1
|
Liu Z, Chen J, Xu M, Ho S, Wei Y, Ho HP, Yong KT. Engineered multi-domain lipid nanoparticles for targeted delivery. Chem Soc Rev 2025. [PMID: 40390667 DOI: 10.1039/d4cs00891j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Engineered lipid nanoparticles (LNPs) represent a breakthrough in targeted drug delivery, enabling precise spatiotemporal control essential to treat complex diseases such as cancer and genetic disorders. However, the complexity of the delivery process-spanning diverse targeting strategies and biological barriers-poses significant challenges to optimizing their design. To address these, this review introduces a multi-domain framework that dissects LNPs into four domains: structure, surface, payload, and environment. Engineering challenges, functional mechanisms, and characterization strategies are analyzed across each domain, along with a discussion of advantages, limitations, and in vivo fate (e.g., biodistribution and clearance). The framework also facilitates comparisons with natural exosomes and exploration of alternative administration routes, such as intranasal and intraocular delivery. We highlight current characterization techniques, such as cryo-TEM and multiscale molecular dynamics simulations, as well as the recently emerging artificial intelligence (AI) applications-ranging from LNP structure screening to the prospective use of generative models for de novo design beyond traditional experimental and simulation paradigms. Finally, we examine how engineered LNPs integrate active, passive, endogenous, and stimuli-responsive targeting mechanisms to achieve programmable delivery, potentially surpassing biological sophistication in therapeutic performance.
Collapse
Affiliation(s)
- Zhaoyu Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China.
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Jingxun Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China.
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Mingkun Xu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China
| | - Sherwin Ho
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, 90095, USA.
| | - Yuanyuan Wei
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, 90095, USA.
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China.
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
2
|
Huayamares SG, Lian L, Rab R, Hou Y, Radmand A, Kim H, Zenhausern R, Achyut BR, Gilbert Ross M, Lokugamage MP, Loughrey D, Peck HE, Echeverri ES, Da Silva Sanchez AJ, Shajii A, Li A, Tiegreen KE, Santangelo PJ, Sorscher EJ, Dahlman JE. Nanoparticle delivery of a prodrug-activating bacterial enzyme leads to anti-tumor responses. Nat Commun 2025; 16:3490. [PMID: 40221395 PMCID: PMC11993580 DOI: 10.1038/s41467-025-58548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Most cancer patients diagnosed with late-stage head and neck squamous cell carcinoma are treated with chemoradiotherapy, which can lead to toxicity. One potential alternative is tumor-limited conversion of a prodrug into its cytotoxic form. We reason this could be achieved by transient and tumor-specific expression of purine nucleoside phosphorylase (PNP), an Escherichia coli enzyme that converts fludarabine into 2-fluoroadenine, a potent cytotoxic drug. To efficiently express bacterial PNP in tumors, we evaluate 44 chemically distinct lipid nanoparticles (LNPs) using species-agnostic DNA barcoding in tumor-bearing mice. Our lead LNP, designated LNP intratumoral (LNPIT), delivers mRNA that leads to PNP expression in vivo. Additionally, in tumor cells transfected with LNPIT, we observe upregulated pathways related to RNA and protein metabolism, providing insight into the tumor cell response to LNPs in vivo. When mice are treated with LNPIT-PNP, then subsequently given fludarabine phosphate, we observe anti-tumor responses. These data are consistent with an approach in which LNP-mRNA expression of a bacterial enzyme activates a prodrug in solid tumors.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Regina Rab
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yuning Hou
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Afsane Radmand
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan Zenhausern
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Bhagelu R Achyut
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Melissa P Lokugamage
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Alejandro J Da Silva Sanchez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aram Shajii
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Andrea Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Karen E Tiegreen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
O'Brien Laramy M, Foley DA, Pak RH, Lewis JA, McKinney E, Egan PM, Yerabolu R, Dane E, Dirat O, Saunders Gorka L, Martinelli JR, Moussa EM, Barthuet J. Chemistry, manufacturing and controls strategies for using novel excipients in lipid nanoparticles. NATURE NANOTECHNOLOGY 2025; 20:331-344. [PMID: 39821140 DOI: 10.1038/s41565-024-01833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/30/2024] [Indexed: 01/19/2025]
Abstract
Lipid nanoparticles (LNPs) for nucleic acid delivery often use novel lipids as functional excipients to modulate the biodistribution, pharmacokinetics, pharmacodynamics and efficacy of the nucleic acid. Novel excipients used in pharmaceutical products are subject to heightened regulatory scrutiny and often require data packages comparable to an active pharmaceutical ingredient. Although these regulatory requirements may help to ensure patient safety they also create economic and procedural barriers that can disincentivize innovation and delay clinical investigation. Despite the unique structural and functional role of lipid excipients in LNPs, there is limited specific global regulatory guidance, which adds uncertainty and risk to the development of LNPs. In this Perspective we provide an industry view on the chemistry, manufacturing and controls challenges that pharmaceutical companies face in the use of novel lipid excipients at each stage of development, and propose consensus recommendations on how to streamline and clarify development and regulatory expectations.
