1
|
Gracia F, Sanchez-Laorden B, Gomez-Sanchez JA. Schwann cells in regeneration and cancer: an epithelial-mesenchymal transition perspective. Open Biol 2025; 15:240337. [PMID: 40037534 DOI: 10.1098/rsob.240337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/13/2025] [Accepted: 02/09/2025] [Indexed: 03/06/2025] Open
Abstract
In the peripheral nervous system, glial cells, known as Schwann cells (SCs), are responsible for supporting and maintaining nerves. One of the most important characteristics of SCs is their remarkable plasticity. In various injury contexts, SCs undergo a reprogramming process that generates specialized cells to promote tissue regeneration and repair. However, in pathological conditions, this same plasticity and regenerative potential can be hijacked. Different studies highlight the activation of the epithelial-mesenchymal transition (EMT) as a driver of SC phenotypic plasticity. Although SCs are not epithelial, their neural crest origin makes EMT activation crucial for their ability to adopt repair phenotypes, mirroring the plasticity observed during development. These adaptive processes are essential for regeneration. However, EMT activation in SCs-derived tumours enhances cancer progression and aggressiveness. Furthermore, in the tumour microenvironment (TME), SCs also acquire activated phenotypes that contribute to tumour migration and invasion by activating EMT in cancer cells. In this review, we will discuss how EMT impacts SC plasticity and function from development and tissue regeneration to pathological conditions, such as cancer.
Collapse
Affiliation(s)
- Francisco Gracia
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, 03550, Spain
| | | | - Jose A Gomez-Sanchez
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, 03550, Spain
- Instituto de Investigacion Sanitaria y Biomedica de Alicante (ISABIAL), Alicante 03010, Spain
| |
Collapse
|
2
|
Wei Z, Babkirk K, Chen S, Pei M. Epithelial-to-mesenchymal transition transcription factors: New strategies for mesenchymal tissue regeneration. Cytokine Growth Factor Rev 2025:S1359-6101(25)00032-2. [PMID: 40011185 DOI: 10.1016/j.cytogfr.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
The epithelial-mesenchymal transition transcription factors (EMT-TFs)-ZEB, SNAI, and TWIST families-have been extensively studied in embryonic development and tumor metastasis, providing valuable insight into their roles in cell behavior and transformation. These EMT-TFs have garnered increasing attention in the context of mesenchymal tissue regeneration, potentially contributing an approach for cell therapy. Given that dysregulated EMT-TF expression can impair cell survival and lineage differentiation, controlled regulation of their expression could offer significant advantages for tissue regeneration. However, there is a lack of comprehensive reviews to summarize the influence of the EMT-TFs on mesenchymal tissue regeneration and potential molecular mechanisms. This review explores the regulatory roles of ZEB, SNAI, and TWIST in the regeneration of bone, adipose, cartilage, muscle, and other mesenchymal tissues, with a focus on the underlying molecular signaling mechanisms. Gaining a deeper understanding of how EMT-TFs regulate cell proliferation, apoptosis, migration, and differentiation may offer new insights into the management of mesenchymal tissue repair and open novel avenues for enhancing tissue regeneration.
Collapse
Affiliation(s)
- Zhixin Wei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Kiya Babkirk
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China; Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China.
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
3
|
Chen T, Zhang B, Xie H, Huang C, Wu Q. GRHL2 regulates keratinocyte EMT-MET dynamics and scar formation during cutaneous wound healing. Cell Death Dis 2024; 15:748. [PMID: 39402063 PMCID: PMC11473813 DOI: 10.1038/s41419-024-07121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/17/2024]
Abstract
After cutaneous wounds successfully heal, keratinocytes that underwent the epithelial-mesenchymal transition (EMT) regain their epithelial characteristics, while in scar tissue, epidermal cells persist in a mesenchymal state. However, the regulatory mechanisms governing this reversion are poorly understood, and the impact of persistent mesenchymal-like epidermal cells in scar tissue remains unclear. In the present study, we found that during wound healing, the regulatory factor GRHL2 is highly expressed in normal epidermal cells, downregulated in EMT epidermal cells, and upregulated again during the process of mesenchymal-epithelial transition (MET). We further demonstrated that interfering with GRHL2 expression in epidermal cells can effectively induce the EMT. Conversely, the overexpression of GRHL2 in EMT epidermal cells resulted in partial reversion of the EMT to an epithelial state. To investigate the effects of failed MET in epidermal cells on skin wound healing, we interfered with GRHL2 expression in epidermal cells surrounding the cutaneous wound. The results demonstrated that the persistence of epidermal cells in the mesenchymal state promoted fibrosis in scar tissue, manifested by increased thickness of scar tissue, deposition of collagen and fibronectin, as well as the activation of myofibroblasts. Furthermore, the miR-200s/Zeb1 axis was perturbed in GRHL2 knockdown keratinocytes, and transfection with miR-200s analogs promoted the reversion of EMT in epidermal cells, which indicates that they mediate the EMT process in keratinocytes. These results suggest that restoration of the epithelial state in epidermal cells following the EMT is essential to wound healing, providing potential therapeutic targets for preventing scar formation.
Collapse
Affiliation(s)
- Tianying Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bo Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hanqi Xie
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chenyu Huang
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
5
|
Petrova IM, Chebanova SI, Khatsko SL, Kalinina TA, Zaitsev DV, Glukhareva TV. Spiroconjugated 1,2,3-triazolo[5,1- b]1,3,4-thiadiazine stimulates functional activity of fibroblasts under skin injury regeneration. Res Pharm Sci 2024; 19:267-275. [PMID: 39035820 PMCID: PMC11257193 DOI: 10.4103/rps.rps_74_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/13/2023] [Accepted: 11/25/2023] [Indexed: 07/23/2024] Open
Abstract
Background and purpose One of the most important mechanisms of tissue regeneration is the high functional activity of cells, including proliferation. Currently, there are practically no effective skin cell activators on the pharmaceutical market. The purpose of this work was to demonstrate the stimulating effect of spiroconjugated 1,2,3-triazolo[5,1-b]1,3,4-thiadiazine (STT) on the functional activity of fibroblasts. Experimental approach STT containing ointment for dermal application was made. To assess in vivo effect of the STT a linear wound model in rats was tested. A combination of histological techniques and mechanical testing was employed to estimate the stimulating effect of STT on the functional activity of fibroblasts. Findings/Results The STT significantly increased the number of fibroblasts as well as the density and order of produced collagen fibers in the dermis during the wound healing process. As a result, a tissue was formed at the site of damage with the structure corresponding to normal skin. In addition, skin functions were restored, in particular mechanically. Conclusion and implications The results suggested the stimulating effect of the STT on fibroblast activity and demonstrated its potential for skin regeneration.
Collapse
Affiliation(s)
- Irina M Petrova
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, 620026, Russia
| | - Sofya Iu Chebanova
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, 620026, Russia
| | - Sergey L Khatsko
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, 620026, Russia
- Federal State Budgetary Scientific Institution “Ural Federal Agrarian Scientific Research Centre, Ural Branch of Russian Academy of Sciences”, Yekaterinburg, 620142, Russia
| | - Tatyana A Kalinina
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, 620026, Russia
| | - Dmitry V Zaitsev
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, 620026, Russia
- Ural State Mining University, Yekaterinburg, 620144, Russia
| | - Tatyana V Glukhareva
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, 620026, Russia
| |
Collapse
|
6
|
Ghosh D, Yaron JR, Abedin MR, Godeshala S, Kumar S, Kilbourne J, Berthiaume F, Rege K. Bioactive nanomaterials kickstart early repair processes and potentiate temporally modulated healing of healthy and diabetic wounds. Biomaterials 2024; 306:122496. [PMID: 38373363 PMCID: PMC11658459 DOI: 10.1016/j.biomaterials.2024.122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
Slow-healing and chronic wounds represent a major global economic and medical burden, and there is significant unmet need for novel therapies which act to both accelerate wound closure and enhance biomechanical recovery of the skin. Here, we report a new approach in which bioactives that augment early stages of wound healing can kickstart and engender effective wound closure in healthy and diabetic, obese animals, and set the stage for subsequent tissue repair processes. We demonstrate that a nanomaterial dressing made of silk fibroin and gold nanorods (GNR) stimulates a pro-neutrophilic, innate immune, and controlled inflammatory wound transcriptomic response. Further, Silk-GNR, lasered into the wound bed, in combination with exogeneous histamine, accelerates early-stage processes in tissue repair leading to effective wound closure. Silk-GNR and histamine enhanced biomechanical recovery of skin, increased transient neoangiogenesis, myofibroblast activation, epithelial-to-mesenchymal transition (EMT) of keratinocytes and a pro-resolving neutrophilic immune response, which are hitherto unknown activities for these bioactives. Predictive and temporally coordinated delivery of growth factor nanoparticles that modulate later stages of tissue repair further accelerated wound closure in healthy and diabetic, obese animals. Our approach of kickstarting healing by delivering the "right bioactive at the right time" stimulates a multifactorial, pro-reparative response by augmenting endogenous healing and immunoregulatory mechanisms and highlights new targets to promote tissue repair.
