1
|
Gao L, Gu L, Li W, Wang G, Zhao J, Chen W, Tian P. Construction of composite nanoparticles of β-cyclodextrin and corn starch encapsulating 5-hydroxytryptophan for sustained release and sleep improvement in vivo. Int J Biol Macromol 2025; 303:140831. [PMID: 39929456 DOI: 10.1016/j.ijbiomac.2025.140831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/16/2025]
Abstract
5-Hydroxytryptophan (5-HTP) is a functional food ingredient widely recognized for its sleep-enhancing properties, but it has a short elimination half-life in vivo, resulting in suboptimal pharmacokinetic performance. In this study, we developed a composite nanoparticles system based on β-cyclodextrin and corn starch using the anti-solvent precipitation method for the encapsulation and sustained release of 5-HTP. The nanoparticles were characterized using laser particle size analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and evaluation of their digestive properties in simulated gastrointestinal fluids. We further evaluated their effects on the pharmacokinetic profile and distribution of 5-HTP in rats, including serum, gut, and brain, demonstrating a significant extension of the drug elimination half-life and improved bioavailability. In an insomnia mouse model, administration of the composite nanoparticles system significantly alleviated behavioral abnormalities and circadian rhythm disorder induced by sleep deprivation. This study provides a solid theoretical basis and technical support for the efficient application of 5-HTP in functional foods.
Collapse
Affiliation(s)
- Lin Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wentian Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
2
|
Santos-Vizcaino E, Virumbrales-Muñoz M, Gonzalez-Pujana A, Luker GD, Ochoa I, Hernandez RM, Pedraz JL. Genipin-crosslinked double PLL membranes overcome the strength-diffusion trade-off in cell encapsulation without compromising biocompatibility. Int J Pharm 2025; 670:125196. [PMID: 39799997 DOI: 10.1016/j.ijpharm.2025.125196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Cell microencapsulation technologies allow non-autologous implantation of therapeutic cells for sustained drug delivery purposes. The perm-selective membrane of these systems provides resistance to rupture, stablishes the upper molecular weight limit in bidirectional diffusion of molecules, and affects biocompatibility. Thus, despite being a decisive factor to succeed in terms of biosafety and therapeutic efficacy, little progress has been made in its optimization so far. Here we show that, compared to other usually used coating designs, genipin-crosslinked double poly-L-lysine (GDP) membranes are able to simultaneously improve mechanical and mass-transport properties of the microcapsules, without causing any significant increase in the foreign body response when implanted in vivo. In particular, we show that GDP membranes confer capsular integrity under high pressures, both internal and external. Furthermore, this membrane design allows for more efficient bidirectional diffusion of molecules in the 20-40 kDa range while preserving the molecular weight cut-off required for exerting an effective immunobarrier. These findings may also be useful for optimizing the membrane characteristics of multiple drug delivery systems.
Collapse
Affiliation(s)
- Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - María Virumbrales-Muñoz
- Department of Obstetrics and Gynecology, Clinical Sciences Center, 600 Highland Drive, Madison 53792, USA; School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison 53705, USA; University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison 53705, USA
| | - Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Gary D Luker
- Department of Radiology (Center for Molecular Imaging), University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ignacio Ochoa
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, 50018 Zaragoza, Spain; Aragón Health Research Institute (IISAragón), 50009 Zaragoza, Spain; School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
3
|
Dortaj H, Amani AM, Tayebi L, Azarpira N, Ghasemi Toudeshkchouei M, Hassanpour-Dehnavi A, Karami N, Abbasi M, Najafian-Najafabadi A, Zarei Behjani Z, Vaez A. Droplet-based microfluidics: an efficient high-throughput portable system for cell encapsulation. J Microencapsul 2024; 41:479-501. [PMID: 39077800 DOI: 10.1080/02652048.2024.2382744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ashraf Hassanpour-Dehnavi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Karami
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Najafian-Najafabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Wani SUD, Ali M, Mehdi S, Masoodi MH, Zargar MI, Shakeel F. A review on chitosan and alginate-based microcapsules: Mechanism and applications in drug delivery systems. Int J Biol Macromol 2023; 248:125875. [PMID: 37473899 DOI: 10.1016/j.ijbiomac.2023.125875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Natural polymers, like chitosan and alginate have potential of appearance, as well as the changes and handling necessary to make it acceptable vehicle for the controlled release of medicines and biomolecules. Microcapsules are characterized as micrometer-sized particulate that can be employed to store chemicals within them. In the present review, we have discussed various advantages, components of microcapsules, release mechanisms, preparation methods, and their applications in drug delivery systems. The preparation methods exhibited strong encapsulation effectiveness and may be used in a wide range of pharmaceutical and biomedical applications. The major advantages of using the microencapsulation technique are, sustained and controlled delivery of drugs, drug targeting, improvement of shelf life, stabilization, immobilization of enzymes and microorganisms. As new biomaterials are developed for the body, they are better suited to the development of pharmaceutical systems than traditional pharmaceuticals because they are more reliable, biocompatible, biodegradable, and nontoxic. Furthermore, the designed microcapsules had been capable of shielding the essential components from hostile environments. More advanced techniques could be developed in the future to facilitate the formulation and applications of microcapsules and working with the pharmaceutical and medical industries.
