1
|
Klyucherev TO, Peshkova MA, Yurkanova MD, Kosheleva NV, Svistunov AA, Liang XJ, Timashev PS. Advances in Regenerative Therapies for Inflammatory Arthritis: Exploring the Potential of Mesenchymal Stem Cells and Extracellular Vesicles. Int J Mol Sci 2025; 26:5766. [PMID: 40565230 DOI: 10.3390/ijms26125766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 06/10/2025] [Accepted: 06/11/2025] [Indexed: 06/28/2025] Open
Abstract
Inflammatory arthritis, including rheumatoid arthritis (RA) and osteoarthritis (OA), is a group of degenerative joint diseases that result in reduced mobility and a prevalent cause of disability. Despite differing etiologies, both conditions involve inflammation, affecting only the joints in OA and systemic in RA due to its autoimmune nature. Regenerative medicine offers promising alternatives, with a focus on the therapy with mesenchymal stem cell (MSC) and their secreted extracellular vesicles (EVs). MSC-derived EVs have shown great potential in modulating inflammatory pathways and promoting tissue repair in the preclinical models of RA and OA. Additionally, EVs from immune cells exhibit strong anti-inflammatory effects, reducing cartilage and bone degeneration. This review highlights the recent progress in MSC-based and EV-based therapies for OA and RA, discussing the bioengineering approaches that enhance the therapeutic efficacy, stability, and targeting of EV. It also addresses the major challenges in translating EV therapy from the laboratory to clinical practice and discusses strategies to overcome these obstacles in the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Timofey O Klyucherev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Maria A Peshkova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Maria D Yurkanova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Nastasia V Kosheleva
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter S Timashev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Saadh MJ, Ahmed HH, Sanghvi G, Bin Awang Isa MZ, Singh P, Kaur K, Kumar MR, Husseen B. Recent advances in the delivery of microRNAs via exosomes derived from MSCs, and their role in regulation of ferroptosis. Pathol Res Pract 2025; 270:155984. [PMID: 40315562 DOI: 10.1016/j.prp.2025.155984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025]
Abstract
Mesenchymal stem cell (MSC) therapy, with its unique properties, has garnered interest in cancer treatment. Exosomes (EXOs)-derived from MSC retain the paracrine components of MSCs and demonstrate increased stability, minimal immunogenicity, and low risk of unintended tumorigenesis. Enhanced endocytosis methods make them versatile delivery vehicles for therapeutic cargo. MSC-EXOs can either promote or inhibit carcinogenesis, mediated by paracrine factors and various RNA molecules, particularly microRNAs (miRNAs). The prospect of using MSC-EXOs as a delivery tool for antitumor miRNAs in solid tumor therapy is promising. Exosomes' intrinsic tumor-targeting abilities and low immunogenicity make them ideal for delivering miRNAs, which have shown potential as cancer therapeutics. miRNAs within MSC-EXOs molecules can stimulate tumor growth or induce non-apoptotic cell death pathways, such as ferroptosis, depending on context. Ferroptosis is a kind of controlled cell death that is associated with the pathophysiology of several illnesses and includes iron metabolism. There is growing evidence that miRNAs carried by exosomes derived from MSCs may control ferroptosis in tumor cells by altering key genes related to antioxidant defense, lipid peroxidation, and iron metabolism. Understanding their complex mechanisms in the tumor microenvironment and optimizing their cargo are critical steps toward harnessing their full therapeutic potential. This review provides a comprehensive overview of MSC-EXOs and their role in cancer treatment. We also discuss the potential of MSC-EXOs as delivery vehicles for miRNAs to enhance therapeutic efficacy, as well as the role of exosomal miRNAs in the induction of ferroptosis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | | | - Priyanka Singh
- NIMS School of Allied Sciences and Technology, NIMS University, Jaipur, Rajasthan 303121, India
| | - Kiranjeet Kaur
- Chandigarh Pharmacy College, Chandigarh Group of colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
3
|
Pînzariu AC, Moscalu R, Soroceanu RP, Maranduca MA, Drochioi IC, Vlasceanu VI, Timofeiov S, Timofte DV, Huzum B, Moscalu M, Serban DN, Serban IL. The Therapeutic Use and Potential of MSCs: Advances in Regenerative Medicine. Int J Mol Sci 2025; 26:3084. [PMID: 40243782 PMCID: PMC11989115 DOI: 10.3390/ijms26073084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a relevant strategy in regenerative medicine due to their multipotent differentiation capacity, immunomodulatory properties, and therapeutic applications in various medical fields. This review explores the therapeutic use of MSCs, focusing on their role in treating autoimmune disorders and neoplastic diseases and in tissue regeneration. We discuss the mechanisms underlying MSC-mediated tissue repair, including their paracrine activity, migration to injury sites, and interaction with the immune system. Advances in cellular therapies such as genome engineering and MSC-derived exosome treatments further enhance their applicability. Key methodologies analyzed include genomic studies, next-generation sequencing (NGS), and bioinformatics approaches to optimize MSC-based interventions. Additionally, we reviewed preclinical and clinical evidence demonstrating the therapeutic potential of MSCs in conditions such as graft-versus-host disease, osteoarthritis, liver cirrhosis, and neurodegenerative disorders. While promising, challenges remain regarding standardization, long-term safety, and potential tumorigenic risks associated with MSC therapy. Future research should focus on refining MSC-based treatments to enhance efficacy and minimize risks. This review underscores the need for large-scale clinical trials to validate MSC-based interventions and fully harness their therapeutic potential.
Collapse
Affiliation(s)
- Alin Constantin Pînzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.P.); (M.A.M.); (D.N.S.); (I.L.S.)
| | - Roxana Moscalu
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Radu Petru Soroceanu
- Department of Surgery I, Discipline of Surgical Semiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (V.I.V.); (S.T.); (D.V.T.)
| | - Minela Aida Maranduca
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.P.); (M.A.M.); (D.N.S.); (I.L.S.)
| | - Ilie Cristian Drochioi
- Department of Oral and Maxillo Facial Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Vlad Ionut Vlasceanu
- Department of Surgery I, Discipline of Surgical Semiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (V.I.V.); (S.T.); (D.V.T.)
| | - Sergiu Timofeiov
- Department of Surgery I, Discipline of Surgical Semiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (V.I.V.); (S.T.); (D.V.T.)
| | - Daniel Vasile Timofte
- Department of Surgery I, Discipline of Surgical Semiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (V.I.V.); (S.T.); (D.V.T.)
| | - Bogdan Huzum
- Department of Orthopaedic and Traumatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Dragomir Nicolae Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.P.); (M.A.M.); (D.N.S.); (I.L.S.)
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.P.); (M.A.M.); (D.N.S.); (I.L.S.)
| |
Collapse
|
4
|
Kamenšek U, Božič T, Čemažar M, Švajger U. Antitumor Efficacy of Interleukin 12-Transfected Mesenchymal Stem Cells in B16-F10 Mouse Melanoma Tumor Model. Pharmaceutics 2025; 17:278. [PMID: 40142942 PMCID: PMC11944637 DOI: 10.3390/pharmaceutics17030278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Mesenchymal stromal cells (MSCs) hold the potential for tumor-targeted gene delivery due to their ex vivo manipulability, low immunogenicity, scalability, and inherent tumor-homing properties. Despite the widespread use of viral vectors for MSC genetic modification, safety concerns have prompted interest in non-viral alternatives, such as gene electrotransfer (GET). This study aimed to optimize GET parameters for MSCs transfection, assess MSCs biodistribution after in vivo administration, and evaluate the therapeutic potential of interleukin-12 (IL-12)-modified MSCs in a mouse melanoma model. Methods: Human MSCs were isolated from umbilical cords under ethically approved protocols. GET protocols were optimized using a fluorescent reporter gene to evaluate transfection efficiency and cell viability. MSC biodistribution was examined following intravenous and intratumoral injections in murine tumor models using luminescent reporter gene. The therapeutic efficacy of IL-12-modified MSCs was assessed in a syngeneic mouse melanoma model. Results: Optimized GET protocols achieved a transfection efficiency of 80% and a cell viability of 90%. Biodistribution studies demonstrated effective tumor retention of MSCs following intratumoral injections, whereas intravenous administration resulted in predominant cell localization in the lungs. IL-12-modified MSCs injected intratumorally significantly inhibited tumor growth, delaying tumor progression by five days compared to controls. Conclusions: Optimized GET conditions enabled high-efficiency, high-viability MSCs transfection, facilitating their use as effective vehicles for localized cytokine delivery. While the innate tumor tropism of MSCs was not conclusively demonstrated, the study highlights the potential of GET as a reliable non-viral gene delivery platform and underscores the therapeutic promise of IL-12-modified MSCs in tumor-targeted gene therapy.
Collapse
Affiliation(s)
- Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (U.K.); (T.B.)
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Tim Božič
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (U.K.); (T.B.)
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (U.K.); (T.B.)
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, SI-6310 Izola, Slovenia
| | - Urban Švajger
- Department for Therapeutic Services, Slovenian Institute for Transfusion Medicine, SI-1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Kareem RA, Sameer HN, Yaseen A, Athab ZH, Adil M, Ahmed HH. A review of the immunomodulatory properties of mesenchymal stem cells and their derived extracellular vesicles in small-cell and non-small-cell lung cancer cells. Int Immunopharmacol 2025; 146:113848. [PMID: 39689606 DOI: 10.1016/j.intimp.2024.113848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Among the most challenging diseases to treat is lung cancer (LC). While immunotherapy has a checkered history, it has lately shown great promise in the treatment of LC, and interest in this promising new approach is on the rise around the globe. Immunotherapy using mesenchymal stem cells (MSCs) is gaining popularity. Regenerative medicine, cell therapy, and immune modulation are three areas that have shown significant interest in MSCs. More than that, MSCs have recently attracted attention as potential anti-cancer drug delivery vehicles due to their inherent ability to go home to tumor locations. Making MSCs a double-edged sword in the fight against neoplastic illnesses, they are also known to impart pro-oncogenic properties. Additionally, multiple studies have proposed extracellular vesicles (EVs) secreted by MSCs as a potential therapeutic agent or method for delivering anti-cancer drugs. However, there has been conflicting evidence regarding the impact of MSCs or MSC-EV on the behavior of cancer cells, and the exact mechanism for this effect is still unknown. Our research has focused on MSCs and their key characteristics, such as their immunomodulatory capabilities for cancer therapy. Our research has also explored the potential of MSCs and their derivatives to treat small-cell and non-small-cell lung cancers (NSCLC and SCLC, respectively) by leveraging MSCs' immunomodulatory characteristics. At the end of this article, we covered the pros and cons of this therapy procedure, as well as what researchers want to do in the future to make it more suitable for clinical application in LC treatment.
