1
|
Wen J, Wu D, Le Y, Yin Z, Chen M, Shen Y, Wu X, Liu K, Luo K, Shu Z, Shu Q, Ouyang D. Engineered nanovesicles targeting SERPINE1 overcome temozolomide resistance in glioblastoma. Cell Signal 2025; 132:111763. [PMID: 40139622 DOI: 10.1016/j.cellsig.2025.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/15/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with limited treatment options due to its resistance to temozolomide (TMZ). This study explores a novel therapeutic approach using engineered cell membrane nanovesicles loaded with SERPINE1 inhibitors to combat TMZ resistance. High-throughput sequencing identified pivotal genes associated with resistance, while the nanovesicles demonstrated excellent stability and the ability to cross the blood-brain barrier. Functional assays revealed significant suppression of GBM cell viability, migration, and invasion, accompanied by reduced expression of SERPINE1 and VEGF, suggesting inhibition of angiogenesis and tumor progression. These findings highlight the potential of SERPINE1-targeted nanovesicles as an innovative and effective strategy for overcoming TMZ resistance in GBM.
Collapse
Affiliation(s)
- Jianping Wen
- Department of Neurosurgery, Hunan University of Medicine General Hospital, Huaihua 418000, China.
| | - Dongxu Wu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, Huaihua 418000, China
| | - Yi Le
- Department of Neurosurgery, Hunan University of Medicine General Hospital, Huaihua 418000, China
| | - Zonghua Yin
- Department of Neurosurgery, Hunan University of Medicine General Hospital, Huaihua 418000, China
| | - Minglong Chen
- Department of Neurosurgery, Hunan University of Medicine General Hospital, Huaihua 418000, China
| | - Yulong Shen
- Department of Neurosurgery, Hunan University of Medicine General Hospital, Huaihua 418000, China
| | - Xia Wu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, Huaihua 418000, China
| | - Kebo Liu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, Huaihua 418000, China
| | - Kun Luo
- Department of Neurosurgery, Hunan University of Medicine General Hospital, Huaihua 418000, China
| | - Zhicheng Shu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, Huaihua 418000, China
| | - Qingxia Shu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, Huaihua 418000, China
| | - Dongsheng Ouyang
- The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
2
|
Xu S, Zhang Z, Zhou X, Liao Y, Peng Z, Meng Z, Nüssler AK, Ma L, Xia H, Liu L, Yang W. Gouqi-derived Nanovesicles (GqDNVs) promoted MC3T3-E1 cells proliferation and improve fracture healing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156755. [PMID: 40252435 DOI: 10.1016/j.phymed.2025.156755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Lycium barbarum L., also known as Gouqi, a traditional Chinese herbal medicine, is widely utilized in health care products and clinical therapies. Its muscle and bone strengthening efficacy has been recorded in medical classics for a long time. In addition, plant exosome-like nanovesicles (PELNVs) have attracted more and more attention owing to their biological traits. Therefore, we intended to explore the functions, regulatory role, and underlying mechanism of Gouqi-derived Nanovesicles (GqDNVs) on fracture healing. METHODS In this study, we employed the sucrose density gradient differential ultracentrifugation to isolate GqDNVs. The effects of GqDNVs on the proliferation and differentiation of MC3T3-E1 cells were evaluated using the CCK-8 assay, ALP activity measurement, and cell scratch assay. Additionally, leveraging a fracture mouse model, we utilized Micro-CT, immunological staining, and histologic analyses to comprehensively assess the impact of GqDNVs on fracture healing in mice. RESULTS GqDNVs stimulated cell viability, increased ALP activity, and promoted cellular osteogenic protein expression (OPN, ALP, and RUNX2). Subsequently, in the mouse fracture model, trabecular thickness, and bone marrow density were increased in the GqDNVs treatment group after 28 days of injection. Meanwhile, the expressions of OPN and BGP were significantly elevated after both 14 and 28 days. Additionally, the expressions of p-PI3K/PI3K, p-Akt/Akt, p-mTOR/mTOR, p-4EBP1/4EBP1 and p-p70S6K/ p70S6K were also increased after14 days of treatment. CONCLUSIONS GqDNVs effectively promoted the proliferation and differentiation of MC3T3-E1 cells. Furthermore, GqDNVs could improve fracture healing, which is associated with PI3K/Akt/mTOR/p70S6K/4EBP1 signaling pathway.
Collapse
Affiliation(s)
- Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Zixuan Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Zitong Meng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, Tübingen 72076, Germany
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
| |
Collapse
|
3
|
Li Z, Yu Q, Cui X, Wang Y, Xu R, Lu R, Chen J, Zhou X, Zhang C, Li L, Xu W. Exosomes from young plasma stimulate the osteogenic differentiation and prevent osteoporosis via miR-142-5p. Bioact Mater 2025; 49:502-514. [PMID: 40206195 PMCID: PMC11979483 DOI: 10.1016/j.bioactmat.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Osteoporosis (OP) is a multifactorial metabolic bone disorder commonly observed in the elderly, particularly prevalent in postmenopausal women. However, many conventional anti-osteoporosis drugs have undesirable side effects, limiting their long-term use. Here, we demonstrated that exosomes derived from both young and old healthy human plasma, which exhibited similar morphology, could significantly enhance the proliferation and migration of mesenchymal stem cells (MSCs). Furthermore, treatment with these exosomes increased alkaline phosphatase (ALP) activity, enhanced the mineralization of MSCs, and decreased the number of osteoclasts in vitro. When intravenously injected into rats, these exosomes accumulated in bone tissue. In vivo experiments demonstrated that both types of exosomes had a beneficial effect on osteoporosis by facilitating bone formation and suppressing osteoclast differentiation in an ovariectomized (OVX)-induced osteoporotic rat model. Strikingly, exosomes derived from young healthy human plasma exhibited stronger anti-osteoporosis effect. The miRNA sequencing analysis showed that miR-142-5p expression was significantly higher in the exosomes from young healthy adult plasma compared to in exosomes from older controls. Importantly, miR-142-5p overexpression exerted similar pro-osteogenic effects to those of exosomes from young healthy human plasma, while miR-142-5p downregulation had the opposite effect on osteogenic differentiation of MSCs. The anti-osteoporosis effect of exosomes from young healthy adult plasma were reversed upon miR-142-5p inhibition. In addition, ZFPM2 was a potential target of miR-142-5p involved in osteoporosis. Therefore, our study reveals the potential anti-osteoporosis effects of plasma exosomes and their underlying mechanisms, thereby providing an effective therapeutic strategy for clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhikun Li
- Department of Orthopedic, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Qifeng Yu
- Department of Orthopedic, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Xiang Cui
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Yi Wang
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Ruijun Xu
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Renjie Lu
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jiahao Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaohan Zhou
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Chi Zhang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lanya Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Wei Xu
- Department of Orthopedic, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| |
Collapse
|
4
|
Sun C, He W, Wang L, Hao T, Yang X, Feng W, Wu Y, Meng C, Wang Z, Chen X, Sun M, Zheng F, Zhang B. Studies on the Role of MAP4K2, SPI1, and CTSD in Osteoporosis. Cell Biochem Biophys 2025; 83:2115-2126. [PMID: 39586961 PMCID: PMC12089232 DOI: 10.1007/s12013-024-01621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Osteoporosis (OP) is a prevalent skeletal disorder characterized by an imbalance between bone resorption and bone formation, resulting in a significant global burden. Previous research utilizing bioinformatics analysis has identified MAP4K2, SPI1, and CTSD as hub genes associated with OP. In this current investigation, we have successfully established a differential expression system of MAP4K2, SPI1, and CTSD in rat bone marrow mesenchymal stem cells (BMSCs) through transfection techniques. Additionally, the CCK-8 assay was employed to assess cell proliferation, while the alkaline phosphatase (ALP) activity assay and ALP staining assay were utilized to evaluate osteogenic differentiation. Alizarin red staining was employed to detect mineralization of BMSCs. Furthermore, the expression of relevant genes and molecules associated with the MAPK signaling pathway, autophagy, and apoptosis in the sera of rat BMSCs were examined using quantitative real-time polymerase chain reaction (qRT-PCR). The purpose of this study was to preliminarily investigate whether MAP4K2, SPI1, and CTSD have an effect on the osteogenic capacity of rat BMSCs and whether these genes, when differentially expressed, affect the expression of related genes in the MAPK, autophagy, and apoptosis signaling pathways and thus the osteogenic function of BMSCs. In summary, the findings of this study indicate that MAP4K2 and CTSD exert significant influence on the proliferation, osteogenic differentiation, and mineralization processes of rat BMSCs cells. Furthermore, these proteins may contribute to the development of OP through their involvement in the regulation of autophagy and apoptosis. Conversely, our investigation did not reveal any discernible impact of SPI1 on OP-related phenotypes. Consequently, this research serves as a fundamental basis for further exploration of potential therapeutic targets for the treatment of OP.
Collapse
Affiliation(s)
- Chao Sun
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Wanxiong He
- Inner Mongolia Medical University, Hohhot, China
| | - Leipeng Wang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Ting Hao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Xiaolong Yang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Wei Feng
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | | | - Chenyang Meng
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Zhi Wang
- Bayannur hospital, Bayannur, China
| | - Xiaofeng Chen
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Mingqi Sun
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
- Inner Mongolia Medical University, Hohhot, China.
| | - Feng Zheng
- Department of Hepatic Hydatidosis, Qinghai Provincial People's Hospital, Xining, Qinghai, China.
| | - Baoxin Zhang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
- Inner Mongolia Medical University, Hohhot, China.
- Tianjin Hospital, Tianjin University, Hexi District, Tianjin, China.
| |
Collapse
|
5
|
Zhang Q, Song Q, Li Z, Wu X, Chen Y, Lin H. Targeting fibroblasts in pathological bone formation: mechanisms and treatments. Front Cell Dev Biol 2025; 13:1612950. [PMID: 40491950 PMCID: PMC12146285 DOI: 10.3389/fcell.2025.1612950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025] Open
Abstract
Fibroblasts are integral to the pathological processes underlying abnormal bone formation, including heterotopic ossification (HO), ankylosing spondylitis (AS), and ossification of the posterior longitudinal ligament (OPLL). This review summarized the diverse roles of fibroblasts, from their transdifferentiation into osteoblast-like cells to their influence on inflammatory and mechanical signal transduction pathways, including those mediated by BMP, TGF-β, and Wnt/β-catenin. In particular, senescent fibroblasts can secrete Activin A to activate the BMP pathway to drive HO formation, and fibroblasts can also differentiate into osteoblasts via interactions among the TGF-β1, BMP-2, and FGF-2 pathways. In AS and OPLL, fibroblasts respond to inflammatory signals and mechanical stress, contributing to pathological bone formation through extracellular matrix remodeling and osteogenic gene expression. In rare cases, fibroblast-mediated abnormal ossification also occurs in diffuse idiopathic skeletal hyperostosis (DISH) and systemic sclerosis (SSc). Therapeutic strategies targeting fibroblast signaling pathways, inflammation, and senescence are highlighted as potential interventions to mitigate these conditions.
Collapse
Affiliation(s)
- Qianyu Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Qimin Song
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Zeyin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Xinyi Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Yuxiong Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Zheng Y, Wang T, Zhang J, Wei S, Wu Z, Li J, Shi B, Sun Z, Xu W, Zhu J. Plant-Derived Nanovesicles: A Promising Frontier in Tissue Repair and Antiaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40402864 DOI: 10.1021/acs.jafc.5c01547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
In recent years, mammal-derived extracellular vesicles (EVs) have been widely used in studies on tissue repair and antiaging. Their therapeutic potential lies in mediating intercellular communication through the transfer of various bioactive molecules. As research on nanovesicles progresses, plant-derived nanovesicles (PDNVs) have attracted growing attention as a promising alternative. As an emerging cross-species regulatory "natural force", PDNVs have attracted considerable interest due to their excellent biocompatibility, low immunogenicity, and remarkable therapeutic effects in tissue injury and aging-related diseases. In this review, we examine the bioactive components, drug delivery potential, and functional mechanisms of PDNVs, and we summarize recent advances in their applications for tissue repair and antiaging. In addition, we systematically discuss the major challenges and limitations hindering the clinical translation and industrialization of PDNVs, and we propose five strategic approaches along with future research directions. This review aims to promote further investigation of PDNVs in regenerative medicine and enhance their potential for clinical application.