Collapse
Affiliation(s)
- Matthew O'Brien Laramy
- Synthetic Molecule Pharmaceutical Sciences, Genentech Early Research and Development, Genentech, Inc., South San Francisco, CA, USA.
| | - David A Foley
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, USA.
| | - Roger H Pak
- Biotherapeutics Pharmaceutical Research and Development, Pfizer, Inc., Andover, MA, USA
| | - Jacob A Lewis
- Drug Product Technologies, Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Eric McKinney
- CMC Regulatory Affairs, Alnylam Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Patricia M Egan
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | | | - Eric Dane
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Olivier Dirat
- Global Regulatory Sciences CMC Advisory Office, Pfizer, Inc., Sandwich, UK
| | | | | | - Ehab M Moussa
- Biologics Drug Product Development, AbbVie Inc., North Chicago, IL, USA
| | - Julie Barthuet
- Global Regulatory Affairs CMC, Sanofi, Marcy-l'Etoile, France
| |
Collapse
|
4
|
Kim EH, Teerdhala SV, Padilla MS, Joseph RA, Li JJ, Haley RM, Mitchell MJ. Lipid nanoparticle-mediated RNA delivery for immune cell modulation. Eur J Immunol 2024; 54:e2451008. [PMID: 39279550 PMCID: PMC11628889 DOI: 10.1002/eji.202451008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as the preeminent nonviral drug delivery vehicles for nucleic acid therapeutics, as exemplified by their usage in the mRNA COVID-19 vaccines. As a safe and highly modular delivery platform, LNPs are attractive for a wide range of applications. In addition to vaccines, LNPs are being utilized as platforms for other immunoengineering efforts, especially as cancer immunotherapies by modulating immune cells and their functionality via nucleic acid delivery. In this review, we focus on the methods and applications of LNP-based immunotherapy in five cell types: T cells, NK cells, macrophages, stem cells, and dendritic cells. Each of these cell types has wide-reaching applications in immunotherapy but comes with unique challenges and delivery barriers. By combining knowledge of immunology and nanotechnology, LNPs can be developed for improved immune cell targeting and transfection, ultimately working toward novel clinical therapeutics.
Collapse
Affiliation(s)
- Emily H. Kim
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sridatta V. Teerdhala
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Marshall S. Padilla
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ryann A. Joseph
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jacqueline J. Li
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Rebecca M. Haley
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Michael J. Mitchell
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Abramson Cancer CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Cellular ImmunotherapiesPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Institute for RNA InnovationPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for ImmunologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Cardiovascular InstitutePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Regenerative MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
5
|
Mrksich K, Padilla MS, Mitchell MJ. Breaking the final barrier: Evolution of cationic and ionizable lipid structure in lipid nanoparticles to escape the endosome. Adv Drug Deliv Rev 2024; 214:115446. [PMID: 39293650 PMCID: PMC11900896 DOI: 10.1016/j.addr.2024.115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/18/2024] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
In the past decade, nucleic acid therapies have seen a boon in development and clinical translation largely due to advances in nanotechnology that have enabled their safe and targeted delivery. Nanoparticles can protect nucleic acids from degradation by serum enzymes and can facilitate entry into cells. Still, achieving endosomal escape to allow nucleic acids to enter the cytoplasm has remained a significant barrier, where less than 5% of nanoparticles within the endo-lysosomal pathway are able to transfer their cargo to the cytosol. Lipid-based drug delivery vehicles, particularly lipid nanoparticles (LNPs), have been optimized to achieve potent endosomal escape, and thus have been the vector of choice in the clinic as demonstrated by their utilization in the COVID-19 mRNA vaccines. The success of LNPs is in large part due to the rational design of lipids that can specifically overcome endosomal barriers. In this review, we chart the evolution of lipid structure from cationic lipids to ionizable lipids, focusing on structure-function relationships, with a focus on how they relate to endosomal escape. Additionally, we examine recent advancements in ionizable lipid structure as well as discuss the future of lipid design.
Collapse
Affiliation(s)
- Kaitlin Mrksich
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marshall S Padilla
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Wei PS, Thota N, John G, Chang E, Lee S, Wang Y, Ma Z, Tsai YH, Mei KC. Enhancing RNA-lipid nanoparticle delivery: Organ- and cell-specificity and barcoding strategies. J Control Release 2024; 375:366-388. [PMID: 39179112 PMCID: PMC11972657 DOI: 10.1016/j.jconrel.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Recent advancements in RNA therapeutics highlight the critical need for precision gene delivery systems that target specific organs and cells. Lipid nanoparticles (LNPs) have emerged as key vectors in delivering mRNA and siRNA, offering protection against enzymatic degradation, enabling targeted delivery and cellular uptake, and facilitating RNA cargo release into the cytosol. This review discusses the development and optimization of organ- and cell-specific LNPs, focusing on their design, mechanisms of action, and therapeutic applications. We explore innovations such as DNA/RNA barcoding, which facilitates high-throughput screening and precise adjustments in formulations. We address major challenges, including improving endosomal escape, minimizing off-target effects, and enhancing delivery efficiencies. Notable clinical trials and recent FDA approvals illustrate the practical applications and future potential of LNP-based RNA therapies. Our findings suggest that while considerable progress has been made, continued research is essential to resolve existing limitations and bridge the gap between preclinical and clinical evaluation of the safety and efficacy of RNA therapeutics. This review highlights the dynamic progress in LNP research. It outlines a roadmap for future advancements in RNA-based precision medicine.
Collapse
Affiliation(s)
- Pu-Sheng Wei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Nagasri Thota
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Greshma John
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Evelyn Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Sunjae Lee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Yuanjun Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Zitao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Yu-Hsuan Tsai
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Kuo-Ching Mei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA.
| |
Collapse
|
7
|
Wang J, Ding Y, Chong K, Cui M, Cao Z, Tang C, Tian Z, Hu Y, Zhao Y, Jiang S. Recent Advances in Lipid Nanoparticles and Their Safety Concerns for mRNA Delivery. Vaccines (Basel) 2024; 12:1148. [PMID: 39460315 PMCID: PMC11510967 DOI: 10.3390/vaccines12101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION The advent of lipid nanoparticles (LNPs) as a delivery platform for mRNA therapeutics has revolutionized the biomedical field, particularly in treating infectious diseases, cancer, genetic disorders, and metabolic diseases. Recent Advances in Therapeutic LNPs: LNPs, composed of ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG) lipids, facilitate efficient cellular uptake and cytosolic release of mRNA while mitigating degradation by nucleases. However, as synthetic entities, LNPs face challenges that alter their therapeutic efficacy and safety concerns. Toxicity/Reactogenicity/Immunogenicity: This review provides a comprehensive overview of the latest advancements in LNP research, focusing on preclinical safety assessments encompassing toxicity, reactogenicity, and immunogenicity. Summary and Outlook: Additionally, it outlines potential strategies for addressing these challenges and offers insights into future research directions for enhancing the application of LNPs in mRNA therapeutics.
