1
|
Foka FET, Mufhandu HT. Current ARTs, Virologic Failure, and Implications for AIDS Management: A Systematic Review. Viruses 2023; 15:1732. [PMID: 37632074 PMCID: PMC10458198 DOI: 10.3390/v15081732] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Antiretroviral therapies (ARTs) have revolutionized the management of human immunodeficiency virus (HIV) infection, significantly improved patient outcomes, and reduced the mortality rate and incidence of acquired immunodeficiency syndrome (AIDS). However, despite the remarkable efficacy of ART, virologic failure remains a challenge in the long-term management of HIV-infected individuals. Virologic failure refers to the persistent detectable viral load in patients receiving ART, indicating an incomplete suppression of HIV replication. It can occur due to various factors, including poor medication adherence, drug resistance, suboptimal drug concentrations, drug interactions, and viral factors such as the emergence of drug-resistant strains. In recent years, extensive efforts have been made to understand and address virologic failure in order to optimize treatment outcomes. Strategies to prevent and manage virologic failure include improving treatment adherence through patient education, counselling, and supportive interventions. In addition, the regular monitoring of viral load and resistance testing enables the early detection of treatment failure and facilitates timely adjustments in ART regimens. Thus, the development of novel antiretroviral agents with improved potency, tolerability, and resistance profiles offers new options for patients experiencing virologic failure. However, new treatment options would also face virologic failure if not managed appropriately. A solution to virologic failure requires a comprehensive approach that combines individualized patient care, robust monitoring, and access to a range of antiretroviral drugs.
Collapse
Affiliation(s)
- Frank Eric Tatsing Foka
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| | - Hazel Tumelo Mufhandu
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| |
Collapse
|
2
|
He L, Wang C, Zhang Y, Chong H, Hu X, Li D, Xing H, He Y, Shao Y, Hong K, Ma L. Broad-spectrum anti-HIV activity and high drug resistance barrier of lipopeptide HIV fusion inhibitor LP-19. Front Immunol 2023; 14:1199938. [PMID: 37256122 PMCID: PMC10225588 DOI: 10.3389/fimmu.2023.1199938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Lipopeptide-19, a HIV fusion inhibitor (LP-19), has showed potent anti-HIV activity. However, there is still limited information of the antiviral activity against different subtype clinical isolates and the drug resistance barrier of LP-19. Therefore, 47 HIV clinical isolates were selected for this study. The viral features were identified, in which 43 strains are CCR5 tropisms, and 4 strains are CCR5/CXCR4 tropisms, and there are 6 subtype B', 15 CRF01_AE, 14 CRF07_BC, 2 CRF08_BC and 10 URF strains. These 47 viruses were used to detected and analyze the inhibitory activities of LP-19. The results showed that the average 50% inhibitory concentration (IC50) and 90% inhibitory concentration (IC90) of LP-19 were 0.50 nM and 1.88 nM, respectively. The average IC50 of LP-19 to B', CRF01_AE, CRF07_BC, CRF08_BC, and URF strains was 0.76 nM, 0.29 nM, 0.38 nM, 0.85 nM, and 0.44 nM, respectively. C34 and Enfuvirtide (T-20), two fusion inhibitors, were compared on the corresponding strains simultaneously. The antiviral activity of LP-19 was 16.7-fold and 86-fold higher than that of C34 and T-20. The antiviral activity of LP-19, C34, and T-20 were further detected and showed IC50 was 0.15 nM, 1.02 nM, and 66.19 nM, respectively. IC50 of LP-19 was about 7-fold and 441-fold higher compared to C34 and T-20 against HIV-1 NL4-3 strains. NL4-3 strains were exposed to increasing concentrations of LP-19 and C34 in MT-2 cell culture. The culture virus was sequenced and analyzed. The results showed that A243V mutation site identified at weeks 28, 32, 38, and 39 of the cell culture in the gp41 CP (cytoplasmic domain) region. NL4-3/A243V viruses containing A243V mutation were constructed. Comparing the antiviral activities of LP-19 against HIV NL4-3 to HIV strains (only 1.3-fold), HIV did not show drug resistance when LP-19 reached 512-fold of the initial concentration under the drug pressure for 39 weeks. This study suggests that LP-19 has broad-spectrum anti-HIV activity, and high drug resistance barrier.