Collapse
Affiliation(s)
- Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India.
| | - Mohammad Ali
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore 560027, India
| | - Seema Mehdi
- Department of Pharmacology, JSSCollege of Pharmacy, Mysuru 570015, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Lee S, Choi G, Yang YJ, Joo KI, Cha HJ. Visible light-crosslinkable tyramine-conjugated alginate-based microgel bioink for multiple cell-laden 3D artificial organ. Carbohydr Polym 2023; 313:120895. [PMID: 37182936 DOI: 10.1016/j.carbpol.2023.120895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
While the natural carbohydrate alginate has enabled effective three-dimensional (3D) extrusion bioprinting, it still suffers from some issues such as low printability and resolution and limited cellular function due to ionic crosslinking dependency. Here, we prepared a harmless visible light-based photocrosslinkable alginate by chemically bonding tyrosine-like residues onto alginate chains to propose a new microgel manufacturing system for the development of 3D-printed bioinks. The photocrosslinkable tyramine-conjugated alginate microgel achieved both higher cell viability and printing resolution compared to the bulk gel form. This alginate-based jammed granular microgel bioink showed excellent 3D bioprinting ability with maintained structural stability. As a biocompatible material, the developed multiple cell-loaded photocrosslinkable alginate-based microgel bioink provided excellent proliferation and migration abilities of laden living cells, providing an effective strategy to construct implantable functional artificial organ structures for 3D bioprinting-based tissue engineering.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Geunho Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kye Il Joo
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
6
|
Umar AK. Stem Cell's Secretome Delivery Systems. Adv Pharm Bull 2023; 13:244-258. [PMID: 37342369 PMCID: PMC10278206 DOI: 10.34172/apb.2023.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/05/2021] [Accepted: 12/31/2021] [Indexed: 09/01/2023] Open
Abstract
Stem cells' secretome contains biomolecules that are ready to give therapeutic activities. However, the biomolecules should not be administered directly because of their in vivo instability. They can be degraded by enzymes or seep into other tissues. There have been some advancements in localized and stabilized secretome delivery systems, which have increased their effectiveness. Fibrous, in situ, or viscoelastic hydrogel, sponge-scaffold, bead powder/ suspension, and bio-mimetic coating can maintain secretome retention in the target tissue and prolong the therapy by sustained release. Porosity, young's modulus, surface charge, interfacial interaction, particle size, adhesiveness, water absorption ability, in situ gel/film, and viscoelasticity of the preparation significantly affect the quality, quantity, and efficacy of the secretome. Therefore, the dosage forms, base materials, and characteristics of each system need to be examined to develop a more optimal secretome delivery system. This article discusses the clinical obstacles and potential solutions for secretome delivery, characterization of delivery systems, and devices used or potentially used in secretome delivery for therapeutic applications. This article concludes that secretome delivery for various organ therapies necessitates the use of different delivery systems and bases. Coating, muco-, and cell-adhesive systems are required for systemic delivery and to prevent metabolism. The lyophilized form is required for inhalational delivery, and the lipophilic system can deliver secretomes across the blood-brain barrier. Nano-sized encapsulation and surface-modified systems can deliver secretome to the liver and kidney. These dosage forms can be administered using devices such as a sprayer, eye drop, inhaler, syringe, and implant to improve their efficacy through dosing, direct delivery to target tissues, preserving stability and sterility, and reducing the immune response.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
7
|
Maji K, Pramanik K. Future of encapsulation in regenerative medicine. PRINCIPLES OF BIOMATERIALS ENCAPSULATION : VOLUME TWO 2023:749-772. [DOI: 10.1016/b978-0-12-824345-9.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Chitosan chemistry review for living organisms encapsulation. Carbohydr Polym 2022; 295:119877. [DOI: 10.1016/j.carbpol.2022.119877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/20/2022]
|
9
|