Collapse
Affiliation(s)
- Jialiang Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yaopeng Ding
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kellie Chong
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (K.C.)
| | - Meng Cui
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zeyu Cao
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chenjue Tang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zhen Tian
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yuping Hu
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (K.C.)
| | - Yu Zhao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Lokras AG, Bobak TR, Baghel SS, Sebastiani F, Foged C. Advances in the design and delivery of RNA vaccines for infectious diseases. Adv Drug Deliv Rev 2024; 213:115419. [PMID: 39111358 DOI: 10.1016/j.addr.2024.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
RNA medicines represent a paradigm shift in treatment and prevention of critical diseases of global significance, e.g., infectious diseases. The highly successful messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed at record speed during the coronavirus disease 2019 pandemic. A consequence of this is exceptionally shortened vaccine development times, which in combination with adaptability makes the RNA vaccine technology highly attractive against infectious diseases and for pandemic preparedness. Here, we review state of the art in the design and delivery of RNA vaccines for infectious diseases based on different RNA modalities, including linear mRNA, self-amplifying RNA, trans-amplifying RNA, and circular RNA. We provide an overview of the clinical pipeline of RNA vaccines for infectious diseases, and present analytical procedures, which are paramount for characterizing quality attributes and guaranteeing their quality, and we discuss future perspectives for using RNA vaccines to combat pathogens beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Abhijeet Girish Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Thomas Rønnemoes Bobak
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Saahil Sandeep Baghel
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Federica Sebastiani
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Division of Physical Chemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
9
|
Papadopoulou P, Arias-Alpizar G, Weeda P, Poppe T, van Klaveren N, Slíva T, Aschmann D, van Os W, Zhang Y, Moradi MA, Sommerdijk N, Campbell F, Kros A. Structure-function relationship of phase-separated liposomes containing diacylglycerol analogues. Biomater Sci 2024; 12:5023-5035. [PMID: 39177657 DOI: 10.1039/d4bm00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The composition and morphology of lipid-based nanoparticles can influence their overall in vivo behavior. Previously, we demonstrated that phase separation in liposomes composed of DSPC and a diacylglycerol lipid analogue (DOaG) drives the in vivo biodistribution towards a specific subset of endothelial cells in zebrafish embryos. In the absence of traditional targeting functionalities (e.g., antibodies, ligands), this selectivity is mediated solely by the unique liposome morphology and composition, characterized by a DOaG-rich lipid droplet within the DSPC-rich phospholipid bilayer. The phase separation is induced due to the geometry of DOaG lipid and its ability to create non-bilayer phases in lipid membranes. To investigate the underlying principles of phase separation and to optimize the liposome colloidal stability, we performed a structure-function relationship study by synthesizing a library of DOaG analogues with varying molecular properties, such as the number, length and sn-position of the acyl chains, as well as the degree of saturation or carbonyl substituents. We assessed the ability of these lipid analogues to assemble into phase-separated liposomes and studied their morphology, colloidal stability, and in vivo biodistribution in zebrafish embryos. We found that analogues containing unsaturated, medium length (C16-C18) fatty acids were required to obtain colloidally stable, phase-separated liposomes with cell-specific biodistribution patterns. Moreover, we observed that using the pure DOaG isomer, with acyl chains at the sn-1,3 positions, leads to more colloidally stable liposomes than when a mixture of sn-1,2 and sn-1,3 isomers is used. Similarly, we observed that incorporating a DOaG analogue with fatty tails shorter than DSPC, as well as PEGylation, endows liposomes with long term stability while retaining cell-selective biodistribution. Diacylglycerols are known to promote fusion, lipid polymorphism, signaling and protein recruitment on lipid membranes. In this study, we showed that diacylglycerol derivatives can induce phase separation in liposomes, unlocking the potential for cell-specific targeting in vivo. We believe that these findings can be the foundation for future use of diacylglycerols in lipid-based nanomedicines and could lead to the development of novel targeted delivery strategies.
Collapse
Affiliation(s)
- Panagiota Papadopoulou
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Gabriela Arias-Alpizar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Pim Weeda
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Thijs Poppe
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Niels van Klaveren
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Tomas Slíva
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Dennis Aschmann
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Winant van Os
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Yun Zhang
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Mohammad-Amin Moradi
- Materials and Interface Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
10
|
Zeng Y, Gao Y, He L, Ge W, Wang X, Ma T, Xie X. Smart delivery vehicles for cancer: categories, unique roles and therapeutic strategies. NANOSCALE ADVANCES 2024; 6:4275-4308. [PMID: 39170969 PMCID: PMC11334973 DOI: 10.1039/d4na00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 08/23/2024]
Abstract
Chemotherapy and surgery remain the primary treatment modalities for cancers; however, these techniques have drawbacks, such as cancer recurrence and toxic side effects, necessitating more efficient cancer treatment strategies. Recent advancements in research and medical technology have provided novel insights and expanded our understanding of cancer development; consequently, scholars have investigated several delivery vehicles for cancer therapy to improve the efficiency of cancer treatment and patient outcomes. Herein, we summarize several types of smart therapeutic carriers and elaborate on the mechanism underlying drug delivery. We reveal the advantages of smart therapeutic carriers for cancer treatment, focus on their effectiveness in cancer immunotherapy, and discuss the application of smart cancer therapy vehicles in combination with other emerging therapeutic strategies for cancer treatment. Finally, we summarize the bottlenecks encountered in the development of smart cancer therapeutic vehicles and suggest directions for future research. This review will promote progress in smart cancer therapy and facilitate related research.