Collapse
Affiliation(s)
- Lin He
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Laboratory Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Yuanyuan Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Hu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Xing
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kunxue Hong
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liying Ma
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Rodríguez-Galet A, Ventosa-Cubillo J, Bendomo V, Eyene M, Mikue-Owono T, Nzang J, Ncogo P, Gonzalez-Alba JM, Benito A, Holguín Á. High Drug Resistance Levels Compromise the Control of HIV Infection in Pediatric and Adult Populations in Bata, Equatorial Guinea. Viruses 2022; 15:27. [PMID: 36680067 PMCID: PMC9864178 DOI: 10.3390/v15010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
A lack of HIV viral load (VL) and HIV drug resistance (HIVDR) monitoring in sub-Saharan Africa has led to an uncontrolled circulation of HIV-strains with drug resistance mutations (DRM), compromising antiretroviral therapy (ART). This study updates HIVDR data and HIV-1 variants in Equatorial Guinea (EG), providing the first data on children/adolescents in the country. From 2019−2020, 269 dried blood samples (DBS) were collected in Bata Regional Hospital (EG) from 187 adults (73 ART-naïve/114 ART-treated) and 82 children/adolescents (25 HIV-exposed-ART-naïve/57 ART-treated). HIV-1 infection was confirmed in Madrid by molecular/serological confirmatory tests and ART-failure by VL quantification. HIV-1 pol region was identified as transmitted/acquired DRM, predicted antiretroviral susceptibility (Stanfordv9.0) and HIV-1 variants (phylogeny). HIV infection was confirmed in 88.1% of the individuals and virological failure (VL > 1000 HIV-1-RNA copies/mL) in 84.2/88.9/61.9% of 169 ART-treated children/adolescents/adults. Among the 167 subjects with available data, 24.6% suffered a diagnostic delay. All 125 treated had experienced nucleoside retrotranscriptase inhibitors (NRTI); 95.2% were non-NRTI (NNRTI); 22.4% had experienced integrase inhibitors (INSTI); and 16% had experienced protease inhibitors (PI). At sampling, they had received 1 (37.6%), 2 (32%), 3 (24.8%) or 4 (5.6%) different ART-regimens. Among the 43 treated children−adolescents/37 adults with sequence, 62.8/64.9% carried viruses with major-DRM. Most harbored DRM to NNRTI (68.4/66.7%), NRTI (55.3/43.3%) or NRTI+NNRTI (50/33.3%). One adult and one child carried major-DRM to PI and none carried major-DRM to INSTI. Most participants were susceptible to INI and PI. DRM was absent in 36.2% of treated patients with VL > 1000 cp/mL, suggesting adherence failure. TDR prevalence in 59 ART-naïve adults was high (20.3%). One-half (53.9%) of the 141 subjects with pol sequence carried CRF02_AG. The observed high rate of ART-failure and transmitted/acquired HIVDR could compromise the 95-95-95-UNAIDS targets in EG. Routine VL and resistance monitoring implementation are mandatory for early detection of ART-failure and optimal rescue therapy selection ART regimens based on PI, and INSTI can improve HIV control in EG.
Collapse
Affiliation(s)
- Ana Rodríguez-Galet
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp-RITIP-CoRISpe, 20834 Madrid, Spain
| | - Judit Ventosa-Cubillo
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp-RITIP-CoRISpe, 20834 Madrid, Spain
- Fundación Estatal, Salud, Infancia y Bienestar Social (CSAI), 28029 Madrid, Spain
| | - Verónica Bendomo
- Unidad de Referencia de Enfermedades Infecciosas (UREI), Hospital Regional de Bata, Bata 88240, Equatorial Guinea
| | - Manuel Eyene
- Unidad de Referencia de Enfermedades Infecciosas (UREI), Hospital Regional de Bata, Bata 88240, Equatorial Guinea
| | - Teresa Mikue-Owono
- Laboratorio de Análisis Clínicos, Hospital Regional de Bata, Bata 88240, Equatorial Guinea
| | - Jesús Nzang
- Fundación Estatal, Salud, Infancia y Bienestar Social (CSAI), 28029 Madrid, Spain
| | - Policarpo Ncogo
- Fundación Estatal, Salud, Infancia y Bienestar Social (CSAI), 28029 Madrid, Spain
| | - José María Gonzalez-Alba
- Grupo de Investigación en Microbiología Translacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Microbiology Department, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Agustín Benito
- Centro Nacional de Medicina Tropical (CNMT), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp-RITIP-CoRISpe, 20834 Madrid, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
4
|
Global Variability of V3 Loop Tetrapeptide Motif: a Concern for HIV-1 Neutralizing Antibodies-based Vaccine Design and Antiretroviral Therapy. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.3.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Kelentse N, Moyo S, Mogwele ML, Ditshwanelo D, Mokaleng B, Moraka NO, Lechiile K, Leeme TB, Lawrence DS, Musonda R, Kasvosve I, Harrison TS, Jarvis JN, Gaseitsiwe S. HIV-1C env and gag Variation in the Cerebrospinal Fluid and Plasma of Patients with HIV-Associated Cryptococcal Meningitis in Botswana. Viruses 2020; 12:E1404. [PMID: 33297399 PMCID: PMC7762280 DOI: 10.3390/v12121404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022] Open
Abstract
HIV-1 compartmentalization in reservoir sites remains a barrier to complete HIV eradication. It is unclear whether there is variation in HIV-1 env and gag between cerebrospinal fluid (CSF) and plasma of individuals with HIV-associated cryptococcal meningitis (CM). We compared HIV-1 env characteristics and the gag cytotoxic T-lymphocyte (CTL) escape mutations from CSF and plasma samples. Employing population-based Sanger sequencing, we sequenced HIV-1 env from CSF of 25 patients and plasma of 26 patients. For gag, 15 CSF and 21 plasma samples were successfully sequenced. Of these, 18 and 9 were paired env and gag CSF/plasma samples, respectively. There was no statistically significant difference in the proportion of CCR5-using strains in the CSF and plasma, (p = 0.50). Discordant CSF/plasma virus co-receptor use was found in 2/18 pairs (11.1%). The polymorphisms in the HIV-1 V3 loop were concordant between the two compartments. From the HIV-1 gag sequences, three pairs had discordant CTL escape mutations in three different epitopes of the nine analyzed. These findings suggest little variation in the HIV-1 env between plasma and CSF and that the CCR5-using strains predominate in both compartments. HIV-1 gag CTL escape mutations also displayed little variation in CSF and plasma suggesting similar CTL selective pressure.