Collapse
Affiliation(s)
- Yuzhou Zheng
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Tangrong Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiaxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Sen Wei
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Zhijing Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiali Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Beihao Shi
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Zixuan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jian Zhu
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| |
Collapse
|
7
|
Han R, Gao C, Tang R, Gui X, Chen W, Fu J, Wang T, Bai D, Guo Y, Zhou C. A comprehensive study on Herba Epimedium-derived extracellular nanovesicles as a prospective therapy for alveolar bone regeneration in postmenopausal osteoporosis. NANOSCALE 2025; 17:12270-12289. [PMID: 40266676 DOI: 10.1039/d5nr00508f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Natural products rich in phytoestrogens, particularly those derived from traditional Chinese medicine (TCM) herbs, have garnered increased attention. Plant-derived extracellular vesicles are emerging as a promising strategy in cell communication and disease defense. Here, a comprehensive study on Herba Epimedium-derived extracellular nanovesicles (EELNs) for postmenopausal osteoporosis treatment was conducted. The results showed that EELNs exhibit a typical exosome morphology with an average diameter of 130 nm and are rich in specific small-molecule metabolites and miRNAs. Network pharmacology and KEGG analysis highlighted the therapeutic potential of EELNs in osteoporosis through multiple classical osteogenic pathways. In vitro experiments proved that EELNs potentiated the osteogenic differentiation of BMSCs by targeting the Pi3k/Akt/mTOR pathway. In vivo, EELN-loaded hydroxyapatite nano-whisker (E-GW) composites were used to repair mandibular defects in an OVX-induced osteoporosis rat model. The results indicate that EELNs are promising therapeutic agents for the regeneration and bone mass maintenance of alveolar defects in postmenopausal osteoporosis patients and offer potential perspectives for natural products in postmenopausal osteoporosis treatment.
Collapse
Affiliation(s)
- Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Canyu Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Rong Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Wanxi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jiarun Fu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
8
|
Xu S, Yu Y, Xie Q, Liu X, Zhang A, Tang H, Zhu Z, Bian X, Guo L. Revealing the molecular mechanism of Buzhong Yiqi Decoction for tendon bone healing on the basis of network pharmacology, molecular docking and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119726. [PMID: 40185260 DOI: 10.1016/j.jep.2025.119726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/17/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buzhong Yiqi Decoction (BD), a traditional formula in Chinese medicine, is clinically and historically recognized for its effectiveness in reducing physical fatigue and promoting strength, as well as enhancing bone remodeling. Nevertheless, its specific molecular mechanisms related to bone formation have yet to be thoroughly characterized. AIM OF THE STUDY This study aims to investigate the effects and mechanisms of BD on osteogenesis in bone marrow mesenchymal stem cells and in a model of tendon-bone junction injury in mice. MATERIALS AND METHODS By establishing a mouse model of tendon-bone junction injury, the pathological morphology of the tendon-bone junction in mice was observed. Determining the mechanism of action of BD in regulating osteogenic differentiation through network pharmacology and molecular docking. Flow analysis and osteogenic induction assay were utilized to verify the effect of BD in promoting BMSCs osteogenic differentiation in vitro. In vivo experiments were performed to validate the impact of BD in improving healing after tendon-bone junction injury in mice by promoting osteogenic differentiation. RESULTS Bone loss at the heel bone end is an essential pathophysiologic process in the natural healing process after injury to the tendon-bone junction. Using network pharmacology and molecular docking, we identified the PI3K-Akt signaling pathway as a critical mediator of BD-induced osteogenic differentiation. In vitro experiments demonstrated that BD promoted BMSC osteogenesis, while in vivo assays confirmed the enhancement of tendon-bone healing in mice models. CONCLUSION These results suggest that BD can effectively promote tendon-bone repair, with the PI3K-Akt pathway playing a crucial role in its therapeutic effects, positioning BD as a promising candidate for improving musculoskeletal injury recovery.
Collapse
Affiliation(s)
- Shibo Xu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Yihang Yu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Qizhong Xie
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Xiao Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Anyang Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Hong Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Zhiquan Zhu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Xuting Bian
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, 400038, China; Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse, 857000, China.
| | - Lin Guo
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
9
|
Geng Z, Sun T, Yuan L, Zhao Y. The existing evidence for the use of extracellular vesicles in the treatment of osteoporosis: a review. Int J Surg 2025; 111:3414-3429. [PMID: 40085758 PMCID: PMC12165590 DOI: 10.1097/js9.0000000000002339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Osteoporosis is a systemic metabolic bone disease characterized by decreased bone mass, microstructural deterioration, and increased fracture risk. The crucial role of extracellular vesicles (EVs) in the occurrence and development of osteoporosis has garnered attention, with vesicle-based treatments showing significant promise. Compared to conventional osteoporosis medications, EVs possess characteristics of naturalness, selectivity, and adaptability, and more importantly, they have negligible side effects. Hence, this review discusses the applications of natural and engineered EVs in osteoporosis are comprehensively outlined. Unfortunately, the absence of consensus on the extraction, purification, characterization, and storage of EVs has resulted in a lack of clinical evidence supporting their application in patients with osteoporosis. Although significant progress is still needed before the clinical use of EVs can be achieved, their substantial potential remains undeniable. Moreover, considering the complexity of bone metabolism in osteoporosis and the heterogeneity of EVs, further investigation into the functional subpopulations of different exosomes will facilitate their application.
Collapse
Affiliation(s)
- Zixiang Geng
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Tiancheng Sun
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Long Yuan
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yongfang Zhao
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Jung D, Kim NE, Kim S, Bae JH, Jung IY, Doh KW, Lee B, Kim DK, Cho YE, Baek MC. Plant-derived nanovesicles and therapeutic application. Pharmacol Ther 2025; 269:108832. [PMID: 40023319 DOI: 10.1016/j.pharmthera.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Plant-derived nanovesicles (PDNVs) are becoming more popular as promising therapeutic tools owing to their diversity, cost-effectiveness, and biocompatibility with very low toxicity. Therefore, this review aims to discuss the methods for isolating and characterizing PDNVs and emphasize their versatile roles in direct therapeutic applications and drug delivery systems. Their ability to effectively encapsulate and deliver large nucleic acids, proteins, and small-molecule drugs was highlighted. Moreover, advanced engineering strategies, such as surface modification and fusion with other vesicles, have been developed to enhance the therapeutic effects of PDNVs. Additionally, we describe key challenges related to this field, encouraging further research to optimize PDNVs for various clinical applications for prevention and therapeutic purposes. The distinctive properties and diverse applications of PDNVs could play a crucial role in the future of personalized medicine, fostering the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Dokyung Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Na-Eun Kim
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sua Kim
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ju-Hyun Bae
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Il-Young Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Kyung-Won Doh
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
11
|
Yin H, Shi J, Li S, You Q, Zhu H, Koo C, Liu B, Hou L, Wu C. Emerging roles of exosomal circRNAs in non-small cell lung cancer. J Transl Med 2025; 23:490. [PMID: 40307927 PMCID: PMC12042431 DOI: 10.1186/s12967-025-06463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/06/2025] [Indexed: 05/02/2025] Open
Abstract
Despite the prevalence of non-small cell lung cancer (NSCLC) is high, the limited early detection and management of these tumors are restricted since there is an absence of reliable and precise diagnostic biomarkers and therapeutic targets. Exosomes transport functional molecules for facilitating intercellular communication, especially in the tumor microenvironment, indicating their potential as cancer biomarkers and therapeutic targets. Circular RNA (circRNA), a type of non-coding RNA possessing a covalently closed loop structure, substantial abundance, and tissue-specific expression patterns, is stably enriched in exosomes. In recent years, significant breakthroughs have been made in research on exosomal circRNA in NSCLC. This review briefly introduces the biogenesis, characterizations, and functions of circRNAs and exosomes, and systematically describes the biological functions and mechanisms of exosomal circRNAs in NSCLC. In addition, this study summarizes their role in the progression of NSCLC and discusses their clinical significance as biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Hongyuan Yin
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiayi Shi
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qianhui You
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huici Zhu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chinying Koo
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Baonian Liu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
12
|
Zhou G, Zhou Q, Li R, Sheng S, Gao Q, Zhou D, Bai L, Geng Z, Hu Y, Zhang H, Chen X, Wang J, Jing Y, Xu K, Liu H, Su J. Synthetically Engineered Bacterial Extracellular Vesicles and IL-4-Encapsulated Hydrogels Sequentially Promote Osteoporotic Fracture Repair. ACS NANO 2025; 19:16064-16083. [PMID: 40237831 DOI: 10.1021/acsnano.5c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Osteoporosis (OP) is a systemic disease characterized by decreased bone density and quality, leading to fragile bones and osteoporotic fractures (OPF). Conventional treatments for OPF often exhibit limited therapeutic efficacy and significant side effects. Synthetic biology-based bacterial extracellular vesicles (BEVs) offer a safe and effective alternative for OPF treatment. Here, we constructed bioengineered BEVs loaded with pBMP-2-VEGF (BEVs-BP) and encapsulated them together with IL-4 in GelMA hydrogels to form IL-4/BEVs-BP@GelMA. Initially, IL-4 alleviated chronic inflammation by modulating immune cells, while BEVs-BP subsequently enhanced osteogenesis and vascularization by upregulating BMP-2 and VEGF expression. In vitro, IL-4/BEVs-BP@GelMA polarized M1 macrophages toward the M2 phenotype, enhanced osteogenesis, and increased angiogenesis. Moreover, BEVs-BP effectively promoted the maturation and mineralization of bone organoids in vivo. Finally, IL-4/BEVs-BP@GelMA successfully accelerated osteoporotic fracture repair in mice. In summary, we developed an easy-to-build and powerful bone repair biomaterial, IL-4/BEVs-BP@GelMA, which offers a therapeutic strategy for osteoporotic fracture management.
Collapse
Affiliation(s)
- Guangyin Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Qirong Zhou
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ruiyang Li
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Shihao Sheng
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qianmin Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Hu
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hao Zhang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- MedEng-X Insititutes, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
13
|
Sah NK, Arora S, Sahu RC, Kumar D, Agrawal AK. Plant-based exosome-like extracellular vesicles as encapsulation vehicles for enhanced bioavailability and breast cancer therapy: recent advances and challenges. Med Oncol 2025; 42:184. [PMID: 40293531 DOI: 10.1007/s12032-025-02720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
Breast cancer remains a common and challenging disease globally among women, prompting the need for innovative and effective therapeutic approaches. Plant-based exosomes (PBEXOs) offer a promising avenue for breast cancer treatment. Derived from plant sources, these EXOs exhibit unique properties, including biocompatibility, non-immunogenicity, and inherent bioactive compounds that make them suitable for medical applications. PBEXOs have shown potential in targeting cancer cells due to their ability to transport therapeutic substances directly to tumor sites, enhancing medication effectiveness and reducing systemic adverse effects. Their natural composition allows for modifications that improve stability, targeting capabilities, and drug-loading efficiency. The advanced isolation ensures the retention of their functional properties, which is crucial for their therapeutic applications. Characterization of these EXOs further supports their potential use in oncology. In preclinical studies, PBEXOs have been successfully loaded with various chemotherapeutic drugs, demonstrating significant anti-cancer activity. Recent studies highlight the progression of PBEXOs from experimental models to potential clinical applications, with some formulations receiving regulatory attention. However, challenges such as scalability, regulatory compliance, and a comprehensive understanding of their mechanisms remain. Addressing these issues could pave the way for PBEXOs to become a standard component in the arsenal against breast cancer, offering hope for more effective and targeted therapies.