Collapse
Affiliation(s)
- Deepanjan Ghosh
- Biological Design Graduate Program, Arizona State University, Tempe, AZ 85287, USA
| | - Jordan R Yaron
- Center for Biomaterials Innovation and Translation (CBIT), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Muhammad Raisul Abedin
- Center for Biomaterials Innovation and Translation (CBIT), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Sudhakar Godeshala
- Center for Biomaterials Innovation and Translation (CBIT), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Jacquelyn Kilbourne
- Department of Animal Care and Technologies, Arizona State University, Tempe, AZ 85287, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Kaushal Rege
- Biological Design Graduate Program, Arizona State University, Tempe, AZ 85287, USA; Center for Biomaterials Innovation and Translation (CBIT), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
7
|
Wang P, Kang Q, Wu WS, Rui L. Hepatic Snai1 and Snai2 promote liver regeneration and suppress liver fibrosis in mice. Cell Rep 2024; 43:113875. [PMID: 38451818 PMCID: PMC11025633 DOI: 10.1016/j.celrep.2024.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Liver injury stimulates hepatocyte replication and hepatic stellate cell (HSC) activation, thereby driving liver regeneration. Aberrant HSC activation induces liver fibrosis. However, mechanisms underlying liver regeneration and fibrosis remain poorly understood. Here, we identify hepatic Snai1 and Snai2 as important transcriptional regulators for liver regeneration and fibrosis. Partial hepatectomy or CCl4 treatment increases occupancies of Snai1 and Snai2 on cyclin A2 and D1 promoters in the liver. Snai1 and Snai2 in turn increase promoter H3K27 acetylation and cyclin A2/D1 expressions. Hepatocyte-specific deletion of both Snai1 and Snai2, but not one alone, suppresses liver cyclin A2/D1 expression and regenerative hepatocyte proliferation after hepatectomy or CCl4 treatments but augments CCl4-stimulated HSC activation and liver fibrosis. Conversely, Snai2 overexpression in the liver enhances hepatocyte replication and suppresses liver fibrosis after CCl4 treatment. These results suggest that hepatic Snai1 and Snai2 directly promote, via histone modifications, reparative hepatocyte replication and indirectly inhibit liver fibrosis.
Collapse
Affiliation(s)
- Pingping Wang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; School of Chemical Engineering and Light Insulation, Guangdong University of Technology, Guangzhou 510006, China
| | - Qianqian Kang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Wen-Shu Wu
- Division of Hematology/Oncology, Department of Medicine, UI Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Liangyou Rui
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Elizabeth Weiser Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Shao Z, Xu J, Wang X, Zhou Y, Wang Y, Li Y, Zhao J, Li K. Exosomes derived from adipose tissues accelerate fibroblasts and keratinocytes proliferation and cutaneous wound healing via miR-92a/Hippo-YAP axis. J Physiol Biochem 2024; 80:189-204. [PMID: 38041784 DOI: 10.1007/s13105-023-00996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Delayed wound healing is an urgent clinical issue. Cellular communication involving exosome-borne cargo such as miRNA is a critical mechanism involved in wound healing. This study isolated and identified human adipose tissue-derived exosomes (Exo-ATs). The specific effects of Exo-ATs on keratinocytes and fibroblasts were examined. Enriched miRNAs in Exo-ATs were analyzed, and miR-92a-3p was selected. The transfer of Exo-ATs-derived miR-92a-3p to keratinocytes and fibroblasts was verified. miR-92a-3p binding to LATS2 was examined and the dynamic effects of the miR-92a-3p/LATS2 axis were investigated. In a dorsal skin wound model, the in vivo effects of Exo-ATs on wound healing were examined. Exo-AT incubation increased keratinocytes and fibroblast proliferation, migration, and extracellular matrix (ECM) accumulation. miR-92a-3p, enriched in Exo-ATs, could be transferred to keratinocytes and fibroblasts, resulting in enhanced proliferation, migration, and ECM accumulation. Large tumor suppressor kinase 2 (LATS2) was a direct target of miR-92a-3p. miR-92a-3p inhibitor effects on keratinocytes and fibroblasts could be partially reversed by LATS2 knockdown. In a dorsal skin wound model, Exo-ATs accelerated wound healing through enhanced cell proliferation, collagen deposition, re-epithelialization, and YAP/TAZ activation. In conclusion, Exo-ATs improve skin wound healing by promoting keratinocyte and fibroblast migration and proliferation and collagen production by fibroblast, which could be partially eliminated by miR-92a inhibition through its downstream target LATS2 and the YAP/TAZ signaling.
Collapse
Affiliation(s)
- Zifei Shao
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Jinghao Xu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Xiang Wang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Yuxi Zhou
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Yujing Wang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Yiyang Li
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Jianping Zhao
- Department of Stomatology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215125, Jiangsu, China.
| | - Kun Li
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410000, China.
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Vu R, Dragan M, Sun P, Werner S, Dai X. Epithelial-Mesenchymal Plasticity and Endothelial-Mesenchymal Transition in Cutaneous Wound Healing. Cold Spring Harb Perspect Biol 2023; 15:a041237. [PMID: 36617638 PMCID: PMC10411868 DOI: 10.1101/cshperspect.a041237] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial and endothelial cells possess the inherent plasticity to undergo morphological, cellular, and molecular changes leading to their resemblance of mesenchymal cells. A prevailing notion has been that cutaneous wound reepithelialization involves partial epithelial-to-mesenchymal transition (EMT) of wound-edge epidermal cells to enable their transition from a stationary state to a migratory state. In this review, we reflect on past findings that led to this notion and discuss recent studies that suggest a refined view, focusing predominantly on in vivo results using mammalian excisional wound models. We highlight the concept of epithelial-mesenchymal plasticity (EMP), which emphasizes a reversible conversion of epithelial cells across multiple intermediate states within the epithelial-mesenchymal spectrum, and discuss the critical importance of restricting EMT for effective wound reepithelialization. We also outline the current state of knowledge on EMP in pathological wound healing, and on endothelial-to-mesenchymal transition (EndMT), a process similar to EMT, as a possible mechanism contributing to wound fibrosis and scar formation. Harnessing epithelial/endothelial-mesenchymal plasticity may unravel opportunities for developing new therapeutics to treat human wound healing pathologies.
Collapse
Affiliation(s)
- Remy Vu
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| | - Morgan Dragan
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| | - Peng Sun
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, 8093 ETH Zurich, Switzerland
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| |
Collapse
|
10
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
11
|
Sun J, Zhou J, Zhou J, Xu W, Du Y, Jia Z, Shen Y, Lin X, Wang X, Bao Y, Rao Z, Dong S, Luo Y, Cong W, Jin L, Li X. FGF4 Promotes Skin Wound Repair through p38 MAPK and GSK3β-Mediated Stabilization of Slug. J Invest Dermatol 2022; 143:1073-1084.e8. [PMID: 36521556 DOI: 10.1016/j.jid.2022.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/15/2022]
Abstract
Cutaneous wound healing is an orderly and intricate process that restores the barrier function and integrity of injured skin. Re-epithelialization, which involves the proliferation and migration of keratinocytes to cover the denuded surface, is essential for successful wound closure. There are many members of the FGF family, of which the paracrine-acting FGF1 and FGF7 subfamily members have been identified as positive regulators of wound repair. However, the role and underlying mechanisms of some other paracrine FGFs in wound repair still remain obscure. In this report, we found that paracrine FGF4 localized predominantly to the epidermal keratinocytes and was markedly upregulated at the wound edges in response to re-epithelialization in human and mouse wound models. Blockade of FGF4 resulted in delayed re-epithelialization of human ex vivo skin wounds, whereas recombinant FGF4 treatment promoted re-epithelialization and wound repair. Mechanistically, recombinant FGF4 promotes p38 MAPK‒GSK3β‒mediated stabilization of Slug by reducing its ubiquitination, which triggers epithelial-to-mesenchymal transition and promotes the migration and proliferation of keratinocytes and thus wound re-epithelialization. Our findings uncover FGF4 as an important regulator of wound healing, highlighting a promising therapeutic avenue for skin injury.
Collapse
Affiliation(s)
- Jian Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianhui Zhou
- Department of Pediatrics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Wenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yali Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenyu Jia
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingjie Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; School of Life Sciences, Huzhou University, Huzhou, China
| | - Xiaohua Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xulan Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxuan Bao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiheng Rao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Siyang Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongde Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
12
|
Kawamura Y, Mogami H, Yasuda E, Takakura M, Matsuzaka Y, Ueda Y, Inohaya A, Kawasaki K, Chigusa Y, Mandai M, Kondoh E. Fetal macrophages assist in the repair of ruptured amnion through the induction of epithelial-mesenchymal transition. Sci Signal 2022; 15:eabi5453. [PMID: 36099339 DOI: 10.1126/scisignal.abi5453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The premature rupture of the amniotic sac, a condition referred to as a preterm prelabor rupture of membranes (pPROM), is a leading cause of preterm birth. In some cases, these ruptured membranes heal spontaneously. Here, we investigated repair mechanisms of the amnion, a layer of epithelial cells in the amniotic sac closest to the embryo. Macrophages migrated to and resided at rupture sites in both human and mouse amnion. A process called epithelial-mesenchymal transition (EMT), in which epithelial cells acquire a mesenchymal phenotype and which is implicated in tissue repair, was observed at rupture sites. In dams bearing macrophage-depleted fetuses, the repair of amnion ruptures was compromised, and EMT was rarely detected at rupture sites. The migration of cultured amnion epithelial cells in wound healing assays was mediated by EMT through transforming growth factor-β (TGF-β)-Smad signaling. These findings suggest that fetal macrophages are crucial in amnion repair because of their ability to induce EMT in amnion epithelial cells.