Collapse
MESH Headings
- AIDS-Related Opportunistic Infections/blood
- AIDS-Related Opportunistic Infections/cerebrospinal fluid
- AIDS-Related Opportunistic Infections/diagnosis
- AIDS-Related Opportunistic Infections/metabolism
- Adult
- Amino Acid Sequence
- Amino Acid Substitution
- Botswana
- CD4 Lymphocyte Count
- Cross-Sectional Studies
- Disease Susceptibility
- Female
- HIV Infections/complications
- HIV Infections/virology
- Humans
- Immunocompromised Host
- Male
- Meningitis, Cryptococcal/blood
- Meningitis, Cryptococcal/cerebrospinal fluid
- Meningitis, Cryptococcal/etiology
- Meningitis, Cryptococcal/metabolism
- Middle Aged
- Mutation
- RNA, Viral
- Viral Load
- env Gene Products, Human Immunodeficiency Virus/blood
- env Gene Products, Human Immunodeficiency Virus/cerebrospinal fluid
- env Gene Products, Human Immunodeficiency Virus/metabolism
- gag Gene Products, Human Immunodeficiency Virus/blood
- gag Gene Products, Human Immunodeficiency Virus/cerebrospinal fluid
- gag Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Nametso Kelentse
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mompati L. Mogwele
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Doreen Ditshwanelo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
| | - Baitshepi Mokaleng
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Natasha O. Moraka
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Pathology, Stellenbosch University, Stellenbosch 7505, South Africa
| | - Kwana Lechiile
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Tshepo B. Leeme
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - David S. Lawrence
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Rosemary Musonda
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Thomas S. Harrison
- Centre for Global Health, Institute for Infection and Immunity, St. George’s University of London, London SW17 0RE, UK;
| | - Joseph N. Jarvis
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
6
|
Wang C, Cheng S, Zhang Y, Ding Y, Chong H, Xing H, Jiang S, Li X, Ma L. Long-Acting HIV-1 Fusion Inhibitory Peptides and their Mechanisms of Action. Viruses 2019; 11:v11090811. [PMID: 31480738 PMCID: PMC6784077 DOI: 10.3390/v11090811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
The clinical application of HIV fusion inhibitor, enfuvirtide (T20), was limited mainly because of its short half-life. Here we designed and synthesized two PEGylated C34 peptides, PEG2kC34 and PEG5kC34, with the PEG chain length of 2 and 5 kDa, respectively, and evaluated their anti-HIV-1 activity and mechanisms of action. We found that these two PEGylated peptides could bind to the HIV-1 peptide N36 to form high affinity complexes with high α-helicity. The peptides PEG2kC34 and PEG5kC34 effectively inhibited HIV-1 Env-mediated cell-cell fusion with an effective concentration for 50% inhibition (EC50) of about 36 nM. They also inhibited infection of the laboratory-adapted HIV-1 strain NL4-3 with EC50 of about 4-5 nM, and against 47 HIV-1 clinical isolates circulating in China with mean EC50 of PEG2kC34 and PEG5kC34 of about 26 nM and 32 nM, respectively. The plasma half-life (t1/2) of PEG2kC34 and PEG5kC34 was 2.6 h and 5.1 h, respectively, and the t1/2 of PEGylated C34 was about 2.4-fold and 4.6-fold longer than C34 (~1.1 h), respectively. These findings suggest that PEGylated C34 with broad-spectrum anti-HIV-1 activity and prolonged half-life can be further developed as a peptide fusion inhibitor-based long-acting anti-HIV drug for clinical use to treat HIV-infected patients who have failed to respond to current anti-retrovirus drugs.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yibo Ding
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hui Xing
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Liying Ma
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
7
|
Alves BM, Siqueira JD, Garrido MM, Botelho OM, Prellwitz IM, Ribeiro SR, Soares EA, Soares MA. Characterization of HIV-1 Near Full-Length Proviral Genome Quasispecies from Patients with Undetectable Viral Load Undergoing First-Line HAART Therapy. Viruses 2017; 9:v9120392. [PMID: 29257103 PMCID: PMC5744166 DOI: 10.3390/v9120392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Increased access to highly active antiretroviral therapy (HAART) by human immunodeficiency virus postive (HIV+) individuals has become a reality worldwide. In Brazil, HAART currently reaches over half of HIV-infected subjects. In the context of a remarkable HIV-1 genetic variability, highly related variants, called quasispecies, are generated. HIV quasispecies generated during infection can influence virus persistence and pathogenicity, representing a challenge to treatment. However, the clinical relevance of minority quasispecies is still uncertain. In this study, we have determined the archived proviral sequences, viral subtype and drug resistance mutations from a cohort of HIV+ patients with undetectable viral load undergoing HAART as first-line therapy using next-generation sequencing for near full-length virus genome (NFLG) assembly. HIV-1 consensus sequences representing NFLG were obtained for eleven patients, while for another twelve varying genome coverage rates were obtained. Phylogenetic analysis showed the predominance of subtype B (83%; 19/23). Considering the minority variants, 18 patients carried archived virus harboring at least one mutation conferring antiretroviral resistance; for six patients, the mutations correlated with the current ARVs used. These data highlight the importance of monitoring HIV minority drug resistant variants and their clinical impact, to guide future regimen switches and improve HIV treatment success.
