSW 2052, Australia; Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
32
|
Chen Y, Yu W, Qian X, Li X, Wang Y, Ji J. Dissolving microneedles with a biphasic release of antibacterial agent and growth factor to promote wound healing. Biomater Sci 2022; 10:2409-2416. [PMID: 35384952 DOI: 10.1039/d2bm00281g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Infected wound healing is a complex and dynamic process affecting millions of people. Since wound healing contains multiple stages, it requires staged management to realize the early inhibition of infection and the subsequent promotion of wound healing. A key point is to design a biphasic release system with antibacterial agents and growth factors to promote wound regeneration. As a safe, efficient and painless transdermal drug delivery method, microneedles (MNs) have attracted widespread attention. Herein, we present dissolving MNs with the biphasic release of an antibacterial agent and a growth factor to promote wound healing. bFGF was first encapsulated in PLGA microspheres (bFGF@PLGA) and then co-loaded with free ofloxacin onto polyvinylpyrrolidone MNs. Owing to the fast dissolution of the substrate, ofloxacin was quickly released to rapidly inhibit infection, while the PLGA microspheres were left in the wound. Due to the slow degradation of PLGA, bFGF encapsulated in the PLGA microspheres was slowly released to further promote wound healing. In vivo studies demonstrated that the MNs with the biphasic release of antibacterial agent and growth factor exhibited a superior capability to promote wound healing. This biphasic release system combined with microneedles has a bright future in wound healing.
Collapse
Affiliation(s)
- Yonghang Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Weijiang Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Xuedan Qian
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Xinfang Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| |
Collapse
|
33
|
Yang J, Yang J, Gong X, Zheng Y, Yi S, Cheng Y, Li Y, Liu B, Xie X, Yi C, Jiang L. Recent Progress in Microneedles-Mediated Diagnosis, Therapy, and Theranostic Systems. Adv Healthc Mater 2022; 11:e2102547. [PMID: 35034429 DOI: 10.1002/adhm.202102547] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Indexed: 02/06/2023]
Abstract
Theranostic system combined diagnostic and therapeutic modalities is critical for the real-time monitoring of disease-related biomarkers and personalized therapy. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. They have shown attractive properties including painless skin penetration, easy self-administration, prominent therapeutic effects, and good biosafety. Herein, an overview of the microneedles-based diagnosis, therapies, and theranostic systems is given. Four microneedles-based detection methods are concluded based on the sensing mechanism: i) electrochemistry, ii) fluorometric, iii) colorimetric, and iv) Raman methods. Additionally, robust microneedles are suitable for implantable drug delivery. Microneedles-assisted transdermal drug delivery can be primarily classified as passive, active, and responsive drug release, based on the release mechanisms. Microneedles-assisted oral and implantable drug delivery mechanisms are also presented in this review. Furthermore, the key frontier developments in microneedles-mediated theranostic systems as the major selling points are emphasized in this review. These systems are classified into open-loop and closed-loop theranostic systems based on the indirectness and directness of feedback between the transdermal diagnosis and therapy, respectively. Finally, conclusions and future perspectives for next-generation microneedles-mediated theranostic systems are also discussed. Taken together, microneedle-based systems are promising as the new avenue for diagnosis, therapy, and disease-specific closed-loop theranostic applications.
Collapse
Affiliation(s)
- Jian Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Jingbo Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Xia Gong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Ying Zheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Shengzhu Yi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Yanxiang Cheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Yanjun Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Bin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Changqing Yi
- Research Institute of Sun Yat‐Sen University in Shenzhen Shenzhen 518057 P. R. China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| |
Collapse
|
34
|
Gowda BHJ, Ahmed MG, Sahebkar A, Riadi Y, Shukla R, Kesharwani P. Stimuli-Responsive Microneedles as a Transdermal Drug Delivery System: A Demand-Supply Strategy. Biomacromolecules 2022; 23:1519-1544. [PMID: 35274937 DOI: 10.1021/acs.biomac.1c01691] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microneedles are one of the most prominent approaches capable of physically disrupting the stratum corneum without devastating the deeper tissues to deliver both small molecules and macromolecules into the viable epidermis/dermis for local/systemic effects. Over the past two decades, microneedles have caught the attention of many researchers because of their outstanding advantages over oral and parenteral drug delivery systems such as self-administration, pain-free, steady-plasma concentration maintenance, avoidance of first-pass hepatic biotransformation, and so on. So far, scientists have reported various types of microneedle patches to deliver the loaded therapeutics as soon as the microneedles are inserted into the skin, regardless of the demand for therapeutics to treat a specific condition. This way of drug delivery can lead to potential risks such as poor therapeutic efficacy or drug overdose. The stimuli-responsive microneedles are the most predominant tool to achieve the on-demand/need-based drug delivery, leading to safe and effective treatment. Various natural and synthetic polymers that can undergo significant transitions such as swelling, shrinking, dissolution, or disintegration play a pivotal role in the development of stimuli-responsive microneedles. The current Review provides brief information about the history, emergence, type, and working principles of microneedles. Furthermore, it selectively discusses various exogenous and endogenous stimuli-responsive microneedles along with their mechanism of action involved in treating different disease conditions. Collaterally, the emergence of "closed-loop" combinatorial stimuli-responsive microneedle patches for precise delivery of therapeutics is meticulously canvassed. Subsequently, it covers the patents of different stimuli-responsive microneedles and further highlights the existing challenges and future perspectives concerning clinical application and large-scale production.