Collapse
Affiliation(s)
- Yosuke Kawamura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Eriko Yasuda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Masahito Takakura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yu Matsuzaka
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yusuke Ueda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Asako Inohaya
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kaoru Kawasaki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
13
|
Chitsazzadeh V, Nguyen TN, de Mingo Pulido A, Bittencourt BB, Du L, Adelmann CH, Ortiz Rivera I, Nguyen KA, Guerra LD, Davis A, Napoli M, Ma W, Davis RE, Rajapakshe K, Coarfa C, Flores ER, Tsai KY. miR-181a promotes multiple pro-tumorigenic functions through targeting TGFβR3. J Invest Dermatol 2021; 142:1956-1965.e2. [PMID: 34890627 DOI: 10.1016/j.jid.2021.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022]
Abstract
Cutaneous squamous cell carcinoma (cuSCC) comprises 15-20% of all skin cancers and has a well-defined progression sequence from precancerous actinic keratosis (AK), to invasive cuSCC. In order to identify targets for chemoprevention, we previously reported a cross-species analysis to identify transcriptional drivers of cuSCC development and identified miR-181a as a potential oncomiR. We show that upregulation of miR-181a promotes multiple pro-tumorigenic properties by targeting an understudied component of TGFβ signaling, TGFβR3. miR-181a and TGFβR3 are upregulated and downregulated, respectively, in cuSCC. miR-181a overexpression (OE) and TGFβR3 knockdown (KD) significantly suppresses UV-induced apoptosis in HaCaT cells and in primary normal human epidermal keratinocytes (NHEK). In addition, OE of miR-181a or KD of TGFβR3 by shRNA enhances anchorage-independent survival. miR-181a OE or TGFβR3 KD enhances cellular migration and invasion and upregulation of EMT markers. Luciferase reporter assays demonstrate that miR-181a directly targets the 3'UTR of TGFβR3. miR-181a upregulates pSMAD3 levels following TGFβ2 administration and results in elevated SNAIL and SLUG expression. Finally, we confirm in-vivo, that miR-181a inhibition compromises tumor growth. Importantly, these phenotypes can be reversed with TGFβR3 OE or KD in the context of miR-181a OE or KD, respectively, further highlighting the physiologic relevance of this regulation in cuSCC.
Collapse
Affiliation(s)
- Vida Chitsazzadeh
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tran N Nguyen
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Alvaro de Mingo Pulido
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Bruna B Bittencourt
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Lili Du
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Charles H Adelmann
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ivannie Ortiz Rivera
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kimberly A Nguyen
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Leah D Guerra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew Davis
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Marco Napoli
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Wencai Ma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard Eric Davis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Lymphoma-Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kimal Rajapakshe
- Department of Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Coarfa
- Department of Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kenneth Y Tsai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA; Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.
| |
Collapse
|
14
|
Lovisa S. Epithelial-to-Mesenchymal Transition in Fibrosis: Concepts and Targeting Strategies. Front Pharmacol 2021; 12:737570. [PMID: 34557100 PMCID: PMC8454779 DOI: 10.3389/fphar.2021.737570] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT), an embryonic program relaunched during wound healing and in pathological conditions such as fibrosis and cancer, continues to gain the attention of the research community, as testified by the exponential trend of publications since its discovery in the seventies. From the first description as a mesenchymal transformation, the concept of EMT has been substantially refined as an in-depth comprehension of its functional role has recently emerged thanks to the implementation of novel mouse models as well as the use of sophisticated mathematical modeling and bioinformatic analysis. Nevertheless, attempts to targeting EMT in fibrotic diseases are at their infancy and continue to pose several challenges. The aim of this mini review is to recapitulate the most recent concepts in the EMT field and to summarize the different strategies which have been exploited to target EMT in fibrotic disorders.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.,IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| |
Collapse
|
15
|
Miyake Y, Nagaoka Y, Okamura K, Takeishi Y, Tamaoki S, Hatta M. SNAI2 is induced by transforming growth factor-β1, but is not essential for epithelial-mesenchymal transition in human keratinocyte HaCaT cells. Exp Ther Med 2021; 22:1124. [PMID: 34466140 PMCID: PMC8383325 DOI: 10.3892/etm.2021.10558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular process in which epithelial cells lose their epithelial traits and shift to the mesenchymal phenotype, and is associated with various biological events, such as embryogenesis, wound healing and cancer progression. The transcriptional program that promotes phenotype switching is dynamically controlled by transcription factors during EMT, including Snail (SNAI1), twist family bHLH transcription factor (TWIST) and zinc finger E-box binding homeobox 1 (ZEB1). The present study aimed to investigate the molecular mechanisms underlying EMT in squamous epithelial cells. Western blot analysis and immunocytochemical staining identified Slug (SNAI2) as a transcription factor that is induced during transforming growth factor (TGF)-β1-mediated EMT in the human keratinocyte cell line HaCaT. The effect of SNAI2 overexpression and knockdown on the phenotypic characteristics of HaCaT cells was evaluated. Filamentous actin staining and western blot analysis revealed that the overexpression of SNAI2 did not induce the observed EMT-related phenotypic changes. In addition, SNAI2 knockdown demonstrated almost no impact on the EMT phenotypes induced by TGF-β1. Notably, DNA microarray analysis followed by comprehensive bioinformatics analysis revealed that the differentially expressed genes upregulated by TGF-β1 were significantly enriched in cell adhesion and extracellular matrix binding, whereas the genes downregulated in response to TGF-β1 were significantly enriched in the cell cycle. No enriched gene ontology term and biological pathways were identified in the differentially expressed gene sets of SNAI2-overexpressing cells. In addition, the candidates for master transcription factors regulating the TGF-β1-induced EMT were identified using transcription factor enrichment analysis. In conclusion, the results of study demonstrated that SNAI2 does not play an essential role in the EMT of HaCaT cells and identified candidate transcription factors that may be involved in EMT-related gene expression induced by TGF-β1. These findings may enhance the understanding of molecular events in EMT and contribute to the development of a novel therapeutic approach against EMT in cancers and wound healing.
Collapse
Affiliation(s)
- Yuki Miyake
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan.,Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Yoshiyuki Nagaoka
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Kazuhiko Okamura
- Department of Morphological Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Yukimasa Takeishi
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Sachio Tamaoki
- Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Mitsutoki Hatta
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan.,Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan
| |
Collapse
|
16
|
Lambert AW, Weinberg RA. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer 2021; 21:325-338. [PMID: 33547455 DOI: 10.1038/s41568-021-00332-6] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Epithelial stem cells serve critical physiological functions in the generation, maintenance and repair of diverse tissues through their ability to self-renew and spawn more specialized, differentiated cell types. In an analogous fashion, cancer stem cells have been proposed to fuel the growth, progression and recurrence of many carcinomas. Activation of an epithelial-mesenchymal transition (EMT), a latent cell-biological programme involved in development and wound healing, has been linked to the formation of both normal and neoplastic stem cells, but the mechanistic basis underlying this connection remains unclear. In this Perspective, we outline the instances where aspects of an EMT have been implicated in normal and neoplastic epithelial stem cells and consider the involvement of this programme during tissue regeneration and repair. We also discuss emerging concepts and evidence related to the heterogeneous and plastic cell states generated by EMT programmes and how these bear on our understanding of cancer stem cell biology and cancer metastasis. A more comprehensive accounting of the still-elusive links between EMT programmes and the stem cell state will surely advance our understanding of both normal stem cell biology and cancer pathogenesis.
Collapse
Affiliation(s)
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- MIT Ludwig Center for Molecular Oncology, Cambridge, MA, USA.
| |
Collapse
|
17
|
Hegde A, Ananthan ASHP, Kashyap C, Ghosh S. Wound Healing by Keratinocytes: A Cytoskeletal Perspective. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00219-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Subbalakshmi AR, Sahoo S, Biswas K, Jolly MK. A Computational Systems Biology Approach Identifies SLUG as a Mediator of Partial Epithelial-Mesenchymal Transition (EMT). Cells Tissues Organs 2021; 211:689-702. [PMID: 33567424 DOI: 10.1159/000512520] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/19/2020] [Indexed: 01/25/2023] Open
Abstract
Epithelial-mesenchymal plasticity comprises reversible transitions among epithelial, hybrid epithelial/mesenchymal (E/M) and mesenchymal phenotypes, and underlies various aspects of aggressive tumor progression such as metastasis, therapy resistance, and immune evasion. The process of cells attaining one or more hybrid E/M phenotypes is termed as partial epithelial mesenchymal transition (EMT). Cells in hybrid E/M phenotype(s) can be more aggressive than those in either fully epithelial or mesenchymal state. Thus, identifying regulators of hybrid E/M phenotypes is essential to decipher the rheostats of phenotypic plasticity and consequent accelerators of metastasis. Here, using a computational systems biology approach, we demonstrate that SLUG (SNAIL2) - an EMT-inducing transcription factor - can inhibit cells from undergoing a complete EMT and thus stabilize them in hybrid E/M phenotype(s). It expands the parametric range enabling the existence of a hybrid E/M phenotype, thereby behaving as a phenotypic stability factor. Our simulations suggest that this specific property of SLUG emerges from the topology of the regulatory network it forms with other key regulators of epithelial-mesenchymal plasticity. Clinical data suggest that SLUG associates with worse patient prognosis across multiple carcinomas. Together, our results indicate that SLUG can stabilize hybrid E/M phenotype(s).