Detamornrat U, McAlister E, Hutton ARJ, Larrañeta E, Donnelly RF. The Role of 3D Printing Technology in Microengineering of Microneedles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106392. [PMID: 35362226 DOI: 10.1002/smll.202106392] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Microneedles (MNs) are minimally invasive devices, which have gained extensive interest over the past decades in various fields including drug delivery, disease diagnosis, monitoring, and cosmetics. MN geometry and shape are key parameters that dictate performance and therapeutic efficacy, however, traditional fabrication methods, such as molding, may not be able to offer rapid design modifications. In this regard, the fabrication of MNs using 3D printing technology enables the rapid creation of complex MN prototypes with high accuracy and offers customizable MN devices with a desired shape and dimension. Moreover, 3D printing shows great potential in producing advanced transdermal drug delivery systems and medical devices by integrating MNs with a variety of technologies. This review aims to demonstrate the advantages of exploiting 3D printing technology as a new tool to microengineer MNs. Various 3D printing methods are introduced, and representative MNs manufactured by such approaches are highlighted in detail. The development of advanced MN devices is also included. Finally, clinical translation and future perspectives for the development of MNs using 3D printing are discussed.
Collapse
Affiliation(s)
- Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Emma McAlister
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
10
|
Artificial cells for the treatment of liver diseases. Acta Biomater 2021; 130:98-114. [PMID: 34126265 DOI: 10.1016/j.actbio.2021.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Liver diseases have become an increasing health burden and account for over 2 million deaths every year globally. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they also suffer limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. Artificial cells have demonstrated advantages in long-term storage, targeting capability, and tuneable features. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment. First, the design of artificial cells and their biomimicking functions are summarized. Then, systems that mimic cell surface properties are introduced with two concepts highlighted: cell membrane-coated artificial cells and synthetic lipid-based artificial cells. Next, cell microencapsulation strategy is summarized and discussed. Finally, challenges and future perspectives of artificial cells are outlined. STATEMENT OF SIGNIFICANCE: Liver diseases have become an increasing health burden. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they have limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment, including the design of artificial cells and their biomimicking functions, two systems that mimic cell surface properties (cell membrane-coated artificial cells and synthetic lipid-based artificial cells), and cell microencapsulation strategy. We also outline the challenges and future perspectives of artificial cells.
Collapse
|
11
|
Lopez-Mendez TB, Santos-Vizcaino E, Pedraz JL, Orive G, Hernandez RM. Cell microencapsulation technologies for sustained drug delivery: Latest advances in efficacy and biosafety. J Control Release 2021; 335:619-636. [PMID: 34116135 DOI: 10.1016/j.jconrel.2021.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
The development of cell microencapsulation systems began several decades ago. However, today few systems have been tested in clinical trials. For this reason, in the last years, researchers have directed efforts towards trying to solve some of the key aspects that still limit efficacy and biosafety, the two major criteria that must be satisfied to reach the clinical practice. Regarding the efficacy, which is closely related to biocompatibility, substantial improvements have been made, such as the purification or chemical modification of the alginates that normally form the microspheres. Each of the components that make up the microcapsules has been carefully selected to avoid toxicities that can damage the encapsulated cells or generate an immune response leading to pericapsular fibrosis. As for the biosafety, researchers have developed biological circuits capable of actively responding to the needs of the patients to precisely and accurately release the demanded drug dose. Furthermore, the structure of the devices has been subject of study to adequately protect the encapsulated cells and prevent their spread in the body. The objective of this review is to describe the latest advances made by scientist to improve the efficacy and biosafety of cell microencapsulation systems for sustained drug delivery, also highlighting those points that still need to be optimized.