Collapse
Affiliation(s)
- B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 1696700, Iran.,School of Medicine, The University of Western Australia, Perth 6009, Australia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
35
|
Khan NH, Mir M, Qian L, Baloch M, Ali Khan MF, Rehman AU, Ngowi EE, Wu DD, Ji XY. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J Adv Res 2022; 36:223-247. [PMID: 35127174 PMCID: PMC8799916 DOI: 10.1016/j.jare.2021.06.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Skin cancer has been the leading type of cancer worldwide. Melanoma and non-melanoma skin cancers are now the most common types of skin cancer that have been reached to epidemic proportion. Based on the rapid prevalence of skin cancers, and lack of efficient drug delivery systems, it is essential to surge the possible ways to prevent or cure the disease. Aim of review Although surgical modalities and therapies have been made great progress in recent years, however, there is still an urgent need to alleviate its increased burden. Hence, understanding the precise pathophysiological signaling mechanisms and all other factors of such skin insults will be beneficial for the development of more efficient therapies. Key scientific concepts of review In this review, we explained new understandings about onset and development of skin cancer and described its management via polymeric micro/nano carriers-based therapies, highlighting the current key bottlenecks and future prospective in this field. In therapeutic drug/gene delivery approaches, polymeric carriers-based system is the most promising strategy. This review discusses that how polymers have successfully been exploited for development of micro/nanosized systems for efficient delivery of anticancer genes and drugs overcoming all the barriers and limitations associated with available conventional therapies. In addition to drug/gene delivery, intelligent polymeric nanocarriers platforms have also been established for combination anticancer therapies including photodynamic and photothermal, and for theranostic applications. This portfolio of latest approaches could promote the blooming growth of research and their clinical availability.
Collapse
Key Words
- 5-ALA, 5-aminolevulinic acid
- 5-FU, 5-fluorouracil
- AIDS, Acquired immune deficiency syndrome
- BCC, Basal cell carcinoma
- BCCs, Basal cell carcinomas
- Basal cell carcinoma
- CREB, response element-binding protein
- DDS, Drug delivery system
- DIM-D, Di indolyl methane derivative
- Drug delivery
- GNR-PEG-MN, PEGylated gold nanorod microneedle
- Gd, Gadolinium
- Gene delivery
- HH, Hedgehog
- HPMC, Hydroxypropyl methylcellulose
- IPM, Isopropyl myristate
- MCIR, Melanocortin-1 receptor
- MNPs, Magnetic nanoparticle
- MNs, Microneedles
- MRI, Magnetic Resonance Imaging
- MSC, Melanoma skin cancer
- Microneedles
- Mn, Manganese
- NMSC, Non melanoma skin cancer
- NPs, Nano Particles
- OTR, Organ transplant recipients
- PAMAM, Poly-amidoamines
- PAN, Polyacrylonitrile
- PATCH1, Patch
- PCL, Poly (ε-caprolactone)
- PDT, Photodynamic therapy
- PEG, Polyethylene glycol
- PLA, Poly lactic acid
- PLA-HPG, Poly (d-l-lactic acid)-hyperbranched polyglycerol
- PLGA, Poly (lactide-co-glycolide) copolymers
- PLL, Poly (L-lysine)
- Polymeric nanocarriers
- QDs, Quantum dots
- SC, Skin cancer
- SCC, Squamous cell Carcinoma
- SMO, Smoothen
- SPIO, Superparamagnetic iron oxide
- Squamous cell carcinoma
- UV, Ultra Violet
- cAMP, Cyclic adenosine monophosphate
- dPG, Dendritic polyglycerol
- hTERT, Human telomerase reverse transcriptase
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences. Henan University, Kaifeng, Henan 475004, China
| | - Maria Mir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mahnoor Baloch
- School of Natural Sciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Muhammad Farhan Ali Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim-ur- Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
36
|
Zhang P, Chen D, Li L, Sun K. Charge reversal nano-systems for tumor therapy. J Nanobiotechnology 2022; 20:31. [PMID: 35012546 PMCID: PMC8751315 DOI: 10.1186/s12951-021-01221-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
Surface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems.