Collapse
Affiliation(s)
- Brunna M Alves
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Juliana D Siqueira
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Marianne M Garrido
- Serviço de Doenças Infecciosas, Hospital Federal de Ipanema, Rio de Janeiro 22411-020, Brazil.
| | - Ornella M Botelho
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Isabel M Prellwitz
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Sayonara R Ribeiro
- Serviço de Doenças Infecciosas, Hospital Federal de Ipanema, Rio de Janeiro 22411-020, Brazil.
| | - Esmeralda A Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Marcelo A Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil.
| |
Collapse
|
8
|
Smoleń-Dzirba J, Rosińska M, Kruszyński P, Bratosiewicz-Wąsik J, Wojtyczka R, Janiec J, Szetela B, Beniowski M, Bociąga-Jasik M, Jabłonowska E, Wąsik TJ, The Cascade Collaboration In EuroCoord A. Prevalence of Transmitted Drug-Resistance Mutations and Polymorphisms in HIV-1 Reverse Transcriptase, Protease, and gp41 Sequences Among Recent Seroconverters in Southern Poland. Med Sci Monit 2017; 23:682-694. [PMID: 28167814 PMCID: PMC5310230 DOI: 10.12659/msm.898656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Monitoring of drug resistance-related mutations among patients with recent HIV-1 infection offers an opportunity to describe current patterns of transmitted drug resistance (TDR) mutations. Material/Methods Of 298 individuals newly diagnosed from March 2008 to February 2014 in southern Poland, 47 were deemed to have recent HIV-1 infection by the limiting antigen avidity immunoassay. Proviral DNA was amplified and sequenced in the reverse transcriptase, protease, and gp41 coding regions. Mutations were interpreted according to the Stanford Database algorithm and/or the International Antiviral Society USA guidelines. TDR mutations were defined according to the WHO surveillance list. Results Among 47 patients with recent HIV-1 infection only 1 (2%) had evidence of TDR mutation. No major resistance mutations were found, but the frequency of strains with ≥1 accessory resistance-associated mutations was high, at 98%. Accessory mutations were present in 11% of reverse transcriptase, 96% of protease, and 27% of gp41 sequences. Mean number of accessory resistance mutations in the reverse transcriptase and protease sequences was higher in viruses with no compensatory mutations in the gp41 HR2 domain than in strains with such mutations (p=0.031). Conclusions Despite the low prevalence of strains with TDR mutations, the frequency of accessory mutations was considerable, which may reflect the history of drug pressure among transmitters or natural viral genetic diversity, and may be relevant for future clinical outcomes. The accumulation of the accessory resistance mutations within the pol gene may restrict the occurrence of compensatory mutations related to enfuvirtide resistance or vice versa.
Collapse
Affiliation(s)
- Joanna Smoleń-Dzirba
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Magdalena Rosińska
- Department of Epidemiology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Piotr Kruszyński
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Jolanta Bratosiewicz-Wąsik
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Robert Wojtyczka
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Janusz Janiec
- Department of Epidemiology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Bartosz Szetela
- Department of Infectious Diseases, Hepatology, and Acquired Immune Deficiencies, Wrocław Medical University, Wrocław, Poland
| | - Marek Beniowski
- Outpatient Clinic for AIDS Diagnostics and Therapy, Specialistic Hospital in Chorzów, Chorzów, Poland
| | - Monika Bociąga-Jasik
- Department of Infectious Diseases, Jagiellonian University Medical College, Cracow, Poland
| | - Elżbieta Jabłonowska
- Department of Infectious Diseases and Hepatology, Medical University of Łódź, Łódź, Poland
| | - Tomasz J Wąsik
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | | |
Collapse
|
9
|
Gómara MJ, Sánchez-Merino V, Paús A, Merino-Mansilla A, Gatell JM, Yuste E, Haro I. Definition of an 18-mer Synthetic Peptide Derived from the GB virus C E1 Protein as a New HIV-1 Entry Inhibitor. Biochim Biophys Acta Gen Subj 2016; 1860:1139-48. [PMID: 26905802 DOI: 10.1016/j.bbagen.2016.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/11/2016] [Accepted: 02/18/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND A slower progression of AIDS and increased survival in GBV-C positive individuals, compared with GBV-C negative individuals has been demonstrated; while the loss of GBV-C viremia was closely associated with a rise in mortality and increased progression of AIDS. Following on from the previous reported studies that support the thesis that GBV-C E2 interferes with HIV-1 entry, in this work we try to determine the role of the GBV-C E1 protein in HIV-1 inhibition. METHODS The present work involves the construction of several overlapping peptide libraries scanning the GBV-C E1 protein and the evaluation of their anti-HIV activity. RESULTS Specifically, an 18-mer synthetic peptide from the GBV-C E1 protein, E1(139-156), showed similar antiviral activity against HIVs from viruses from clades A, B, C, D and AE. Competitive ELISA using specific gp41-targeting mAbs, fluorescence resonance energy transfer as well as haemolysis assays demonstrated that this E1 peptide sequence interacts with the highly conserved N-terminal region of the HIV-1 gp41 (the fusion peptide) which is essential for viral entry. CONCLUSIONS We have defined a novel peptide lead compound and described the inhibitory role of a highly conserved fragment of the E1 protein. GENERAL SIGNIFICANCE The results together allow us to consider the non-pathogenic E1 GBV-C protein as an attractive source of peptides for the development of novel anti-HIV therapies.