Collapse
Affiliation(s)
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | | | |
Collapse
|
6
|
Roy NS, Kumari M, Alam K, Bhattacharya A, Kaity S, Kaur K, Ravichandiran V, Roy S. Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012007. [PMID: 39662055 DOI: 10.1088/2516-1091/ad9dcb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Three-dimensional (3D) models, such as tumor spheroids and organoids, are increasingly developed by integrating tissue engineering, regenerative medicine, and personalized therapy strategies. These advanced 3Din-vitromodels are not merely endpoint-driven but also offer the flexibility to be customized or modulated according to specific disease parameters. Unlike traditional 2D monolayer cultures, which inadequately capture the complexities of solid tumors, 3D co-culture systems provide a more accurate representation of the tumor microenvironment. This includes critical interactions with mesenchymal stem/stromal cells (MSCs) and induced pluripotent stem cells (iPSCs), which significantly modulate cancer cell behavior and therapeutic responses. Most of the findings from the co-culture of Michigan Cancer Foundation-7 breast cancer cells and MSC showed the formation of monolayers. Although changes in the plasticity of MSCs and iPSCs caused by other cells and extracellular matrix (ECM) have been extensively researched, the effect of MSCs on cancer stem cell (CSC) aggressiveness is still controversial and contradictory among different research communities. Some researchers have argued that CSCs proliferate more, while others have proposed that cancer spread occurs through dormancy. This highlights the need for further investigation into how these interactions shape cancer aggressiveness. The objective of this review is to explore changes in cancer cell behavior within a 3D microenvironment enriched with MSCs, iPSCs, and ECM components. By describing various MSC and iPSC-derived 3D breast cancer models that replicate tumor biology, we aim to elucidate potential therapeutic targets for breast cancer. A particular focus of this review is the Transwell system, which facilitates understanding how MSCs and iPSCs affect critical processes such as migration, invasion, and angiogenesis. The gradient formed between the two chambers is based on diffusion, as seen in the human body. Once optimized, this Transwell model can serve as a high-throughput screening platform for evaluating various anticancer agents. In the future, primary cell-based and patient-derived 3D organoid models hold promise for advancing personalized medicine and accelerating drug development processes.
Collapse
Affiliation(s)
- Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Department of Anatomy & Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| |
Collapse
|
7
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
8
|
Shamsul Kamal AA, Fakiruddin KS, Bobbo KA, Ling KH, Vidyadaran S, Abdullah S. Engineered Mesenchymal Stem Cells as Treatment for Cancers: Opportunities, Clinical Applications and Challenges. Malays J Med Sci 2024; 31:56-82. [PMID: 39416732 PMCID: PMC11477465 DOI: 10.21315/mjms2024.31.5.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/27/2024] [Indexed: 10/19/2024] Open
Abstract
The insufficient and unspecific target of classical chemotherapies often leads to therapy resistance and cancer recurrence. Over the past decades, discoveries about mesenchymal stem cell (MSC) biology have provided new potential approaches to improve cancer therapy. Researchers have utilised the multipotent, regenerative and immunosuppressive qualities of MSCs and tropisms towards inflammatory, hypoxic and malignant sites in various therapeutic applications. Although MSC-based therapies have generally been demonstrated safe, their effectiveness remains limited when these cells are used alone. However, through genetic engineering, researchers have proven that MSCs can be modified to have specialised delivery roles to increase their therapeutic efficacy in cancer treatment. They can be made to overexpress therapeutic proteins through viral or non-viral genetic modification, which enhances their innate properties. Nevertheless, these engineering strategies must be optimised to increase therapeutic efficacy and targeting effectiveness while minimising any loss of MSC function. This review underscores the cutting-edge methods for engineering MSCs, discusses their promise and the difficulties in translating them into clinical settings, and offers some prospective suggestions for the future on achieving their full therapeutic potential.
Collapse
Affiliation(s)
- Aishah Amirah Shamsul Kamal
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Kamal Shaik Fakiruddin
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Selangor, Malaysia
| | - Khadijat Abubakar Bobbo
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - King Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Syahril Abdullah
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| |
Collapse
|
9
|
Mello DB, Mesquita FCP, Silva dos Santos D, Asensi KD, Dias ML, Campos de Carvalho AC, Goldenberg RCDS, Kasai-Brunswick TH. Mesenchymal Stromal Cell-Based Products: Challenges and Clinical Therapeutic Options. Int J Mol Sci 2024; 25:6063. [PMID: 38892249 PMCID: PMC11173248 DOI: 10.3390/ijms25116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Mesenchymal stromal cell (MSC)-based advanced therapy medicinal products (ATMPs) are being tried in a vast range of clinical applications. These cells can be isolated from different donor tissues by using several methods, or they can even be derived from induced pluripotent stem cells or embryonic stem cells. However, ATMP heterogeneity may impact product identity and potency, and, consequently, clinical trial outcomes. In this review, we discuss these topics and the need to establish minimal criteria regarding the manufacturing of MSCs so that these innovative therapeutics may be better positioned to contribute to the advancement of regenerative medicine.
Collapse
Affiliation(s)
- Debora B. Mello
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
| | | | - Danúbia Silva dos Santos
- Center of Cellular Technology, National Institute of Cardiology, INC, Rio de Janeiro 22240-002, Brazil;
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
| | - Karina Dutra Asensi
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Marlon Lemos Dias
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Antonio Carlos Campos de Carvalho
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Regina Coeli dos Santos Goldenberg
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Tais Hanae Kasai-Brunswick
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
10
|
Ali FEM, Ibrahim IM, Althagafy HS, Hassanein EHM. Role of immunotherapies and stem cell therapy in the management of liver cancer: A comprehensive review. Int Immunopharmacol 2024; 132:112011. [PMID: 38581991 DOI: 10.1016/j.intimp.2024.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Liver cancer (LC) is the sixth most common disease and the third most common cause of cancer-related mortality. The WHO predicts that more than 1 million deaths will occur from LC by 2030. Hepatocellular carcinoma (HCC) is a common form of primary LC. Today, the management of LC involves multiple disciplines, and multimodal therapy is typically selected on an individual basis, considering the intricate interactions between the patient's overall health, the stage of the tumor, and the degree of underlying liver disease. Currently, the treatment of cancers, including LC, has undergone a paradigm shift in the last ten years because of immuno-oncology. To treat HCC, immune therapy approaches have been developed to enhance or cause the body's natural immune response to specifically target tumor cells. In this context, immune checkpoint pathway inhibitors, engineered cytokines, adoptive cell therapy, immune cells modified with chimeric antigen receptors, and therapeutic cancer vaccines have advanced to clinical trials and offered new hope to cancer patients. The outcomes of these treatments are encouraging. Additionally, treatment using stem cells is a new approach for restoring deteriorated tissues because of their strong differentiation potential and capacity to release cytokines that encourage cell division and the formation of blood vessels. Although there is no proof that stem cell therapy works for many types of cancer, preclinical research on stem cells has shown promise in treating HCC. This review provides a recent update regarding the impact of immunotherapy and stem cells in HCC and promising outcomes.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan.
| | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
11
|
Lv L, Chen W, Chen N, Cui E. Advances of cell therapy in lung cancer: a narrative review. J Thorac Dis 2023; 15:7050-7062. [PMID: 38249856 PMCID: PMC10797377 DOI: 10.21037/jtd-23-1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/20/2023] [Indexed: 01/23/2024]
Abstract
Background and Objective Lung cancer is the second most prevalent malignancy and has the highest death rate. The main approaches for lung cancer treatment include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, the treatments of the disease need to be further improved. An increasing number of scientific investigations indicated cell therapy to be a successful new treatment for lung cancer. Cell therapy can improve the host's immunity to disease and can compensate for the shortcomings in the therapeutic effects of traditional treatments, particularly in the case of cancer treatment. However, due to its recent development, its clinical efficacy still needs to be further examined. In order to provide an updated source on cell therapy for lung cancer, this paper summarizes the clinical use of chimeric antigen receptor T cells (CAR-Ts), stem cells, cytokine-induced killer cells (CIKs), and tumor-infiltrating lymphocytes (TILs) and discusses recent clinical advancements. Methods We performed a search of the PubMed database on March 28, 2023, and again on June 10, 2023. A review of retrieved literature related to cell therapy and treatments for lung cancer was completed. Key Content and Findings Cell therapy has been applied in clinical studies on the treatment of disorders of the hematologic system, digestive system, respiratory system, and other systems. CAR-T therapy has been successfully used in the treatment of B-cell malignancies, which suggests that cell therapy has broad prospects in the treatment of malignant tumors. CAR-T, stem cells, CIKs, and TILs exert antitumor activity and can recognize and could be used to treat lung cancer. Conclusions Cell therapy represents a novel solution in the treatment of lung cancer. Cell therapy, when combined with traditional therapies, can compensate for the shortcomings of these methods. Further research is needed to reduce the occurrence of adverse reactions and provide a more effective approach in treating lung cancer.
Collapse
|
12
|
Kaur R, Bhardwaj A, Gupta S. Cancer treatment therapies: traditional to modern approaches to combat cancers. Mol Biol Rep 2023; 50:9663-9676. [PMID: 37828275 DOI: 10.1007/s11033-023-08809-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
As far as health issues are concerned, cancer causes one out of every six deaths around the globe. As potent therapeutics are still awaited for the successful treatment of cancer, some unconventional treatments like radiotherapy, surgery, and chemotherapy and some advanced technologies like gene therapy, stem cell therapy, natural antioxidants, targeted therapy, photodynamic therapy, nanoparticles, and precision medicine are available to diagnose and treat cancer. In the present scenario, the prime focus is on developing efficient nanomedicines to treat cancer. Although stem cell therapy has the capability to target primary as well as metastatic cancer foci, it also has the ability to repair and regenerate injured tissues. However, nanoparticles are designed to have such novel therapeutic capabilities. Targeted therapy is also now available to arrest the growth and development of cancer cells without damaging healthy tissues. Another alternative approach in this direction is photodynamic therapy (PDT), which has more potential to treat cancer as it does minimal damage and does not limit other technologies, as in the case of chemotherapy and radiotherapy. The best possible way to treat cancer is by developing novel therapeutics through translational research. In the present scenario, an important event in modern oncology therapy is the shift from an organ-centric paradigm guiding therapy to complete molecular investigations. The lacunae in anticancer therapy may be addressed through the creation of contemporary and pertinent cancer therapeutic techniques. In the meantime, the growth of nanotechnology, material sciences, and biomedical sciences has revealed a wide range of contemporary therapies with intelligent features, adaptable functions, and modification potential. The development of numerous therapeutic techniques for the treatment of cancer is summarized in this article. Additionally, it can serve as a resource for oncology and immunology researchers.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Alok Bhardwaj
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| |
Collapse
|
13
|
Arai Y, Lee SH. MMP13-Overexpressing Mesenchymal Stem Cells Enhance Bone Tissue Formation in the Presence of Collagen Hydrogel. Tissue Eng Regen Med 2023; 20:461-471. [PMID: 37041434 PMCID: PMC10219901 DOI: 10.1007/s13770-023-00535-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are proteins involved in the repair and remodeling the extracellular matrix (ECM). MMP13 is essential for bone development and healing through the remodeling of type I collagen (COL1), the main component of the ECM in bone tissue. Mesenchymal stem cells (MSCs)-based cell therapy has been considered a promising approach for bone regeneration because of their osteogenic properties. However, the approaches using MSC to completely regenerate bone tissue have been limited. To overcome the limitation, genetic engineering of MSC could be a strategy for promoting regeneration efficacy. METHODS We performed in vitro and in vivo experiments using MMP13-overexpressing MSCs in the presence of COL1. To examine MMP13-overexpressing MSCs in vivo, we prepared a fibrin/COL1-based hydrogel to encapsulate MSCs and subcutaneously implanted gel-encapsulated MSCs in nude mice. We found that the osteogenic marker genes, ALP and RUNX2, were upregulated in MMP13-overexpressing MSCs through p38 phosphorylation. In addition, MMP13 overexpression in MSCs stimulated the expression of integrin α3, which is up-stream receptor of p38, and substantially increased osteogenic differentiation potential of MSCs. Bone tissue formation in MMP13-overexpressing MSCs was significantly higher than that in control MSCs. Taken together, our findings demonstrate that MMP13 is not only an essential factor for bone development and bone healing but also has a pivotal role in promoting osteogenic differentiation of MSCs to induce bone formation. CONCLUSION MSCs Genetically engineered to overexpress MMP13, which have a powerful potential to differentiate into the osteogenic cells, might be beneficial in bone disease therapy.