Collapse
Affiliation(s)
- Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.
| | - Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Lin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd, Yantai, 264003, People's Republic of China
| |
Collapse
|
37
|
Microneedle systems for delivering nucleic acid drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022; 52:273-292. [PMID: 35003824 PMCID: PMC8726529 DOI: 10.1007/s40005-021-00558-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022]
Abstract
Background Nucleic acid-based gene therapy is a promising technology that has been used in various applications such as novel vaccination platforms for infectious/cancer diseases and cellular reprogramming because of its fast, specific, and effective properties. Despite its potential, the parenteral nucleic acid drug formulation exhibits instability and low efficacy due to various barriers, such as stability concerns related to its liquid state formulation, skin barriers, and endogenous nuclease degradation. As promising alternatives, many attempts have been made to perform nucleic acid delivery using a microneedle system. With its minimal invasiveness, microneedle can deliver nucleic acid drugs with enhanced efficacy and improved stability. Area covered This review describes nucleic acid medicines' current state and features and their delivery systems utilizing non-viral vectors and physical delivery systems. In addition, different types of microneedle delivery systems and their properties are briefly reviewed. Furthermore, recent advances of microneedle-based nucleic acid drugs, including featured vaccination applications, are described. Expert opinion Nucleic acid drugs have shown significant potential beyond the limitation of conventional small molecules, and the current COVID-19 pandemic highlights the importance of nucleic acid therapies as a novel vaccination platform. Microneedle-mediated nucleic acid drug delivery is a potential platform for less invasive nucleic acid drug delivery. Microneedle system can show enhanced efficacy, stability, and improved patient convenience through self-administration with less pain.
Collapse
|
38
|
Ruan S, Zhang Y, Feng N. Microneedle-mediated transdermal nanodelivery systems: a review. Biomater Sci 2021; 9:8065-8089. [PMID: 34752590 DOI: 10.1039/d1bm01249e] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The greatest limitation in the development of transdermal drug delivery systems is that only a few drugs can permeate the skin due to the barrier function of the stratum corneum. Active and passive methods are generally available for improving the ability of drug transdermal delivery. However, nanoparticles, as a passive approach, exhibit capacity-constrained permeation enhancement. Thus, microneedle-mediated nanoparticles possess enormous potential and broad prospects. Microneedles promote the penetration of macromolecules by creating microchannels on the skin surface. In this review, the prevailing subknowledge on microneedles (mechanism, classification, and applications of microneedles combined with nanoparticles) is discussed to provide a guideline for readers and a basic reference for further in-depth studies of this novel drug delivery system.
Collapse
Affiliation(s)
- Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
39
|
Kriplani P, Guarve K. Transdermal Drug delivery: A step towards treatment of cancer. Recent Pat Anticancer Drug Discov 2021; 17:253-267. [PMID: 34856914 DOI: 10.2174/1574892816666211202154000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Transdermal drug delivery is an emerging and tempting system over oral and hypodermic drug delivery system. With the new developments in skin penetration techniques, anticancer drugs ranging from hydrophilic macromolecules to lipophilic drugs can be administered via transdermal route to treat cancer. OBJECTIVE In the present review, various approaches to enhance the transdermal delivery of drugs is discussed including the micro and nanotechnology based transdermal formulations like chemotherapy, gene therapy, immunotherapy, phototherapy, vaccines and medical devices. Limitations and advantages of various transdermal technologies is also elaborated. METHOD In this review, patent applications and recent literature of transdermal drug delivery systems employed to cure mainly cancer are covered. RESULTS Transdermal drug delivery systems have proved their potential to cure cancer. They increase the bioavailability of drug by site specific drug delivery and can reduce the side effects/toxicity associated with anticancer drugs. CONCLUSION The potential of transdermal drug delivery systems to carry the drug may unclutter novel ways for therapeutic intercessions in various tumors.