Collapse
Affiliation(s)
- Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Liming He
- Department of Stomatology, Changsha Stomatological Hospital Changsha 410004 P. R. China
| | - Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xinying Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Tao Ma
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| |
Collapse
|
11
|
Qian R, Ullah A, Cui J, Cai X, Cao J, Wu L, Shen S. Synthesis of novel cholesterol-based ionizable lipids for mRNA delivery. Colloids Surf B Biointerfaces 2024; 240:113980. [PMID: 38781845 DOI: 10.1016/j.colsurfb.2024.113980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The safe and effective delivery of messenger ribonucleic acid (mRNA) is crucial for its therapeutic effects in vivo. In this study, we developed a new type of ionizable lipid S-1, which contains an amino head, a cholesterol matrix, and a long hydrophobic carbon tail. We employed microfluidics to rapidly mix an ethanol phase containing S-1 lipid with an aqueous mRNA to form mRNA/S-1 lipid nanoparticles (LNPs, 100-200 nm). We observed low cytotoxicity and high transfection efficiency in RAW264.7 and HCT-116 cell lines for mRNA/S-1 LNPs, comparable to mRNA/SM-102 LNPs. Based on the obtained findings, mRNA/S-1 LNPs have good stability, low cytotoxicity, high transfection efficiency, and enhanced cellular uptake. The synthesized S-1 lipid ensures efficient assembly of lipid nanoparticles, protects mRNA from RNase degradation, and enables the delivery of mRNA into the cytoplasm for translation.
Collapse
Affiliation(s)
- Rui Qian
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Aftab Ullah
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China; School of Medicine, Huaqiao University, No. 269 Chenghua North Rd., Quanzhou, Fujian Province 362021, China
| | - Junming Cui
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinxi Cai
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jin Cao
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lin Wu
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Song Shen
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
12
|
Rahn HP, Sun J, Li Z, Waymouth RM, Levy R, Wender PA. Isoprenoid CARTs: In Vitro and In Vivo mRNA Delivery by Charge-Altering Releasable Transporters Functionalized with Archaea-inspired Branched Lipids. Biomacromolecules 2024; 25:4305-4316. [PMID: 38814265 DOI: 10.1021/acs.biomac.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The delivery of oligonucleotides across biological barriers is a challenge of unsurpassed significance at the interface of materials science and medicine, with emerging clinical utility in prophylactic and therapeutic vaccinations, immunotherapies, genome editing, and cell rejuvenation. Here, we address the role of readily available branched lipids in the design, synthesis, and evaluation of isoprenoid charge-altering releasable transporters (CARTs), a pH-responsive oligomeric nanoparticle delivery system for RNA. Systematic variation of the lipid block reveals an emergent relationship between the lipid block and the neutralization kinetics of the polycationic block. Unexpectedly, iA21A11, a CART with the smallest lipid side chain, isoamyl-, was identified as the lead isoprenoid CART for the in vitro transfection of immortalized lymphoblastic cell lines. When administered intramuscularly in a murine model, iA21A11-mRNA complexes induce higher protein expression levels than our previous lead CART, ONA. Isoprenoid CARTs represent a new delivery platform for RNA vaccines and other polyanion-based therapeutics.
Collapse
Affiliation(s)
- Harrison P Rahn
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jiuzhi Sun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Zhijian Li
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ronald Levy
- Stanford Cancer Institute, Division of Oncology, Department of Medicine, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Li W, Wang C, Zhang Y, Lu Y. Lipid Nanocarrier-Based mRNA Therapy: Challenges and Promise for Clinical Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310531. [PMID: 38287729 DOI: 10.1002/smll.202310531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Due to the outbreak of novel coronavirus pneumonia, messenger RNA (mRNA) technology has attracted heated attention. A specific, safe, and efficient mRNA delivery system is needed. Lipid nanocarriers have become attractive carriers for mRNA delivery due to their high delivery efficiency, few side effects, and easy modification to change their structures and functions. To achieve the desired biological effect, lipid nanocarriers must reach the designated location for effective drug delivery. Therefore, the effects of the composition of lipid nanocarriers on their key properties are briefly reviewed. In addition, the progress of smart drug delivery by changing the composition of lipid nanocarriers is summarized, and the importance of component design and structure is emphasized. Subsequently, this review summarizes the latest progress in lipid nanocarrier-based mRNA technology and provides corresponding strategies for its current challenges, putting forward valuable information for the future design of lipid nanocarriers and mRNA.
Collapse
Affiliation(s)
- Wenchao Li
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chen Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Zhang Y, Gao Z, Yang X, Xu Q, Lu Y. Leveraging high-throughput screening technologies in targeted mRNA delivery. Mater Today Bio 2024; 26:101101. [PMID: 38883419 PMCID: PMC11176929 DOI: 10.1016/j.mtbio.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024] Open
Abstract
Messenger ribonucleic acid (mRNA) has emerged as a promising molecular preventive and therapeutic approach that opens new avenues for healthcare. Although the use of delivery systems, especially lipid nanoparticles (LNPs), greatly improves the efficiency and stability of mRNA, mRNA tends to accumulate in the liver and hardly penetrates physiological barriers to reach the target site after intravenous injection. Hence, the rational design of targeting strategies aimed at directing mRNA to specific tissues and cells remains an enormous challenge in mRNA therapy. High-throughput screening (HTS) is a cutting-edge targeted technique capable of synthesizing chemical compound libraries for the large-scale experiments to validate the efficiency of mRNA delivery system. In this review, we firstly provide an overview of conventional low-throughput targeting strategies. Then the latest advancements in HTS techniques for mRNA targeted delivery, encompassing optimizing structures of large-scale delivery vehicles and developing large-scale surface ligands, as well as the applications of HTS techniques in extrahepatic systemic diseases are comprehensively summarized. Moreover, we illustrate the selection of administration routes for targeted mRNA delivery. Finally, challenges in the field and potential solutions to tackle them are proposed, offering insights for future development toward mRNA targeted therapy.