Collapse
Affiliation(s)
- M J Gómara
- Unit of Synthesis and Biomedical Application of Peptides. IQAC-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - V Sánchez-Merino
- AIDS Research Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain. HIVACAT, Barcelona, Spain
| | - A Paús
- Unit of Synthesis and Biomedical Application of Peptides. IQAC-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - A Merino-Mansilla
- AIDS Research Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain. HIVACAT, Barcelona, Spain
| | - J M Gatell
- AIDS Research Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain. HIVACAT, Barcelona, Spain; Infectious Diseases Unit-HIVACAT, Hospital Clinic, Villarroel, 170, 08036 Barcelona, Spain
| | - E Yuste
- AIDS Research Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain. HIVACAT, Barcelona, Spain
| | - I Haro
- Unit of Synthesis and Biomedical Application of Peptides. IQAC-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
10
|
Justino GC, Pinheiro PF, Roseiro APS, Knittel ASO, Gonçalves J, Justino MC, Carvalho MFNN. Camphor-based CCR5 blocker lead compounds – a computational and experimental approach. RSC Adv 2016. [DOI: 10.1039/c6ra09627a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study identifies novel camphor-derived compounds that bind the CCR5 receptor and can be used as lead compounds for drug discovery.
Collapse
Affiliation(s)
- Gonçalo C. Justino
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Pedro F. Pinheiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Alexandra P. S. Roseiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Ana S. O. Knittel
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - João Gonçalves
- URIA-Centro de Patogénese Molecular
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-028 Lisboa
- Portugal
| | - Marta C. Justino
- Escola Superior de Tecnologia do Barreiro
- Instituto Politécnico de Setúbal
- 2830-144 Barreiro
- Portugal
| | | |
Collapse
|
11
|
Abstract
The human immunodeficiency virus-1 (HIV-1) enters target cells by binding its envelope glycoprotein gp120 to the CD4 receptor and/or coreceptors such as C-C chemokine receptor type 5 (CCR5; R5) and C-X-C chemokine receptor type 4 (CXCR4; X4), and R5-tropic viruses predominate during the early stages of infection. CCR5 antagonists bind to CCR5 to prevent viral entry. Maraviroc (MVC) is the only CCR5 antagonist currently approved by the United States Food and Drug Administration, the European Commission, Health Canada, and several other countries for the treatment of patients infected with R5-tropic HIV-1. MVC has been shown to be effective at inhibiting HIV-1 entry into cells and is well tolerated. With expanding MVC use by HIV-1-infected humans, different clinical outcomes post-approval have been observed with MVC monotherapy or combination therapy with other antiretroviral drugs, with MVC use in humans infected with dual-R5- and X4-tropic HIV-1, infected with different HIV-1 genotype or infected with HIV-2. This review discuss the role of CCR5 in HIV-1 infection, the development of the CCR5 antagonist MVC, its pharmacokinetics, pharmacodynamics, drug-drug interactions, and the implications of these interactions on treatment outcomes, including viral mutations and drug resistance, and the mechanisms associated with the development of resistance to MVC. This review also discusses available studies investigating the use of MVC in the treatment of other diseases such as cancer, graft-versus-host disease, and inflammatory diseases.