Collapse
Affiliation(s)
- Ayalur R Subbalakshmi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Kuheli Biswas
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India,
| |
Collapse
|
19
|
Downregulation of E-cadherin in pluripotent stem cells triggers partial EMT. Sci Rep 2021; 11:2048. [PMID: 33479502 PMCID: PMC7820496 DOI: 10.1038/s41598-021-81735-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a critical cellular process that has been well characterized during embryonic development and cancer metastasis and it also is implicated in several physiological and pathological events including embryonic stem cell differentiation. During early stages of differentiation, human embryonic stem cells pass through EMT where deeper morphological, molecular and biochemical changes occur. Though initially considered as a decision between two states, EMT process is now regarded as a fluid transition where cells exist on a spectrum of intermediate states. In this work, using a CRISPR interference system in human embryonic stem cells, we describe a molecular characterization of the effects of downregulation of E-cadherin, one of the main initiation events of EMT, as a unique start signal. Our results suggest that the decrease and delocalization of E-cadherin causes an incomplete EMT where cells retain their undifferentiated state while expressing several characteristics of a mesenchymal-like phenotype. Namely, we found that E-cadherin downregulation induces SNAI1 and SNAI2 upregulation, promotes MALAT1 and LINC-ROR downregulation, modulates the expression of tight junction occludin 1 and gap junction connexin 43, increases human embryonic stem cells migratory capacity and delocalize β-catenin. Altogether, we believe our results provide a useful tool to model the molecular events of an unstable intermediate state and further identify multiple layers of molecular changes that occur during partial EMT.
Collapse
|
20
|
Yastrebova MA, Khamidullina AI, Tatarskiy VV, Scherbakov AM. Snail-Family Proteins: Role in Carcinogenesis and Prospects for Antitumor Therapy. Acta Naturae 2021; 13:76-90. [PMID: 33959388 PMCID: PMC8084295 DOI: 10.32607/actanaturae.11062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
The review analyzes Snail family proteins, which are transcription factors involved in the regulation of the epithelial-mesenchymal transition (EMT) of tumor cells. We describe the structure of these proteins, their post-translational modification, and the mechanisms of Snail-dependent regulation of genes. The role of Snail proteins in carcinogenesis, invasion, and metastasis is analyzed. Furthermore, we focus on EMT signaling mechanisms involving Snail proteins. Next, we dissect Snail signaling in hypoxia, a condition that complicates anticancer treatment. Finally, we offer classes of chemical compounds capable of down-regulating the transcriptional activity of Snails. Given the important role of Snail proteins in cancer biology and the potential for pharmacological inhibition, Snail family proteins may be considered promising as therapeutic targets.
Collapse
Affiliation(s)
- M. A. Yastrebova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. I. Khamidullina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - V. V. Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| | - A. M. Scherbakov
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| |
Collapse
|
21
|
Tang H, Wang X, Zhang M, Yan Y, Huang S, Ji J, Xu J, Zhang Y, Cai Y, Yang B, Lan W, Huang M, Zhang L. MicroRNA-200b/c-3p regulate epithelial plasticity and inhibit cutaneous wound healing by modulating TGF-β-mediated RAC1 signaling. Cell Death Dis 2020; 11:931. [PMID: 33122632 PMCID: PMC7596237 DOI: 10.1038/s41419-020-03132-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Cutaneous wound healing is pivotal for human skin to regain barrier function against pathogens. MicroRNAs (miRNAs) have been found to play regulatory roles in wound healing. However, the mechanism of miRNA regulation remains largely unknown. In this study, we focused on microRNA-200b/c-3p (miR-200b/c-3p) whose expression was abundant in intact epidermis, but dramatically decreased in skin wounds. In silico prediction identified RAC1 as a potential miR-200b/c-3p target. Luciferase reporter assay confirmed that miR-200b/c-p repressed RAC1 by direct targeting to its mRNA 3′UTR. Consistently, miR-200b/c-3p expression was discordantly related to RAC1 protein level during wound healing. Forced miR-200b/c-3p expression repressed RAC1 and inhibited keratinocyte migration as well as re-epithelialization in a mouse back skin full-thickness wound healing model. Mechanistically, miR-200b/c-3p modulated RAC1 to inhibit cell migration by repressing lamellipodia formation and intercellular adhesion dissolution in keratinocytes. Furthermore, we found that TGF-β1, which was highly expressed in skin wounds, contributed to the downregulation of miR-200b/c-3p in wound edge keratinocytes. Taken together, miR-200b/c-3p-mediated RAC1 repression inhibited keratinocyte migration to delay re-epithelialization. TGF-β1 induction attenuated miR-200b/c-3p regulation of RAC1 signaling in cutaneous wounds and the repression of miR-200b/c-3p accelerated keratinocyte migration to promote wound healing. Our data provide new insight into how miR-200b/c-3p affects keratinocyte migration and highlight the potential of miR-200b/c-3p targeting for accelerating wound healing.
Collapse
Affiliation(s)
- Huiyi Tang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xueer Wang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Min Zhang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuan Yan
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Simin Huang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jiahao Ji
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jinfu Xu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yijia Zhang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yongjie Cai
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Bobo Yang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wenqi Lan
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Mianbo Huang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Lin Zhang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
22
|
Koike Y, Yozaki M, Utani A, Murota H. Fibroblast growth factor 2 accelerates the epithelial-mesenchymal transition in keratinocytes during wound healing process. Sci Rep 2020; 10:18545. [PMID: 33122782 PMCID: PMC7596476 DOI: 10.1038/s41598-020-75584-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
In the wound healing process, the morphology of keratinocytes at the wound edge temporarily changes to a spindle morphology, which is thought to occur due to an epithelial–mesenchymal transition (EMT). Fibroblast growth factor (FGF) 2, also called basic FGF, has the potential to accelerate wound closure by activating vascular endothelial cells and fibroblasts. We examined the effects of FGF2 on keratinocyte morphology and EMT in wounded skin. Histological examination of murine wounds treated with FGF2 revealed that wound edge keratinocytes formed thickened and multilayered epithelia. In addition, we detected wound edge keratinocytes migrating individually toward the wound center. These migrating keratinocytes exhibited not only spindle morphology but also down-regulated E-cadherin and up-regulated vimentin expression, which is characteristic of EMT. In FGF2-treated wounds, a PCR array revealed the upregulation of genes related to EMT, including transforming growth factor (TGF) signaling. Further, FGF2-treated wound edge keratinocytes expressed EMT-associated transcription factors, including Snai2, and showed translocation of β-catenin from the cell membrane to the cytoplasm/nucleus. However, in vitro examination of keratinocytes revealed that FGF2 alone did not activate EMT in keratinocytes, but that FGF2 might promote EMT in combination with TGFβ1. These findings suggest that FGF2 treatment of wounds could promote keratinocyte EMT, accelerating wound closure.
Collapse
Affiliation(s)
- Yuta Koike
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Mariko Yozaki
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Utani
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
23
|
Angiotensin Inhibition, TGF-β and EMT in Cancer. Cancers (Basel) 2020; 12:cancers12102785. [PMID: 32998363 PMCID: PMC7601465 DOI: 10.3390/cancers12102785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Angiotensin inhibitors are standard drugs in cardiovascular and renal diseases that have antihypertensive and antifibrotic properties. These drugs also exert their antifibrotic effects in cancer by reducing collagen and hyaluronan deposition in the tumor stroma, thus enhancing drug delivery. Angiotensin II signaling interferes with the secretion of the cytokine TGF-β-a known driver of malignancy. TGF-β stimulates matrix production in cancer-associated fibroblasts, and thus drives desmoplasia. The effect of TGF-β on cancer cells itself is stage-dependent and changes during malignant progression from inhibitory to stimulatory. The intracellular signaling for the TGF-β family can be divided into an SMAD-dependent canonical pathway and an SMAD-independent noncanonical pathway. These capabilities have made TGF-β an interesting target for numerous drug developments. TGF-β is also an inducer of epithelial-mesenchymal transition (EMT). EMT is a highly complex spatiotemporal-limited process controlled by a plethora of factors. EMT is a hallmark of metastatic cancer, and with its reversal, an important step in the metastatic cascade is characterized by a loss of epithelial characteristics and/or the gain of mesenchymal traits.