Collapse
Affiliation(s)
- Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Zhifei Gao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Xiao Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Qinglong Xu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Yao Lu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| |
Collapse
|
15
|
Labonia MCI, Estapé Senti M, van der Kraak PH, Brans MAD, Dokter I, Streef TJ, Smits AM, Deshantri AK, de Jager SCA, Schiffelers RM, Sluijter JPG, Vader P. Cardiac delivery of modified mRNA using lipid nanoparticles: Cellular targets and biodistribution after intramyocardial administration. J Control Release 2024; 369:734-745. [PMID: 38604385 DOI: 10.1016/j.jconrel.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Despite research efforts being made towards preserving (or even regenerating) heart tissue after an ischemic event, there is a lack of resources in current clinical treatment modalities for patients with acute myocardial infarction that specifically address cardiac tissue impairment. Modified messenger RNA (modRNA) presents compelling properties that could allow new therapeutic strategies to tackle the underlying molecular pathways that ultimately lead to development of chronic heart failure. However, clinical application of modRNA for the heart is challenged by the lack of effective and safe delivery systems. Lipid nanoparticles (LNPs) represent a well characterized class of RNA delivery systems, which were recently approved for clinical usage in mRNA-based COVID-19 vaccines. In this study, we evaluated the potential of LNPs for cardiac delivery of modRNA. We tested how variations in C12-200 modRNA-LNP composition affect transfection levels and biodistribution after intramyocardial administration in both healthy and myocardial-infarcted mice, and determined the targeted cardiac cell types. Our data revealed that LNP-mediated modRNA delivery outperforms the current state of the art (modRNA in citrate buffer) upon intramyocardial administration in mice, with only minor differences among the formulations tested. Furthermore, we determined both in vitro and in vivo that the cardiac cells targeted by modRNA-LNPs include fibroblasts, endothelial cells and epicardial cells, suggesting that these cell types could represent targets for therapeutic interference with these LNP formulations. These outcomes may serve as a starting point for LNP development specifically for therapeutic mRNA cardiac delivery applications.
Collapse
Affiliation(s)
- M C I Labonia
- Department of Cardiology, Laboratory of Experimental Cardiology, UMC, Utrecht, the Netherlands
| | - M Estapé Senti
- Laboratory of CDL Research, UMC, Utrecht, the Netherlands
| | - P H van der Kraak
- Department of Cardiology, Laboratory of Experimental Cardiology, UMC, Utrecht, the Netherlands
| | - M A D Brans
- Department of Cardiology, Laboratory of Experimental Cardiology, UMC, Utrecht, the Netherlands
| | - I Dokter
- Department of Cardiology, Laboratory of Experimental Cardiology, UMC, Utrecht, the Netherlands
| | - T J Streef
- Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands
| | - A M Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands
| | - A K Deshantri
- Department of Cardiology, Laboratory of Experimental Cardiology, UMC, Utrecht, the Netherlands
| | - S C A de Jager
- Department of Cardiology, Laboratory of Experimental Cardiology, UMC, Utrecht, the Netherlands
| | | | - J P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, UMC, Utrecht, the Netherlands; UMC Utrecht Regenerative Medicine Center, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht 3508GA, the Netherlands
| | - P Vader
- Department of Cardiology, Laboratory of Experimental Cardiology, UMC, Utrecht, the Netherlands; Laboratory of CDL Research, UMC, Utrecht, the Netherlands.
| |
Collapse
|
16
|
Liang G, Cao W, Tang D, Zhang H, Yu Y, Ding J, Karges J, Xiao H. Nanomedomics. ACS NANO 2024; 18:10979-11024. [PMID: 38635910 DOI: 10.1021/acsnano.3c11154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Nanomaterials have attractive physicochemical properties. A variety of nanomaterials such as inorganic, lipid, polymers, and protein nanoparticles have been widely developed for nanomedicine via chemical conjugation or physical encapsulation of bioactive molecules. Superior to traditional drugs, nanomedicines offer high biocompatibility, good water solubility, long blood circulation times, and tumor-targeting properties. Capitalizing on this, several nanoformulations have already been clinically approved and many others are currently being studied in clinical trials. Despite their undoubtful success, the molecular mechanism of action of the vast majority of nanomedicines remains poorly understood. To tackle this limitation, herein, this review critically discusses the strategy of applying multiomics analysis to study the mechanism of action of nanomedicines, named nanomedomics, including advantages, applications, and future directions. A comprehensive understanding of the molecular mechanism could provide valuable insight and therefore foster the development and clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wanqing Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
17
|
Park S, Kim M, Lee JW. Optimizing Nucleic Acid Delivery Systems through Barcode Technology. ACS Synth Biol 2024; 13:1006-1018. [PMID: 38526308 DOI: 10.1021/acssynbio.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Conventional biological experiments often focus on in vitro assays because of the inherent limitations when handling multiple variables in vivo, including labor-intensive and time-consuming procedures. Often only a subset of samples demonstrating significant efficacy in the in vitro assays can be evaluated in vivo. Nonetheless, because of the low correlation between the in vitro and in vivo tests, evaluation of the variables under examination in vivo and not solely in vitro is critical. An emerging approach to achieve high-throughput in vivo tests involves using a barcode system consisting of various nucleotide combinations. Unique barcodes for each variant enable the simultaneous testing of multiple entities, eliminating the need for separate individual tests. Subsequently, to identify crucial parameters, samples were collected and analyzed using barcode sequencing. This review explores the development of barcode design and its applications, including the evaluation of nucleic acid delivery systems and the optimization of gene expression in vivo.