Collapse
Affiliation(s)
- Priyanka Kriplani
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana. India
| | - Kumar Guarve
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana. India
| |
Collapse
|
40
|
Wang C, Jiang X, Zeng Y, Terry RN, Li W. Rapidly separable microneedle patches for controlled release of therapeutics for long-acting therapies. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
41
|
Kang NW, Kim S, Lee JY, Kim KT, Choi Y, Oh Y, Kim J, Kim DD, Park JH. Microneedles for drug delivery: recent advances in materials and geometry for preclinical and clinical studies. Expert Opin Drug Deliv 2021; 18:929-947. [PMID: 32975144 DOI: 10.1080/17425247.2021.1828860] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION A microneedle array patch (MAP) has been studied as a means for delivering drugs or vaccines and has shown superior delivery efficiency compared to the conventional transdermal drug delivery system (TDD). This paper reviews recent advancements in the development of MAPs, with a focus on their size, shapes, and materials in preclinical and clinical studies for pharmaceutics. AREA COVERED We classified MAPs for drug delivery into four types: coated, dissolving, separable, and swellable. We covered their recent developments in materials and geometry in preclinical and clinical studies. EXPERT OPINION The design of MAPs needs to be determined based on what properties would be effective for the target diseases and purposes. In addition, in preclinical studies, it is necessary to consider not only the novelty of the formulations but also the feasibility of clinical application. Currently, clinical studies of microneedles loaded with various drugs and vaccines are in progress. When the regulation of pharmaceutical microneedles is established and more clinical studies are published, more drugs will be developed as microneedle products and clinical research will proceed. With these considerations, the microneedle array patch will be a better option for drug delivery.
Collapse
Affiliation(s)
- Nae-Won Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungho Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Taek Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Yuji Choi
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Yujeong Oh
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Jongchan Kim
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jung-Hwan Park
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
42
|
Yadav PR, Munni MN, Campbell L, Mostofa G, Dobson L, Shittu M, Pattanayek SK, Uddin MJ, Das DB. Translation of Polymeric Microneedles for Treatment of Human Diseases: Recent Trends, Progress, and Challenges. Pharmaceutics 2021; 13:1132. [PMID: 34452093 PMCID: PMC8401662 DOI: 10.3390/pharmaceutics13081132] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
The ongoing search for biodegradable and biocompatible microneedles (MNs) that are strong enough to penetrate skin barriers, easy to prepare, and can be translated for clinical use continues. As such, this review paper is focused upon discussing the key points (e.g., choice polymeric MNs) for the translation of MNs from laboratory to clinical practice. The review reveals that polymers are most appropriately used for dissolvable and swellable MNs due to their wide range of tunable properties and that natural polymers are an ideal material choice as they structurally mimic native cellular environments. It has also been concluded that natural and synthetic polymer combinations are useful as polymers usually lack mechanical strength, stability, or other desired properties for the fabrication and insertion of MNs. This review evaluates fabrication methods and materials choice, disease and health conditions, clinical challenges, and the future of MNs in public healthcare services, focusing on literature from the last decade.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India;
| | | | - Lauryn Campbell
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Golam Mostofa
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
| | - Lewis Dobson
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Morayo Shittu
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | | | - Md. Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| |
Collapse
|
43
|
Makvandi P, Jamaledin R, Chen G, Baghbantaraghdari Z, Zare EN, Di Natale C, Onesto V, Vecchione R, Lee J, Tay FR, Netti P, Mattoli V, Jaklenec A, Gu Z, Langer R. Stimuli-responsive transdermal microneedle patches. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 47:206-222. [PMID: 36338772 PMCID: PMC9635273 DOI: 10.1016/j.mattod.2021.03.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microneedle (MN) patches consisting of miniature needles have emerged as a promising tool to perforate the stratum corneum and translocate biomolecules into the dermis in a minimally invasive manner. Stimuli-responsive MN patches represent emerging drug delivery systems that release cargos on-demand as a response to internal or external triggers. In this review, a variety of stimuli-responsive MN patches for controlled drug release are introduced, covering the mechanisms of action toward different indications. Future opportunities and challenges with respect to clinical translation are also discussed.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Guojun Chen