Collapse
|
24
|
Gaponova AV, Rodin S, Mazina AA, Volchkov PV. Epithelial-Mesenchymal Transition: Role in Cancer Progression and the Perspectives of Antitumor Treatment. Acta Naturae 2020; 12:4-23. [PMID: 33173593 PMCID: PMC7604894 DOI: 10.32607/actanaturae.11010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
About 90% of all malignant tumors are of epithelial nature. The epithelial tissue is characterized by a close interconnection between cells through cell-cell interactions, as well as a tight connection with the basement membrane, which is responsible for cell polarity. These interactions strictly determine the location of epithelial cells within the body and are seemingly in conflict with the metastatic potential that many cancers possess (the main criteria for highly malignant tumors). Tumor dissemination into vital organs is one of the primary causes of death in patients with cancer. Tumor dissemination is based on the so-called epithelial-mesenchymal transition (EMT), a process when epithelial cells are transformed into mesenchymal cells possessing high mobility and migration potential. More and more studies elucidating the role of the EMT in metastasis and other aspects of tumor progression are published each year, thus forming a promising field of cancer research. In this review, we examine the most recent data on the intracellular and extracellular molecular mechanisms that activate EMT and the role they play in various aspects of tumor progression, such as metastasis, apoptotic resistance, and immune evasion, aspects that have usually been attributed exclusively to cancer stem cells (CSCs). In conclusion, we provide a detailed review of the approved and promising drugs for cancer therapy that target the components of the EMT signaling pathways.
Collapse
Affiliation(s)
- A. V. Gaponova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| | - S. Rodin
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177 Sweden
| | - A. A. Mazina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| | - P. V. Volchkov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| |
Collapse
|
25
|
Steinbichler TB, Dudas J, Ingruber J, Glueckert R, Sprung S, Fleischer F, Cidlinsky N, Dejaco D, Kofler B, Giotakis AI, Skvortsova II, Riechelmann H. Slug Is A Surrogate Marker of Epithelial to Mesenchymal Transition (EMT) in Head and Neck Cancer. J Clin Med 2020; 9:jcm9072061. [PMID: 32630033 PMCID: PMC7408865 DOI: 10.3390/jcm9072061] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Epithelial to mesenchymal transition (EMT) promotes therapy resistance in head and neck cancer (HNC) cells. In this study, EMT was quantified in HNC tumor samples by the cellular co-localization of cytokeratin/vimentin, E-cadherin/β-catenin and by Slug expression. Methods: Tissue samples from HNC patients were stained with antibody pairs against cytokeratin/vimentin and E-cadherin/β-catenin. Epithelial–mesenchymal co-localization was quantified using immunofluorescence multichannel image cytometry. Double positivity was confirmed using confocal microscopy. Slug was semi-quantified by 2 specialists and quantified by bright field image cytometry. Results: Tumor samples of 102 patients were investigated. A loss of E-cadherin positive cells (56.9 ± 2.6% vs. 97.9 ± 1.0%; p < 0.0001) and E-cadherin/β-catenin double positive cells (15.4 ± 5.7% vs. 85.4 ± 1.2%; p < 0.0001) was observed in tumor samples. The percentage of Slug positive cells was increased in tumor samples (12.1 ± 3.6% vs. 3.2 ± 2.6%; p = 0.001). Ordinal Slug scores judged by two specialists closely correlated with percentage of Slug-positive cells (Spearman’s rho = 0.81; p < 0.001). Slug score correlated negatively with the percentage of E-cadherin positive cells (r = 0.4; p = 0.006), the percentage of E-cadherin/β-catenin positive cells (r = 0.5; p = 0.001) and positively with cytokeratin/vimentin positive cells (r = 0.4, p = 0.003). Conclusion: EMT can be assessed in HNC tumor probes by cytokeratin/vimentin co-expression and loss of E-cadherin/β-catenin co-expression. Slug score provides a convenient surrogate marker for EMT.
Collapse
Affiliation(s)
- T. B. Steinbichler
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
- Correspondence: ; Tel.: +43-512-504-23142
| | - J. Dudas
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - J. Ingruber
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - R. Glueckert
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - S. Sprung
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - F. Fleischer
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - N. Cidlinsky
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - D. Dejaco
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - B. Kofler
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - A. I. Giotakis
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - I. I. Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck; 6020 Innsbruck, Austria;
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| | - H. Riechelmann
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| |
Collapse
|
26
|
Chen A, Huang W, Wu L, An Y, Xuan T, He H, Ye M, Qi L, Wu J. Bioactive ECM Mimic Hyaluronic Acid Dressing via Sustained Releasing of bFGF for Enhancing Skin Wound Healing. ACS APPLIED BIO MATERIALS 2020; 3:3039-3048. [PMID: 35025350 DOI: 10.1021/acsabm.0c00096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Successful dermal wound regeneration requires the coordination of repair cells and cellular signals with the extracellular matrix (ECM), which serves as an indispensable mechanical and biological supporter for cell functions and communications with varied cytokines during healing processes. Here, we developed an injectable bioactive wound dressing, methacrylated hyaluronic acid (Me-HA)-based hydrogel loading with basic fibroblast growth factor (bFGF), endowing the dressing with the pleiotropic bioactivity to mimic natural ECM. This bFGF@Me-HA dressing was applied to a mouse with full-thickness excisional wounds to investigate its positive roles in wound repair owing to the complementary functions of HA with sustained release of bioactive bFGF. Compared with the single Me-HA and bFGF group, bFGF@Me-HA hydrogel dressings significantly enhanced wound healing with accelerated re-epithelialization, granulation formation, collagen, deposition and skin appendage regeneration. Further investigations showed significantly promoted cell proliferation and vascularization in the bFGF@Me-HA group, which was mediated by the upregulation of transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) expressions. In conclusion, this bFGF@Me-HA hydrogel realized the optimization of simple ECM mimic dressing via introducing the bioactive effector, bFGF, and has the potential to be widely used as an effective bioactive ECM-based wound dressing in future wound care.
Collapse
Affiliation(s)
- Anqi Chen
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
| | - Wen Huang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
| | - Liang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China.,Anqing Municipal Hospital, Anqing, Anhui 246003, P. R. China
| | - Ying An
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
| | - Tengxiao Xuan
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
| | - Huacheng He
- College of Chemistry and Materials Engineering. Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China
| | - Mengqi Ye
- College of Chemistry and Materials Engineering. Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China
| | - Lamei Qi
- Anqing Municipal Hospital, Anqing, Anhui 246003, P. R. China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
| |
Collapse
|
27
|
Enhanced Wound Healing- and Inflammasome-Associated Gene Expression in TNFAIP3-Interacting Protein 1- (TNIP1-) Deficient HaCaT Keratinocytes Parallels Reduced Reepithelialization. Mediators Inflamm 2020; 2020:5919150. [PMID: 32377162 PMCID: PMC7191359 DOI: 10.1155/2020/5919150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
TNIP1 protein is a widely expressed, cytoplasmic inhibitor of inflammatory signaling initiated by membrane receptors such as TLRs which recognize pathogen-associated and damage-associated molecular patterns (PAMPs and DAMPs). Keratinocyte TNIP1 deficiency sensitizes cells to PAMPs and DAMPs promoting hyperresponsive expression and secretion of cytokine markers (e.g., IL-8 and IL-6) relevant to cases of chronic inflammation, like psoriasis, where TNIP1 deficiency has been reported. Here, we examined the impact of TNIP1 deficiency on gene expression and cellular responses (migration and viability) relevant to acute inflammation as typically occurs in wound healing. Using siRNA-mediated TNIP1 expression knockdown in cultured HaCaT keratinocytes, we investigated TNIP1 deficiency effects on signaling downstream of TLR3 agonism with low-concentration poly (I:C), a representative PAMP/DAMP. The combination of TNIP1 knockdown and PAMP/DAMP signaling disrupted expression of specific keratinocyte differentiation markers (e.g., transglutaminase 1 and involucrin). These same conditions promoted synergistically increased expression of wound-associated markers (e.g., S100A8, TGFβ, and CCN2) suggesting potential benefit of increased inflammatory response from reduced TNIP1 protein. Unexpectedly, poly (I:C) challenge of TNIP1-deficient cells restricted reepithelialization and reduced cell viability. In these cells, there was not only increased expression for genes associated with inflammasome assembly (e.g., ASC, procaspase 1) but also for A20, a TNIP1 partner protein that represses cell-death signaling. Despite this possibly compensatory increase in A20 mRNA, there was a decrease in phospho-A20 protein, the form necessary for quenching inflammation. Hyperresponsiveness to poly (I:C) in TNIP1-deficient keratinocytes was in part mediated through p38 and JNK pathways. Taken together, we conclude that TNIP1 deficiency promotes enhanced expression of factors associated with promoting wound healing. However, the coupled, increased potential priming of the inflammasome and reduced compensatory activity of A20 has a net negative effect on overall cell recovery potential manifested by poor reepithelialization and viability. These findings suggest a previously unrecognized role for TNIP1 protein in limiting inflammation during successful progression through early wound healing stages.
Collapse
|
28
|
Liarte S, Bernabé-García Á, Nicolás FJ. Human Skin Keratinocytes on Sustained TGF-β Stimulation Reveal Partial EMT Features and Weaken Growth Arrest Responses. Cells 2020; 9:cells9010255. [PMID: 31968599 PMCID: PMC7017124 DOI: 10.3390/cells9010255] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Defects in wound closure can be related to the failure of keratinocytes to re-epithelize. Potential mechanisms driving this impairment comprise unbalanced cytokine signaling, including Transforming Growth Factor-β (TFG-β). Although the etiologies of chronic wound development are known, the relevant molecular events are poorly understood. This lack of insight is a consequence of ethical issues, which limit the available evidence to humans. In this work, we have used an in vitro model validated for the study of epidermal physiology and function, the HaCaT cells to provide a description of the impact of sustained exposure to TGF-β. Long term TGF-β1 treatment led to evident changes, HaCaT cells became spindle-shaped and increased in size. This phenotype change involved conformational re-arrangements for actin filaments and E-Cadherin cell-adhesion structures. Surprisingly, the signs of consolidated epithelial-to-mesenchymal transition were absent. At the molecular level, modified gene expression and altered protein contents were found. Non-canonical TGF-β pathway elements did not show relevant changes. However, R-Smads experienced alterations best characterized by decreased Smad3 levels. Functionally, HaCaT cells exposed to TGF-β1 for long periods showed cell-cycle arrest. Yet, the strength of this restraint weakens the longer the treatment, as revealed when challenged by pro-mitogenic factors. The proposed setting might offer a useful framework for future research on the mechanisms driving wound chronification.