Collapse
Affiliation(s)
- Soan Park
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 CheongamRo, Gyeongbuk, 37673 NamGu, Pohang, Republic of Korea
| | - Mibang Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 CheongamRo, Gyeongbuk, 37673 NamGu, Pohang, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 CheongamRo, Gyeongbuk, 37673 NamGu, Pohang, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 CheongamRo, Gyeongbuk, 37673 NamGu, Pohang, Republic of Korea
| |
Collapse
|
18
|
Kubara K, Yamazaki K, Miyazaki T, Kondo K, Kurotaki D, Tamura T, Suzuki Y. Lymph node macrophages drive innate immune responses to enhance the anti-tumor efficacy of mRNA vaccines. Mol Ther 2024; 32:704-721. [PMID: 38243602 PMCID: PMC10928146 DOI: 10.1016/j.ymthe.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
mRNA vaccines are promising for cancer treatment. Efficient delivery of mRNAs encoding tumor antigens to antigen-presenting cells (APCs) is critical to elicit anti-tumor immunity. Herein, we identified a novel lipid nanoparticle (LNP) formulation, L17-F05, for mRNA vaccines by screening 34 ionizable lipids and 28 LNP formulations using human primary APCs. Subcutaneous delivery of L17-F05 mRNA vaccine encoding Gp100 and Trp2 inhibited tumor growth and prolonged the survival of mice bearing B16F10 melanoma. L17-F05 efficiently delivered mRNAs to conventional dendritic cells (cDCs) and macrophages in draining lymph nodes (dLNs). cDCs functioned as the main APCs by presenting antigens along with enhanced expression of co-stimulatory molecules. Macrophages triggered innate immune responses centered on type-I interferon (IFN-I) in dLNs. Lymph node (LN) macrophage depletion attenuated APC maturation and anti-tumor activity of L17-F05 mRNA vaccines. Loss-of-function studies revealed that L17-F05 works as a self-adjuvant by activating the stimulator of interferon genes (STING) pathway in macrophages. Collectively, the self-adjuvanticity of L17-F05 triggered innate immune responses in LN macrophages via the STING-IFN-I pathway, contributing to APC maturation and potent anti-tumor activity of L17-F05 mRNA vaccines. Our findings provide strategies for further optimization of mRNA vaccines based on the innate immune response driven by LN macrophages.
Collapse
Affiliation(s)
- Kenji Kubara
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan; Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Kazuto Yamazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Takayuki Miyazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Keita Kondo
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yuta Suzuki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
19
|
Wu L, Li X, Qian X, Wang S, Liu J, Yan J. Lipid Nanoparticle (LNP) Delivery Carrier-Assisted Targeted Controlled Release mRNA Vaccines in Tumor Immunity. Vaccines (Basel) 2024; 12:186. [PMID: 38400169 PMCID: PMC10891594 DOI: 10.3390/vaccines12020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, lipid nanoparticles (LNPs) have attracted extensive attention in tumor immunotherapy. Targeting immune cells in cancer therapy has become a strategy of great research interest. mRNA vaccines are a potential choice for tumor immunotherapy, due to their ability to directly encode antigen proteins and stimulate a strong immune response. However, the mode of delivery and lack of stability of mRNA are key issues limiting its application. LNPs are an excellent mRNA delivery carrier, and their structural stability and biocompatibility make them an effective means for delivering mRNA to specific targets. This study summarizes the research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity. The role of LNPs in improving mRNA stability, immunogenicity, and targeting is discussed. This review aims to systematically summarize the latest research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity to provide new ideas and strategies for tumor immunotherapy, as well as to provide more effective treatment plans for patients.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| |
Collapse
|
20
|
Sharma P, Hoorn D, Aitha A, Breier D, Peer D. The immunostimulatory nature of mRNA lipid nanoparticles. Adv Drug Deliv Rev 2024; 205:115175. [PMID: 38218350 DOI: 10.1016/j.addr.2023.115175] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
mRNA-Lipid nanoparticles (LNPs) are at the forefront of global medical research. With the development of mRNA-LNP vaccines to combat the COVID-19 pandemic, the clinical potential of this platform was unleashed. Upon administering 16 billion doses that protected billions of people, it became clear that a fraction of them witnessed mild and in some cases even severe adverse effects. Therefore, it is paramount to define the safety along with the therapeutic efficacy of the mRNA-LNP platform for the successful translation of new genetic medicines based on this technology. While mRNA was the effector molecule of this platform, the ionizable lipid component of the LNPs played an indispensable role in its success. However, both of these components possess the ability to induce undesired immunostimulation, which is an area that needs to be addressed systematically. The immune cell agitation caused by this platform is a two-edged sword as it may prove beneficial for vaccination but detrimental to other applications. Therefore, a key challenge in advancing the mRNA-LNP drug delivery platform from bench to bedside is understanding the immunostimulatory behavior of these components. Herein, we provide a detailed overview of the structural modifications and immunogenicity of synthetic mRNA. We discuss the effect of ionizable lipid structure on LNP functionality and offer a mechanistic overview of the ability of LNPs to elicit an immune response. Finally, we shed some light on the current status of this technology in clinical trials and discuss a few challenges to be addressed to advance the field.