Collapse
Affiliation(s)
- Niraj Kumar Sah
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Sanchit Arora
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Rohan Chand Sahu
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
14
|
Liu C, Yi M, Luo B, Wang M. ZFP36 regulates the osteogenic differentiation of adipose-derived mesenchymal stem cells in osteoporosis by mediating KLF3 mRNA degradation. Sci Rep 2025; 15:14386. [PMID: 40274995 PMCID: PMC12022323 DOI: 10.1038/s41598-025-98738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Osteoporosis is one of the most common bone-related diseases in which osteogenic differentiation plays a key role. Adipose-derived mesenchymal stem cells (ADMSCs), as one of the important sources of bone formation, can differentiate into osteoblasts under appropriate conditions. To investigate the effect and potential mechanism of ZFP36 on osteogenic differentiation of ADMSCs in osteoporosis by regulating the stability of KLF3 mRNA. In this study, an osteoporosis rat model was established by ovariectomy (OVX), and the expression level of KLF3 in bone tissue was detected by RT-qPCR and immunohistochemistry (IHC). To further investigate the effect of KLF3 gene knockdown on bone health in osteoporotic rats. In vitro, KLF3 over-expression was performed on ADMSCs, and the effect of KLF3 knockdown on osteogenic differentiation of ADMSCs was evaluated by alkaline phosphatase (ALP) activity assay and alizarin red S staining. In addition, RNA pull-down, dual luciferase reporter gene, RIP and Actinomycin D treatment were used to explore the regulatory mechanism of ZFP36-mediated KLF3 mRNA degradation in osteogenic differentiation. Finally, the effect of ZFP36 on osteogenic differentiation and its interaction with KLF3 were further verified by interfering with ZFP36/KLF3 expression in rats in vivo and in vitro. In the osteoporotic rat model, KLF3 expression was significantly downregulated in bone tissue. Over-expression of KLF3 in ADMSCs significantly increased KLF3 protein level but inhibited osteogenic differentiation. In contrast, the over-expression of ZFP36 significantly promoted the osteogenic differentiation of ADMSCs, and the expression level of KLF3 was significantly reduced under this condition. ZFP36 accelerates KLF3 degradation by directly binding KLF3 mRNA. Inhibition of ZFP36 inhibited osteogenic differentiation of cells by up-regulating KLF3, and osteogenic differentiation was promoted after KLF3 knockdown. In animal experiments, over-expression of ZFP36 significantly improved BMD, bone volume, and trabecular bone architecture in osteoporotic rats, while over-expression of KLF3 reversed these improvements. ZFP36 promotes the osteogenic differentiation of ADMSCs by mediating the degradation of KLF3 mRNA and provides a potential molecular target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Chao Liu
- Department of Spine Surgery, Hengyang Central Hospital, Hengyang, 421001, China
| | - Ming Yi
- Department of Pain, The First Affiliated Hospital of University of South China, University of South China, Hengyang, 421001, China
| | - Bangmin Luo
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan Province, China
| | - Ming Wang
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
15
|
Kim HJ, Lee SH, Park YS, Seo DW, Seo KW, Kim DK, Jang YH, Lim JH, Cho YE. Utility of edible plant-derived exosome-like nanovesicles as a novel delivery platform for vaccine antigen delivery. Vaccine 2025; 52:126902. [PMID: 40014983 DOI: 10.1016/j.vaccine.2025.126902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
Plant-derived exosome-like nanovesicles (PENVs) contain various biomolecules that can be used as delivery cargoes, such as small compounds, small interfering RNAs, DNAs, and recombinant proteins. Edible PENVs are nontoxic, useful for oral administration, and easily prepared in high amounts from a variety of plants, vegetables, and fruits. In this study, we evaluated whether PENVs can be used as delivery cargoes for recombinant vaccine antigens. Thus, we isolated PENVs from grapefruits and mandarin oranges by differential centrifugation and characterized their sizes and morphologies. Our results showed lipid bilayer morphologies of grapefruit-derived nanovesicles (GNVs) with the average size of 46 ± 8.5 nm and mandarin orange-derived NVs (MNVs) with the average size of 227 ± 6.4 nm. However, exposure to GNVs and MNVs did not cause cytotoxicity in Vero monkey kidneys or in MDCK canine kidney cells. To evaluate their utility as carriers of mRNA or recombinant proteins, GNVs and MNVs were loaded with GFP mRNA, Alexa Fluor 647-labeled heat shock protein 70 (AF-HSP70), or recombinant hepatitis B surface antigen (HBsAg). Our results showed that mRNA-GFP, human HSP70 protein, and HBsAg were efficiently loaded into both GNVs and MNVs. Interestingly, the oral administration of HBsAg-loaded GNVs to mice resulted in significantly higher levels of serum IgG than in the experimental control group (HBsAg without NVs). Therefore, our results report, for the first time, that edible PENVs loaded with HBsAg administered to mice via oral vaccination were effective in vaccine development.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Department of Food and Nutrition, Andong National University, Andong 36729, South Korea
| | - Sang-Hoon Lee
- Department of Food and Nutrition, Andong National University, Andong 36729, South Korea
| | - Yu-Seong Park
- Department of Food and Nutrition, Andong National University, Andong 36729, South Korea
| | - Dong-Won Seo
- Innovation Center for Vaccine Industry, Gyeongbuk Institute for Bio Industry, Republic of Korea
| | - Kwang-Won Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, South Korea
| | - Yo Han Jang
- Department of Vaccine Biotechnology, Andong National University, Andong 36729, South Korea
| | - Jae-Hwan Lim
- Department of Vaccine Biotechnology, Andong National University, Andong 36729, South Korea.
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, South Korea.
| |
Collapse
|
16
|
Fu J, Liu Z, Feng Z, Huang J, Shi J, Wang K, Jiang X, Yang J, Ning Y, Lu F, Li L. Platycodon grandiflorum exosome-like nanoparticles: the material basis of fresh platycodon grandiflorum optimality and its mechanism in regulating acute lung injury. J Nanobiotechnology 2025; 23:270. [PMID: 40186259 PMCID: PMC11969861 DOI: 10.1186/s12951-025-03331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a severe respiratory disease accompanied by diffuse inflammatory responses induced by various clinical causes. Many fresh medicinal plants have shown better efficacy than their dried forms in preventing and treating diseases like inflammation. As a classical Chinese herb, platycodon grandiflorum (PG) has been demonstrated effective in treating pneumonia, but most of previous studies focused on the efficacy of processed or dried PG formats, while the specific benefits of its fresh form are still underexplored. Exosome-like nanoparticles derived from medicinal plants are expected to point out an important direction for exploring the material basis and mechanism of this fresh herbal medicine. RESULTS The fresh form of PG could effectively improve ALI induced by lipopolysaccharide (LPS), relieve lung histopathological injury and weight loss, and reduce levels of inflammatory factors in mice, exhibiting better efficacy than dried PG in the treatment of ALI. Further extraction and purification of PG exosome-like nanoparticles (PGLNs) demonstrated that PGLNs had good biocompatibility, with characteristics consistent with general exosome-like nanoparticles. Besides, proteomic analysis indicated that PGLNs were rich in a variety of proteins. Animal experiments showed that PGLNs improved the pathological changes in LPS-induced lung tissues, inhibited the expression of inflammatory factors and promoted the expression of anti-inflammatory factors, and exerted a regulatory effect on the polarization of lung macrophages. Cell experiments further confirmed that PGLNs could be effectively taken up by RAW264.7 cells and repolarize M1 macrophages into M2 type, therefore reducing the secretion of harmful cytokines. Moreover, non-targeted metabolomics analysis reveals that PGLNs reduce inflammation and control macrophage polarization in a manner closely linked to pathways including glycolysis and lipid metabolism, highlighting a potential mechanism by which PGLNs protect the lungs from inflammatory damage like ALI. CONCLUSION Fresh PG has better anti-inflammatory and repair effects than its dried form. As one of the most effective active substances in fresh PG, PGLNs may regulate macrophage inflammation and polarization by regulating metabolic pathways including lipid metabolism and glycolysis, so as to reduce inflammation and repair lung injury.
Collapse
Affiliation(s)
- Jingmin Fu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Zhuolin Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China
| | - Zhiying Feng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Jiawang Huang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China
| | - Jianing Shi
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Kangyu Wang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Xuelian Jiang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Jiaxin Yang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Yi Ning
- The Medicine School, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
- Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine, Hunan University Of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
| | - Fangguo Lu
- The Medicine School, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
- Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine, Hunan University Of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
| | - Ling Li
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
- Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine, Hunan University Of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
17
|
Yang J, Ai X, Zhang C, Guo T, Feng N. Application of plant-derived extracellular vesicles as novel carriers in drug delivery systems: a review. Expert Opin Drug Deliv 2025:1-17. [PMID: 40159727 DOI: 10.1080/17425247.2025.2487589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Plant-derived extracellular vesicles (P-EVs) are nanoscale, lipid bilayer vesicles capable of transporting diverse bioactive substances, enabling intercellular and interspecies communication and material transfer. With inherent pharmacological effects, targeting abilities, high safety, biocompatibility, and low production costs, P-EVs are promising candidates for drug delivery systems, offering significant application potential. AREAS COVERED A comprehensive review of studies on P-EVs was conducted through extensive database searches, including PubMed and Web of Science, spanning the years 1959 to 2025. Drawing on animal and cellular model research, this review systematically analyzes the pharmacological activities of P-EVs and their advantages as drug delivery carriers. It also explores P-EVs' drug loading methods, extraction techniques, and application prospects, including their benefits, clinical potential, and feasibility for commercial expansion. EXPERT OPINION Establishing unified preparation standards and conducting a more comprehensive analysis of molecular composition, structural characteristics, and mechanisms of P-EVs are essential for their widespread application. Greater attention should be given to the potential synergistic or antagonistic effects between P-EVs as carriers and the drugs they deliver, as this understanding will enhance their practical applications. In conclusion, P-EVs-based drug delivery systems represent a promising strategy to improve treatment efficacy, reduce side effects, and ensure drug stability.
Collapse
Affiliation(s)
- Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenming Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Teng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Deng J, Zeng X, Zhang K, Zhang T, Dong Y, Zou J, Wu C, Li Y, Li F, Guan Z. Knockdown of SMYD3 by RNA Interference Regulates the Expression of Autophagy-Related Proteins and Inhibits Bone Formation in Fluoride-Exposed Osteoblasts. Biol Trace Elem Res 2025; 203:2013-2028. [PMID: 39106008 PMCID: PMC11919934 DOI: 10.1007/s12011-024-04327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
This study aimed to explore the role of histone methyltransferase SET and MYND domain containing 3 (SMYD3) in bone metabolism of osteoblasts exposed to fluoride. The levels of urine fluoride, BALP, and OC and the mRNA expression of SMYD3 were determined in patients with skeletal fluorosis and non-fluoride-exposed people on informed consent. The expression of SMYD3 protein, OC contents, and BALP activities were detected in human osteoblast-like MG63 cells and rat primary osteoblasts treated with sodium fluoride (NaF) for 48 h. The autophagosomes were observed by transmission electron microscopy. Then, we knocked down SMYD3 to confirm whether it was involved in the regulation of bone formation and related to autophagy and Wnt/β-catenin pathway. We observed that OC and BALP levels in patients with skeletal fluorosis significantly increased, while the mRNA expression of SMYD3 significantly decreased in the skeletal fluorosis groups. In vitro, the OC contents, BALP activities, and expression of SMYD3 significantly increased, and many autophagosomes were observed in NaF treated osteoblasts. The downregulation of SMYD3 significantly inhibited OC contents, BALP activities, and expression of autophagy-related proteins, but with no significant changes in the Wnt/β-catenin pathway. Our results demonstrated that fluoride exposure with coal-burning pollution caused orthopedic injuries and abnormalities in the levels of OC and BALP and hindered normal bone metabolism. Silencing the SMYD3 gene could significantly reduce OC and BALP levels via inhibiting the increase in autophagy induced by fluoride.
Collapse
Affiliation(s)
- Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaoxiao Zeng
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Kailin Zhang
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yangting Dong
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jian Zou
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Changxue Wu
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yi Li
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Fucheng Li
- Research Group of Liupanshui Center for Disease Control and Prevention, Liupanshui, 553001, Guizhou, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China.
- Departments of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
19
|
Lin F, Xu L, He Q, Chen Z, Zhang W, Tu J, Song Y, Zhong F, Lin S, Yang R, Zeng Z. Plant-derived nanovesicles as novel nanotherapeutics for alleviating endothelial cell senescence-associated vascular remodeling induced by hypertension. Pharmacol Res 2025; 214:107675. [PMID: 40015387 DOI: 10.1016/j.phrs.2025.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/27/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Endothelial cell senescence contributes to vascular remodeling in hypertension, a condition that lacks specific clinical treatments. While plant-derived nanovesicles have shown anti-inflammatory properties that reduce endothelial inflammation, their role in endothelial cell senescence is less understood. Here, we isolated and purified nanovesicles from Semen Sinapis albae (SDNVs), a traditional Chinese medicine with antihypertensive properties, and evaluated their therapeutic effects on vascular remodeling in spontaneously hypertensive rats (SHRs) compared to nifedipine, a standard antihypertensive drug. SDNVs were as effective as nifedipine in reducing blood pressure and exceeded nifedipine in mitigating vascular wall thickening, collagen fiber disarray, and in decreasing senescence markers in aortic tissues. In vitro, SDNVs inhibited angiotensin II-induced senescence in human umbilical vein endothelial cells (HUVECs). miRNA and mRNA sequencing revealed that SDNVs downregulate CD38 expression through miR393a delivery, mediating their anti-senescence effects. Our results suggest that SDNVs significantly alleviate hypertension-associated vascular remodeling by targeting CD38 via miR393a, thus reducing endothelial cell senescence. Compared to conventional drugs like nifedipine, SDNVs offer a potentially more effective approach to vascular remodeling. These insights may guide the development of novel therapeutics for hypertension-induced vascular remodeling.