Collapse
|
29
|
Tsai CR, Galko MJ. Casein kinase 1α decreases β-catenin levels at adherens junctions to facilitate wound closure in Drosophila larvae. Development 2019; 146:dev175133. [PMID: 31511254 PMCID: PMC6826034 DOI: 10.1242/dev.175133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
Skin wound repair is essential to restore barrier function and prevent infection after tissue damage. Wound-edge epidermal cells migrate as a sheet to close the wound. However, it is still unclear how cell-cell junctions are regulated during wound closure (WC). To study this, we examined adherens junctions during WC in Drosophila larvae. β-Catenin is reduced at the lateral cell-cell junctions of wound-edge epidermal cells in the early healing stages. Destruction complex components, including Ck1α, GSK3β and β-TrCP, suppress β-catenin levels in the larval epidermis. Tissue-specific RNAi targeting these genes also caused severe WC defects. The Ck1αRNAi -induced WC defect is related to adherens junctions because loss of either β-catenin or E-cadherin significantly rescued this WC defect. In contrast, TCFRNAi does not rescue the Ck1αRNAi -induced WC defect, suggesting that Wnt signaling is not related to this defect. Direct overexpression of β-catenin recapitulates most of the features of Ck1α reduction during wounding. Finally, loss of Ck1α also blocked junctional E-cadherin reduction around the wound. Our results suggest that Ck1α and the destruction complex locally regulate cell adhesion to facilitate efficient wound repair.
Collapse
Affiliation(s)
- Chang-Ru Tsai
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael J Galko
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Genetics & Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
30
|
Yuan F, Sun Z, Feng Y, Liu S, Du Y, Yu S, Yang M, Lv G. Epithelial–mesenchymal transition in the formation of hypertrophic scars and keloids. J Cell Physiol 2019; 234:21662-21669. [PMID: 31106425 DOI: 10.1002/jcp.28830] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Feng‐Lai Yuan
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Zi‐Li Sun
- Nanjing University of Chinese Medicine Nanjing Jiangsu China
| | - Yi Feng
- Yangzhou University Yangzhou Jiangsu China
| | - Si‐Yu Liu
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Yong Du
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Shun Yu
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Ming‐Lie Yang
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Guo‐Zhong Lv
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| |
Collapse
|
31
|
Yoshida GJ, Azuma A, Miura Y, Orimo A. Activated Fibroblast Program Orchestrates Tumor Initiation and Progression; Molecular Mechanisms and the Associated Therapeutic Strategies. Int J Mol Sci 2019; 20:ijms20092256. [PMID: 31067787 PMCID: PMC6539414 DOI: 10.3390/ijms20092256] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023] Open
Abstract
: Neoplastic epithelial cells coexist in carcinomas with various non-neoplastic stromal cells, together creating the tumor microenvironment. There is a growing interest in the cross-talk between tumor cells and stromal fibroblasts referred to as carcinoma-associated fibroblasts (CAFs), which are frequently present in human carcinomas. CAF populations extracted from different human carcinomas have been shown to possess the ability to influence the hallmarks of cancer. Indeed, several mechanisms underlying CAF-promoted tumorigenesis are elucidated. Activated fibroblasts in CAFs are characterized as alpha-smooth muscle actin-positive myofibroblasts and actin-negative fibroblasts, both of which are competent to support tumor growth and progression. There are, however, heterogeneous CAF populations presumably due to the diverse sources of their progenitors in the tumor-associated stroma. Thus, molecular markers allowing identification of bona fide CAF populations with tumor-promoting traits remain under investigation. CAFs and myofibroblasts in wound healing and fibrosis share biological properties and support epithelial cell growth, not only by remodeling the extracellular matrix, but also by producing numerous growth factors and inflammatory cytokines. Notably, accumulating evidence strongly suggests that anti-fibrosis agents suppress tumor development and progression. In this review, we highlight important tumor-promoting roles of CAFs based on their analogies with wound-derived myofibroblasts and discuss the potential therapeutic strategy targeting CAFs.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Arata Azuma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 1138603, Japan.
| | - Yukiko Miura
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 1138603, Japan.
| | - Akira Orimo
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
32
|
Arakawa N, Utsumi D, Takahashi K, Matsumoto-Oda A, Nyachieo A, Chai D, Jillani N, Imai H, Satta Y, Terai Y. Expression Changes of Structural Protein Genes May Be Related to Adaptive Skin Characteristics Specific to Humans. Genome Biol Evol 2019; 11:613-628. [PMID: 30657921 PMCID: PMC6402313 DOI: 10.1093/gbe/evz007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2019] [Indexed: 02/07/2023] Open
Abstract
Human skin is morphologically and physiologically different from the skin of other primates. However, the genetic causes underlying human-specific skin characteristics remain unclear. Here, we quantitatively demonstrate that the epidermis and dermis of human skin are significantly thicker than those of three Old World monkey species. In addition, we indicate that the topography of the epidermal basement membrane zone shows a rete ridge in humans but is flat in the Old World monkey species examined. Subsequently, we comprehensively compared gene expression levels between human and nonhuman great ape skin using next-generation cDNA sequencing (RNA-Seq). We identified four structural protein genes associated with the epidermal basement membrane zone or elastic fibers in the dermis (COL18A1, LAMB2, CD151, and BGN) that were expressed significantly greater in humans than in nonhuman great apes, suggesting that these differences may be related to the rete ridge and rich elastic fibers present in human skin. The rete ridge may enhance the strength of adhesion between the epidermis and dermis in skin. This ridge, along with a thick epidermis and rich elastic fibers might contribute to the physical strength of human skin with a low amount of hair. To estimate transcriptional regulatory regions for COL18A1, LAMB2, CD151, and BGN, we examined conserved noncoding regions with histone modifications that can activate transcription in skin cells. Human-specific substitutions in these regions, especially those located in binding sites of transcription factors which function in skin, may alter the gene expression patterns and give rise to the human-specific adaptive skin characteristics.
Collapse
Affiliation(s)
- Nami Arakawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Daisuke Utsumi
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Kenzo Takahashi
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Akiko Matsumoto-Oda
- Graduate School of Tourism Sciences, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Atunga Nyachieo
- Institute of Primate Research, National Museum of Kenya, Karen, Nairobi, Kenya
| | - Daniel Chai
- Institute of Primate Research, National Museum of Kenya, Karen, Nairobi, Kenya
| | - Ngalla Jillani
- Institute of Primate Research, National Museum of Kenya, Karen, Nairobi, Kenya
| | - Hiroo Imai
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| |
Collapse
|
33
|
Jessen KR, Arthur-Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 2019; 67:421-437. [PMID: 30632639 DOI: 10.1002/glia.23532] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Schwann cells respond to nerve injury by cellular reprogramming that generates cells specialized for promoting regeneration and repair. These repair cells clear redundant myelin, attract macrophages, support survival of damaged neurons, encourage axonal growth, and guide axons back to their targets. There are interesting parallels between this response and that found in other tissues. At the cellular level, many other tissues also react to injury by cellular reprogramming, generating cells specialized to promote tissue homeostasis and repair. And at the molecular level, a common feature possessed by Schwann cells and many other cells is the injury-induced activation of genes associated with epithelial-mesenchymal transitions and stemness, differentiation states that are linked to cellular plasticity and that help injury-induced tissue remodeling. The number of signaling systems regulating Schwann cell plasticity is rapidly increasing. Importantly, this includes mechanisms that are crucial for the generation of functional repair Schwann cells and nerve regeneration, although they have no or a minor role elsewhere in the Schwann cell lineage. This encourages the view that selective tools can be developed to control these particular cells, amplify their repair supportive functions and prevent their deterioration. In this review, we discuss the emerging similarities between the injury response seen in nerves and in other tissues and survey the transcription factors, epigenetic mechanisms, and signaling cascades that control repair Schwann cells, with emphasis on systems that selectively regulate the Schwann cell injury response.
Collapse
Affiliation(s)
- Kristjan R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Epithelial to mesenchymal transition is mediated by both TGF-β canonical and non-canonical signaling during axolotl limb regeneration. Sci Rep 2019; 9:1144. [PMID: 30718780 PMCID: PMC6362101 DOI: 10.1038/s41598-018-38171-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/20/2018] [Indexed: 01/19/2023] Open
Abstract
Axolotls have the amazing ability to regenerate. When compared to humans, axolotls display a very fast wound closure, no scarring and are capable to replace lost appendages perfectly. Understanding the signaling mechanism leading to this perfect healing is a key step to help develop regenerative treatments for humans. In this paper, we studied cellular pathways leading to axolotl limb regeneration. We focus on the wound closure phase where keratinocytes migrate to close the lesion site and how epithelial to mesenchymal transitions are involved in this process. We observe a correlation between wound closure and EMT marker expression. Functional analyses using pharmacological inhibitors showed that the TGF-β/SMAD (canonical) and the TGF-β/p38/JNK (non-canonical) pathways play a role in the rate to which the keratinocytes can migrate. When we treat the animals with a combination of inhibitors blocking both canonical and non-canonical TGF-β pathways, it greatly reduced the rate of wound closure and had significant effects on certain known EMT genes.