Collapse
Affiliation(s)
- Yoshie Arai
- Department of Medical Biotechnology, Dongguk University, Seoul, 04620, South Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, Seoul, 04620, South Korea.
| |
Collapse
|
14
|
Gundersen RA, Chu T, Abolfathi K, Dogan SG, Blair PE, Nago N, Hamblin M, Brooke GN, Zwacka RM, Hoshiar AK, Mohr A. Generation of magnetic biohybrid microrobots based on MSC.sTRAIL for targeted stem cell delivery and treatment of cancer. Cancer Nanotechnol 2023; 14:54. [PMID: 37869575 PMCID: PMC7615227 DOI: 10.1186/s12645-023-00203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/25/2023] [Indexed: 10/24/2023] Open
Abstract
Background Combining the power of magnetic guidance and the biological activities of stem cells transformed into biohybrid microrobots holds great promise for the treatment of several diseases including cancer. Results We found that human MSCs can be readily loaded with magnetic particles and that the resulting biohybrid microrobots could be guided by a rotating magnetic field. Rotating magnetic fields have the potential to be applied in the human setting and steer therapeutic stem cells to the desired sites of action in the body. We could demonstrate that the required loading of magnetic particles into stem cells is compatible with their biological activities. We examined this issue with a particular focus on the expression and functionality of therapeutic genes inside of human MSC-based biohybrid microrobots. The loading with magnetic particles did not cause a loss of viability or apoptosis in the human MSCs nor did it impact on the therapeutic gene expression from the cells. Furthermore, the therapeutic effect of the gene products was not affected, and the cells also did not lose their migration potential. Conclusion These results demonstrate that the fabrication of guidable MSC-based biohybrid microrobots is compatible with their biological and therapeutic functions. Thus, MSC-based biohybrid microrobots represent a novel way of delivering gene therapies to tumours as well as in the context of other diseases.
Collapse
Affiliation(s)
- Rebekah Anamarie Gundersen
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Tianyuan Chu
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Kiana Abolfathi
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Serap Gokcen Dogan
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Phoebe Elizabeth Blair
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Nyasha Nago
- Haematology Unit, East Suffolk and North Essex NHS Foundation Trust, Colchester CO4 5JL, UK
| | - Michael Hamblin
- Haematology Unit, East Suffolk and North Essex NHS Foundation Trust, Colchester CO4 5JL, UK
| | - Greg Nicholas Brooke
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Molecular Oncology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Ralf Michael Zwacka
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Ali Kafash Hoshiar
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Andrea Mohr
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
15
|
Zhu X, Ma D, Yang B, An Q, Zhao J, Gao X, Zhang L. Research progress of engineered mesenchymal stem cells and their derived exosomes and their application in autoimmune/inflammatory diseases. Stem Cell Res Ther 2023; 14:71. [PMID: 37038221 PMCID: PMC10088151 DOI: 10.1186/s13287-023-03295-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Autoimmune/inflammatory diseases affect many people and are an important cause of global incidence and mortality. Mesenchymal stem cells (MSCs) have low immunogenicity, immune regulation, multidifferentiation and other biological characteristics, play an important role in tissue repair and immune regulation and are widely used in the research and treatment of autoimmune/inflammatory diseases. In addition, MSCs can secrete extracellular vesicles with lipid bilayer structures under resting or activated conditions, including exosomes, microparticles and apoptotic bodies. Among them, exosomes, as the most important component of extracellular vesicles, can function as parent MSCs. Although MSCs and their exosomes have the characteristics of immune regulation and homing, engineering these cells or vesicles through various technical means, such as genetic engineering, surface modification and tissue engineering, can further improve their homing and other congenital characteristics, make them specifically target specific tissues or organs, and improve their therapeutic effect. This article reviews the advanced technology of engineering MSCs or MSC-derived exosomes and its application in some autoimmune/inflammatory diseases by searching the literature published in recent years at home and abroad.
Collapse
Affiliation(s)
- Xueqing Zhu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
16
|
Choi Y, Lee HK, Choi KC. Engineered adult stem cells: a promising tool for anti-cancer therapy. BMB Rep 2023; 56:71-77. [PMID: 36330711 PMCID: PMC9978368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/28/2022] [Accepted: 11/04/2022] [Indexed: 02/24/2023] Open
Abstract
Cancers are one of the most dreaded diseases in human history and have been targeted by numerous trials including surgery, chemotherapy, radiation therapy, and anti-cancer drugs. Adult stem cells (ASCs), which can regenerate tissues and repair damage, have emerged as leading therapeutic candidates due to their homing ability toward tumor foci. Stem cells can precisely target malicious tumors, thereby minimizing the toxicity of normal cells and unfavorable side effects. ASCs, such as mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs), are powerful tools for delivering therapeutic agents to various primary and metastatic cancers. Engineered ASCs act as a bridge between the tumor sites and tumoricidal reagents, producing therapeutic substances such as exosomes, viruses, and anti-cancer proteins encoded by several suicide genes. This review focuses on various anti-cancer therapies implemented via ASCs and summarizes the recent treatment progress and shortcomings. [BMB Reports 2023; 56(2): 71-77].
Collapse
Affiliation(s)
- Youngdong Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
17
|
Choi Y, Lee HK, Choi KC. Engineered adult stem cells: a promising tool for anti-cancer therapy. BMB Rep 2023; 56:71-77. [PMID: 36330711 PMCID: PMC9978368 DOI: 10.5483/bmbrep.2022-0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/28/2022] [Accepted: 11/04/2022] [Indexed: 08/03/2023] Open
Abstract
Cancers are one of the most dreaded diseases in human history and have been targeted by numerous trials including surgery, chemotherapy, radiation therapy, and anti-cancer drugs. Adult stem cells (ASCs), which can regenerate tissues and repair damage, have emerged as leading therapeutic candidates due to their homing ability toward tumor foci. Stem cells can precisely target malicious tumors, thereby minimizing the toxicity of normal cells and unfavorable side effects. ASCs, such as mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs), are powerful tools for delivering therapeutic agents to various primary and metastatic cancers. Engineered ASCs act as a bridge between the tumor sites and tumoricidal reagents, producing therapeutic substances such as exosomes, viruses, and anti-cancer proteins encoded by several suicide genes. This review focuses on various anti-cancer therapies implemented via ASCs and summarizes the recent treatment progress and shortcomings. [BMB Reports 2023; 56(2): 71-77].
Collapse
Affiliation(s)
- Youngdong Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
18
|
George A, Varghese J, Padinharayil H. Potential of Biotechnology in Cancer Management. NOVEL TECHNOLOGIES IN BIOSYSTEMS, BIOMEDICAL & DRUG DELIVERY 2023:9-44. [DOI: 10.1007/978-981-99-5281-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Rafati A, Esmaeili Gouvarchin Ghaleh H, Azarabadi A, Masoudi MR, Afrasiab E, Ghorbani Alvanegh A. Stem cells as an ideal carrier for gene therapy: A new approach to the treatment of hepatitis C virus. Transpl Immunol 2022; 75:101721. [PMID: 36150664 DOI: 10.1016/j.trim.2022.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIM Various chemical drugs have been approved for the treatment of patients with hepatitis C, but most of these treatments are costly, and also have an inadequate response and many side effects. Also, there is no effective vaccine for hepatitis C due to its high genetic diversity. In recent decades, clinical trials have grown dramatically regarding the benefits of stem cell therapy as a modulator of immune system responses and anti-inflammatory drugs. The most promising point in stem cell therapy and similar therapies is that patients with chronic pain and severe injuries are offered drug-free treatment or surgery. In the present study, we examine the various dimensions of the use of stem cells with the approach of gene therapy carriers as a new treatment method in the treatment of Hepatitis C. METHODS Search terms were including gene carrier, stem cell therapy, gene therapy, liver disorders, hepatitis C virus. At first, 1000 article titles related to the mentioned keywords for different diseases were found. After removing duplicate titles and items that did not match the scope of the research, articles that met the criteria for entering the research and had usable information were selected. All abstracts of selected articles were studied by researchers. In the initial review, articles related to the title were identified and categorized based on the type of challenge. CONCLUSION Gene therapy, either directly and in vivo or indirectly and in vitro, requires carriers (vectors) to transfer the gene. These carriers are divided into two groups, viral and non-viral. In indirect gene therapy, living cells are isolated from a person's body and genetically modified. Stem cells have the properties to transfer the desired genes to the patient's body, including the ability to proliferate for a long time and differentiate into the tissue cells in which they are located.
Collapse
Affiliation(s)
- Alireza Rafati
- Department of Medical Genetics, Sirjan School of Medical Sciences, Sirjan, Iran
| | | | - Afsaneh Azarabadi
- Instructor of Nursing, School of Nursing and Midwifery, Urmia University of Medical Sciences
| | - Mahmood Reza Masoudi
- School of Medical Sciences, Emam Reza Hospital Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Elmira Afrasiab
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Akbar Ghorbani Alvanegh
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran; Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Zhang J, Zhong M, Zhong W, Lan Y, Yuan Z, Duan Y, Wei Y. Construction of tandem diabody (IL-6/CD20)-secreting human umbilical cord mesenchymal stem cells and its experimental treatment on diffuse large B cell lymphoma. Stem Cell Res Ther 2022; 13:473. [PMID: 36104733 PMCID: PMC9476312 DOI: 10.1186/s13287-022-03169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND More than 40% patients with diffuse large B cell lymphoma (DLBCL) experienced relapse or refractory (R/R) lymphoma after the standard first R-CHOP therapy. IL-6 was reportedly associated with chemotherapy resistance of rituximab. Further, mesenchymal stem cells (MSCs) are known as the potential cell vehicle for their tropism toward tumor. A MSCs-based tandem diabody for treating DLBCL is currently lacking. METHODS We constructed a tandem diabody (Tandab(IL-6/CD20)) with modified umbilical cord MSCs (UCMSCs) and designed a cell-based Tandab releasing system. Western blot, qPCR and immunofluorescence were used to confirm the construction and expression of lentivirus-infected UCMSCs. The vitality, apoptosis and homing abilities of UCMSCs were examined via CCK-8 assay, apoptosis, wound healing and migration analysis. Cell binding assay was used to demonstrate the targeting property of Tandab binding to CD20-positive DLBCL cells. Furthermore, we evaluated the viability of SU-DHL-2 and SU-DHL-4 by using CCK-8 and EDU assay after the treatment of UCMSCs-Tandab(IL-6/CD20). RESULTS Tandab protein peaked at 6273 ± 487 pg/ml in the medium on day 7 after cell culture. The proliferation and homing ability of UCMSCs did not attenuate after genetically modification. Immunofluorescence images indicated the Tandab protein bound to the lymphoma cells. UCMSCs-Tandab(IL-6/CD20) inhibited the growth of SU-DHL-2 or SU-DHL-4 cells in vitro. CONCLUSIONS UCMSCs-Tandab(IL-6/CD20), which bound with both tumor-associated surface antigens and pro-tumor cytokines in tumor microenvironment, might serve as a potential treatment for DLBCL, evidenced by inhibiting the growth of SU-DHL-2 or SU-DHL-4 cells.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Minglu Zhong
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Weijie Zhong
- Department of Geriatrics, Hematology and Oncology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanfei Lan
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China.