Collapse
Affiliation(s)
- Tania B Lopez-Mendez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), BTI Biotechnology Institute, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
12
|
Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Carbohydr Polym 2021; 266:118128. [PMID: 34044944 DOI: 10.1016/j.carbpol.2021.118128] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 12/26/2022]
Abstract
Conventional stem cell delivery typically utilize administration of directly injection of allogenic cells or domesticated autogenic cells. It may lead to immune clearance of these cells by the host immune systems. Alginate microgels have been demonstrated to improve the survival of encapsulated cells and overcome rapid immune clearance after transplantation. Moreover, alginate microgels can serve as three-dimensional extracellular matrix to support cell growth and protect allogenic cells from rapid immune clearance, with functions as delivery vehicles to achieve sustained release of therapeutic proteins and growth factors from the encapsulated cells. Besides, cell-loaded alginate microgels can potentially be applied in regenerative medicine by serving as injectable engineered scaffolds to support tissue regrowth. In this review, the properties of alginate and different methods to produce alginate microgels are introduced firstly. Then, we focus on diverse applications of alginate microgels for cell delivery in tissue engineering and regenerative medicine.
Collapse
|
13
|
Lopez-Mendez TB, Santos-Vizcaino E, Pedraz JL, Hernandez RM, Orive G. Cell microencapsulation technologies for sustained drug delivery: Clinical trials and companies. Drug Discov Today 2020; 26:852-861. [PMID: 33242694 DOI: 10.1016/j.drudis.2020.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
In recent years, cell microencapsulation technology has advanced, mainly driven by recent developments in the use of stem cells or the optimization of biomaterials. Old challenges have been addressed from new perspectives, and systems developed and improved for decades are now being transferred to the market by novel start-ups and consolidated companies. These products are mainly intended for the treatment of diabetes mellitus (DM), but also cancer, central nervous system (CNS) disorders or lysosomal diseases, among others. In this review, we analyze the results obtained in clinical trials to date and define the global key players that will lead the cell microencapsulation market to bring this technology to the clinic in the future.
Collapse
Affiliation(s)
- Tania B Lopez-Mendez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua); BTI Biotechnology Institute, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
14
|
An C, Liu W, Zhang Y, Pang B, Liu H, Zhang Y, Zhang H, Zhang L, Liao H, Ren C, Wang H. Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration. Acta Biomater 2020; 111:181-196. [PMID: 32450230 DOI: 10.1016/j.actbio.2020.05.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
The encapsulation of cells in microscale hydrogels can provide a mimic of a three-dimensional (3D) microenvironment to support cell viability and functions and to protect cells from the environmental stress, which have been widely used in tissue regeneration and cell therapies. Here, a microfluidics-based approach is developed for continuous encapsulation of mesenchymal stem cells (MSCs) at the single-cell level using alginate microgels. This microfluidic technique integrated on-chip encapsulation, gelation, and de-emulsification into a one-step fabrication process, which enables scalable cell encapsulation while retaining the viability and functionality of loaded cells. Remarkably, we observed MSCs encapsulated in Ca-alginate microgels at the single-cell level showed significantly enhanced osteogenesis and accelerated mineralization of the microgels which occurred only after 7 days of induction. Furthermore, MSCs laden in alginate microgels displayed significantly enhanced bone formation compared to MSCs mixed with microgels and acellular microgels in a rat tibial ablation model. To conclude, the current microfluidic technique represents a significant step toward continuous single cell encapsulation, fabrication, and purification. These microgels can boost bone regeneration by providing a controlled osteogenic microenvironment for encapsulated MSCs and facilitate stem cell therapy in the treatment of bone defects in a minimally invasive delivery way. STATEMENT OF SIGNIFICANCE: The biological functions and therapeutic activities of single cells laden in microgels for tissue engineering remains less investigated. Here, we reported a microfluidic-based method for continuous encapsulation of single MSCs with high viability and functionality by integrating on-chip encapsulation, gelation, and de-emulsification into a one-step fabrication process. More importantly, MSCs encapsulated in alginate microgels at the single-cell level showed significantly enhanced osteogenesis, remarkably accelerated mineralization in vitro and bone formation capacity in vivo. Therefore, this single-cell encapsulation technique can facilitate stem cell therapy for bone regeneration and be potentially used in a variety of tissue engineering applications.