Collapse
Affiliation(s)
- Fengxia Lin
- Department of Cardiology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Luhua Xu
- Department of Cardiology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qiuting He
- Department of Cardiology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zetao Chen
- Department of Cardiology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Weiwei Zhang
- Department of Cardiology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jin Tu
- Department of urology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Yinzhi Song
- Department of Cardiology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Fanjia Zhong
- Department of Cardiology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Sheng Lin
- Key laboratory of Chinese internal medicine of MOE, Beijing University of Chinese Medicine, Beijing, China.
| | - Rongfeng Yang
- Division of Cardiovascular Intensive Care (CICU), Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, China.
| | - Zhicong Zeng
- Department of Cardiology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
20
|
Li D, Yi G, Cao G, Midgley AC, Yang Y, Yang D, Liu W, He Y, Yao X, Li G. Dual-Carriers of Tartary Buckwheat-Derived Exosome-Like Nanovesicles Synergistically Regulate Glucose Metabolism in the Intestine-Liver Axis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410124. [PMID: 40079102 DOI: 10.1002/smll.202410124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/26/2025] [Indexed: 03/14/2025]
Abstract
The utilization of plant-derived exosome-like nanovesicles (ELNs) as nanocarriers for oral delivery of bioactives has garnered significant attention. However, their distinctive lipid membrane composition may result in elevated membrane permeability within the gastrointestinal environment, leading to the leakage of carried bioactives. Inspired by the concept of projectile design, Tartary buckwheat-derived ELNs (TB-ELNs) based dual-carriers are fabricated by loading chlorogenic acid (CGA) into the cores and bonding selenium nanoparticles (SeNPs) to the lipid membrane. The results indicate that SeNPs bond markedly augments the membrane rigidity, and therefore enhances the stability of TB-ELNs and the retention rate of the loaded CGA during gastrointestinal digestion. In vitro and in vivo studies indicates that the TB-ELNs based dual-carriers are internalized by epithelial cells and transcytosis via the endoplasmic reticulum, and show the synergistic regulatory effect on high-fat diet-induced hyperglycemia in the intestine-liver axis. These results may be attributed to the fact that SeNPs combination reduces the gastrointestinal degradation of the carried bioactives. Moreover, SeNPs with antioxidant property can protect ELNs and their carried bioactives from oxidative damage, thereby enhancing their biological activities. Collectively, this study offers a new strategy to develop highly efficient oral delivery systems for bioactives to alleviate hyperglycemia and diabetes.
Collapse
Affiliation(s)
- Dan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Gaoyang Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Guifang Cao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yongli Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Dan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Wenguang Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yujuan He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| |
Collapse
|
21
|
Luo B, Liang Z, Lin W, Li Y, Zhong W, Bai D, Hu X, Xie J, Li X, Wang P, Zhu X, Zhang R, Yang L. Aqueous extract of Rehmanniae Radix Praeparata improves bone health in ovariectomized rats by modulating the miR-29a-3p/NFIA/Wnt signaling pathway axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119549. [PMID: 40024453 DOI: 10.1016/j.jep.2025.119549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/23/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rehmanniae Radix Praeparata (RRP), a widely used traditional Chinese medicine and a processed form of Rehmannia glutinosa, is primarily utilized to supplement kidney function and promote bone health. Clinical evidence suggests that RRP exhibits significant efficacy in the treatment of osteoporosis (OP). However, the precise mechanisms underlying its therapeutic effects remain incompletely understood. AIM OF THE STUDY OP is a systemic skeletal disorder characterized by reduced bone density and quality, leading to an increased risk of fractures. The aim of this study is to evaluate the effectiveness and underlying mechanisms of RRP in treating OP. MATERIALS AND METHODS Ovariectomized (OVX) rats were administered RRP aqueous extract via gavage for three months. After the treatment period, femoral microstructure and osteogenic protein levels were assessed to evaluate the efficacy of RRP. Serum exosomes (Exos) derived from different groups of rats were isolated and characterized. The levels of miR-29a-3p in serum-derived Exos and femoral tissue were quantified. Subsequently, Exos were co-cultured with rat bone marrow mesenchymal stem cells (rBMSCs) to investigate their role in promoting osteogenic differentiation and explore the molecular mechanisms underlying this process, particularly through the miR-29a-3p/NFIA/Wnt signaling pathway axis. RESULTS OVX rats exhibited significant bone microdamage. In contrast, the RRP-treated OVX rats showed marked improvements in femoral bone microstructure and increased osteogenic protein expression. MiR-29a-3p levels were elevated in serum-derived Exos from the RRP-treated rats. Furthermore, rBMSCs treated with these Exos displayed an increase in miR-29a-3p expression. Further investigations revealed that miR-29a-3p promoted osteogenesis by inhibiting NFIA expression in both bone tissue and rBMSCs. Overexpression of NFIA reversed the osteogenic effects of miR-29a-3p, confirming NFIA as its direct target and suggesting that miR-29a-3p enhances osteogenesis by inhibiting NFIA. Additionally, NFIA was found to promote the transcription of SFRP1, an inhibitor of the Wnt signaling pathway. Our findings suggest that the RRP aqueous extract increases miR-29a-3p levels in serum Exos, which in turn inhibits NFIA and activates the Wnt signaling pathway, thereby promoting osteogenesis. CONCLUSION These findings suggest that the RRP aqueous extract improves bone health and mitigates bone microstructural damage caused by OP through the regulation of the miR-29a-3p/NFIA/Wnt signaling pathway axis.
Collapse
Affiliation(s)
- Bingjie Luo
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Ziwen Liang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Weiwen Lin
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, 510630, PR China; College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Wenqiang Zhong
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Donghui Bai
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, 510630, PR China; College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Xueling Hu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Ji Xie
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Xiaoyun Li
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Panpan Wang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, 510630, PR China; College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Xiaofeng Zhu
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, 510630, PR China; College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Ronghua Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, 510630, PR China.
| | - Li Yang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, 510630, PR China.
| |
Collapse
|
22
|
Liu R, Zhang F, He X, Huang K. Plant Derived Exosome-Like Nanoparticles and Their Therapeutic Applications in Glucolipid Metabolism Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6385-6399. [PMID: 40048449 DOI: 10.1021/acs.jafc.4c12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Plant derived exosome-like nanoparticles (PELNs) are membrane structures isolated from different plants, which encapsulate many active substances such as proteins, lipids, and nucleic acids, which exert a substantial influence on many physiological processes such as plant growth and development, self-defense, and tissue repair. Compared with synthetic nanoparticles and mammalian cell derived exosomes (MDEs), PELNs have lower toxicity and immunogenicity and possess excellent biocompatibility. The intrinsic properties of PELNs establish a robust basis for their applications in the therapeutic management of a diverse array of pathologies. It is worth mentioning that PELNs have good biological targeting, which promotes them to load and deliver drugs to specific tissues, offering a superior development pathway for the construction of a new drug delivery system (DDS). Glucose and lipid metabolism is a vital life process for the body's energy and material supply. The maintenance of homeostatic balance provides a fundamental basis for the body's ability to adjust to modifications in both its internal and external environment. Conversely, homeostatic imbalance can lead to a range of severe metabolic disorders. This work provides a comprehensive overview of the extraction and representation methods of PELNs, their transportation and storage characteristics, and their applications as therapeutic agents for direct treatment and as delivery vehicles to enhance nutrition and health. Additionally, it examines the therapeutic efficacy and practical applications of PELNs in addressing abnormalities in glucose and lipid metabolism. Finally, combined with the above contents, the paper summarizes and provides a conceptual framework for the better application of PELNs in clinical disease treatment.
Collapse
Affiliation(s)
- Ruolan Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Feng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| |
Collapse
|
23
|
Han Y, Guo X, Ji Z, Guo Y, Ma W, Du H, Guo Y, Xiao H. Colon health benefits of plant-derived exosome-like nanoparticles via modulating gut microbiota and immunity. Crit Rev Food Sci Nutr 2025:1-21. [PMID: 40105379 DOI: 10.1080/10408398.2025.2479066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Exosomes are nanoscale particles with a lipid bilayer membrane that were first identified in mammalian cells. Plant-derived exosome-like nanoparticles (PELNs) share structural and molecular similarities with mammalian exosomes, including lipids, proteins, microRNA (miRNA), and plant-derived metabolites. Owing to their unique characteristics, such as outstanding stability, low immunogenicity, high biocompatibility, and sustainability, PELNs have emerged as promising natural bioactive agents with the capacity for cross-kingdom cellular regulation. Dietary supplementation with PELNs, particularly from fruits and vegetables, has demonstrated health benefits. An increasing number of studies have indicated the beneficial effects of PELNs on colon health. This review summarizes the isolation and characterization of PELNs, and their stability, uptake, and distribution after oral ingestion. Furthermore, this review emphasizes the interactions between PELNs, gut microbiota, and the gut immune system, including the uptake of PELNs by gut microbiota, modulation of gut bacteria metabolism, and immune responses by PELNs. Additionally, the applications of PELNs as bioactive components and drug carriers targeting the colon are reviewed. In summary, PELNs represent a versatile and natural approach to improve colon health, with potential applications in both therapeutic and preventive healthcare strategies.
Collapse
Affiliation(s)
- Yanhui Han
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, PR China
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Xiaojing Guo
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zhengmei Ji
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, PR China
| | - Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Wenjun Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, PR China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, PR China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
24
|
Yang JJ, He SQ, Huang B, Wang PX, Xu F, Lin X, Liu J. A bibliometric and visualized analysis of extracellular vesicles in degenerative musculoskeletal diseases (from 2006 to 2024). Front Pharmacol 2025; 16:1550208. [PMID: 40183074 PMCID: PMC11966045 DOI: 10.3389/fphar.2025.1550208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Background With the rapid development of extracellular vesicles (EVs) in regenerative medicine research, they have become a promising new direction in the mechanistic, diagnosis and treatment studies of degenerative musculoskeletal diseases (DMDs), and has attracted increasing attention. However, there is currently a lack of comprehensive and objective summary analysis to help researchers quickly and conveniently understand the development trajectory and future trends of this field. Method This study collected articles and reviews published from 2006 to 2024 on EVs in DMDs from the Web of Science database. Bibliometric and visual analysis was conducted using several tools, including Microsoft Excel Office, VOSviewer, CiteSpace, Pajek, and R packages. Results 1,182 publications were included in the analysis from 2006 to 2024. Notably, there was a rapid increase in the number of publications starting in 2016, suggesting that this field remains in a developmental stage. Co-authorship analysis revealed that China ranked first in terms of publications, whereas the United States led in citations. The journal with the highest number of publications was International Journal of Molecular Sciences (INT J MOL SCI). The most prolific authors were Ragni, E with 23 publications, while the most cited author was Toh, WS. Additionally, nine of the top 10 institutions were from China, with Shanghai Jiao Tong University leading in the number of publications. The most cited article was "MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity", authored by Zhang, S, and published in BIOMATERIALS in 2018. Conclusion This study, through bibliometric and visual analysis, clearly illustrates the collaborative relationships among countries, authors, institutions, and journals, providing valuable insights for researchers seeking academic collaboration opportunities. Moreover, the analysis of keywords and citations allows researchers to better understand key research hotspots and frontiers in this field, and points toward promising directions for future research. The growing interest in EV research in DMDs over recent years indicates increasing attention and a dynamic progression in this field.
Collapse
Affiliation(s)
- Jun-Jie Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Sha-Qi He
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Xin Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Department of Radiology Quality Control Center in Hunan Province, Changsha, China
| |
Collapse
|
25
|
Peng J, Liu R, Xu J, Yao Y, Li B, Chen D, Chang Z, Zhao R, Feng Y, Hou R, Lee M, Zhang X. Acid-responsive aggregated carrot-derived nanoantioxidants alleviate oxidative stress and restore osteoblast activity. J Nanobiotechnology 2025; 23:206. [PMID: 40075427 PMCID: PMC11900130 DOI: 10.1186/s12951-025-03235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/16/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Excessive generation of reactive oxygen species is a hallmark of the osteoporotic bone microenvironment, which leads to the damage of mitochondrial function and the deactivation of osteoblasts. Fruits and vegetables are rich sources of antioxidants, which play a key role in scavenging free radicals and maintaining the body's homeostasis. RESULTS Herein, we have developed a type of vesicle coming from carrots as nanoantioxidants to counteract oxidative stress and restore the vitality of osteoblasts for reversing osteoporosis. Nanovesicles are derived from carrot juice using a straightforward extrusion method, resulting in stable membrane structures containing various lipids and homologous active phytochemicals. Nanovesicles can maintain stable structures under normal physiological conditions (pH 7.4) and transform into aggregates in response to the acidic extracellular pH of osteoporosis (pH 4.0). As anticipated, nanovesicles can passively target and aggregate to osteoporotic bone, ease oxidative stress, restore mitochondrial function, promote osteoblastogenesis, and reduce bone loss in osteoporotic mice. CONCLUSIONS This work presents the first demonstration of nanovesicles derived from carrots as novel nanoantioxidants to realize the long-awaited osteogenesis, contributing to the exploration of a brand-new idea for reversing osteoporosis.