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yaming Wei
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
- Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Extracellular Vesicles of Mesenchymal Stem Cells Are More Effectively Accessed through Polyethylene Glycol-Based Precipitation than by Ultracentrifugation. Stem Cells Int 2022; 2022:3577015. [PMID: 36110890 PMCID: PMC9470370 DOI: 10.1155/2022/3577015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) have been identified as cell-cell communication agents, and EVs derived from mesenchymal stem cells (MSCs) exhibit therapeutic effects similar to those of the cells of origin. Precipitation methods have been used extensively for EV harvests, such as UC- (ultracentrifugation-) or PEG- (polyethylene glycol-) based methods, and the difference in EVs derived from MSCs by UC and PEG is not fully understood. We harvested EVs from amniotic fluid MSCs (AF-MSCs) by UC- or PEG-based precipitation methods and conducted a comparison study of those EVs derived by the two methods: output, RNA, and protein expression of EVs and EV biological reaction in a THP-1-cell model of LPS induction, which was considered an infection model. There was no difference in morphology, size, or specific marker-positive ratio of PEG-EVs and UC-EVs, but PEG obtained more EV particles, protein, and RNA than the UC method. In our THP-1 model of LPS induction, MSC-EVs did not lead to a change in protein expression but inhibited the LPS-induced increase in cytokine secretion. UC-EVs were more effective for TNF-α inhibition, and PEG-EVs were more effective for IL10 inhibition. Thus, our findings provide evidence that PEG-based precipitation is a more efficient mesenchymal stem cell-extracellular vesicle-derived method than UC.
Collapse
|
22
|
Bhere D, Choi SH, van de Donk P, Hope D, Gortzak K, Kunnummal A, Khalsa J, Revai Lechtich E, Reinshagen C, Leon V, Nissar N, Bi WL, Feng C, Li H, Zhang YS, Liang SH, Vasdev N, Essayed WI, Quevedo PV, Golby A, Banouni N, Palagina A, Abdi R, Fury B, Smirnakis S, Lowe A, Reeve B, Hiller A, Chiocca EA, Prestwich G, Wakimoto H, Bauer G, Shah K. Target receptor identification and subsequent treatment of resected brain tumors with encapsulated and engineered allogeneic stem cells. Nat Commun 2022; 13:2810. [PMID: 35589724 PMCID: PMC9120173 DOI: 10.1038/s41467-022-30558-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Cellular therapies offer a promising therapeutic strategy for the highly malignant brain tumor, glioblastoma (GBM). However, their clinical translation is limited by the lack of effective target identification and stringent testing in pre-clinical models that replicate standard treatment in GBM patients. In this study, we show the detection of cell surface death receptor (DR) target on CD146-enriched circulating tumor cells (CTC) captured from the blood of mice bearing GBM and patients diagnosed with GBM. Next, we developed allogeneic "off-the-shelf" clinical-grade bifunctional mesenchymal stem cells (MSCBif) expressing DR-targeted ligand and a safety kill switch. We show that biodegradable hydrogel encapsulated MSCBif (EnMSCBif) has a profound therapeutic efficacy in mice bearing patient-derived invasive, primary and recurrent GBM tumors following surgical resection. Activation of the kill switch enhances the efficacy of MSCBif and results in their elimination post-tumor treatment which can be tracked by positron emission tomography (PET) imaging. This study establishes a foundation towards a clinical trial of EnMSCBif in primary and recurrent GBM patients.
Collapse
Affiliation(s)
- Deepak Bhere
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29201, USA
| | - Sung Hugh Choi
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pim van de Donk
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - David Hope
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kiki Gortzak
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Amina Kunnummal
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jasneet Khalsa
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Esther Revai Lechtich
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Clemens Reinshagen
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Victoria Leon
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nabil Nissar
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cheng Feng
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hongbin Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yu Shrike Zhang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven H Liang
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Neil Vasdev
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Walid Ibn Essayed
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pablo Valdes Quevedo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandra Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Naima Banouni
- Department of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anna Palagina
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Reza Abdi
- Department of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Brian Fury
- UC Davis Institute for Regenerative Cures, Davis, CA, 95817, USA
| | - Stelios Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Alarice Lowe
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Brock Reeve
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Arthur Hiller
- Amasa Therapeutics Inc., 1 Harmony Lane, Andover, MA, 01810, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Glenn Prestwich
- Department of Medicinal Chemistry, College of Pharmacy University of Utah, Salt Lake City, UT, 84112, USA
- Washington State University Health Sciences, Spokane, WA, 99202, USA
| | - Hiroaki Wakimoto
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Gerhard Bauer
- UC Davis Institute for Regenerative Cures, Davis, CA, 95817, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
23
|
Imran M, Akhileshwar Jha L, Hasan N, Shrestha J, Pangeni R, Parvez N, Mohammed Y, Kumar Jha S, Raj Paudel K. “Nanodecoys”- Future of drug delivery by encapsulating nanoparticles in natural cell membranes. Int J Pharm 2022; 621:121790. [DOI: 10.1016/j.ijpharm.2022.121790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
|
24
|
Chan LY, Dass SA, Tye GJ, Imran SAM, Wan Kamarul Zaman WS, Nordin F. CAR-T Cells/-NK Cells in Cancer Immunotherapy and the Potential of MSC to Enhance Its Efficacy: A Review. Biomedicines 2022; 10:biomedicines10040804. [PMID: 35453554 PMCID: PMC9024487 DOI: 10.3390/biomedicines10040804] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The chimeric antigen receptor (CAR) plays a dynamic role in targeting tumour-associated antigens in cancer cells. This novel therapeutic discovery combines fragments of monoclonal antibodies with the signalling and co-stimulatory domains that have been modified to its current fourth generation. CAR has been widely implemented in T-cells and natural killer (NK) cells immunotherapy. The significant advancement in CAR technology is evident based on numerous ongoing clinical trials on CAR-T/-NK cells and successful CAR-related products such as Kymriah (Novartis) and Yescarta (Kite Pharma, Gilead). Another important cell-based therapy is the engineering of mesenchymal stem cells (MSC). Researchers have been exploring MSCs and their innate homing abilities to tumour sites and secretion cytokines that bridge both CAR and MSC technologies as a therapeutic agent. This combination allows for both therapies to overcome each one’s flaw as an immunotherapy intervention. Herein, we have provided a concise review on the background of CAR and its applications in different cancers, as well as MSCs’ unique ability as delivery vectors for cancer therapy and the possibility of enhancing the CAR-immune cells’ activity. Hence, we have highlighted throughout this review the synergistic effects of both interventions.
Collapse
Affiliation(s)
- Ler Yie Chan
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
- INTEC Education College, Jalan Senangin Satu 17/2A, Seksyen 17, Shah Alam 40200, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Malaysia; (S.A.D.); (G.J.T.)
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Malaysia; (S.A.D.); (G.J.T.)
| | - Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
- Correspondence: ; Tel.: +60-3-91457670
| |
Collapse
|
25
|
Chiang MC, Chern E. Current Development, Obstacle and Futural Direction of Induced Pluripotent Stem Cell and Mesenchymal Stem Cell Treatment in Degenerative Retinal Disease. Int J Mol Sci 2022; 23:ijms23052529. [PMID: 35269671 PMCID: PMC8910526 DOI: 10.3390/ijms23052529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
Abstract
Degenerative retinal disease is one of the major causes of vision loss around the world. The past several decades have witnessed emerging development of stem cell treatment for retinal disease. Nevertheless, sourcing stem cells remains controversial due to ethical concerns and their rarity. Furthermore, induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are both isolated from patients’ mature tissues; thus, issues such as avoiding moral controversy and adverse events related to immunosuppression and obtaining a large number of cells have opened a new era in regenerative medicine. This review focuses on the current application and development, clinical trials, and latest research of stem cell therapy, as well as its limitations and future directions.
Collapse
|
26
|
Mesenchymal Stem Cell-Based Therapy as a New Approach for the Treatment of Systemic Sclerosis. Clin Rev Allergy Immunol 2022; 64:284-320. [PMID: 35031958 DOI: 10.1007/s12016-021-08892-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Systemic sclerosis (SSc) is an intractable autoimmune disease with unmet medical needs. Conventional immunosuppressive therapies have modest efficacy and obvious side effects. Targeted therapies with small molecules and antibodies remain under investigation in small pilot studies. The major breakthrough was the development of autologous haematopoietic stem cell transplantation (AHSCT) to treat refractory SSc with rapidly progressive internal organ involvement. However, AHSCT is contraindicated in patients with advanced visceral involvement. Mesenchymal stem cells (MSCs) which are characterized by immunosuppressive, antifibrotic and proangiogenic capabilities may be a promising alternative option for the treatment of SSc. Multiple preclinical and clinical studies on the use of MSCs to treat SSc are underway. However, there are several unresolved limitations and safety concerns of MSC transplantation, such as immune rejections and risks of tumour formation, respectively. Since the major therapeutic potential of MSCs has been ascribed to their paracrine signalling, the use of MSC-derived extracellular vesicles (EVs)/secretomes/exosomes as a "cell-free" therapy might be an alternative option to circumvent the limitations of MSC-based therapies. In the present review, we overview the current knowledge regarding the therapeutic efficacy of MSCs in SSc, focusing on progresses reported in preclinical and clinical studies using MSCs, as well as challenges and future directions of MSC transplantation as a treatment option for patients with SSc.