Collapse
Affiliation(s)
- Preeti Sharma
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Daniek Hoorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anjaiah Aitha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dor Breier
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
21
|
Malla R, Srilatha M, Farran B, Nagaraju GP. mRNA vaccines and their delivery strategies: A journey from infectious diseases to cancer. Mol Ther 2024; 32:13-31. [PMID: 37919901 PMCID: PMC10787123 DOI: 10.1016/j.ymthe.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
mRNA vaccines have evolved as promising cancer therapies. These vaccines can encode tumor-allied antigens, thus enabling personalized treatment approaches. They can also target cancer-specific mutations and overcome immune evasion mechanisms. They manipulate the body's cellular functions to produce antigens, elicit immune responses, and suppress tumors by overcoming limitations associated with specific histocompatibility leukocyte antigen molecules. However, successfully delivering mRNA into target cells destroys a crucial challenge. Viral and nonviral vectors (lipid nanoparticles and cationic liposomes) have shown great capacity in protecting mRNA from deterioration and assisting in cellular uptake. Cell-penetrating peptides, hydrogels, polymer-based nanoparticles, and dendrimers have been investigated to increase the delivery efficacy and immunogenicity of mRNA. This comprehensive review explores the landscape of mRNA vaccines and their delivery platforms for cancer, addressing design considerations, diverse delivery strategies, and recent advancements. Overall, this review contributes to the progress of mRNA vaccines as an innovative strategy for effective cancer treatment.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, AP, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, AP, India
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
22
|
Patel SK, Billingsley MM, Mukalel AJ, Thatte AS, Hamilton AG, Gong N, El-Mayta R, Safford HC, Merolle M, Mitchell MJ. Bile acid-containing lipid nanoparticles enhance extrahepatic mRNA delivery. Theranostics 2024; 14:1-16. [PMID: 38164140 PMCID: PMC10750194 DOI: 10.7150/thno.89913] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as a viable, clinically-validated platform for the delivery of mRNA therapeutics. LNPs have been utilized as mRNA delivery systems for applications including vaccines, gene therapy, and cancer immunotherapy. However, LNPs, which are typically composed of ionizable lipids, cholesterol, helper lipids, and lipid-anchored polyethylene glycol, often traffic to the liver which limits the therapeutic potential of the platform. Several approaches have been proposed to resolve this tropism such as post-synthesis surface modification or the addition of synthetic cationic lipids. Methods: Here, we present a strategy for achieving extrahepatic delivery of mRNA involving the incorporation of bile acids, a naturally-occurring class of cholesterol analogs, during LNP synthesis. We synthesized a series of bile acid-containing C14-4 LNPs by replacing cholesterol with bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, or lithocholic acid) at various ratios. Results: Bile acid-containing LNPs (BA-LNPs) were able to reduce delivery to liver cells in vitro and improve delivery in a variety of other cell types, including T cells, B cells, and epithelial cells. Our subsequent in vivo screening of selected LNP candidates injected intraperitoneally or intravenously identified a highly spleen tropic BA-LNP: CA-100, a four-component LNP containing cholic acid and no cholesterol. These screens also identified BA-LNP candidates demonstrating promise for other mRNA therapeutic applications such as for gastrointestinal or immune cell delivery. We further found that the substitution of cholic acid for cholesterol in an LNP formulation utilizing a different ionizable lipid, C12-200, also shifted mRNA delivery from the liver to the spleen, suggesting that this cholic acid replacement strategy may be generalizable. Conclusion: These results demonstrate the potential of a four-component BA-LNP formulation, CA-100, for extrahepatic mRNA delivery that could potentially be utilized for a range of therapeutic and vaccine applications.
Collapse
Affiliation(s)
- Savan K. Patel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Alvin J. Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ajay S. Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex G. Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rakan El-Mayta
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah C. Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Merolle
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Reinhart AG, Osterwald A, Ringler P, Leiser Y, Lauer ME, Martin RE, Ullmer C, Schumacher F, Korn C, Keller M. Investigations into mRNA Lipid Nanoparticles Shelf-Life Stability under Nonfrozen Conditions. Mol Pharm 2023; 20:6492-6503. [PMID: 37975733 DOI: 10.1021/acs.molpharmaceut.3c00956] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
mRNA LNPs can experience a decline in activity over short periods (ranging from weeks to months). As a result, they require frozen storage and transportation conditions to maintain their full functionality when utilized. Currently approved commercially available mRNA LNP vaccines also necessitate frozen storage and supply chain management. Overcoming this significant inconvenience in the future is crucial to reducing unnecessary costs and challenges associated with storage and transport. In this study, our objective was to illuminate the potential time frame for nonfrozen storage and transportation conditions of mRNA LNPs without compromising their activity. To achieve this goal, we conducted a stability assessment and an in vitro cell culture delivery study involving five mRNA LNPs. These LNPs were constructed by using a standard formulation similar to that employed in the three commercially available LNP formulations. Among these formulations, we selected five structurally diverse ionizable lipids─C12-200, CKK-E12, MC3, SM-102, and lipid 23─from the existing literature. We incorporated these lipids into a standard LNP formulation, keeping all other components identical. The LNPs, carrying mRNA payloads, were synthesized by using microfluidic mixing technology. We evaluated the shelf life stability of these LNPs over a span of 9 weeks at temperatures of 2-8, 25, and 40 °C, utilizing an array of analytical techniques. Our findings indicated minimal impact on the hydrodynamic diameter, zeta potential, encapsulation efficiency, and polydispersity of all LNPs across the various temperatures over the studied period. The RiboGreen assay analysis of LNPs showed consistent mRNA contents over several weeks at various nonfrozen storage temperatures, leading to the incorrect assumption of intact and functional LNPs. This misunderstanding was rectified by the significant differences observed in EGFP protein expression in an in vitro cell culture (using HEK293 cells) across the five LNPs. Specifically, only LNP 1 (C12-200) and LNP 4 (SM-102) exhibited high levels of EGFP expression at the start (T0), with over 90% of HEK293 cells transfected and mean fluorescence intensity (MFI) levels exceeding 1. Interestingly, LNP 1 (C12-200) maintained largely unchanged levels of in vitro activity over 11 weeks when stored at both 2-8 and 25 °C. In contrast, LNP 4 (SM-102) retained its functionality when stored at 2-8 °C over 11 weeks but experienced a gradual decline of in vitro activity when stored at room temperature over the same period. Importantly, we observed distinct LNP architectures for the five formulations through cryo-EM imaging. This highlights the necessity for a deeper comprehension of structure-activity relationships within these complex nanoparticle structures. Enhancing our understanding in this regard is vital for overcoming storage and stability limitations, ultimately facilitating the broader application of this technology beyond vaccines.