Collapse
Affiliation(s)
- Shawna M Woollard
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Georgette D Kanmogne
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
12
|
Pessôa R, Sabino EC, Sanabani SS. Frequency of coreceptor tropism in PBMC samples from HIV-1 recently infected blood donors by massively parallel sequencing: the REDS II study. Virol J 2015; 12:74. [PMID: 25966986 PMCID: PMC4438479 DOI: 10.1186/s12985-015-0307-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/05/2015] [Indexed: 11/10/2022] Open
Abstract
Background The interaction of HIV-1 and target cells involves sequential binding of the viral gp120 Env protein to the CD4 receptor and a chemokine co-receptor (either CCR5 or CXCR4). CCR5 antagonists have proved to be an effective salvage therapy in patients with CCR5 using variants (R5) but not with variants capable of using CXCR4 (×4) phenotype. Thus, it is critically important to determine cellular tropism of a country’s circulating HIV strains to guide a management decision to improve treatment outcome. In this study, we report the prevalence of R5 and ×4 HIV strains in 45 proviral DNA massively parallel sequencing “MPS” data from recently infected Brazilian blood donors. Methods The MPS data encompassing the tropism-related V3 loop region of the HIV‐1 env gene was extracted from our recently published HIV-1 genomes sequenced by a paired-end protocol (Illumina). HIV‐1 tropism was inferred using Geno2pheno[coreceptor] algorithm (3.5 % false-positive rate). V3 net charge and 11/25 rules were also used for coreceptor prediction. Results Among the 45 samples for which tropism were determined, 39 were exclusively R5 variants, 5 ×4 variants, and one dual-tropic or mixed (D/M) populations of R5 and ×4 viruses, corresponding to 86.7, 11.1 and 2.2 %, respectively. Thus, the proportion of all blood donors that harbor CXCR4-using virus was 13.3 % including individuals with D/M-tropic viruses. Conclusions The presence of CCR5-tropic variants in more than 85 % of our cohort of antiretroviral-naïve blood donors with recent HIV-1 infection indicates a potential benefit of CCR5 antagonists as a therapeutic option in Brazil. Therefore, determination of viral co-receptor tropism is an important diagnostic prerequisite.
Collapse
Affiliation(s)
- Rodrigo Pessôa
- Department of Pathology, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Ester C Sabino
- Department of Infectious Disease/Institute of Tropical Medicine, University of São Paulo, Sao Paulo, Brazil.
| | - Sabri S Sanabani
- Department of Pathology, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil. .,Medicina Instituto de Medicina Tropical de São Paulo, LIM 52 - Av. Dr. Enéas Carvalho de Aguiar, 470 - 2° andar - Cerqueira Cesar, 05403-000, Sao Paulo, SP, Brazil.
| |
Collapse
|
13
|
Abstract
ABSTRACT HIV resistance against currently approved entry inhibitors, the chemokine receptor-5 (CCR5) antagonist maraviroc and the fusion inhibitor enfuvirtide (T-20), manifests in a complex manner that is distinct from the resistance patterns against other classes of antiretroviral drugs. Several attachment and fusion inhibitors are currently under various stages of development. Whereas CCR5 co-receptor antagonists have been widely studied until now, because patients who lack CCR5 are healthy and protected to some extent from HIV-infection, CXCR4-antagonist development has been slower, due to limited antiviral activity and potential toxicity given that CXCR4 may have essential cellular functions. Novel fusion inhibitor development is focusing on orally available small-molecule inhibitors that might replace T-20, which needs to be administered by subcutaneous injection.
Collapse
Affiliation(s)
- Victor G Kramer
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Junqueira DM, Medeiros RMD, Leite TCNF, Guimarães ML, Gräf T, Pinto AR, Almeida SEDM. Detection of the B"-GWGR variant in the southernmost region of Brazil: unveiling the complexity of the human immunodeficiency virus-1 subtype B epidemic. Mem Inst Oswaldo Cruz 2014; 108:735-40. [PMID: 24037196 PMCID: PMC3970682 DOI: 10.1590/0074-0276108062013010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/26/2013] [Indexed: 12/17/2022] Open
Abstract
Typical human immunodeficiency virus-1 subtype B (HIV-1B) sequences present a GPGR signature at the tip of the variable region 3 (V3) loop; however, unusual motifs harbouring a GWGR signature have also been isolated. Although epidemiological studies have detected this variant in approximately 17-50% of the total infections in Brazil, the prevalence of B"-GWGR in the southernmost region of Brazil is not yet clear. This study aimed to investigate the C2-V3 molecular diversity of the HIV-1B epidemic in southernmost Brazil. HIV-1 seropositive patients were ana-lysed at two distinct time points in the state of Rio Grande do Sul (RS98 and RS08) and at one time point in the state of Santa Catarina (SC08). Phylogenetic analysis classified 46 individuals in the RS98 group as HIV-1B and their molecular signatures were as follows: 26% B"-GWGR, 54% B-GPGR and 20% other motifs. In the RS08 group, HIV-1B was present in 32 samples: 22% B"-GWGR, 59% B-GPGR and 19% other motifs. In the SC08 group, 32 HIV-1B samples were found: 28% B"-GWGR, 59% B-GPGR and 13% other motifs. No association could be established between the HIV-1B V3 signatures and exposure categories in the HIV-1B epidemic in RS. However, B-GPGR seemed to be related to heterosexual individuals in the SC08 group. Our results suggest that the established B"-GWGR epidemics in both cities have similar patterns, which is likely due to their geographical proximity and cultural relationship.