- Department of Bioengineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Biomedical Engineering, and the Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Zahra Baghbantaraghdari
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | | | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Jesse Lee
- Department of Biomedical Engineering, and the Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Franklin R. Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Paolo Netti
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhen Gu
- Department of Bioengineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095, United States
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
44
|
Yu W, Li X, Huang Y, Chen Y, Gao Q, Wang Y, Ji J. Build an implanted "arsenal": detachable microneedles for NIR-triggered cancer photothermo-chemotherapy. Biomater Sci 2021; 9:4737-4745. [PMID: 34036974 DOI: 10.1039/d1bm00520k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The current trend in tumor research is shifting from monotherapy to multimodal therapy. However, how to achieve on-demand drug delivery and minimize the invasiveness of treatment are still big challenges. Herein, we present a detachable microneedles (MNs) system, which consists of polycaprolactone (PCL) needles and polyvinylpyrrolidone/poly (vinyl alcohol) substrate, to build an implanted drug depot for on-demand photothermo-chemotherapy. Owing to the dissolvability of the substrate, detachable MNs can intradermally implant PCL needles loaded with photothermal conversion agent Prussian blue nanocubes (PB NCs) and chemotherapeutics doxorubicin hydrochloride (Dox·HCl). Once near-infrared light irradiates, PB NCs could translate light to local regional hyperthermia, which not only ablates cancer cells but also meltPCL to accelerate the diffusion of Dox·HCl. These MNs displayed a stable and repeatable photothermal effect under NIR irradiation. The ex vivo experiments using isolated swine skin demonstrated the as needed Dox·HCl delivery triggered by NIR light. Moreover, the robust antitumor efficacy of the MN system was proved in KB tumor-bearing nude mice under three timed NIR irradiation. Therefore, the developed detachable MNs which could build implanted "arsenal" for on-demand photothermo-chemotherapy have a bright future in tumor suppression.
Collapse
Affiliation(s)
- Weijiang Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, P. R. China.
| | - Xinfang Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, P. R. China.
| | - Yan Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, P. R. China.
| | - Yonghang Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, P. R. China.
| | - Qiang Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, P. R. China.
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, P. R. China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, P. R. China.
| |
Collapse
|
45
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
46
|
Wang R, Bian Q, Xu Y, Xu D, Gao J. Recent advances in mechanical force-assisted transdermal delivery of macromolecular drugs. Int J Pharm 2021; 602:120598. [PMID: 33862129 DOI: 10.1016/j.ijpharm.2021.120598] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
The transdermal delivery of macromolecular drugs has become one of the focused topics in pharmaceutical research since it enables highly specific and effective delivery, while avoiding the pain and needle phobia associated with injection, or incidences like drug degradation and low bioavailability of oral administration. However, the passive absorption of macromolecular drugs via skin is highly restricted by the stratum corneum owing to high molecular weight. Therefore, various strategies have been extensively developed and conducted to facilitate the transdermal delivery of macromolecular drugs, among which, mechanical force-assisted techniques occupy dominant positions. Such techniques include ultrasound, needle-free jet injection, temporary pressure and microneedles. In this review, we focus on recent transdermal enhancing strategies utilizing mechanical force, and summarize their mechanisms, advantages, limitations and clinical applications respectively.
Collapse
Affiliation(s)
- Ruxuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Donghang Xu
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, China.