Collapse
Affiliation(s)
- Jiao Peng
- Second Clinical Medical College, School of Pharmacy and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Rongyan Liu
- Second Clinical Medical College, School of Pharmacy and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Junyi Xu
- Second Clinical Medical College, School of Pharmacy and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yingjuan Yao
- Second Clinical Medical College, School of Pharmacy and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Beibei Li
- Second Clinical Medical College, School of Pharmacy and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Dengke Chen
- Second Clinical Medical College, School of Pharmacy and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Zhuangpeng Chang
- Second Clinical Medical College, School of Pharmacy and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Rui Zhao
- Second Clinical Medical College, School of Pharmacy and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yanlin Feng
- Shanxi Provincial Key Laboratory of Cellular Physiological, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.
| | - Ruigang Hou
- Second Clinical Medical College, School of Pharmacy and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.
| | - Min Lee
- Division of Advanced Prosthodontics, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xiao Zhang
- Second Clinical Medical College, School of Pharmacy and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.
| |
Collapse
|
26
|
Yang S, Fan L, Yin L, Zhao Y, Li W, Zhao R, Jia X, Dong F, Zheng Z, Zhao D, Wang J. Ginseng exosomes modulate M1/M2 polarisation by activating autophagy and target IKK/IкB/NF-кB to alleviate inflammatory bowel disease. J Nanobiotechnology 2025; 23:198. [PMID: 40065319 PMCID: PMC11895377 DOI: 10.1186/s12951-025-03292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Exosomes are involved in intercellular communication and regulation of the inflammatory microenvironment. In a previous study, we demonstrated that fresh ginseng exosomes (GEs) alleviated inflammatory bowel disease. However, the precise mechanism by which GEs activate the immune system and subsequently inhibit the formation of intestinal inflammatory microenvironment remains unknown. METHODS Herein, we investigated the effects of GEs on autophagy, macrophage polarisation, intestinal inflammation, and the epithelial barrier by means of transcriptome sequencing, network pharmacology, transmission electron microscopy, immunoblotting, flow cytometry and small molecule inhibitors. RESULTS GEs significantly activated autophagy and M2-like macrophage polarisation, which could be blocked by the autophagy inhibitor 3-methyladenine. In the co-culture system of macrophages and intestinal epithelial cells, macrophages treated with GEs secreted more interleukin-10 (IL-10) and significantly reduced Nitric oxide (NO) levels in intestinal epithelial cells in vitro. Furthermore, GEs acted directly on intestinal epithelial cells through the IKK/IкB/NF-кB signalling pathway to reduce inflammation and restore the intestinal barrier. Orally administered GEs could restore disrupted colonic barriers, alleviate inflammatory bowel responses, and regulate the polarisation of intestinal macrophages in vivo. CONCLUSION In summary, GEs may be a potential treatment for inflammatory bowel disease, and targeting autophagy and macrophage polarisation may help alleviate intestinal inflammation.
Collapse
Affiliation(s)
- Song Yang
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Liangliang Fan
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Lijia Yin
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Yueming Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Wenjing Li
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Ronghua Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Xuxia Jia
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Fusong Dong
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Ze Zheng
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Daqing Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Jiawen Wang
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China.
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
27
|
Karabay AZ, Barar J, Hekmatshoar Y, Rahbar Saadat Y. Multifaceted Therapeutic Potential of Plant-Derived Exosomes: Immunomodulation, Anticancer, Anti-Aging, Anti-Melanogenesis, Detoxification, and Drug Delivery. Biomolecules 2025; 15:394. [PMID: 40149930 PMCID: PMC11940522 DOI: 10.3390/biom15030394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Most eukaryotic and prokaryotic cells have the potential to secrete a group of structures/membrane-bound organelles, collectively referred to as extracellular vesicles (EVs), which offer several advantages to producer/receiver cells. This review provides an overview of EVs from plant sources with emphasis on their health-promoting potential and possible use as therapeutic agents. This review highlights the essential biological effects of plant-derived extracellular vesicles, including immune modulation, anticancer activities, protection against chemical toxicity and pathogens, as well as anti-aging, anti-melanogenesis, and anti-arthritic effects, along with ongoing clinical studies. Evidence revealed that plant-derived EVs' contents exert their beneficial properties through regulating important signaling pathways by transferring miRNAs and other components. Taken all together, the data proposed that plant-derived EVs can be utilized as nutritional compounds and therapeutic agents, such as drug carriers. However, this emerging research area requires further in vitro/in vivo studies and clinical trials to determine the exact underlying mechanisms of EVs' positive health effects in treating various diseases.
Collapse
Affiliation(s)
- Arzu Zeynep Karabay
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Yalda Hekmatshoar
- Department of Medical Biology, Faculty of Medicine, Altinbas University, 34217 Istanbul, Türkiye;
| | - Yalda Rahbar Saadat
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| |
Collapse
|
28
|
Li Z, Liu Y, Wang H, Xu G. Transcription factor SMAD5 upregulates ALG5 to alleviate osteoporosis development by inducing osteogenic differentiation. J Orthop 2025; 61:140-149. [PMID: 39588532 PMCID: PMC11585819 DOI: 10.1016/j.jor.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
Background Impaired osteogenic differentiation ability of mesenchymal stem cells (MSCs) plays a pathogenic role in osteoporosis (OP). ALG5, a key glucosyltransferase, participates in the synthesis of the glucose-residue donor. However, little is known about the role of ALG5 in OP pathogenesis and osteogenic differentiation. Methods The GSE35956 dataset was used to observe OP-associated factors. ALG5 and SMAD5 mRNA analysis was performed by quantitative PCR. Induction of osteoblastic differentiation of human MSCs (hMSCs) was done using specific media for 14 days. The ovariectomy (OVX)-induced osteoporotic mouse model was established. Calcium deposition was detected by alkaline phosphatase (ALP) activity assay and Alizarin Red staining. Protein expression was evaluated by immunoblot analysis. The relationship of SMAD5 with the ALG5 promoter was predicted by the online tool JASPAR and validated by luciferase assay. Results In bone marrow of OP, ALG5 and SMAD5 levels were decreased. Overexpression of ALG5 acted for in vitro enhancement of osteogenic differentiation and autophagy of hMSCs. Mechanistically, SMAD5 enhanced ALG5 transcription to increase ALG5 expression. Moreover, increased SMAD5 expression promoted in vitro osteogenic differentiation of hMSCs through ALG5. ALG5 and SMAD5 were also underexpressed in bone samples of OVX-osteoporotic mice. Furthermore, increased SMAD5 expression alleviated OP development of OVX mice by inducing osteogenic differentiation by upregulating ALG5. Conclusion Our findings demonstrate that increased SMAD5 expression upregulates ALG5 to enhance osteogenic differentiation of hMSCs and thus alleviates OP development, providing novel potential approaches to combat OP.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Outpatient, Shanghai Changzheng Hospital, Naval Medical University, 200003, Shanghai City, China
| | - Yifei Liu
- Department of Spine Surgery, Shanghai Changzheng Hospital, Naval Medical University, 200003, Shanghai City, China
| | - Haiping Wang
- Department of Outpatient, Shanghai Changzheng Hospital, Naval Medical University, 200003, Shanghai City, China
| | - Guohua Xu
- Department of Spine Surgery, Shanghai Changzheng Hospital, Naval Medical University, 200003, Shanghai City, China
| |
Collapse
|
29
|
Yang M, Xu L, Wang W. Molecular anti-tumorigenic mechanism of Radix Polygoni Multiflori-derived exosome-like nanoparticles. Heliyon 2025; 11:e41918. [PMID: 40028544 PMCID: PMC11868940 DOI: 10.1016/j.heliyon.2025.e41918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/25/2024] [Accepted: 01/10/2025] [Indexed: 03/05/2025] Open
Abstract
The incidence and mortality rate of liver cancer are on the rise worldwide and effective therapeutic strategies are needed. Previous studies demonstrated that exosomes and exosome-like nanoparticles (ELNs) have numerous biological activities including antioxidant, anti-tumor, and anti-inflammatory effects. In this study, ELNs were successfully isolated for the first time from Radix Polygoni Multiflori (RPM) juice by ultracentrifugation. This indicated that RPM-ELNs could be internalized by hepatoma cells effectively and inhibit their proliferation and migration in vitro. RNA sequencing and qPCR experiments were performed, and the results of bioinformatic analyses revealed that RPM-ELNs could globally regulate expression levels of numerous genes associated with cancer and the cell cycle. In addition, it showed that RPM-ELNs mainly target liver tissue of mice in vivo.
Collapse
Affiliation(s)
- Mingqing Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lining Xu
- Department of General Surgery, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weiyu Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, China
| |
Collapse
|
30
|
Lu J, Chen J, Jiang Y, Liu Y, Yu S, Shi Z, Chen P, Lin H, Li P. Ancient Medicinal Insect Steleophaga Plancyi (Boleny)-Derived Extracellular Vesicle-Like Particles Enhances Autophagic Activity to Promote Osteogenic Differentiation via Melatonin in Osteoporosis. Int J Nanomedicine 2025; 20:2059-2071. [PMID: 39975419 PMCID: PMC11835776 DOI: 10.2147/ijn.s505443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction Osteoporosis, a critical public health challenge, is marked by skeletal deformities and heightened fracture risk. Steleophaga plancyi (Boleny) (SP), a component of traditional Chinese medicine, is known to enhance bone health, but the molecular mechanisms behind its osteoprotective effects are not well understood. Methods We isolated extracellular vesicle (EV)-like particles from SP (SP-EVLP) using differential velocity centrifugation and investigated their effects on human bone marrow stromal cells (hBMSCs) in vitro. We utilized CCK-8, Alkaline phosphatase (ALP) and alizarin red staining (ARS), RNA-seq, bioinformatics, immunofluorescence, and Western blot to elucidate the osteoprotective role and mechanisms of SP-EVLP. The therapeutic potential of SP-EVLP was evaluated in an ovariectomized (OVX) rat model, a standard model for osteoporosis, by encapsulating them in enteric-coated capsules. Results SP-EVLP were successfully isolated and characterized, and they were shown to be effectively internalized by hBMSCs, enhancing osteogenic differentiation. In the OVX rat model, SP-EVLP encapsulated in enteric-coated capsules significantly increased bone mass, indicating a robust osteoprotective effect. Further mechanistic studies revealed that SP-EVLP promotes osteoblast proliferation by activating melatonin-induced autophagy, a pathway that may improve osteoporotic conditions. Conclusion Our results establish SP-EVLP as a promising therapeutic candidate for osteoporosis. The activation of melatonin-induced autophagy by SP-EVLP suggests a molecular mechanism for its osteoprotective effects, opening new possibilities for osteoporosis treatment development.
Collapse
Affiliation(s)
- Jiaxu Lu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Jiaxian Chen
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Youping Jiang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Yuanyuan Liu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Sheng Yu
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Zhen Shi
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Peicong Chen
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Hao Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Peng Li
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| |
Collapse
|
31
|
Yao Y, Xu Z, Ding H, Yang S, Chen B, Zhou M, Zhu Y, Yang A, Yan X, Liang C, Kou X, Chen B, Huang W, Li Y. Carrier-free nanoparticles-new strategy of improving druggability of natural products. J Nanobiotechnology 2025; 23:108. [PMID: 39953594 PMCID: PMC11827262 DOI: 10.1186/s12951-025-03146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
There are abundant natural products resources and extensive clinical use experience in China. However, the active components of natural products generally have problems such as poor water solubility and low bioavailability, which limit their druggability. Carrier-free nanoparticles, such as nanocrystals, self-assembled nanoparticles, and extracellular vesicles derived from both animal and plant sources, have great application potential in improving the safety and efficacy of drugs due to their simple and flexible preparation methods, high drug loading capacity and delivery efficiency, as well as long half-life in blood circulation. It has been widely used in biomedical fields such as anti-tumor, anti-bacterial, anti-inflammatory and anti-oxidation. Therefore, based on the natural products that have been used in clinic, this review focuses on the advantages of carrier-free nanoparticles in delivering active compounds, in order to improve the delivery process of natural products in vivo and improve their draggability.