Collapse
Affiliation(s)
- Anne-Gaëlle Reinhart
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Anja Osterwald
- Roche Pharma Research and Early Development, DTA Ophthalmology I2O, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Philippe Ringler
- Biozentrum, University of Basel, Spitalstrasse 41, Basel CH - 4056, Switzerland
| | - Yael Leiser
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Matthias E Lauer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Rainer E Martin
- Roche Pharma Research and Early Development, Therapeutic Modalities, Medicinal Chemistry, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, DTA Ophthalmology I2O, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Felix Schumacher
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Claudia Korn
- Roche Pharma Research and Early Development, DTA Ophthalmology I2O, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Michael Keller
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| |
Collapse
|
24
|
Ranjbar S, Zhong XB, Manautou J, Lu X. A holistic analysis of the intrinsic and delivery-mediated toxicity of siRNA therapeutics. Adv Drug Deliv Rev 2023; 201:115052. [PMID: 37567502 PMCID: PMC10543595 DOI: 10.1016/j.addr.2023.115052] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Small interfering RNAs (siRNAs) are among the most promising therapeutic platforms in many life-threatening diseases. Owing to the significant advances in siRNA design, many challenges in the stability, specificity and delivery of siRNA have been addressed. However, safety concerns and dose-limiting toxicities still stand among the reasons for the failure of clinical trials of potent siRNA therapies, calling for a need of more comprehensive understanding of their potential mechanisms of toxicity. This review delves into the intrinsic and delivery related toxicity mechanisms of siRNA drugs and takes a holistic look at the safety failure of the clinical trials to identify the underlying causes of toxicity. In the end, the current challenges, and potential solutions for the safety assessment and high throughput screening of investigational siRNA and delivery systems as well as considerations for design strategies of safer siRNA therapeutics are outlined.
Collapse
Affiliation(s)
- Sheyda Ranjbar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - José Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
25
|
Khorkova O, Stahl J, Joji A, Volmar CH, Wahlestedt C. Amplifying gene expression with RNA-targeted therapeutics. Nat Rev Drug Discov 2023; 22:539-561. [PMID: 37253858 PMCID: PMC10227815 DOI: 10.1038/s41573-023-00704-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 06/01/2023]
Abstract
Many diseases are caused by insufficient expression of mutated genes and would benefit from increased expression of the corresponding protein. However, in drug development, it has been historically easier to develop drugs with inhibitory or antagonistic effects. Protein replacement and gene therapy can achieve the goal of increased protein expression but have limitations. Recent discoveries of the extensive regulatory networks formed by non-coding RNAs offer alternative targets and strategies to amplify the production of a specific protein. In addition to RNA-targeting small molecules, new nucleic acid-based therapeutic modalities that allow highly specific modulation of RNA-based regulatory networks are being developed. Such approaches can directly target the stability of mRNAs or modulate non-coding RNA-mediated regulation of transcription and translation. This Review highlights emerging RNA-targeted therapeutics for gene activation, focusing on opportunities and challenges for translation to the clinic.
Collapse
Affiliation(s)
- Olga Khorkova
- OPKO Health, Miami, FL, USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Chemistry, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA.
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA.
- Department of Chemistry, University of Miami, Miami, FL, USA.
| |
Collapse
|
26
|
Huayamares SG, Lokugamage MP, Rab R, Da Silva Sanchez AJ, Kim H, Radmand A, Loughrey D, Lian L, Hou Y, Achyut BR, Ehrhardt A, Hong JS, Sago CD, Paunovska K, Echeverri ES, Vanover D, Santangelo PJ, Sorscher EJ, Dahlman JE. High-throughput screens identify a lipid nanoparticle that preferentially delivers mRNA to human tumors in vivo. J Control Release 2023; 357:394-403. [PMID: 37028451 PMCID: PMC10227718 DOI: 10.1016/j.jconrel.2023.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Lipid nanoparticles (LNPs) are a clinically relevant way to deliver therapeutic mRNA to hepatocytes in patients. However, LNP-mRNA delivery to end-stage solid tumors such as head and neck squamous cell carcinoma (HNSCC) remains more challenging. While scientists have used in vitro assays to evaluate potential nanoparticles for HNSCC delivery, high-throughput delivery assays performed directly in vivo have not been reported. Here we use a high-throughput LNP assay to evaluate how 94 chemically distinct nanoparticles delivered nucleic acids to HNSCC solid tumors in vivo. DNA barcodes were used to identify LNPHNSCC, a novel LNP for systemic delivery to HNSCC solid tumors. Importantly, LNPHNSCC retains tropism to HNSCC solid tumors while minimizing off-target delivery to the liver.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Melissa P Lokugamage
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Regina Rab
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Alejandro J Da Silva Sanchez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Afsane Radmand
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuning Hou
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Bhagelu R Achyut
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Annette Ehrhardt
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Jeong S Hong
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Cory D Sago
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|