Collapse
|
35
|
Abstract
The transition of epithelial cells into a mesenchymal state (epithelial-to-mesenchymal transition or EMT) is a highly dynamic process implicated in various biological processes. During EMT, cells do not necessarily exist in 'pure' epithelial or mesenchymal states. There are cells with mixed (or hybrid) features of the two, which are termed as the intermediate cell states (ICSs). While the exact functions of ICS remain elusive, together with EMT it appears to play important roles in embryogenesis, tissue development, and pathological processes such as cancer metastasis. Recent single cell experiments and advanced mathematical modeling have improved our capability in identifying ICS and provided a better understanding of ICS in development and disease. Here, we review the recent findings related to the ICS in/or EMT and highlight the challenges in the identification and functional characterization of ICS.
Collapse
Affiliation(s)
- Yutong Sha
- Department of Mathematics, University of California, Irvine, CA 92697, United States of America
- Co-first authors
| | - Daniel Haensel
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, United States of America
- Co-first authors
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, United States of America
| | - Huijing Du
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, United States of America
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA 92697, United States of America
- Department of Development and Cell Biology, University of California, Irvine, CA 92697, United States of America
| |
Collapse
|
36
|
Non-redundant functions of EMT transcription factors. Nat Cell Biol 2019; 21:102-112. [PMID: 30602760 DOI: 10.1038/s41556-018-0196-y] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial embryonic programme that is executed by various EMT transcription factors (EMT-TFs) and is aberrantly activated in cancer and other diseases. However, the causal role of EMT and EMT-TFs in different disease processes, especially cancer and metastasis, continues to be debated. In this Review, we identify and describe specific, non-redundant functions of the different EMT-TFs and discuss the reasons that may underlie disputes about EMT in cancer.
Collapse
|
37
|
Haensel D, Sun P, MacLean AL, Ma X, Zhou Y, Stemmler MP, Brabletz S, Berx G, Plikus MV, Nie Q, Brabletz T, Dai X. An Ovol2-Zeb1 transcriptional circuit regulates epithelial directional migration and proliferation. EMBO Rep 2018; 20:embr.201846273. [PMID: 30413481 DOI: 10.15252/embr.201846273] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 01/06/2023] Open
Abstract
Directional migration is inherently important for epithelial tissue regeneration and repair, but how it is precisely controlled and coordinated with cell proliferation is unclear. Here, we report that Ovol2, a transcriptional repressor that inhibits epithelial-to-mesenchymal transition (EMT), plays a crucial role in adult skin epithelial regeneration and repair. Ovol2-deficient mice show compromised wound healing characterized by aberrant epidermal cell migration and proliferation, as well as delayed anagen progression characterized by defects in hair follicle matrix cell proliferation and subsequent differentiation. Epidermal keratinocytes and bulge hair follicle stem cells (Bu-HFSCs) lacking Ovol2 fail to expand in culture and display molecular alterations consistent with enhanced EMT and reduced proliferation. Live imaging of wound explants and Bu-HFSCs reveals increased migration speed but reduced directionality, and post-mitotic cell cycle arrest. Remarkably, simultaneous deletion of Zeb1 encoding an EMT-promoting factor restores directional migration to Ovol2-deficient Bu-HFSCs. Taken together, our findings highlight the important function of an Ovol2-Zeb1 EMT-regulatory circuit in controlling the directional migration of epithelial stem and progenitor cells to facilitate adult skin epithelial regeneration and repair.
Collapse
Affiliation(s)
- Daniel Haensel
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Adam L MacLean
- Department of Mathematics, University of California, Irvine, CA, USA
| | - Xianghui Ma
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Yuan Zhou
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Marc P Stemmler
- Department of Experimental Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Geert Berx
- Molecular and Cellular Oncology Lab, Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, USA.,Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Thomas Brabletz
- Department of Experimental Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
38
|
Gnerlich JL, Ding X, Joyce C, Turner K, Johnson CD, Chen H, Abood GJ, Pappas SG, Aranha GV. Increased SOX9 Expression in Premalignant and Malignant Pancreatic Neoplasms. Ann Surg Oncol 2018; 26:628-634. [PMID: 30357576 DOI: 10.1245/s10434-018-6925-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND SOX9, a progenitor cell marker, is important for pancreatic ductal development. Our goal was to examine SOX9 expression differences in intraductal papillary mucinous neoplasms (IPMNs) and ductal adenocarcinoma (PDAC) compared with benign pancreatic duct (BP). METHODS SOX9 expression was evaluated by immunohistochemistry performed on 93 specimens: 37 BP, 24 low grade (LG) IPMN, 12 high grade (HG) IPMN, and 20 PDAC. A linear mixed-effects model was used to compare the percentage of cells expressing SOX9 by specimen type. A separate linear mixed-effects model evaluated differences in SOX9 expression by staining intensity in pancreatic epithelial cells. RESULTS Nuclear SOX9 expression was detected in the epithelial cells of 98% HG IPMN, 93% LG IPMN, 83% PDAC, and 60% BP. Compared with BP, SOX9 was expressed from a significantly greater percentage of cells in LG IMPN, HG IMPN, and PDAC (p < 0.001 for each). BP and PDAC showed greater variability in SOX9 expression in epithelial cells compared with IPMNs which showed strong, homogenous SOX9 expression in almost all cells. Compared with BP, both LG and HG IPMN showed significantly greater SOX9 expression (p < 0.001 for each), but there was no significant difference in SOX9 expression between LG and HG IPMN (p > 0.05). PDAC had significantly higher expression of SOX9 compared with BP but significantly lower SOX9 expression compared with LG or HG IPMN (p < 0.001 for each). CONCLUSIONS IPMNs demonstrated the highest expression levels of SOX9. SOX9 expression in BP and PDAC demonstrated much more heterogeneity compared with the strong, uniform expression in IPMN.
Collapse
Affiliation(s)
| | - Xianzhong Ding
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Cara Joyce
- Department of Public Health Sciences, Loyola University Medical Center, Maywood, IL, USA
| | - Kevin Turner
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
| | | | - Haiyan Chen
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Gerard J Abood
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Samuel G Pappas
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Gerard V Aranha
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
39
|
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2018; 194:161-184. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy 'metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state(s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jason A Somarelli
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Maya Sheth
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Adrian Biddle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Andrew J Armstrong
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Sharmila A Bapat
- National Center for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| |
Collapse
|
40
|
Srivastava K, Pickard A, Craig SG, Quinn GP, Lambe SM, James JA, McDade SS, McCance DJ. ΔNp63γ/SRC/Slug Signaling Axis Promotes Epithelial-to-Mesenchymal Transition in Squamous Cancers. Clin Cancer Res 2018; 24:3917-3927. [PMID: 29739791 PMCID: PMC6098695 DOI: 10.1158/1078-0432.ccr-17-3775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/28/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
Purpose: To investigate the regulation of epithelial-to-mesenchymal transition (EMT) in head and neck squamous cell carcinoma (HNSCC) and its importance in tumor invasion.Experimental Design: We use a three-dimensional invasive organotypic raft culture model of human foreskin keratinocytes expressing the E6/E7 genes of the human papilloma virus-16, coupled with bioinformatic and IHC analysis of patient samples to investigate the role played by EMT in invasion and identify effectors and upstream regulatory pathways.Results: We identify SNAI2 (Slug) as a critical effector of EMT-activated downstream of TP63 overexpression in HNSCC. Splice-form-specific depletion and rescue experiments further identify the ΔNp63γ isoform as both necessary and sufficient to activate the SRC signaling axis and SNAI2-mediated EMT and invasion. Moreover, elevated SRC levels are associated with poor outcome in patients with HNSCC in The Cancer Genome Atlas dataset. Importantly, the effects on EMT and invasions and SNAI2 expression can be reversed by genetic or pharmacologic inhibition of SRC.Conclusions: Overexpression of ΔNp63γ modulates cell invasion by inducing targetable SRC-Slug-evoked EMT in HNSCC, which can be reversed by inhibitors of the SRC signaling. Clin Cancer Res; 24(16); 3917-27. ©2018 AACR.