Collapse
|
15
|
Zavala G, Ramos MP, Figueroa-Valdés AI, Cisternas P, Wyneken U, Hernández M, Toa P, Salmons B, Dangerfield J, Gunzburg WH, Khoury M. Semipermeable Cellulose Beads Allow Selective and Continuous Release of Small Extracellular Vesicles (sEV) From Encapsulated Cells. Front Pharmacol 2020; 11:679. [PMID: 32528280 PMCID: PMC7253686 DOI: 10.3389/fphar.2020.00679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
The clinical benefit of therapies using Mesenchymal Stem Cells (MSCs) is attributable to their pleiotropic effect over cells and tissues, mainly through their secretome. This paracrine effect is mediated by secreted growth factors and extracellular vesicles (EV) including small EV (sEV). sEV are extra-cellular, membrane encompassed vesicles of 40 to 200 nm diameter that can trigger and signal many cellular responses depending on their cargo protein and nucleic acid repertoire. sEV are purified from cell culture conditioned media using several kits and protocols available that can be tedious and time-consuming, involving sequences of ultracentrifugations and density gradient separations, making their production a major challenge under Good Manufacturing Practices (GMP) conditions. We have developed a method to efficiently enrich cell culture media with high concentrations of sEV by encapsulating cells in semipermeable cellulose beads that allows selectively the release of small particles while offering a 3D culture condition. This method is based on the pore size of the capsules, allowing the release of particles of ≤ 200 nm including sEV. As a proof-of-principle, MSCs were encapsulated and their sEV release rate (sEV-Cap) was monitored throughout the culture and compared to sEV isolated from 2D seeded cells (sEV-2D) by repetitive ultracentrifugation cycles or a commercial kit. The isolated sEV expressed CD63, CD9, and CD81 as confirmed by flow cytometry analysis. Under transmission electron microscopy (TEM), they displayed the similar rounded morphology as sEV-2D. Their corresponding diameter size was validated by nanoparticle tracking analysis (NTA). Interestingly, sEV-Cap retained the expected biological activities of MSCs, including a pro-angiogenic effect over endothelial cells, neuritic outgrowth stimulation in hippocampal neurons and immunosuppression of T cells in vitro. Here, we successfully present a novel, cost, and time-saving method to generate sEV from encapsulated MSCs. Future applications include using encapsulated cells as a retrievable delivery device that can interact with the host niche by releasing active agents in vivo, including sEV, growth factors, hormones, and small molecules, while avoiding cell clearance, and the negative side-effect of releasing undesired components including apoptotic bodies. Finally, particles produced following the encapsulation protocol display beneficial features for their use as drug-loaded delivery vehicles.