Collapse
Affiliation(s)
- Dennis Maletich Junqueira
- Centro de Desenvolvimento Científico e Tecnológico, Fundação Estadual de Produção e Pesquisa em Saúde,, Porto AlegreRS, Brasil
| | | | | | | | | | | | | |
Collapse
|
15
|
Ismael N, Bila D, Mariani D, Vubil A, Mabunda N, Abreu C, Jani I, Tanuri A. Genetic analysis and natural polymorphisms in HIV-1 gp41 isolates from Maputo City, Mozambique. AIDS Res Hum Retroviruses 2014; 30:603-9. [PMID: 24188582 DOI: 10.1089/aid.2013.0244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Enfuvirtide was the first fusion inhibitor approved by the Food and Drug Administration (FDA) in 2003 for HIV-1 infection in treatment-experienced patient. It is the first approved antiviral agent to attack the HIV life cycle in its early stages. For HIV fusion to occur, the HR1 and HR2 domains in the gp41 region need to interact. Enfuvirtide is a synthetic peptide that corresponds to 36 amino acids of the HR2, which competitively binds to HR1 inhibiting the interaction with the HR2 domain thus preventing fusogenic conformation and inhibiting viral entry into host cells. Resistance to enfuvirtide is conferred by mutations occurring in the HR1 region involving residues 36-45. Mozambique, a sub-Saharan country, with an HIV prevalence of 11.5%, provides first line and second line antiretroviral therapy (ART)-based treatment. In poor resource settings such as Mozambique the lack of adequate infrastructures, the high costs of viral load tests, and the availability of salvage treatment have hindered the intended objective of monitoring HIV treatment, suggesting an important concern regarding the development of drug resistance. The general aim of this study was to evaluate naturally occurring polymorphisms and resistance-associated mutations in the gp41 region of HIV-1 isolates from Mozambique. The study included 78 patients naive to ARV treatment and 28 patients failing first line regimen recruited from Centro de Saúde Alto-Maé situated in Maputo. The gp41 gene from 103 patients was sequenced and resistance-associated mutations for enfuvirtide were screened. Subtype analysis revealed that 96% of the sequences were classified as subtype C, 2% as subtype G, 1% as subtype A1, and the other 1% as a mosaic form composed of A1/C. No enfuvirtide resistance-associated mutations in HR1 of gp41 were detected. The major polymorphisms in the HR1 were N42S, L54M, A67T, and V72I. This study suggests that this new class of antiviral drug may be effective as a salvage therapy in patients failing first line regimens in Mozambique. However, further phenotypic studies are required to determine the clinical relevance of the polymorphisms detected in this study.
Collapse
Affiliation(s)
| | - Dulce Bila
- Instituto Nacional de Saúde, Maputo, Mozambique
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diana Mariani
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Celina Abreu
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ilesh Jani
- Instituto Nacional de Saúde, Maputo, Mozambique
| | - Amilcar Tanuri
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Guo H, Liu C, Liu B, Wood C, Kong X. Analysis of primary resistance mutations to HIV-1 entry inhibitors in therapy naive subtype C HIV-1 infected mother-infant pairs from Zambia. J Clin Virol 2013; 58:233-9. [PMID: 23809473 DOI: 10.1016/j.jcv.2013.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/13/2013] [Accepted: 05/28/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Small molecular CCR5 inhibitors represent a new class of drugs for treating HIV-1 infection. The evaluation of the primary resistance mutations associated with entry inhibitors during HIV-1 perinatal transmission is required because they may have a profound impact on the clinical management in MTCT. OBJECTIVES To evaluate the primary resistance mutations to maraviroc and vicriviroc during perinatal transmission and analyze the sensitivity of Env derived from mother-infant pairs to maraviroc. STUDY DESIGN Nine MIPs infected by subtype C HIV-1 were recruited to analyze the prevalence and transmission of primary resistance mutations to maraviroc and vicriviroc. Moreover, Env derived from six MIPs were employed to construct provirus clones and to analyze the sensitivity to maraviroc. RESULTS Mutations A316T, conferring partial resistance to maraviroc, T307I and R315Q, both conferring partial resistance to vicriviroc are prevalent in mother and infant cohorts, indicating the transmission of primary resistance mutations during HIV-1 perinatal transmission. However, the mutations of acutely infected mothers seem to directly transmit to their corresponding infants, while some mutations at low frequency of chronically infected mothers would be lost during transmission. Moreover, provirus clones derived from acutely infected MIPs are less susceptible to maraviroc than those from chronically infected MIPs. CONCLUSIONS Our study suggests that the transmission mode of primary resistance mutations and the sensitivity to maraviroc are dependent on infection status of MIPs either acutely or chronically infected. These results may indicate that higher dose of maraviroc could be needed for treatment of acutely infected MIPs compared to chronically infected MIPs.