Collapse
Affiliation(s)
- Yaqi Yao
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhenna Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haoran Ding
- College of Pharmacy, Shandong Xiandai University, Jinan, 250104, China
| | - Shenshen Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bohan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengjiao Zhou
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yehan Zhu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Aihong Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingxu Yan
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chenrui Liang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaodi Kou
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bo Chen
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yubo Li
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
32
|
Li W, Dong MJ, Shi Z, Dai H, Lu S, Wu H, Zhang F, Lu G, Yu J. The application and development prospects of extracellular vesicles in oral administration. Biomed Mater 2025; 20:022006. [PMID: 39904026 DOI: 10.1088/1748-605x/adb22c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Extracellular vesicles (EVs) are nanoscale phospholipid-based particles secreted by cells and are essential mediators responsible for intercellular signal communication. The rapid development of EV nanotechnology has brought unprecedented opportunities for nanomedicine. Among various administration methods, oral administration is the most convenient and simplest. However, most drugs (peptides, small molecule drugs, nucleic acids, and therapeutic proteins) greatly reduce their oral bioavailability due to the harsh gastrointestinal environment. Notably, some EVs have been shown to cross biological barriers, including the gastrointestinal tract. The distinctive biological properties of EVs make them a promising natural carrier for oral drug delivery. This review introduces the characteristics of EVs, covering their classification, production methods, and therapeutic efficacy in oral administration. Additionally, we explore the potential roles of EVs in disease prevention and treatment, as well as their future prospects in pharmaceutical applications. This comprehensive overview aims to provide insights into the application of EVs in oral drug delivery, highlighting their advantages, current progress, and the challenges that need to be overcome for successful clinical translation.
Collapse
Affiliation(s)
- Weiqun Li
- Longgang Central Hospital, Shenzhen, Guangdong 518116, People's Republic of China
| | - Ming-Jie Dong
- Guangdong Laboratory of Artificial Intelligent and Digital Economy (SZ), Shenzhen, Guangdong 518107, People's Republic of China
| | - Zhaoqing Shi
- Institute of Pharmaceutics, Shenzhen Campus of SunYat-sen University, Shenzhen 518107, People's Republic of China
| | - Haibing Dai
- Longgang Central Hospital, Shenzhen, Guangdong 518116, People's Republic of China
| | - Shanming Lu
- Longgang Central Hospital, Shenzhen, Guangdong 518116, People's Republic of China
| | - Huibin Wu
- Longgang Central Hospital, Shenzhen, Guangdong 518116, People's Republic of China
| | - Fan Zhang
- Institute of Pharmaceutics, Shenzhen Campus of SunYat-sen University, Shenzhen 518107, People's Republic of China
| | - Guihong Lu
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, People's Republic of China
| | - Jianbo Yu
- Longgang Central Hospital, Shenzhen, Guangdong 518116, People's Republic of China
| |
Collapse
|
33
|
Qian Y, Yu Y, Yang F, Liang Q, Xu D, Chen J, Hu X. Jingui Shenqi Wan alleviates bone loss induced by primary osteoporosis by inhibiting osteoblast pyroptosis. J Orthop Surg Res 2025; 20:141. [PMID: 39910562 PMCID: PMC11800649 DOI: 10.1186/s13018-025-05542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVE The primary objective of this study was to elucidate the underlying pharmacological mechanisms by which Jingui Shenqi Wan (JGSQW) alleviates postmenopausal osteoporosis (PMOP). Through a systematic investigation, we sought to identify the specific molecular pathways through which JGSQW modulates the progression of PMOP, thereby providing a scientific basis for its clinical application. METHODS We established an ovariectomized (OVX) mouse model to simulate estrogen deficiency-induced PMOP. Initially, micro-CT imaging and Alcian blue hematoxylin/orange G (ABH/OG) staining were employed to assess the effects of JGSQW on bone microarchitecture and bone mass preservation. Immunohistochemistry (IHC) was then utilized to evaluate the expression of osteogenic markers, including Osterix (OSX), Runx2, and Osteopontin (OPN). Additionally, Tartrate - Resistant Acid Phosphatase (TRAP) staining was performed to visualize and quantify osteoclasts. We further investigated the potential role of JGSQW in modulating the pyroptosis pathway. RESULTS JGSQW effectively alleviates the destruction of bone microstructure and the loss of bone mass caused by estrogen deficiency, an effect that appears to be mediated by promoting osteogenesis. Additionally, JGSQW significantly downregulates the expression of GSDMD in osteoblasts and mitigates the abnormal release of inflammatory factors, thereby maintaining the normal functional activities of osteoblasts. CONCLUSION JGSQW may effectively mitigate the progression of estrogen deficiency-induced PMOP by inhibiting the dysregulated activation of osteoblast pyroptosis.
Collapse
Affiliation(s)
- Yuwangxuan Qian
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, China
| | - Yihe Yu
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, China
| | - Fan Yang
- The First Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, China
| | - Qixing Liang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dan Xu
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiaxiang Chen
- The First Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, China
| | - Xueqin Hu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, China.
| |
Collapse
|
34
|
Yang LY, Liang GW, Cai BJ, Xu KM, Zhao YJ, Xie XT, Zhang YL, Li CQ, Zhang GJ. Enhanced tumor self-targeting of lemon-derived extracellular vesicles by embedding homotypic cancer cell membranes for efficient drug delivery. J Nanobiotechnology 2025; 23:74. [PMID: 39893448 PMCID: PMC11786351 DOI: 10.1186/s12951-025-03161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025] Open
Abstract
Plant-derived nanovesicles (PDVs) as nanodrug delivery carriers have gained recognition due to their satisfactory biosafety. However, there remains a challenge to target tumor sites accurately due to the uncertain membrane protein components on the surface of vesicles. Herein, a composite nanodrug delivery system by encapsulating the chemotherapy drug DOX is establish to efficiently target breast cancer. The novel nanoplatform (LEVBD) is formed by embedding the membrane fragments from breast cancer cell with the lemon-derived nanovesicles (LEVs) as the foundational skeleton. LEVBD reveal wonderful homologous tumor targeting due to fusion of cancer cell membrane components with LEVs, and the encapsulation of hybrid vesicles facilitates the transcellular transport of drugs. After intravenous injection, LEVBD could efficiently and selectively home to homologous tumor sites even under competition from heterologous tumors and significantly inhibit tumor growth without any observable toxic side effects. The doping of homologous cancer cell membranes provides a paradigm for the precise delivery of drug delivery vehicles using plant-derived vesicles as the backbone.
Collapse
Affiliation(s)
- Lu-Yao Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P. R. China
| | - Guo-Wu Liang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P. R. China
| | - Bing-Jie Cai
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P. R. China
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Ke-Min Xu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P. R. China
| | - Yu-Jie Zhao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P. R. China
| | - Xiao-Ting Xie
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P. R. China
| | - Yu-Lin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P. R. China
- Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
| | - Chao-Qing Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P. R. China.
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
- Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P. R. China.
- Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China.
| |
Collapse
|
35
|
Han R, Zhou D, Ji N, Yin Z, Wang J, Zhang Q, Zhang H, Liu J, Liu X, Liu H, Han Q, Su J. Folic acid-modified ginger-derived extracellular vesicles for targeted treatment of rheumatoid arthritis by remodeling immune microenvironment via the PI3K-AKT pathway. J Nanobiotechnology 2025; 23:41. [PMID: 39849554 PMCID: PMC11756199 DOI: 10.1186/s12951-025-03096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/04/2025] [Indexed: 01/25/2025] Open
Abstract
Rheumatoid arthritis (RA), a form of autoimmune inflammation, is marked by enduring synovial inflammation and the subsequent impairment of joint function. Despite the availability of conventional treatments, they are often marred by significant side effects and the associated high costs. Plant-derived extracellular vesicles (PEVs) offer a compelling alternative, owing to their abundant availability, affordability, low immunogenicity, high biocompatibility, and feasibility for large-scale production. These vesicles enhance intercellular communication by transferring intrinsic bioactive molecules. In our research, we delve into the capacity of PEVs to treat RA, highlighting the role of ginger-derived extracellular vesicles (GDEVs). By conjugating GDEVs with folic acid (FA), we have developed FA-GDEVs that maintain their inherent immunomodulatory properties. FA-GDEVs are designed to selectively target M1 macrophages in inflamed joints via the folate receptors (FRs). Our in vitro findings indicate that FA-GDEVs promote the polarization towards a reparative M2 macrophage phenotype by modulating the PI3K-AKT pathway. Further corroboration comes from in vivo studies, which demonstrate that FA-GDEVs not only concentrate efficiently in the affected joints but also markedly reduce the manifestations of RA. Synthesizing these findings, it is evident that FA-GDEVs emerge as a hopeful candidate for RA treatment, offering benefits such as safety, affordability, and therapeutic efficacy.
Collapse
Affiliation(s)
- Ruina Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Ning Ji
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Orthopedic Trauma Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Orthopedic Trauma Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xinru Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
| | - Qinglin Han
- Department of Orthopedics, The Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Orthopedic Trauma Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
36
|
Shen H, Zhang M, Liu D, Liang X, Chang Y, Hu X, Gao W. Solanum lycopersicum derived exosome-like nanovesicles alleviate restenosis after vascular injury through the Keap1/Nrf2 pathway. Food Funct 2025; 16:539-553. [PMID: 39688297 DOI: 10.1039/d4fo03993a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Despite the significant alleviation of clinical cardiovascular diseases through appropriate interventional treatments, the recurrence of vascular restenosis necessitating reoperation remains a substantial challenge impacting patient prognosis. Plant-derived exosome-like nanovesicles (PELNs) are integral to interspecies cellular communication, with their functions and potential applications garnering significant attention from the research community. This study extracted Solanum lycopersicum-derived exosome-like nanovesicles (SL-ELNs) and demonstrated their inhibition of PDGF-BB-induced proliferation, migration, and phenotypic transformation of vascular smooth muscle cells (VSMCs). Mechanistically, miRNA164a/b-5p within the SL-ELNs reduced the expression of Keap1 mRNA, thereby increasing nuclear translocation of Nrf2 and enhancing the expression of antioxidant genes to alleviate oxidative stress. In a mouse carotid artery injury model, it was further confirmed that miRNA164a/b-5p within the SL-ELNs could inhibit neointimal hyperplasia. These results suggest that SL-ELNs inhibit VSMCs proliferation, migration, and phenotypic transformation, and they might be potential therapeutic agents for the prevention or treatment of restenosis.
Collapse
Affiliation(s)
- Hechen Shen
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
- Department of Heart Center, The Third Central Hospital of, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
- Tianjin ECMO Treatment and Training Base, Tianjin 300170, China
- Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Meng Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
- Department of Heart Center, The Third Central Hospital of, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
- Tianjin ECMO Treatment and Training Base, Tianjin 300170, China
- Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Dachang Liu
- Department of Heart Center, The Third Central Hospital of, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
- Tianjin ECMO Treatment and Training Base, Tianjin 300170, China
- Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
- School of Medicine, Nankai University, Tianjin 300170, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin 300170, China
| | - Xiaoyu Liang
- Department of Heart Center, The Third Central Hospital of, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
- Tianjin ECMO Treatment and Training Base, Tianjin 300170, China
- Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Yun Chang
- Department of Heart Center, The Third Central Hospital of, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
- Tianjin ECMO Treatment and Training Base, Tianjin 300170, China
- Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Xiaomin Hu
- Department of Heart Center, The Third Central Hospital of, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
- Tianjin ECMO Treatment and Training Base, Tianjin 300170, China
- Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
- Medical College, Tianjin University, Tianjin, 300072, China
- School of Medicine, Nankai University, Tianjin 300170, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin 300170, China
| | - Wenqing Gao
- Department of Heart Center, The Third Central Hospital of, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
- Tianjin ECMO Treatment and Training Base, Tianjin 300170, China
- Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
- Medical College, Tianjin University, Tianjin, 300072, China
- School of Medicine, Nankai University, Tianjin 300170, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin 300170, China
| |
Collapse
|
37
|
Yi C, Lu L, Li Z, Guo Q, Ou L, Wang R, Tian X. Plant-derived exosome-like nanoparticles for microRNA delivery in cancer treatment. Drug Deliv Transl Res 2025; 15:84-101. [PMID: 38758499 DOI: 10.1007/s13346-024-01621-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Plant-derived exosome-like nanoparticles (PELNs) are natural nanocarriers and effective delivery systems for plant microRNAs (miRNAs). These PELN-carrying plant miRNAs can regulate mammalian genes across species, thereby increasing the diversity of miRNAs in mammals and exerting multi-target effects that play a crucial role in diseases, particularly cancer. PELNs demonstrate exceptional stability, biocompatibility, and targeting capabilities that protect and facilitate the up-take and cross-kingdom communication of plant miRNAs in mammals. Primarily ingested and absorbed within the gastrointestinal tract of mammals, PELNs preferentially act on the intestine to regulate intestinal homeostasis through functional miRNA activity. The oncogenesis and progression of cancer are closely associated with disruptions in intestinal barriers, ecological imbalances, as well as secondary changes, such as abnormal inflammatory reactions caused by them. Therefore, it is imperative to investigate whether PELNs exert their anticancer effects by regulating mammalian intestinal homeostasis and inflammation. This review aims to elucidate the intrinsic crosstalk relationships and mechanisms of PELNs-mediated miRNAs in maintaining intestinal homeostasis, regulating inflammation and cancer treatment. Furthermore, serving as exceptional drug delivery systems for miRNAs molecules, PELNs offer broad prospects for future applications, including new drug research and development along with drug carrier selection within targeted drug delivery approaches for cancer therapy.