Collapse
|
27
|
Tsubosaka M, Maruyama M, Huang EE, Zhang N, Utsunomiya T, Gao Q, Shen H, Li X, Kushioka J, Hirata H, Yao Z, Yang YP, Goodman SB. Effect on Osteogenic Differentiation of Genetically Modified IL4 or PDGF-BB Over-Expressing and IL4-PDGF-BB Co-Over-Expressing Bone Marrow-Derived Mesenchymal Stromal Cells In Vitro. Bioengineering (Basel) 2021; 8:bioengineering8110165. [PMID: 34821731 PMCID: PMC8614682 DOI: 10.3390/bioengineering8110165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
The use of genetically modified (GM) mesenchymal stromal cells (MSCs) and preconditioned MSCs (pMSCs) may provide further opportunities to improve the outcome of core decompression (CD) for the treatment of early-stage osteonecrosis of the femoral head (ONFH). GM interleukin-4 (IL4) over-expressing MSCs (IL4-MSCs), platelet-derived growth factor (PDGF)-BB over-expressing MSCs (PDGF-BB-MSCs), and IL4-PDGF-BB co-over-expressing MSCs (IL4-PDGF-BB-MSCs) and their respective pMSCs were used in this in vitro study and compared with respect to cell proliferation and osteogenic differentiation. IL4-MSCs, PDGF-BB-MSCs, IL4-PDGF-BB-MSCs, and each pMSC treatment significantly increased cell proliferation compared to the MSC group alone. The percentage of Alizarin red-stained area in the IL4-MSC and IL4-pMSC groups was significantly lower than in the MSC group. However, the percentage of Alizarin red-stained area in the PDGF-BB-MSC group was significantly higher than in the MSC and PDGF-BB-pMSC groups. The percentage of Alizarin red-stained area in the IL4-PDGF-BB-pMSC was significantly higher than in the IL4-PDGF-BB-MSC group. There were no significant differences in the percentage of Alizarin red-stained area between the MSC and IL4-PDGF-BB-pMSC groups. The use of PDGF-BB-MSCs or IL4-PDGF-BB-pMSCs increased cell proliferation. Furthermore, PDGF-BB-MSCs promoted osteogenic differentiation. The addition of GM MSCs may provide a useful supplementary cell-based therapy to CD for treatment of ONFH.
Collapse
Affiliation(s)
- Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Elijah Ejun Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
- Department of Material Science and Engineering, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-650-498-4343
| |
Collapse
|
28
|
Cha S, Lee SM, Wang J, Zhao Q, Bai D. Enhanced Circadian Clock in MSCs-Based Cytotherapy Ameliorates Age-Related Temporomandibular Joint Condyle Degeneration. Int J Mol Sci 2021; 22:10632. [PMID: 34638972 PMCID: PMC8508754 DOI: 10.3390/ijms221910632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Aging has been proven to be one of the major causes of temporomandibular joint (TMJ) disability and pain in older people. Peripheral circadian rhythms play a crucial role in endochondral ossification and chondrogenesis. However, the age-related alterations of circadian clock in TMJ structures are seldom reported. In the current study, TMJ condyles were extracted from young (4-month-old), middle-aged (10-month-old), and old-aged (20-month-old) adults to detect the morphology and circadian oscillation changes in TMJ condyles with aging. The transcriptome profile of Bmal1-deleted bone-marrow mesenchymal stem cells (BMSCs) and controls were explored to reveal the circadian-related differences at the molecular level. Furthermore, the reparative effects of Bmal1-overexpressed BMSCs-based cytotherapy in aged TMJ condyles were investigated in vitro and in vivo. Aged TMJ condyles displayed damaged tissue structure and an abolished circadian rhythm, accompanied by a progressively decreasing chondrogenesis capability and bone turnover activities. The deletion of Bmal1 significantly down-regulated chondrogenesis-related genes Prg4, Sox9, and Col7a1. Bmal1-overexpressed BMSCs presented improved migration capability ex vivo and attenuated age-related TMJ condylar degeneration in vivo. These data demonstrate the crucial role of circadian timing in the maintenance of osteochondral homeostasis, and indicate the potential clinical prospects of circadian-modified MSCs therapy in tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Qing Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (S.C.); (S.-M.L.); (J.W.)
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (S.C.); (S.-M.L.); (J.W.)
| |
Collapse
|
29
|
Abdelgawad M, Bakry NS, Farghali AA, Abdel-Latif A, Lotfy A. Mesenchymal stem cell-based therapy and exosomes in COVID-19: current trends and prospects. Stem Cell Res Ther 2021; 12:469. [PMID: 34419143 PMCID: PMC8379570 DOI: 10.1186/s13287-021-02542-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2. The virus causes an exaggerated immune response, resulting in a cytokine storm and acute respiratory distress syndrome, the leading cause of COVID-19-related mortality and morbidity. So far, no therapies have succeeded in circumventing the exacerbated immune response or cytokine storm associated with COVID-19. Mesenchymal stem cells (MSCs), through their immunomodulatory and regenerative activities, mostly mediated by their paracrine effect and extracellular vesicle production, have therapeutic potential in many autoimmune, inflammatory, and degenerative diseases. In this paper, we review clinical studies on the use of MSCs for COVID-19 treatment, including the salutary effects of MSCs on the pathophysiology of COVID-19 and the immunomodulation of the cytokine storm. Ongoing clinical trial designs, cell sources, dose and administration, and populations are summarized, and the paracrine mode of benefit is discussed. We also offer suggestions for optimizing MSC-based therapies, including genetic engineering, strategies for cell surface modification, nanotechnology applications, and combination therapies.
Collapse
Affiliation(s)
- Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Nourhan Saied Bakry
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Ahmed Abdel-Latif
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA. .,College of Medicine, University of Kentucky, Lexington, KY, 40506-0046, USA.
| | - Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt.
| |
Collapse
|
30
|
Debela DT, Muzazu SGY, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med 2021; 9:20503121211034366. [PMID: 34408877 PMCID: PMC8366192 DOI: 10.1177/20503121211034366] [Citation(s) in RCA: 636] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/05/2021] [Indexed: 01/11/2023] Open
Abstract
Cancer is a global health problem responsible for one in six deaths worldwide. Treating cancer has been a highly complex process. Conventional treatment approaches, such as surgery, chemotherapy, and radiotherapy, have been in use, while significant advances are being made in recent times, including stem cell therapy, targeted therapy, ablation therapy, nanoparticles, natural antioxidants, radionics, chemodynamic therapy, sonodynamic therapy, and ferroptosis-based therapy. Current methods in oncology focus on the development of safe and efficient cancer nanomedicines. Stem cell therapy has brought promising efficacy in regenerating and repairing diseased or damaged tissues by targeting both primary and metastatic cancer foci, and nanoparticles brought new diagnostic and therapeutic options. Targeted therapy possessed breakthrough potential inhibiting the growth and spread of specific cancer cells, causing less damage to healthy cells. Ablation therapy has emerged as a minimally invasive procedure that burns or freezes cancers without the need for open surgery. Natural antioxidants demonstrated potential tracking down free radicals and neutralizing their harmful effects thereby treating or preventing cancer. Several new technologies are currently under research in clinical trials, and some of them have already been approved. This review presented an update on recent advances and breakthroughs in cancer therapies.
Collapse
Affiliation(s)
- Dejene Tolossa Debela
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Seke GY Muzazu
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Enteric Diseases and Vaccines Research Unit, Centre for Infectious Disease Research in Zambia (CIDRZ), Lusaka, Zambia
| | - Kidist Digamo Heraro
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Wachemo University, Hossana, Ethiopia
| | - Maureen Tayamika Ndalama
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Betelhiem Woldemedhin Mesele
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Kotebe Metropolitan University, Addis Ababa, Ethiopia
| | - Dagimawi Chilot Haile
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- University of Gondar, Gondar, Ethiopia
| | - Sophia Khalayi Kitui
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsegahun Manyazewal
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
31
|
Lim H, Park Y, Jang S, Park H, Cho YK, Jung D. Enhanced culturing of adipose derived mesenchymal stem cells on surface modified polystyrene Petri dishes fabricated by plasma enhanced chemical vapor deposition system. J Biomed Mater Res B Appl Biomater 2021; 110:358-366. [PMID: 34289238 DOI: 10.1002/jbm.b.34912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem cells (MSCs) have received considerable attention as therapeutic cells for regenerative medicine and tissue engineering, because of their ability to replace damaged cells or regenerate surrounding cells. There are many technical difficulties in the mass production of high-quality stem cells because the stem cells must maintain an efficient proliferative cell state during in vitro culture. The results of this study show that plasma surface-modification enhanced significantly the culture of adipose-derived mesenchymal stem cells (ASCs) on the polystyrene (PS) Petri dishes. Ar, O2 , pyrrole, and 4,7,10-trioxa-1,13-tridecanediamine (TTDDA) were used as the gas and/or precursors for plasma modification. Specifically, surfaces of PS Petri dishes, coated with plasma polymerized pyrrole (ppPy) and plasma polymerized TTDDA (ppTTDDA) were found to contain amine and carboxyl functional groups, respectively. Ar and O2 plasma-treated PS Petri dishes have similar culture abilities (±1.2 times) to commercially available tissue culture polystyrene (TCPS) dishes, and PS Petri dishes coated with ppPy and ppTTDDA have significantly enhanced culture abilities (2.4 times) at 96 hr compared with TCPS dishes. Western blotting was performed using antibodies against stem cell marker proteins to confirm the stemness properties of stem cells, in the sense that the expressions of the antibody proteins such as CD44, CD73, and CD105 in plasma modified samples were similar to or higher than those in TCPS dishes.
Collapse
Affiliation(s)
- Hyuna Lim
- Department of Physics, Institute of Basic Science, Brain Korea 21 Physics Research Division, Sungkyunkwan University, Suwon, South Korea
| | - Yoonsoo Park
- Department of Physics, Institute of Basic Science, Brain Korea 21 Physics Research Division, Sungkyunkwan University, Suwon, South Korea
| | - Sujeong Jang
- Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University, Cheonan, South Korea
| | - Heonyong Park
- Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University, Cheonan, South Korea
| | - Yong Ki Cho
- Heat Treatment R&D Group, Korea Institute of Industrial Technology, Incheon, South Korea
| | - Donggeun Jung
- Department of Physics, Institute of Basic Science, Brain Korea 21 Physics Research Division, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
32
|
Mir IH, Guha S, Behera J, Thirunavukkarasu C. Targeting molecular signal transduction pathways in hepatocellular carcinoma and its implications for cancer therapy. Cell Biol Int 2021; 45:2161-2177. [PMID: 34270844 DOI: 10.1002/cbin.11670] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma is a substantial health concern. It is currently the third dominating cause of mortality associated with cancer worldwide. The development of hepatocellular carcinoma is an intricate process that encompasses the impairment of genetic, epigenetic, and signal transduction mechanisms contributing to an aberrant metabolic system, enabling tumorigenesis. Throughout the past decade, research has led to the revelation of molecular pathways implicated in the progression of this notorious disorder. The altered signal transduction pathways, such as the mitogen-activated protein kinase pathway, phosphoinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway, WNT/β-catenin pathway, hepatocyte growth factor/c-MET pathway, and just another kinase/signal transducers and activators of transcription signaling pathway is of much therapeutic significance, as targeting them may avail to revert, retard or avert hepatocarcinogenesis. The present review article sums up the contemporary knowledge of such signaling mechanisms, including their therapeutic targets and betokens that novel and efficacious therapies can be developed only by the keen understanding of their character in hepatocarcinogenesis. In additament, we address the role of consequential therapeutic agents and preclinical nondrug therapies known for combating hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Shreyoshi Guha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Jajnasenee Behera
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
33
|
Mansouri V, Beheshtizadeh N, Gharibshahian M, Sabouri L, Varzandeh M, Rezaei N. Recent advances in regenerative medicine strategies for cancer treatment. Biomed Pharmacother 2021; 141:111875. [PMID: 34229250 DOI: 10.1016/j.biopha.2021.111875] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stands as one of the most leading causes of death worldwide, while one of the most significant challenges in treating it is revealing novel alternatives to predict, diagnose, and eradicate tumor cell growth. Although various methods, such as surgery, chemotherapy, and radiation therapy, are used today to treat cancer, its mortality rate is still high due to the numerous shortcomings of each approach. Regenerative medicine field, including tissue engineering, cell therapy, gene therapy, participate in cancer treatment and development of cancer models to improve the understanding of cancer biology. The final intention is to convey fundamental and laboratory research to effective clinical treatments, from the bench to the bedside. Proper interpretation of research attempts helps to lessen the burden of treatment and illness for patients. The purpose of this review is to investigate the role of regenerative medicine in accelerating and improving cancer treatment. This study examines the capabilities of regenerative medicine in providing novel cancer treatments and the effectiveness of these treatments to clarify this path as much as possible and promote advanced future research in this field.