| |
Collapse
|
47
|
Peña-Juárez MC, Guadarrama-Escobar OR, Escobar-Chávez JJ. Transdermal Delivery Systems for Biomolecules. J Pharm Innov 2021; 17:319-332. [PMID: 33425065 PMCID: PMC7786146 DOI: 10.1007/s12247-020-09525-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2020] [Indexed: 01/12/2023]
Abstract
Purpose The present review article focuses on highlighting the main technologies used as tools that improve the delivery of transdermal biomolecules, addressing them from the point of view of research in the development of transdermal systems that use physical and chemical permeation enhancers and nanocarrier systems or a combination of them. Results Transdermal drug delivery systems have increased in importance since the late 1970s when their use was approved by the Food and Drug Administration (FDA). They appeared to be an alternative resource for the administration of many potent drugs. The first transdermal drug delivery system used for biomolecules was for the treatment of hormonal disorders. Biomolecules have been used primarily in many treatments for cancer and diabetes, vaccines, hormonal disorders, and contraception. Conclusions The latest technologies that have used such transdermal biomolecule transporters include electrical methods (physical penetration enhancers), some chemical penetration enhancers and nanocarriers. All of them allow the maintenance of the physical and chemical properties of the main proteins and peptides through these clinical treatments, allowing their efficient storage, transport, and release and ensuring the achievement of their target and better results in the treatment of many diseases. Graphical abstract
Collapse
Affiliation(s)
- Ma. Concepción Peña-Juárez
- Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Unidad de Investigación Multidisciplinaria, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, México, Estado de México Mexico
| | - Omar Rodrigo Guadarrama-Escobar
- Sección de Estudios de Posgrado e Investigación de la Escuela Nacional de Ciencias Biológicas. Programa de Posgrado: Doctorado en Ciencias Químico Biológicas-Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Col. Santo Tomás C. P. 11340, Alcaldía Miguel Hidalgo, Ciudad de México, Mexico
| | - José Juan Escobar-Chávez
- Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Unidad de Investigación Multidisciplinaria, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, México, Estado de México Mexico
| |
Collapse
|
48
|
Pahal S, Badnikar K, Ghate V, Bhutani U, Nayak MM, Subramanyam DN, Vemula PK. Microneedles for Extended Transdermal Therapeutics: A Route to Advanced Healthcare. Eur J Pharm Biopharm 2021; 159:151-169. [PMID: 33388372 DOI: 10.1016/j.ejpb.2020.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Sustained release of drugs over a pre-determined period is required to maintain an effective therapeutic dose for variety of drug delivery applications. Transdermal devices such as polymeric microneedle patches and other microneedle-based devices have been utilized for sustained release of their payload. Swift clearing of drugs can be prevented either by designing a slow-degrading polymeric matrix or by providing physiochemical triggers to different microneedle-based devices for on-demand release. These long-acting transdermal devices prevent the burst release of drugs. This review highlights the recent advances of microneedle-based devices for sustained release of vaccines, hormones, and antiretrovirals with their prospective safe clinical translation.
Collapse
Affiliation(s)
- Suman Pahal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India.
| | - Kedar Badnikar
- Department of Electronics Systems Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vivek Ghate
- Department of Electronics Systems Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Utkarsh Bhutani
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
| | - Mangalore Manjunatha Nayak
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India.
| |
Collapse
|
49
|
Li X, Xu Q, Wang J, Zhang P, Wang Y, Ji J. A gene-coated microneedle patch based on industrialized ultrasonic spraying technology with a polycation vector to improve antitumor efficacy. J Mater Chem B 2021; 9:5528-5536. [PMID: 34161403 DOI: 10.1039/d1tb00512j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A coated microneedle patch is a reliable way to load gene on a surface as a transdermal gene delivery platform. But there are many limitations to the traditional methods to fabricate a coated microneedle patch, such as the fact that they are time consuming or the difficulty in controlling the loading content. In this research, ultrasonic spraying technology, as an industrialized production method, was first used to fabricate a gene-coated microneedle patch. First, the p53 expression plasmid (p53 DNA) was ultrasonically sprayed on a polycaprolactone (PCL) microneedle patch (D@MNP). To promote the transfection efficiency, polycation polyethylenimine (PEI), as a vector, was then ultrasonically sprayed on D@MNP (P@D@MNP). From the experimental results, although two layers were sprayed step by step, no obvious stratification could be observed. The vector PEI interweaved with genes and inhibited the gene release profile, but it changed the released naked genes to positively charged complexes, which would promote gene transfection efficiency. In subsequent in vivo experiments, the anti-tumor efficacy of the "P@D@MNP treated group" could reach 84.7%, although it had the lowest gene release profile. In contrast, the anti-tumor efficacy of the "intravenous injection group" and "D@MNP treated group" was only 24.3% and 59.3%, respectively. Overall, P@D@MNP was a safe and efficient device to treat the subdermal tumor. Ultrasonic spraying technology provided an industrialized method to fabricate the coated microneedle patch as a transdermal gene/drug delivery platform.
Collapse
Affiliation(s)
- Xinfang Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, P. R. China.
| | - Qinan Xu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, P. R. China.
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, P. R. China.
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, P. R. China.
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, P. R. China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, P. R. China.
| |
Collapse
|
50
|
Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200042] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yao Yang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Weiwei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Ping Huang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Xiaowei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Lin Mei
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
- Tianjin Key Laboratory of Biomedical Materials Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy Institute of Biomedical Engineering Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| |
Collapse
|