Collapse
Affiliation(s)
- Chun Yi
- Department of Pathology, Faculty of Medicine, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, China
| | - Linzhu Lu
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Zhaosheng Li
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Qianqian Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Longyun Ou
- The First Hospital of Hunan University of Chinese Medicine, 410208, Changsha, Hunan, China
| | - Ruoyu Wang
- Department of Infectious Diseases, Department of Liver Diseases, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Rd, Hunan, 410208, Changsha, China.
| | - Xuefei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China.
- Hunan Province University Key Laboratory of Oncology of Tradional Chinese Medicine, 410208, Changsha, Hunan, China.
| |
Collapse
|
38
|
Wang J, Zhang Y, Wang S, Wang X, Jing Y, Su J. Bone aging and extracellular vesicles. Sci Bull (Beijing) 2024; 69:3978-3999. [PMID: 39455324 DOI: 10.1016/j.scib.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Bone aging, a major global health concern, is the natural decline in bone mass and strength. Concurrently, extracellular vesicles (EVs), tiny membrane-bound particles produced by cells, have gained recognition for their roles in various physiological processes and age-related diseases. The interaction between EVs and bone aging is of growing interest, particularly their effects on bone metabolism, which become increasingly critical with advancing age. In this review, we explored the biology, types, and functions of EVs and emphasized their regulatory roles in bone aging. We examined the effects of EVs on bone metabolism and highlighted their potential as biomarkers for monitoring bone aging progression. Furthermore, we discussed the therapeutic applications of EVs, including targeted drug delivery and bone regeneration, and addressed the challenges associated with EV-based therapies, including the technical complexities and regulatory issues. We summarized the current research and clinical trials investigating the role of EVs in bone aging and suggested future research directions. These include the potential for personalized medicine using EVs and the integration of EV research with advanced technologies to enhance the management of age-related bone health. This analysis emphasized the transformative potential of EVs in understanding and managing bone aging, thereby marking a significant advancement in skeletal health research.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yuanwei Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
39
|
Wang Y, Yu W, E Y, Rui L, Jia C, Zhu W. Qianggu Decoction Alleviated Osteoporosis by Promoting Osteogenesis of BMSCs through Mettl3-Mediated m 6A Methylation. Adv Biol (Weinh) 2024; 8:e2400341. [PMID: 39051421 DOI: 10.1002/adbi.202400341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Osteoporosis development is linked to abnormal bone marrow mesenchymal stem cells (BMSCs) differentiation. N6-methyladenosine (m6A), a prevalent mRNA modification, is known to influence BMSCs' osteogenic capacity. Qianggu decoction (QGD), a traditional Chinese medicine for osteoporosis, has unknown effects on BMSCs differentiation. This study investigates QGD's impact on BMSCs and its potential to ameliorate osteoporosis through m6A regulation. Using Sprague-Dawley (SD) rats with ovariectomy-induced osteoporosis, it is evaluated QGD's antiosteoporotic effects through micro-CT, histology, Western blotting, and osteoblastogenesis markers. QGD is found to enhance bone tissue growth and upregulate osteogenic markers Runx2, OPN, and OCN. It also promoted BMSCs osteogenic differentiation, as shown by increased calcium nodules and ALP activity. QGD treatment significantly increased m6A RNA levels and Mettl3 expression in BMSCs. Silencing Mettl3 with siRNA negated QGD's osteogenic effects. Collectively, QGD may improve BMSCs differentiation and mitigate osteoporosis, potentially through Mettl3-mediated m6A modification.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Weizhong Yu
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Yuan E
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Lining Rui
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Chuan Jia
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Wenke Zhu
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| |
Collapse
|
40
|
Hu Y, Hou Z, Liu Z, Wang X, Zhong J, Li J, Guo X, Ruan C, Sang H, Zhu B. Oyster mantle-derived exosomes alleviate osteoporosis by regulating bone homeostasis. Biomaterials 2024; 311:122648. [PMID: 38833761 DOI: 10.1016/j.biomaterials.2024.122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/20/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Osteoporosis is a major public health problem with an urgent need for safe and effective therapeutic interventions. The process of shell formation in oysters is similar to that of bone formation in mammals, and oyster extracts have been proven to exert osteoprotective effects. Oyster mantle is the most crucial organ regulating shell formation, in which exosomes play an important role. However, the effects of oyster mantle-derived exosomes (OMEs) on mammalian osteoporosis and the underlying mechanisms remain unknown. The OMEs investigated herein was found to carry abundant osteogenic cargos. They could also survive hostile gastrointestinal conditions and accumulate in the bones following oral administration. Moreover, they promoted osteoblastic differentiation and inhibited osteoclastic differentiation simultaneously. Further mechanistic examination revealed that OMEs likely promoted osteogenic activity by activating PI3K/Akt/β-catenin pathway in osteoblasts and blunted osteoclastic activity by inhibiting NF-κB pathway in osteoclasts. These favorable pro-osteogenic effects of OMEs were also corroborated in a rat femur defect model. Importantly, oral administration of OMEs effectively attenuated bone loss and improved the bone microstructure in ovariectomy-induced osteoporotic mice, and demonstrating excellent biosafety. The mechanistic insights from our data support that OMEs possess promising therapeutic potential against osteoporosis.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zuoxu Hou
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiao Wang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Jintao Zhong
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
41
|
Kim D, Lee C, Kim M, Park JH. Gold Kiwi-Derived Nanovesicles Mitigate Ultraviolet-Induced Photoaging and Enhance Osteogenic Differentiation in Bone Marrow Mesenchymal Stem Cells. Antioxidants (Basel) 2024; 13:1474. [PMID: 39765803 PMCID: PMC11673108 DOI: 10.3390/antiox13121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) play a crucial role in bone formation through their ability to differentiate into osteoblasts. Aging, however, detrimentally affects the differentiation and proliferation capacities of BM-MSCs, consequently impairing bone regeneration. Thus, mitigating the aging effects on BM-MSCs is vital for addressing bone-related pathologies. In this study, we demonstrate that extracellular nanovesicles isolated from gold kiwi (GK-NVs) protect human BM-MSCs from ultraviolet (UV)-induced photoaging, thereby alleviating aging-related impairments in cellular functions that are crucial for bone homeostasis. Notably, GK-NVs were efficiently taken up by BM-MSCs without causing cytotoxicity. GK-NVs reduced intracellular reactive oxygen species (ROS) levels upon UV irradiation, restoring impaired proliferation and migration capabilities. Furthermore, GK-NVs corrected the skewed differentiation capacities of UV-irradiated BM-MSCs by enhancing osteoblast differentiation, as evidenced by the increased expression in osteoblast-specific genes and the calcium deposition, and by reducing adipocyte differentiation, as indicated by the decreased lipid droplet formation. These findings position GK-NVs as a promising biomaterial for the treatment of bone-related diseases such as osteoporosis.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Republic of Korea; (D.K.); (C.L.); (M.K.)
| | - Chanho Lee
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Republic of Korea; (D.K.); (C.L.); (M.K.)
| | - Manho Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Republic of Korea; (D.K.); (C.L.); (M.K.)
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Republic of Korea; (D.K.); (C.L.); (M.K.)
- Institute of Molecular Science and Fusion Technology, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Republic of Korea
| |
Collapse
|
42
|
Cui Z, Liu T, Wen Y, Li W, Xu J, Chen Y, Chen D, Zhu Y. Oral administration of cranberry-derived exosomes attenuates murine premature ovarian failure in association with changes in the specific gut microbiota and diminution in ovarian granulosa cell PANoptosis. Food Funct 2024; 15:11697-11714. [PMID: 39530911 DOI: 10.1039/d4fo03468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Background: Although a high-fat and high-sugar diet (HFHS) can induce ovarian insufficiency and premature ovarian failure (POF)-making the treatment difficult-plant-derived exosome-like nanovesicles manifest numerous therapeutic effects on various diseases. Purpose: To explore the therapeutic effects and the molecular biology mechanism of exosomes derived from Vaccinium macrocarpon Ait (cranberry) (Va-exos) in the treatment of murine HFHS-POF. Methods: The exosomes from cranberry (Va-exos) were isolated, purified and fed to HFHS-POF model mice. The pathological changes in ovaries, livers, intestines were detected by H&E and Masson staining. The 16s rRNA-seq technique was used to investigate the changes in the gut microbiota and microecology. The mRNA and protein expressions of PANoptosis and their phosphorylation levels in ovarian granulosa cells were detected by qPCR and western blot. Results: Pathological examination showed that Va-exos not only significantly alleviated the symptoms of POF in model mice but also improved the intestinal barrier function and inhibited the production of inflammatory factors. The high-throughput sequencing results of 16s rRNA indicated that the relative abundances of Akkermansia and Allobaculum microorganisms in the intestines of the Va-exos group of mice significantly increased, while the relative abundances of uncultured-bacterium_f-Muribaculaceae, Dubosiella, and uncultured-bacterium_f-Lachnospiraceae microorganisms were significantly reduced. The FCM test results indicated that Va-exos significantly reduced necrosis, apoptosis, and accumulation of reactive oxygen species in ovarian granulosa cells (OGCs) of the HFHS POF mice. Finally, both qPCR and western-blot analyses indicated that Va-exos significantly attenuated the expression levels of key regulatory factors in the PANoptosis of OGCs in HFHS POF mice. Conclusion: We confirmed that oral administration of cranberry-derived exosomes attenuated murine POF by modulating the gut microbiota and decreasing ovarian granulosa cell PANoptosis.
Collapse
Affiliation(s)
- Zeyu Cui
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China.
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China.
| | - Yichao Wen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China.
| | - Weihao Li
- Handan Municipal Centre for Disease Prevention and Control, Hebei 056008, China
| | - Jianghong Xu
- Department of Gynaecology, Jingan Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yingjuan Chen
- Department of Gynaecology, Jingan Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Danping Chen
- Department of Gynaecology, Jingan Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhu
- Department of Gynaecology, Jingan Hospital of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
43
|
Zhang J, Tian S, Guo L, Zhao H, Mao Z, Miao M. Chinese herbal medicine-derived extracellular vesicles as novel biotherapeutic tools: present and future. J Transl Med 2024; 22:1059. [PMID: 39587576 PMCID: PMC11587639 DOI: 10.1186/s12967-024-05892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer-enclosed biological particles that are secreted by almost all living cells including animals, plants, and microorganisms. Chinese herbal medicines (CHM) have a long history of using plant-based remedies to treat and prevent human diseases. Chinese herbal medicine-derived extracellular vesicle (CHMEV) generic term refers to nanoscale membrane structures isolated from medicinal plants such as ginseng, ginger, and Panax notoginseng. In recent years, CHMEVs have garnered substantial attention as a novel class of functional components due to their high bioavailability, safety, easy accessibility, and diverse therapeutic effects, indicating their great potential for development as a new dosage form of CHM. Research on CHMEVs in traditional Chinese medicine (TCM) has become a prominent area of interest, opening new avenues for further exploration into the therapeutic effects and functional mechanisms of CHM. Nonetheless, as an emerging field, there is much unknown about these vesicles, and current research remains inconsistent. The review comprehensively summarizes the biogenesis, isolation methods, and physical, and biochemical characterizations of CHMEVs. Additionally, we highlight their biomedical applications as therapeutic agents and drug delivery carriers, including anti-inflammatory, anticancer, regenerative, and antiaging activities. Finally, we propose current challenges and future perspectives. By summarizing the existing literature, we aim to offer valuable clues and inspiration for future CHMEV research, thereby facilitating research standardization of CHMEVs in the treatment of human diseases and drug discovery.
Collapse
Affiliation(s)
- Jinying Zhang
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China
| | - Shuo Tian
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu- Yao Affiliated to Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China
| | - Lin Guo
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China
| | - Hui Zhao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China
| | - Zhiguo Mao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China
| | - Mingsan Miao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China.