Collapse
Affiliation(s)
- Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
34
|
Arjmand B, Alavi-Moghadam S, Parhizkar Roudsari P, Rezaei-Tavirani M, Rahim F, Gilany K, Mohamadi-Jahani F, Adibi H, Larijani B. COVID-19 Pathology on Various Organs and Regenerative Medicine and Stem Cell-Based Interventions. Front Cell Dev Biol 2021; 9:675310. [PMID: 34195193 PMCID: PMC8238122 DOI: 10.3389/fcell.2021.675310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome-coronavirus 2, a novel betacoronavirus, has caused the global outbreak of a contagious infection named coronavirus disease-2019. Severely ill subjects have shown higher levels of pro-inflammatory cytokines. Cytokine storm is the term that can be used for a systemic inflammation leading to the production of inflammatory cytokines and activation of immune cells. In coronavirus disease-2019 infection, a cytokine storm contributes to the mortality rate of the disease and can lead to multiple-organ dysfunction syndrome through auto-destructive responses of systemic inflammation. Direct effects of the severe acute respiratory syndrome associated with infection as well as hyperinflammatory reactions are in association with disease complications. Besides acute respiratory distress syndrome, functional impairments of the cardiovascular system, central nervous system, kidneys, liver, and several others can be mentioned as the possible consequences. In addition to the current therapeutic approaches for coronavirus disease-2019, which are mostly supportive, stem cell-based therapies have shown the capacity for controlling the inflammation and attenuating the cytokine storm. Therefore, after a brief review of novel coronavirus characteristics, this review aims to explain the effects of coronavirus disease-2019 cytokine storm on different organs of the human body. The roles of stem cell-based therapies on attenuating cytokine release syndrome are also stated.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Gilany
- Reproductive Immunology Research Center, Avicenna Research Institute, The Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Guan Z, Chen S, Pan F, Fan L, Sun D. Effects of Gene Delivery Approaches on Differentiation Potential and Gene Function of Mesenchymal Stem Cells. IEEE Trans Biomed Eng 2021; 69:83-95. [PMID: 34101578 DOI: 10.1109/tbme.2021.3087129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Introduction of a gene to mesenchymal stem cells (MSCs) is a well-known strategy to purposely manipulate the cell fate and further enhance therapeutic performance in cell-based therapy. Viral and chemical approaches for gene delivery interfere with differentiation potential. Although microinjection as a physical delivery method is commonly used for transfection, its influence on MSC cell fate is not fully understood. The current study aimed to evaluate the effects of four nonviral gene delivery methods on stem cell multi-potency. The four delivery methods are robotic microinjection, polyethylenimine (PEI), cationic liposome (cLipo), and calcium phosphate nanoparticles (CaP). Among the four methods, microinjection has exhibited the highest transfection efficiency of ~60%, while the three others showed lower efficiency of 10-25%. Robotic microinjection preserved fibroblast-like cell morphology, stress fibre intactness, and mature focal adhesion complex, while PEI caused severe cytotoxicity. No marked differentiation bias was observed after microinjection and cLipo treatment. By contrast, CaP-treated MSCs exhibited excessive osteogenesis, while PEI-treated MSCs showed excessive adipogenesis. Robotic microinjection system was used to inject the CRISPR/Cas9-encoding plasmid to knock out PPAR gene in MSCs, and the robotic microinjection did not interfere with PPAR function in differentiation commitment. Meanwhile, the bias in osteo-adipogenic differentiation exhibited in CaP and PEI-treated MSCs after PPAR knockout via chemical carriers. Our results indicate that gene delivery vehicles variously disturb MSCs differentiation and interfere with exogenous gene function. Our findings further suggest that robotic microinjection offers a promise of generating genetically modified MSCs without disrupting stem cell multi-potency and therapeutic gene function.
Collapse
|
36
|
Zhuang WZ, Lin YH, Su LJ, Wu MS, Jeng HY, Chang HC, Huang YH, Ling TY. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci 2021; 28:28. [PMID: 33849537 PMCID: PMC8043779 DOI: 10.1186/s12929-021-00725-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a promising resource for cell-based therapy because of their high immunomodulation ability, tropism towards inflamed and injured tissues, and their easy access and isolation. Currently, there are more than 1200 registered MSC clinical trials globally. However, a lack of standardized methods to characterize cell safety, efficacy, and biodistribution dramatically hinders the progress of MSC utility in clinical practice. In this review, we summarize the current state of MSC-based cell therapy, focusing on the systemic safety and biodistribution of MSCs. MSC-associated risks of tumor initiation and promotion and the underlying mechanisms of these risks are discussed. In addition, MSC biodistribution methodology and the pharmacokinetics and pharmacodynamics of cell therapies are addressed. Better understanding of the systemic safety and biodistribution of MSCs will facilitate future clinical applications of precision medicine using stem cells.
Collapse
Affiliation(s)
- Wei-Zhan Zhuang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yi-Heng Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, 10041, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital Yunlin Branch, Yunlin, 64041, Taiwan
| | - Long-Jyun Su
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Meng-Shiue Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Han-Yin Jeng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Comprehensive Cancer Center of Taipei Medical University, Taipei, 11031, Taiwan. .,The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
37
|
Potential Use of Mesenchymal Multipotent Cells for Hemopoietic Stem Cell Transplantation: Pro and Contra. J Pediatr Hematol Oncol 2021; 43:90-94. [PMID: 33560076 DOI: 10.1097/mph.0000000000002065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/06/2020] [Indexed: 12/25/2022]
Abstract
The potential of mesenchymal multipotent (stem) cells (MSC) to modify immune reactions and mediate hematopoiesis boosted great interest for their use in allogeneic hemopoietic stem cell transplantation. Because of MSC production of a wide range of cytokines and growth factors, these cells are included in the therapy of graft-versus-host disease (GVHD). A number of clinical studies have demonstrated safety and efficacy of MSC-based therapy in acute GVHD. Japan and some other countries approved biomedical cell products on the base of allogeneic bone marrow (BM) MSCs as medical agents for acute GVHD treatment. Besides, MSCs may form BM stroma and improve hematopoiesis. Simultaneous transplantation of hematopoietic stem cells and MSCs effectively improved engraftment and prevented GVHD in transplantation of umbilical cord blood and human leukocyte antigens-incompatible BM stem cells. The review presents the analysis of clinical studies of MSCs in allogeneic hematopoietic stem cell transplantation and discusses different approaches for improvement of MSC-based GVHD treatment and prophylaxis.
Collapse
|
38
|
García-Bernal D, García-Arranz M, Yáñez RM, Hervás-Salcedo R, Cortés A, Fernández-García M, Hernando-Rodríguez M, Quintana-Bustamante Ó, Bueren JA, García-Olmo D, Moraleda JM, Segovia JC, Zapata AG. The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy. Front Cell Dev Biol 2021; 9:650664. [PMID: 33796536 PMCID: PMC8007911 DOI: 10.3389/fcell.2021.650664] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) currently constitute the most frequently used cell type in advanced therapies with different purposes, most of which are related with inflammatory processes. Although the therapeutic efficacy of these cells has been clearly demonstrated in different disease animal models and in numerous human phase I/II clinical trials, only very few phase III trials using MSCs have demonstrated the expected potential therapeutic benefit. On the other hand, diverse controversial issues on the biology and clinical applications of MSCs, including their specific phenotype, the requirement of an inflammatory environment to induce immunosuppression, the relevance of the cell dose and their administration schedule, the cell delivery route (intravascular/systemic vs. local cell delivery), and the selected cell product (i.e., use of autologous vs. allogeneic MSCs, freshly cultured vs. frozen and thawed MSCs, MSCs vs. MSC-derived extracellular vesicles, etc.) persist. In the current review article, we have addressed these issues with special emphasis in the new approaches to improve the properties and functional capabilities of MSCs after distinct cell bioengineering strategies.
Collapse
Affiliation(s)
- David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano García-Arranz
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Rosa M Yáñez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Rosario Hervás-Salcedo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Alfonso Cortés
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - María Fernández-García
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Miriam Hernando-Rodríguez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Óscar Quintana-Bustamante
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Juan A Bueren
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Damián García-Olmo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Jose M Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - José C Segovia
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Agustín G Zapata
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Complutense University, Madrid, Spain
| |
Collapse
|
39
|
Karta J, Bossicard Y, Kotzamanis K, Dolznig H, Letellier E. Mapping the Metabolic Networks of Tumor Cells and Cancer-Associated Fibroblasts. Cells 2021; 10:304. [PMID: 33540679 PMCID: PMC7912987 DOI: 10.3390/cells10020304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolism is considered to be the core of all cellular activity. Thus, extensive studies of metabolic processes are ongoing in various fields of biology, including cancer research. Cancer cells are known to adapt their metabolism to sustain high proliferation rates and survive in unfavorable environments with low oxygen and nutrient concentrations. Hence, targeting cancer cell metabolism is a promising therapeutic strategy in cancer research. However, cancers consist not only of genetically altered tumor cells but are interwoven with endothelial cells, immune cells and fibroblasts, which together with the extracellular matrix (ECM) constitute the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), which are linked to poor prognosis in different cancer types, are one important component of the TME. CAFs play a significant role in reprogramming the metabolic landscape of tumor cells, but how, and in what manner, this interaction takes place remains rather unclear. This review aims to highlight the metabolic landscape of tumor cells and CAFs, including their recently identified subtypes, in different tumor types. In addition, we discuss various in vitro and in vivo metabolic techniques as well as different in silico computational tools that can be used to identify and characterize CAF-tumor cell interactions. Finally, we provide our view on how mapping the complex metabolic networks of stromal-tumor metabolism will help in finding novel metabolic targets for cancer treatment.