Collapse
Affiliation(s)
- Hongyan Guo
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, China
| | | | | | | | | |
Collapse
|
17
|
Santoro MM, Perno CF. HIV-1 Genetic Variability and Clinical Implications. ISRN MICROBIOLOGY 2013; 2013:481314. [PMID: 23844315 PMCID: PMC3703378 DOI: 10.1155/2013/481314] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 04/16/2013] [Indexed: 11/29/2022]
Abstract
Despite advances in antiretroviral therapy that have revolutionized HIV disease management, effective control of the HIV infection pandemic remains elusive. Beyond the classic non-B endemic areas, HIV-1 non-B subtype infections are sharply increasing in previous subtype B homogeneous areas such as Europe and North America. As already known, several studies have shown that, among non-B subtypes, subtypes C and D were found to be more aggressive in terms of disease progression. Luckily, the response to antiretrovirals against HIV-1 seems to be similar among different subtypes, but these results are mainly based on small or poorly designed studies. On the other hand, differences in rates of acquisition of resistance among non-B subtypes are already being observed. This different propensity, beyond the type of treatment regimens used, as well as access to viral load testing in non-B endemic areas seems to be due to HIV-1 clade specific peculiarities. Indeed, some non-B subtypes are proved to be more prone to develop resistance compared to B subtype. This phenomenon can be related to the presence of subtype-specific polymorphisms, different codon usage, and/or subtype-specific RNA templates. This review aims to provide a complete picture of HIV-1 genetic diversity and its implications for HIV-1 disease spread, effectiveness of therapies, and drug resistance development.
Collapse
Affiliation(s)
- Maria Mercedes Santoro
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Carlo Federico Perno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- INMI L Spallanzani Hospital, Antiretroviral Therapy Monitoring Unit, Via Portuense 292, 00149 Rome, Italy
| |
Collapse
|
18
|
To SWC, Chen JHK, Yam WC. Current assays for HIV-1 diagnostics and antiretroviral therapy monitoring: challenges and possibilities. Future Virol 2013. [DOI: 10.2217/fvl.13.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In 2011, there were over 34 million people living with HIV infections, placing a heavy burden on public health sectors. HIV infection is a lifelong threat that cannot be prevented by vaccination or cured by antiretroviral drugs. The infected patients rely on daily antiretroviral therapy to suppress HIV viral replication. Hence, it is important to diagnose HIV infections as early as possible and to monitor the efficacy of antiretroviral therapy every 3–6 months. Different immunoassays detecting HIV antigens and antibodies have been modified to offer better sensitivity and more rapid diagnosis. Several clinical and virological parameters, including CD4+ cell counts, viral load and drug resistance mutations, are also used for treatment monitoring. Many molecular assay optimizations are now being utilized to improve patient care. This review will focus on the most updated HIV diagnostic assays, as well as discussing the upcoming possibilities of other advanced technologies.
Collapse
Affiliation(s)
- Sabrina Wai-Chi To
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jonathan Hon-Kwan Chen
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wing-Cheong Yam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
19
|
Araújo LAL, Almeida SEM. HIV-1 diversity in the envelope glycoproteins: implications for viral entry inhibition. Viruses 2013; 5:595-604. [PMID: 23389465 PMCID: PMC3640516 DOI: 10.3390/v5020595] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/24/2013] [Accepted: 01/31/2013] [Indexed: 11/16/2022] Open
Abstract
Entry of HIV-1 into a host cell is a multi-step process, with the viral envelope gp120 and gp41 acting sequentially to mediate the viral attachment, CD4 binding, coreceptor binding, and fusion of the viral and host membranes. The emerging class of antiretroviral agents, collectively known as entry inhibitors, interfere in some of these steps. However, viral diversity has implications for possible differential responses to entry inhibitors, since envelope is the most variable of all HIV genes. Different HIV genetic forms carry in their genomes genetic signatures and polymorphisms that could alter the structure of viral proteins which are targeted by drugs, thus impairing antiretroviral binding and efficacy. This review will examine current research that describes subtype differences in envelope at the genetic level and the effects of mutations on the efficacy of current entry inhibitors.
Collapse
Affiliation(s)
- Leonardo Augusto Luvison Araújo
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Fundação Estadual de Produção e Pesquisa em Saúde (FEPPS), Porto Alegre, 90610-000, Brazil.
| | | |
Collapse
|
20
|
Gräf T, Pinto AR. The increasing prevalence of HIV-1 subtype C in Southern Brazil and its dispersion through the continent. Virology 2012; 435:170-8. [PMID: 22999094 DOI: 10.1016/j.virol.2012.08.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 01/15/2023]
Abstract
The HIV-1 has evolved swiftly and the scenario of HIV-1 genetic diversity is constantly changing. In South America, recombinant forms of subtypes B, F1, and BF1 have historically driven the HIV-1 epidemic. In recent years, however, infection with subtype C has gained prominence as its prevalence increased in Southern Brazil as well as neighboring countries. Current studies point to a single introduction of closely related strains as the beginning of the Brazilian subtype C epidemic. However, the place of origin of these strains, date, and route of introduction are under continuous debate as well as the clinical outcomes of the emergence of subtype C. Therefore, this paper reviews the history of the HIV-1 subtype C in Brazil, particularly in the Southern region, covering its demographic and evolutionary history and the possible implications to the Brazilian AIDS epidemic as well as to neighboring countries.
Collapse
Affiliation(s)
- Tiago Gräf
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | |
Collapse
|