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu- Yao Affiliated to Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China.
| |
Collapse
|
44
|
Zeng YB, Deng X, Shen LS, Yang Y, Zhou X, Ye L, Chen S, Yang DJ, Chen GQ. Advances in plant-derived extracellular vesicles: isolation, composition, and biological functions. Food Funct 2024; 15:11319-11341. [PMID: 39523827 DOI: 10.1039/d4fo04321a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Plant-derived extracellular vesicles (PDEVs) are nanoscale vesicles released from plant cells into the extracellular space. While similar in structure and function to mammalian-derived EVs, PDEVs are unique due to their origin and the specific metabolites they carry. PDEVs have gained significant attention in recent years, with numerous reports isolating different PDEVs from various plants, each exhibiting diverse biological functions. However, the field is still in its early stages, and many issues need further exploration. To better develop and utilize PDEVs, it is essential to have a comprehensive understanding of their characteristics. This review provides an overview of recent advances in PDEV research. It focuses on the methods and techniques for isolating and purifying PDEVs, comparing their respective advantages, limitations, and application scenarios. Furthermore, we discuss the latest discoveries regarding the composition of PDEVs, including lipids, proteins, nucleic acids, and various plant metabolites. Additionally, we detail advanced studies on the multiple biological functions of PDEVs. Our goal is to advance our understanding of PDEVs and encourage further exploration in PDEV-based science and technology, offering insights into their potential applications for human health.
Collapse
Affiliation(s)
- Yao-Bo Zeng
- Department of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 402760, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xun Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
- Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
- Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, China
| | - Xing Zhou
- Department of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
| | - Da-Jian Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
- Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, China
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
| |
Collapse
|
45
|
Jin P, Liu H, Chen X, Liu W, Jiang T. From Bench to Bedside: The Role of Extracellular Vesicles in Cartilage Injury Treatment. Biomater Res 2024; 28:0110. [PMID: 39583872 PMCID: PMC11582190 DOI: 10.34133/bmr.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024] Open
Abstract
Cartilage repair is the key to the treatment of joint-related injury. However, because cartilage lacks vessels and nerves, its self-repair ability is extremely low. Extracellular vesicles (EVs) are bilayer nanovesicles with membranes mainly composed of ceramides, cholesterol, phosphoglycerides, and long-chain free fatty acids, containing DNA, RNA, and proteins (such as integrins and enzymes). For mediating intercellular communication and regulating mechanisms, EVs have been shown by multiple studies to be effective treatment options for cartilage repair. This review summarizes recent findings of different sources (mammals, plants, and bacteria) and uses of EVs in cartilage repair, mechanisms of EVs captured by injured chondrocytes, and quantification and storage of EVs, which may provide scientific guidance for promoting the development of EVs in the field of cartilage injury treatment.
Collapse
Affiliation(s)
- Pan Jin
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Huan Liu
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Xichi Chen
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Wei Liu
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Tongmeng Jiang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University,
Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma; Hainan Provincial Stem Cell Research Institute; Hainan Academy of Medical Sciences,
Hainan Medical University, Haikou 571199, China
| |
Collapse
|
46
|
Wu W, Zhang B, Wang W, Bu Q, Li Y, Zhang P, Zeng L. Plant-Derived Exosome-Like Nanovesicles in Chronic Wound Healing. Int J Nanomedicine 2024; 19:11293-11303. [PMID: 39524918 PMCID: PMC11549884 DOI: 10.2147/ijn.s485441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The incidence of chronic wounds is steadily increasing each year, yet conventional treatments for chronic wounds yield unsatisfactory results. The delayed healing of chronic wounds significantly affects patient quality of life, placing a heavy burden on patients, their families, and the healthcare system. Therefore, there is an urgent need to find new treatment methods for chronic wounds. Plant-derived exosome-like nanovesicles (PELNs) may be able to accelerate chronic wound healing. PELNs possess advantages such as good accessibility (due in part to high isolation yields), low immunogenicity, and good stability. Currently, there are limited reports regarding the role of PELNs in chronic wound healing and their associated mechanisms, highlighting their novelty and the necessity for further research. This review aims to provide an overview of PELNs, discussing isolation methods, composition, and their mechanisms of action in chronic wound healing. Finally, we summarize future opportunities and challenges related to the use of PELNs for the treatment of chronic wounds, and offer some new insights and solutions.
Collapse
Affiliation(s)
- Weiquan Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Bing Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Weiqi Wang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Qiujin Bu
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Yuange Li
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Peihua Zhang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Li Zeng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| |
Collapse
|
47
|
Jiang Q, Wang L, Tian J, Zhang W, Cui H, Gui H, Zang Z, Li B, Si X. Food-derived extracellular vesicles: natural nanocarriers for active phytoconstituents in new functional food. Crit Rev Food Sci Nutr 2024; 64:11701-11721. [PMID: 37548408 DOI: 10.1080/10408398.2023.2242947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Extracellular vesicles (EVs) are naturally occurring non-replicating particles released from cells, known for their health-promoting effects and potential as carriers for drug delivery. Extensive research has been conducted on delivery systems based on culture-cell-derived EVs. Nevertheless, they have several limitations including low production yield, high expenses, unsuitability for oral administration, and safety concerns in applications. Conversely, food-derived EVs (FDEVs) offer unique advantages that cannot be easily substituted. This review provides a comprehensive analysis of the biogenesis pathways, composition, and health benefits of FDEVs, as well as the techniques required for constructing oral delivery systems. Furthermore, it explores the advantages and challenges associated with FDEVs as oral nanocarriers, and discusses the current research advancements in delivering active phytoconstituents. FDEVs, functioning as a nanocarrier platform for the oral delivery of active molecules, present numerous benefits such as convenient administration, high biocompatibility, low toxicity, and inherent targeting. Nevertheless, numerous unresolved issues persist in the isolation, characterization, drug loading, and application of FDEVs. Technical innovation and standardization of quality control are the key points to promote the development of FDEVs. The review aimed to provide frontier ideas and basic quality control guidelines for developing new functional food based on FDEVs oral drug delivery system.
Collapse
Affiliation(s)
- Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Weijia Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
48
|
Mehrvar A, Akbari M, Khosroshahi EM, Nekavand M, Mokhtari K, Baniasadi M, Aghababaian M, Karimi M, Amiri S, Moazen A, Maghsoudloo M, Alimohammadi M, Rahimzadeh P, Farahani N, Vaghar ME, Entezari M, Hashemi M. The impact of exosomes on bone health: A focus on osteoporosis. Pathol Res Pract 2024; 263:155618. [PMID: 39362132 DOI: 10.1016/j.prp.2024.155618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Osteoporosis is a widespread chronic condition. Although standard treatments are generally effective, they are frequently constrained by side effects and the risk of developing drug resistance. A promising area of research is the investigation of extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, which play a crucial role in bone metabolism. Exosomes, in particular, have shown significant potential in both the diagnosis and treatment of osteoporosis. EVs derived from osteoclasts, osteoblasts, mesenchymal stem cells, and other sources can influence bone metabolism, while exosomes from inflammatory and tumor cells may exacerbate bone loss, highlighting their dual role in osteoporosis pathology. This review offers a comprehensive overview of EV biogenesis, composition, and function in osteoporosis, focusing on their diagnostic and therapeutic potential. We examine the roles of various types of EVs and their cargo-proteins, RNAs, and lipids-in bone metabolism. Additionally, we explore the emerging applications of EVs as biomarkers and therapeutic agents, emphasizing the need for further research to address current challenges and enhance EV-based strategies for managing osteoporosis.
Collapse
Affiliation(s)
- Amir Mehrvar
- Assistant Professor, Department of Orthopedics, Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadarian Akbari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrandokht Nekavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Midwifery, Faculty of nursing and midwifery, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mojtaba Baniasadi
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran; MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Aghababaian
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Karimi
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- MD, Assistant Professor of Orthopaedic Surgery, Shohadaye Haftom-e-Tir Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Moazen
- Department of Orthopedics, Bone and Joint Reconstruction Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad Eslami Vaghar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of gynecology, Faculty of Medicine, Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
49
|
Gasparro R, Gambino G, Duca G, Majo DD, Di Liberto V, Tinnirello V, Urone G, Ricciardi N, Frinchi M, Rabienezhad Ganji N, Vergilio G, Zummo FP, Rappa F, Fontana S, Conigliaro A, Sardo P, Ferraro G, Alessandro R, Raimondo S. Protective effects of lemon nanovesicles: evidence of the Nrf2/HO-1 pathway contribution from in vitro hepatocytes and in vivo high-fat diet-fed rats. Biomed Pharmacother 2024; 180:117532. [PMID: 39383731 DOI: 10.1016/j.biopha.2024.117532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
The cross-talk between plant-derived nanovesicles (PDNVs) and mammalian cells has been explored by several investigations, underlining the capability of these natural nanovesicles to regulate several molecular pathways. Additionally, PDNVs possess biological proprieties that make them applicable against pathological conditions, such as hepatic diseases. In this study we explored the antioxidant properties of lemon-derived nanovesicles, isolated at laboratory (LNVs) and industrial scale (iLNVs) in human healthy hepatocytes (THLE-2) and in metabolic syndrome induced by a high-fat diet (HFD) in the rat. Our findings demonstrate that in THLE-2 cells, LNVs and iLNVs decrease ROS production and upregulate the expression of antioxidant mediators, Nrf2 and HO-1. Furthermore, the in vivo assessment reveals that the oral administration of iLNVs improves glucose tolerance and lipid dysmetabolism, ameliorates biometric parameters and systemic redox homeostasis, and upregulates Nrf2/HO-1 signaling in HFD rat liver. Consequently, we believe LNVs/iLNVs might be a promising approach for managing hepatic and dysmetabolic disorders.
Collapse
Affiliation(s)
- Roberta Gasparro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Giuditta Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Giulia Duca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Danila Di Majo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Vincenza Tinnirello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Giulia Urone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Nicolò Ricciardi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Monica Frinchi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Nima Rabienezhad Ganji
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Giuseppe Vergilio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo 90127, Italy
| | - Francesco Paolo Zummo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo 90127, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo 90127, Italy; The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy; ATeN (Advanced Technologies Network) Center, Viale Delle Scienze, University of Palermo, 90128, Palermo, Italy; Navhetec s.r.l., Spinoff of the University of Palermo, Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy; Navhetec s.r.l., Spinoff of the University of Palermo, Palermo, Italy; Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo 90146, Italy
| | - Stefania Raimondo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy; Navhetec s.r.l., Spinoff of the University of Palermo, Palermo, Italy.
| |
Collapse
|
50
|
Chen Q, Liu S, Wang Y, Tong M, Sun H, Dong M, Lu Y, Niu W, Wang L. Yam Carbon Dots Promote Bone Defect Repair by Modulating Histone Demethylase 4B. Int J Nanomedicine 2024; 19:10415-10434. [PMID: 39430312 PMCID: PMC11491100 DOI: 10.2147/ijn.s477587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Chronic apical periodontitis is a typical inflammatory disease of the oral cavity, the pathology is characterized by an inflammatory reaction with bone defects in the periapical area. Chinese medicine is our traditional medicine, Carbon Dots (CDs) are a new type of nanomaterials. The purpose of this study was to prepare Yam Carbon Dots (YAM-CDs) to investigate the mechanism of action of YAM-CDs on bone differentiation in vivo and in vitro. Methods We characterized YAM-CDs using transmission electron microscopy (TEM), Fourier Transform Infrared Spectrometer (FTIR), X-Ray Diffraction (XRD) and photoluminescence (PL). CCK-8 assay, Real-time qPCR, and Western Blot were conducted using bone marrow mesenchymal stem cells (BMSCs) to verify that YAM-CDs promote osteoblast differentiation. In addition, we investigated the role of YAM-CDs in promoting bone formation in an inflammatory setting in an in vivo mouse model of cranial defects. Results The results of TEM and PL showed that the YAM-CDs mostly consisted of the components C1s, O1s, and N1s. Additionally the average sizes of YAM-CDs were 2-6 nm. The quantum yield was 4.44%, with good fluorescence stability and biosafety. Real-time qPCR and Western blot analysis showed that YAM-CDs promoted osteoblast differentiation under an inflammatory environment by regulating expression of histone demethylase 4B (KDM4B). In vivo, results showed that YAM-CDs effectively repaired cranial bone defects in a mouse model and reduced the expression of inflammatory factors under the action of lipopolysaccharides (LPS). Conclusion YAM-CDs promoted the proliferation and differentiation of osteoblasts by regulating the expression of KDM4B to repair cranial bone defects in mice under an LPS-induced inflammatory milieu, which will provide a new idea for the treatment of clinical periapical inflammation and other bone defect diseases.
Collapse
Affiliation(s)
- QianYang Chen
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Shuo Liu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Yuhan Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - MeiChen Tong
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - HaiBo Sun
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Ming Dong
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Yun Lu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - WeiDong Niu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - LiNa Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| |
Collapse
|