Collapse
Affiliation(s)
- Jessica Karta
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6 avenue du Swing, L-4367 Belval, Luxembourg; (J.K.); (Y.B.); (K.K.)
| | - Ysaline Bossicard
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6 avenue du Swing, L-4367 Belval, Luxembourg; (J.K.); (Y.B.); (K.K.)
| | - Konstantinos Kotzamanis
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6 avenue du Swing, L-4367 Belval, Luxembourg; (J.K.); (Y.B.); (K.K.)
| | - Helmut Dolznig
- Tumor Stroma Interaction Group, Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090 Vienna, Austria;
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6 avenue du Swing, L-4367 Belval, Luxembourg; (J.K.); (Y.B.); (K.K.)
| |
Collapse
|
40
|
Klimova RR, Demidova NA, Masalova OV, Kushch AA. Preventive Vaccination with Mesenchymal Stem Cells Protects Mice from Lethal Infection Caused by Herpes Simplex Virus 1. Mol Biol 2021; 55:413-423. [PMID: 34931092 PMCID: PMC8675305 DOI: 10.1134/s0026893321020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022]
Abstract
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect almost all organs and tissues, cause genital herpes-the most common sexually transmitted disease-disorders of the central nervous system (CNS), and lead to severe complications in children. Despite the available drugs, the incidence of HSV-1/2 continues to rise. None of the prophylactic vaccine candidates have shown a protective effect in trials nor approval for use in clinical practice. We have investigated the protective properties of mesenchymal stem cells (MSC) isolated from the bone marrow of mice. A comparative analysis of the protective response to the introduction of primary and modified MSCs (mMSC) was carried out using the plasmid containing gene of the HSV and an inactivated virus in a model of lethal HSV-1 infection in mice. mMSCs were obtained by transfection of the Us6 gene encoding glycoprotein D (gD) of the HSV, the plasmid contained the same gene. After twofold immunization with primary MSCs, the formation of antibodies interacting with the viral antigen (according to enzyme immunoassay data) and neutralizing the infectious activity of HSV-1 in the reaction of biological neutralization was observed in the peripheral blood of mice. In addition, the introduction of primary MSCs induced the production of interferon gamma (INF-γ) which is detected in the peripheral blood of mice. After infection with HSV-1, the immunized mice showed significantly increased titers of virus-specific antibodies, an increased level of IFNγ, and were completely protected from lethal HSV-1 infection. The protective effect of the other three immunogens was lower and did not exceed 50-65%. Considering the wide availability of MSCs, the proven safety of intravenous administration, and the results obtained in this work on the ability to induce innate, adaptive and protective immunity to HSV-1, MSCs can be considered a promising basis for the development of new cellular vaccines for the prevention of herpesvirus and other viral infections.
Collapse
Affiliation(s)
- R. R. Klimova
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - N. A. Demidova
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - O. V. Masalova
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - A. A. Kushch
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| |
Collapse
|
41
|
Huang RY, Liu ZH, Weng WH, Chang CW. Magnetic nanocomplexes for gene delivery applications. J Mater Chem B 2021; 9:4267-4286. [PMID: 33942822 DOI: 10.1039/d0tb02713h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gene delivery is an indispensable technique for various biomedical applications such as gene therapy, stem cell engineering and gene editing. Recently, magnetic nanoparticles (MNPs) have received increasing attention for their use in promoting gene delivery efficiency. Under magnetic attraction, gene delivery efficiency using viral or nonviral gene carriers could be universally enhanced. Besides, magnetic nanoparticles could be utilized in magnetic resonance imaging or magnetic hyperthermia therapy, providing extra theranostic opportunities. In this review, recent research integrating MNPs with a viral or nonviral gene vector is summarized from both technical and application perspectives. Applications of MNPs in cutting-edge research technologies, such as biomimetic cell membrane nano-gene carriers, exosome-based gene delivery, cell-based drug delivery systems or CRISPR/Cas9 gene editing, are also discussed.
Collapse
Affiliation(s)
- Rih-Yang Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taiwan.
| | - Wei-Han Weng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
42
|
Wang M, Xin Y, Cao H, Li W, Hua Y, Webster TJ, Zhang C, Tang W, Liu Z. Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomater Sci 2020; 9:1088-1103. [PMID: 33332490 DOI: 10.1039/d0bm01164a] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies of nanomedicine have achieved dramatic progress in recent decades. However, the main challenges that traditional nanomedicine has to overcome include low accumulation at target sites and rapid clearance from the blood circulation. An interesting approach using cell membrane coating technology has emerged as a possible way to overcome these limitations, owing to the enhanced targeted delivery and reduced immunogenicity of cell membrane moieties. Mesenchymal stem cell (MSC) therapy has been investigated for treating various diseases, ranging from inflammatory diseases to tissue damage. Recent studies with engineered modified MSCs or MSC membranes have focused on enhancing cell therapeutic efficacy. Therefore, bioengineering strategies that couple synthetic nanoparticles with MSC membranes have recently received much attention due to their homing ability and tumor tropism. Given the various membrane receptors on their surfaces, MSC membrane-coated nanoparticles are an effective method with selective targeting properties, allowing entry into specific cells. Here, we review recent progress on the use of MSC membrane-coated nanoparticles for biomedical applications, particularly in the two main antitumor and anti-inflammatory fields. The combination of a bioengineered cell membrane and synthesized nanoparticles presents a wide range of possibilities for the further development of targeted drug delivery, showing the potential to enhance the therapeutic efficacy for treating various diseases.
Collapse
Affiliation(s)
- Mian Wang
- Department of Cardiology, Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Oroojalian F, Haghbin A, Baradaran B, Hemmat N, Shahbazi MA, Baghi HB, Mokhtarzadeh A, Hamblin MR. Novel insights into the treatment of SARS-CoV-2 infection: An overview of current clinical trials. Int J Biol Macromol 2020; 165:18-43. [PMID: 32991900 PMCID: PMC7521454 DOI: 10.1016/j.ijbiomac.2020.09.204] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
The emergence of the global pandemic caused by the novel SARS-CoV-2 virus has motivated scientists to find a definitive treatment or a vaccine against it in the shortest possible time. Current efforts towards this goal remain fruitless without a full understanding of the behavior of the virus and its adaptor proteins. This review provides an overview of the biological properties, functional mechanisms, and molecular components of SARS-CoV-2, along with investigational therapeutic and preventive approaches for this virus. Since the proteolytic cleavage of the S protein is critical for virus penetration into cells, a set of drugs, such as chloroquine, hydroxychloroquine, camostat mesylate have been tested in clinical trials to suppress this event. In addition to angiotensin-converting enzyme 2, the role of CD147 in the viral entrance has also been proposed. Mepolizumab has shown to be effective in blocking the virus's cellular entrance. Antiviral drugs, such as remdesivir, ritonavir, oseltamivir, darunavir, lopinavir, zanamivir, peramivir, and oseltamivir, have also been tested as treatments for COVID-19. Regarding preventive vaccines, the whole virus, vectors, nucleic acids, and structural subunits have been suggested for vaccine development. Mesenchymal stem cells and natural killer cells could also be used against SARS-CoV-2. All the above-mentioned strategies, as well as the role of nanomedicine for the diagnosis and treatment of SARS-CoV-2 infection, have been discussed in this review.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ali Haghbin
- Department of Pediatrics, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
44
|
Zhang J, Yuan Z, Zhong W, Wei Y. Stem Cell as Vehicles of Antibody in Treatment of Lymphoma: a Novel and Potential Targeted Therapy. Stem Cell Rev Rep 2020; 17:829-841. [PMID: 33205352 DOI: 10.1007/s12015-020-10080-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2020] [Indexed: 02/06/2023]
Abstract
Lymphoma is a heterogeneous malignancy and its incidence is increasing in the past decades all over the world. Although more than half of lymphoma patients achieve complete or partial remission from the standard first-line ABVD or R-CHOP based therapy, patients who fail to respond to these regimens will give rise to relapsed or refractory (R/R) lymphoma and may lead to a worse prognosis. Developing novel agents is important for R/R lymphoma. Based on the homing ability and being genetically modified easily, stem cells are usually used as vehicles in cell-based anti-tumor therapy, which can not only retain their own biological characteristics, but also make anti-tumor agents secrete constantly in tumor environment, to eventually kill the tumor cells more effectively. In this review, we will briefly introduce the properties of antibody therapy carried by stem cells, especially the hopes and hurdles of stem cell-mediated antibody secretion in the treatment of lymphoma.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weijie Zhong
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China. .,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China.
| |
Collapse
|
45
|
Coccè V, Bonomi A, Cavicchini L, Sisto F, Giannì A, Farronato G, Alessandri G, Petrella F, Sordi V, Parati E, Bondiolotti G, Paino F, Pessina A. Paclitaxel Priming of TRAIL Expressing Mesenchymal Stromal Cells (MSCs-TRAIL) Increases Antitumor Efficacy of Their Secretome. Curr Cancer Drug Targets 2020; 21:CCDT-EPUB-111520. [PMID: 33200709 DOI: 10.2174/1568009620666201116112153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adipose tissue derived MSCs engineered with the tumor necrosis factor-related apoptosis-inducing ligand protein (MSCs-TRAIL) have a significant anticancer activity. MSCs, without any genetic modifications, exposed to high doses of chemotherapeutic agents are able to uptake the drug and release it in amount affecting tumor proliferation. The purpose of this study was to verify the ability of MSCs-TRAIL to uptake and release paclitaxel (PTX) by providing an increased antitumor efficacy. METHODS MSCs and MSCs-TRAIL were tested for their sensitivity to Paclitaxel (PTX) by MTT assay and the cells were loaded with PTX according to a standardized procedure. The secretome was analysed by HPLC for the presence of PTX, microarray assay for soluble TRAIL (s-TRAIL) and tested for in vitro anticancer activity. RESULTS MSCs-TRAIL were resistant to PTX and able to incorporate and then release the drug. The secretion of s-TRAIL by PTX loaded MSCs-TRAIL was not inhibited and the PTX delivery together with s-TRAIL secretion resulted into an increased antitumor efficacy of cell secretoma as tested in vitro on human pancreatic carcinoma (CFPAC-1) and glioblastoma (U87-MG). CONCLUSIONS Our result is the first demonstration of the possible merging of two new MSCs therapy approaches based on genetic manipulation and drug delivery. If confirmed in vivo, this could potentiate the efficacy of MSCs-TRAIL and strongly contribute to reduce the toxicity due to the systemic treatment of PTX.