Collapse
Affiliation(s)
- Gabriela Zavala
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - María-Paz Ramos
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Aliosha I Figueroa-Valdés
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Pablo Cisternas
- Laboratory of Neurosciences, Centro de Investigación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Ursula Wyneken
- Laboratory of Neurosciences, Centro de Investigación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Macarena Hernández
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Pauline Toa
- Austrianova Singapore Pte Ltd, Singapore, Singapore
| | | | | | - Walter H Gunzburg
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine, Vienna, Austria
| | - Maroun Khoury
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| |
Collapse
|
16
|
Gattás-Asfura KM, Abuid NJ, Labrada I, Stabler CL. Promoting Dendrimer Self-Assembly Enhances Covalent Layer-by-Layer Encapsulation of Pancreatic Islets. ACS Biomater Sci Eng 2020; 6:2641-2651. [PMID: 32587885 PMCID: PMC7316358 DOI: 10.1021/acsbiomaterials.9b01033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For type 1 diabetics, islet transplantation can induce beneficial outcomes, including insulin independence and improved glycemic control. The long-term function of the grafted tissue, however, is challenged by host inflammatory and immune responses. Cell encapsulation can decrease detrimental host responses to the foreign implant, but standard microencapsulation imparts large transplant volumes and impaired metabolite and nutrient diffusion. To mitigate these effects, we developed an efficient covalent Layer-by-Layer (cLbL) approach for live-cell nanoencapsulation, based on oppositely charged hyperbranched polymers functionalized with complementary Staudinger ligation groups. Reliance on cationic polymers for cLbL, however, is problematic due to their poor biocompatibility. Herein, we incorporated the additional feature of supramolecular self-assembly of the dendritic polymers to enhance layer uniformity and decrease net polymer charge. Functionalization of poly (amino amide) (PAMAM) with triethoxysilane decreased polymer charge without compromising the uniformity and stability of resulting nanoscale islet coatings. Encapsulated pancreatic rat islets were viable and functional. The implantation of cLbL islets into diabetic mice resulted in stable normoglycemia, at equivalent dosage and efficiency as uncoated islets, with no observable alterations in cellular engraftment or foreign body responses. By balancing multi-functionality and self-assembly, nano-scale and stable covalent layer-by-layer polymeric coatings could be efficiently generated onto cellular organoids, presenting a highly adaptable platform for broad use in cellular transplantation.
Collapse
Affiliation(s)
- KM Gattás-Asfura
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - NJ Abuid
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - I Labrada
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - CL Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
17
|
Bansal A, D'Sa S, D'Souza MJ. Biofabrication of microcapsules encapsulating beta-TC-6 cells via scalable device and in-vivo evaluation in type 1 diabetic mice. Int J Pharm 2019; 572:118830. [PMID: 31715349 DOI: 10.1016/j.ijpharm.2019.118830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a disease characterized by lack of pancreatic islet function. Whole tissue transplantation appears to be a viable alternative in the management of T1DM. This study aims at the fabrication and evaluation of alginate-chitosan microcapsules encapsulating insulin-secreting beta-TC-6 cells using an automated spraying nozzle. Uniform spherical microcapsules (250-350 µm) encapsulated with beta-TC-6 cells were fabricated in large quantities in a short span of time. Microencapsulated beta-TC-6 cells were transplanted intraperitoneally into streptozotocin (STZ) induced diabetic mice and monitored for immune tolerance and decrease in blood glucose levels. Mice that received microencapsulated beta-TC-6 cells maintained normoglycemia for 35 ± 5 days before rejection. However, the group that received naked beta-TC-6 cells rejected the cells within 1-2 days, unable to control elevated blood glucose levels. They also exhibited high immune reactions, as evidenced by elevated levels of CD8+ and CD62L T cells. CD4+ T cells that mediated a Th2 response (humoral response) were predominant in microencapsulated beta-TC-6 cells and cells only group as evidenced by elevated levels of CD45R. Our findings from the in-vivo study demonstrated that transplantation of microencapsulated beta-TC-6 cells can be a viable alternative in the management of T1DM with acceptable immune response.
Collapse
Affiliation(s)
- Amit Bansal
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA.
| | - Sucheta D'Sa
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| | - Martin J D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| |
Collapse
|
18
|
Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 2019; 146:209-239. [PMID: 30605737 DOI: 10.1016/j.addr.2018.12.014] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022]
Abstract
Cutaneous injuries, especially chronic wounds, burns, and skin wound infection, require painstakingly long-term treatment with an immense financial burden to healthcare systems worldwide. However, clinical management of chronic wounds remains unsatisfactory in many cases. Various strategies including growth factor and gene delivery as well as cell therapy have been used to enhance the healing of non-healing wounds. Drug delivery systems across the nano, micro, and macroscales can extend half-life, improve bioavailability, optimize pharmacokinetics, and decrease dosing frequency of drugs and genes. Replacement of the damaged skin tissue with substitutes comprising cell-laden scaffold can also restore the barrier and regulatory functions of skin at the wound site. This review covers comprehensively the advanced treatment strategies to improve the quality of wound healing.