Collapse
Affiliation(s)
- Valentina Coccè
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Arianna Bonomi
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Loredana Cavicchini
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Francesca Sisto
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Aldo Giannì
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Giampietro Farronato
- Department of Biomedical, Surgical and Dental Sciences, Unit of Orthodontics and Paediatric Dentistry, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano. Italy
| | - Giulio Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan. Italy
| | - Francesco Petrella
- Department of Oncology and Hematology, University of Milan, Milan. Italy
| | - Valeria Sordi
- San Raffaele Diabetes Research Institute; San Raffaele Scientific Institute, Milan. Italy
| | - Eugenio Parati
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan. Italy
| | - Gianpietro Bondiolotti
- Department of Medical Biotechnology and Translational Medicine, University of Milan. Italy
| | - Francesca Paino
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| |
Collapse
|
46
|
Steens J, Unger K, Klar L, Neureiter A, Wieber K, Hess J, Jakob HG, Klump H, Klein D. Direct conversion of human fibroblasts into therapeutically active vascular wall-typical mesenchymal stem cells. Cell Mol Life Sci 2020; 77:3401-3422. [PMID: 31712992 PMCID: PMC7426315 DOI: 10.1007/s00018-019-03358-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
Cell-based therapies using adult stem cells are promising options for the treatment of a number of diseases including autoimmune and cardiovascular disorders. Among these, vascular wall-derived mesenchymal stem cells (VW-MSCs) might be particularly well suited for the protection and curative treatment of vascular damage because of their tissue-specific action. Here we report a novel method for the direct conversion of human skin fibroblasts towards MSCs using a VW-MSC-specific gene code (HOXB7, HOXC6 and HOXC8) that directs cell fate conversion bypassing pluripotency. This direct programming approach using either a self-inactivating (SIN) lentiviral vector expressing the VW-MSC-specific HOX-code or a tetracycline-controlled Tet-On system for doxycycline-inducible gene expressions of HOXB7, HOXC6 and HOXC8 successfully mediated the generation of VW-typical MSCs with classical MSC characteristics in vitro and in vivo. The induced VW-MSCs (iVW-MSCs) fulfilled all criteria of MSCs as defined by the International Society for Cellular Therapy (ISCT). In terms of multipotency and clonogenicity, which are important specific properties to discriminate MSCs from fibroblasts, iVW-MSCs behaved like primary ex vivo isolated VW-MSCs and shared similar molecular and DNA methylation signatures. With respect to their therapeutic potential, these cells suppressed lymphocyte proliferation in vitro, and protected mice against vascular damage in a mouse model of radiation-induced pneumopathy in vivo, as well as ex vivo cultured human lung tissue. The feasibility to obtain patient-specific VW-MSCs from fibroblasts in large amounts by a direct conversion into induced VW-MSCs could potentially open avenues towards novel, MSC-based therapies.
Collapse
Affiliation(s)
- Jennifer Steens
- Institute for Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, Ger-45122, Essen, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics and Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lea Klar
- Institute for Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, Ger-45122, Essen, Germany
| | - Anika Neureiter
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karolin Wieber
- Institute for Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, Ger-45122, Essen, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics and Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Heinz G Jakob
- Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University Duisburg-Essen, Essen, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, Ger-45122, Essen, Germany.
| |
Collapse
|
47
|
Liu Q, Li J, Zhang X, Liu Y, Liu Q, Xiao L, Zhang W, Wu H, Deng K, Xin H. Human amniotic mesenchymal stem cells inhibit hepatocellular carcinoma in tumour-bearing mice. J Cell Mol Med 2020; 24:10525-10541. [PMID: 32798252 PMCID: PMC7521292 DOI: 10.1111/jcmm.15668] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/28/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of the cancer-related death in the world. Human amniotic mesenchymal stem cells (hAMSCs) have been characterized with a pluripotency, low immunogenicity and no tumorigenicity. Especially, the immunosuppressive and anti-inflammatory effects of hAMSCs make them suitable for treating HCC. Here, we reported that hAMSCs administrated by intravenous injection significantly inhibited HCC through suppressing cell proliferation and inducing cell apoptosis in tumour-bearing mice with Hepg2 cells. Cell tracking experiments with GFP-labelled hAMSCs showed that the stem cells possessed the ability of migrating to the tumorigenic sites for suppressing tumour growth. Importantly, both hAMSCs and the conditional media (hAMSC-CM) have the similar antitumour effects in vitro, suggesting that hAMSCs-derived cytokines might be involved in their antitumour effects. Antibody array assay showed that hAMSCs highly expressed dickkopf-3 (DKK-3), dickkopf-1 (DKK-1) and insulin-like growth factor-binding protein 3 (IGFBP-3). Furthermore, the antitumour effects of hAMSCs were further confirmed by applications of the antibodies or the specific siRNAs of DKK-3, DKK-1 and IGFBP-3 in vitro. Mechanically, hAMSCs-derived DKK-3, DKK-1 and IGFBP-3 markedly inhibited cell proliferation and promoted apoptosis of Hepg2 cells through suppressing the Wnt/β-catenin signalling pathway and IGF-1R-mediated PI3K/AKT signalling pathway, respectively. Taken together, our study demonstrated that hAMSCs possess significant antitumour effects in vivo and in vitro and might provide a novel strategy for HCC treatment clinically.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Adipogenesis
- Amnion/cytology
- Animals
- Apoptosis
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Female
- Genes, Reporter
- Hep G2 Cells/transplantation
- Humans
- Insulin-Like Growth Factor Binding Protein 3/antagonists & inhibitors
- Insulin-Like Growth Factor Binding Protein 3/genetics
- Insulin-Like Growth Factor Binding Protein 3/physiology
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/physiology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Male
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Osteogenesis
- Paracrine Communication
- Pregnancy
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Quan‐Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchangChina
| | - Jing‐Yuan Li
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchangChina
- School of Life and ScienceNanchang UniversityNanchangChina
| | - Xiang‐Cheng Zhang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yu Liu
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qian‐Yu Liu
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchangChina
| | - Ling Xiao
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchangChina
| | - Wen‐Jie Zhang
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchangChina
| | - Han‐You Wu
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchangChina
| | - Ke‐Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchangChina
- School of Life and ScienceNanchang UniversityNanchangChina
| | - Hong‐Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchangChina
- School of Life and ScienceNanchang UniversityNanchangChina
| |
Collapse
|
48
|
Damasceno PKF, de Santana TA, Santos GC, Orge ID, Silva DN, Albuquerque JF, Golinelli G, Grisendi G, Pinelli M, Ribeiro Dos Santos R, Dominici M, Soares MBP. Genetic Engineering as a Strategy to Improve the Therapeutic Efficacy of Mesenchymal Stem/Stromal Cells in Regenerative Medicine. Front Cell Dev Biol 2020; 8:737. [PMID: 32974331 PMCID: PMC7471932 DOI: 10.3389/fcell.2020.00737] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been widely studied in the field of regenerative medicine for applications in the treatment of several disease settings. The therapeutic potential of MSCs has been evaluated in studies in vitro and in vivo, especially based on their anti-inflammatory and pro-regenerative action, through the secretion of soluble mediators. In many cases, however, insufficient engraftment and limited beneficial effects of MSCs indicate the need of approaches to enhance their survival, migration and therapeutic potential. Genetic engineering emerges as a means to induce the expression of different proteins and soluble factors with a wide range of applications, such as growth factors, cytokines, chemokines, transcription factors, enzymes and microRNAs. Distinct strategies have been applied to induce genetic modifications with the goal to enhance the potential of MCSs. This review aims to contribute to the update of the different genetically engineered tools employed for MSCs modification, as well as the factors investigated in different fields in which genetically engineered MSCs have been tested.
Collapse
Affiliation(s)
- Patricia Kauanna Fonseca Damasceno
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | | | | | - Iasmim Diniz Orge
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | - Daniela Nascimento Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | | | - Giulia Golinelli
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Ricardo Ribeiro Dos Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Indirect co-culture of lung carcinoma cells with hyperthermia-treated mesenchymal stem cells influences tumor spheroid growth in a collagen-based 3-dimensional microfluidic model. Cytotherapy 2020; 23:25-36. [PMID: 32771259 DOI: 10.1016/j.jcyt.2020.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have paradoxically been reported to exert either pro- or anti-tumor effects in vitro. Hyperthermia, in combination with chemotherapy, has tumor-inhibiting effects; however, its role, together with MSCs, so far is not well understood. Furthermore, a lot of research is conducted using conventional 2-dimensional in vitro models that do not mimic the actual tumor microenvironment. AIM In light of this fact, an indirect method of co-culturing human amniotic membrane-derived MSCs (AMMSCs) with collagen-encapsulated human lung carcinoma cells (A549) was performed using a 3-dimensional (3D) tumor-on-chip device. METHODS The conditioned medium of AMMSCs (AMMSC-CM) or heat-treated AMMSCs (heat-AMMSC-CM) was utilized to create indirect co-culture conditions. Tumor spheroid growth characterization, immunocytochemistry and cytotoxicity assays, and anti-cancer peptide (P1) screening were performed to determine the effects of the conditioned medium. RESULTS The A549 cells cultured inside the 3D microfluidic chip developed into multicellular tumor spheroids over five days of culture. The AMMSC-CM, contrary to previous reports claiming its tumor-inhibiting potential, led to significant proliferation of tumor spheroids. Heat-AMMSC-CM led to reductions in both spheroid diameter and cell proliferation. The medium containing the P1 peptide was found to be the least cytotoxic to tumor spheroids in co-culture compared with the monoculture and heat-co-culture groups. CONCLUSIONS Hyperthermia, in combination with the anticancer peptide, exhibited highest cytotoxic effects. This study highlights the growing importance of 3D microfluidic tumor models for testing stem-cell-based and other anti-cancer therapies.
Collapse
|
50
|
Patrick PS, Kolluri KK, Zaw Thin M, Edwards A, Sage EK, Sanderson T, Weil BD, Dickson JC, Lythgoe MF, Lowdell M, Janes SM, Kalber TL. Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT. Stem Cell Res Ther 2020; 11:256. [PMID: 32586403 PMCID: PMC7318529 DOI: 10.1186/s13287-020-01770-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/01/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MSCTRAIL is a cell-based therapy consisting of human allogeneic umbilical cord-derived MSCs genetically modified to express the anti-cancer protein TRAIL. Though cell-based therapies are typically designed with a target tissue in mind, delivery is rarely assessed due to a lack of translatable non-invasive imaging approaches. In this preclinical study, we demonstrate 89Zr-oxine labelling and PET-CT imaging as a potential clinical solution for non-invasively tracking MSCTRAIL biodistribution. Future implementation of this technique should improve our understanding of MSCTRAIL during its evaluation as a therapy for metastatic lung adenocarcinoma. METHODS MSCTRAIL were radiolabelled with 89Zr-oxine and assayed for viability, phenotype, and therapeutic efficacy post-labelling. PET-CT imaging of 89Zr-oxine-labelled MSCTRAIL was performed in a mouse model of lung cancer following intravenous injection, and biodistribution was confirmed ex vivo. RESULTS MSCTRAIL retained the therapeutic efficacy and MSC phenotype in vitro at labelling amounts up to and above those required for clinical imaging. The effect of 89Zr-oxine labelling on cell proliferation rate was amount- and time-dependent. PET-CT imaging showed delivery of MSCTRAIL to the lungs in a mouse model of lung cancer up to 1 week post-injection, validated by in vivo bioluminescence imaging, autoradiography, and fluorescence imaging on tissue sections. CONCLUSIONS 89Zr-oxine labelling and PET-CT imaging present a potential method of evaluating the biodistribution of new cell therapies in patients, including MSCTRAIL. This offers to improve understanding of cell therapies, including mechanism of action, migration dynamics, and inter-patient variability.
Collapse
Affiliation(s)
- P Stephen Patrick
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
| | - Krishna K Kolluri
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - May Zaw Thin
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Adam Edwards
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Elizabeth K Sage
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Tom Sanderson
- Institute of Nuclear Medicine, University College London, London, UK
| | - Benjamin D Weil
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free Hospital, London, UK
| | - John C Dickson
- Institute of Nuclear Medicine, University College London, London, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Mark Lowdell
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free Hospital, London, UK
- Department of Haematology, Cancer Institute, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
| |
Collapse
|