Collapse
|
19
|
Orive G, Santos-Vizcaino E, Pedraz JL, Hernandez RM, Vela Ramirez JE, Dolatshahi-Pirouz A, Khademhosseini A, Peppas NA, Emerich DF. 3D cell-laden polymers to release bioactive products in the eye. Prog Retin Eye Res 2019; 68:67-82. [PMID: 30342088 DOI: 10.1016/j.preteyeres.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022]
|
20
|
Salmons B, Gunzburg WH. Release characteristics of cellulose sulphate capsules and production of cytokines from encapsulated cells. Int J Pharm 2018; 548:15-22. [PMID: 29933063 DOI: 10.1016/j.ijpharm.2018.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/11/2022]
Abstract
The size and speed of release of proteins of different sizes from standard cellulose sulphate capsules (Cell-in-a-Box®) was investigated. Proteins with molecular weights of up to around 70kD can be released. The conformation, charge and concentration of the protein being released play a role in the release kinetics. Small proteins such as cytokines can be easily released. The ability to produce cytokines at a sustained and predefined level from encapsulated cells genetically engineered to overexpress such cytokines and implanted into patients may aid immunotherapies of cancer as well as infectious and other diseases. It will also allow allogeneic rather than autologous cells to be used. We show that cells encapsulated in polymers of cellulose sulphate are able to release cytokines such as interleukin-2 (IL-2) in a stimulated fashion e.g. using phorbol 12-myristate 13-acetate (PMA) plus ionomycin. Given the excellent documented safety record of cellulose sulphate in patients, these data suggest that clinical usage of the technology may be warranted for cancer treatment and other diseases.
Collapse
Affiliation(s)
- Brian Salmons
- Austrianova Singapore Pte Ltd, Synapse, 3 Biopolis Drive, Singapore
| | - Walter H Gunzburg
- Austrianova Singapore Pte Ltd, Synapse, 3 Biopolis Drive, Singapore; Institute of Virology, Dept. of Pathobiology, University of Veterinary Medicine, A1210 Vienna, Austria.
| |
Collapse
|
21
|
Gonzalez-Pujana A, Rementeria A, Blanco FJ, Igartua M, Pedraz JL, Santos-Vizcaino E, Hernandez RM. The role of osmolarity adjusting agents in the regulation of encapsulated cell behavior to provide a safer and more predictable delivery of therapeutics. Drug Deliv 2017; 24:1654-1666. [PMID: 29078721 PMCID: PMC8241175 DOI: 10.1080/10717544.2017.1391894] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
Transplantation of cells within alginate microspheres has been extensively studied for sustained drug delivery. However, the lack of control over cell behavior represents a major concern regarding the efficacy and the safety of the therapy. Here, we demonstrated that when formulating the biosystem, an adequate selection of osmolarity adjusting agents significantly contributes to the regulation of cell responses. Our data showed that these agents interact in the capsule formation process, influencing the alginate crosslinking degree. Therefore, when selecting inert or electrolyte-based osmolarity adjusting agents to encapsulate D1 multipotent mesenchymal stromal cells (MSCs), alginate microcapsules with differing mechanical properties were obtained. Since mechanical forces acting on cells influence their behavior, contrasting cell responses were observed both, in vitro and in vivo. When employing mannitol as an inert osmolarity adjusting agent, microcapsules presented a more permissive matrix, allowing a tumoral-like behavior. This resulted in the formation of enormous cell-aggregates that presented necrotic cores and protruding peripheral cells, rendering the therapy unpredictable, dysfunctional, and unsafe. Conversely, the use of electrolyte osmolarity adjusting agents, including calcium or sodium, provided the capsule with a suitable crosslinking degree that established a tight control over cell proliferation and enabled an adequate therapeutic regimen in vivo. The crucial impact of these agents was confirmed when gene expression studies reported pivotal divergences not only in proliferative pathways, but also in genes involved in survival, migration, and differentiation. Altogether, our results prove osmolarity adjusting agents as an effective tool to regulate cell behavior and obtain safer and more predictable therapies.
Collapse
Affiliation(s)
- Ainhoa Gonzalez-Pujana
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Aitor Rementeria
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| |
Collapse
|
22
|
Biomaterial-assisted cell therapy in osteoarthritis: From mesenchymal stem cells to cell encapsulation. Best Pract Res Clin Rheumatol 2017; 31:730-745. [DOI: 10.1016/j.berh.2018.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/14/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
|