Collapse
Affiliation(s)
- Kirtiman Srivastava
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom.
| | - Adam Pickard
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
- The Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Stephanie G Craig
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Gerard P Quinn
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Shauna M Lambe
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Jacqueline A James
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Simon S McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom.
| | - Dennis J McCance
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
41
|
Redfern AD, Spalding LJ, Thompson EW. The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome. Clin Exp Metastasis 2018; 35:285-308. [PMID: 29948647 DOI: 10.1007/s10585-018-9906-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Epithelial mesenchymal transition (EMT) describes the shift of cells from an epithelial form to a contact independent, migratory, mesenchymal form. In cancer the change is linked to invasion and metastasis. Tumour conditions, including hypoxia, acidosis and a range of treatments can trigger EMT, which is implicated in the subsequent development of resistance to those same treatments. Consequently, the degree to which EMT occurs may underpin the entire course of tumour progression and treatment response in a patient. In this review we look past the protective effect of EMT against the initial treatment, to the role of the mesenchymal state, once triggered, in promoting disease growth, spread and future treatment insensitivity. In patients a correlation was found between the propensity of a treatment to induce EMT and failure of that treatment to provide a survival benefit, implicating EMT induction in accelerated tumour progression after treatment cessation. Looking to the mechanisms driving this detrimental effect; increased proliferation, suppressed apoptosis, stem cell induction, augmented angiogenesis, enhanced metastatic dissemination, and immune tolerance, can all result from treatment-induced EMT and could worsen outcome. Evidence also suggests EMT induction with earlier therapies attenuates benefits of later treatments. Looking beyond epithelial tumours, de-differentiation also has therapy-attenuating effects and reversal thereof may yield similar rewards. A range of potential therapies are in development that may address the diverse mechanisms and molecular control systems involved in EMT-induced accelerated progression. Considering the broad reaching effects of mesenchymal shift identified, successful deployment of such treatments could substantially improve patient outcomes.
Collapse
Affiliation(s)
- Andrew D Redfern
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia.
| | - Lisa J Spalding
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia.,Department of Surgery, University of Melbourne, Melbourne, Australia
| |
Collapse
|
42
|
Huo J, Sun S, Geng Z, Sheng W, Chen R, Ma K, Sun X, Fu X. Bone Marrow-Derived Mesenchymal Stem Cells Promoted Cutaneous Wound Healing by Regulating Keratinocyte Migration via β2-Adrenergic Receptor Signaling. Mol Pharm 2018; 15:2513-2527. [PMID: 29757659 DOI: 10.1021/acs.molpharmaceut.7b01138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiahui Huo
- Tianjin Medical University, No. 22, Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Affiliated Hospital to the Chinese PLA General Hospital, 51 Fucheng Road, Beijing 100048, P.R. China
| | - Sujing Sun
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Affiliated Hospital to the Chinese PLA General Hospital, 51 Fucheng Road, Beijing 100048, P.R. China
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, P.R. China
| | - Zhijun Geng
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Affiliated Hospital to the Chinese PLA General Hospital, 51 Fucheng Road, Beijing 100048, P.R. China
| | - Wei Sheng
- Wound Care Center, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, P.R. China
| | - Runkai Chen
- Tianjin Medical University, No. 22, Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Affiliated Hospital to the Chinese PLA General Hospital, 51 Fucheng Road, Beijing 100048, P.R. China
| | - Kui Ma
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Affiliated Hospital to the Chinese PLA General Hospital, 51 Fucheng Road, Beijing 100048, P.R. China
| | - Xiaoyan Sun
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, P.R. China
| | - Xiaobing Fu
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Affiliated Hospital to the Chinese PLA General Hospital, 51 Fucheng Road, Beijing 100048, P.R. China
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, P.R. China
| |
Collapse
|
43
|
Hatta M, Miyake Y, Uchida K, Yamazaki J. Keratin 13 gene is epigenetically suppressed during transforming growth factor-β1-induced epithelial-mesenchymal transition in a human keratinocyte cell line. Biochem Biophys Res Commun 2018; 496:381-386. [PMID: 29326042 DOI: 10.1016/j.bbrc.2018.01.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/07/2018] [Indexed: 02/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a biological event in which epithelial cells lose their polarity and cell-cell adhesions and concomitantly acquire mesenchymal traits, and is thought to play an important role in pathological processes such as wound healing and cancer progression. In this study, we evaluated transforming growth factor (TGF)-β1-treated human keratinocyte HaCaT cells as an in vitro model of EMT. HaCaT cells were changed into an elongated fibroblast-like morphology, which is indicative of EMT in response to TGF-β1. Phalloidin staining demonstrated the formation of actin stress fibers in TGF-β1-treated cells. Quantitative RT-PCR analysis revealed that TGF-β1 increased the mRNA levels of EMT transcription factors (SNAI2, TWIST1, and ZEB1) and mesenchymal markers (CDH2, VIM, and FN1), while it decreased the transcripts of epithelial phenotypic genes (CLDN1, OCLN, KRT5, KRT15, KRT13, and TGM1). Furthermore, we found that KRT13 was drastically suppressed through the reduction of RNA polymerase II occupancy of its promoter, which was accompanied by a decrease in active histone marks (H3K4me3 and H3K27ac) and an increase in a repressive mark (H3K27me3) during EMT. These findings indicate that the TGF-β1-induced EMT program regulates a subset of epithelial and mesenchymal marker genes, and that KRT13 is transcriptionally suppressed through the modulation of the chromatin state at the KRT13 promoter in HaCaT cells.
Collapse
Affiliation(s)
- Mitsutoki Hatta
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.
| | - Yuki Miyake
- Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Kunitoshi Uchida
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Jun Yamazaki
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
44
|
Ozone oil promotes wound healing by increasing the migration of fibroblasts via PI3K/Akt/mTOR signaling pathway. Biosci Rep 2017; 37:BSR20170658. [PMID: 28864782 PMCID: PMC5678031 DOI: 10.1042/bsr20170658] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
Skin injury affects millions of people via the uncontrolled inflammation and infection. Many cellular components including fibroblasts and signaling pathways such as transforming growth factor-β (TGF-β) were activated to facilitate the wound healing to repair injured tissues. C57BL/6 female mice were divided into control and ozone oil treated groups. Excisional wounds were made on the dorsal skin and the fibroblasts were isolated from granulation tissues. The skin injured mouse model revealed that ozone oil could significantly decrease the wound area and accelerate wound healing compared with control group. QPCR and Western blotting assays showed that ozone oil up-regulated collagen I, α-SMA, and TGF-β1 mRNA and protein levels in fibroblasts. Wound healing assay demonstrated that ozone oil could increase the migration of fibroblasts. Western blotting assay demonstrated that ozone oil increased the epithelial–mesenchymal transition (EMT) process in fibroblasts via up-regulating fibronectin, vimentin, N-cadherin, MMP-2, MMP-9, insulin-like growth factor binding protein (IGFBP)-3, IGFBP5, and IGFBP6, and decreasing epithelial protein E-cadherin and cellular senescence marker p16 expression. Mechanistically, Western blotting assay revealed that ozone oil increased the phosphorylation of PI3K, Akt, and mTOR to regulate the EMT process, while inhibition of PI3K reversed this effect of ozone oil. At last, the results from Cytometric Bead Array (CBA) demonstrated ozone oil significantly decreased the inflammation in fibroblasts. Our results demonstrated that ozone oil facilitated the wound healing via increasing fibroblast migration and EMT process via PI3K/Akt/mTOR signaling pathway in vivo and in vitro. The cellular and molecular mechanisms we found here may provide new therapeutic targets for the treatment of skin injury.
Collapse
|
45
|
Haensel D, Dai X. Epithelial-to-mesenchymal transition in cutaneous wound healing: Where we are and where we are heading. Dev Dyn 2017; 247:473-480. [PMID: 28795450 DOI: 10.1002/dvdy.24561] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/15/2017] [Accepted: 07/31/2017] [Indexed: 12/26/2022] Open
Abstract
Cutaneous wound healing occurs in distinct yet overlapping steps with the end goal of reforming a stratified epithelium to restore epidermal barrier function. A key component of this process is re-epithelialization, which involves the proliferation and migration of epidermal keratinocytes surrounding the wound. This spatiotemporally controlled process resembles aspects of the epithelial-to-mesenchymal transition (EMT) process and is thus proposed to involve a partial EMT. Here, we review current literature on the cellular and molecular changes that occur during, and the known or potential regulatory factors of cutaneous wound re-epithelialization and EMT to highlight their similarities and differences. We also discuss possible future directions toward a better understanding of the underlying regulatory mechanisms with implications for developing new therapeutics to improve wound repair in humans. Developmental Dynamics 247:473-480, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Haensel
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
| |
Collapse
|
46
|
Cheng F, Eriksson JE. Intermediate Filaments and the Regulation of Cell Motility during Regeneration and Wound Healing. Cold Spring Harb Perspect Biol 2017; 9:9/9/a022046. [PMID: 28864602 DOI: 10.1101/cshperspect.a022046] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SUMMARYIntermediate filaments (IFs) comprise a diverse group of flexible cytoskeletal structures, the assembly, dynamics, and functions of which are regulated by posttranslational modifications. Characteristically, the expression of IF proteins is specific for tissues, differentiation stages, cell types, and functional contexts. Recent research has rapidly expanded the knowledge of IF protein functions. From being regarded as primarily structural proteins, it is now well established that IFs act as powerful modulators of cell motility and migration, playing crucial roles in wound healing and tissue regeneration, as well as inflammatory and immune responses. Although many of these IF-associated functions are essential for tissue repair, the involvement of IF proteins has been established in many additional facets of tissue healing and regeneration. Here, we review the recent progress in understanding the multiple functions of cytoplasmic IFs that relate to cell motility in the context of wound healing, taking examples from studies on keratin, vimentin, and nestin. Wound healing and regeneration include orchestration of a broad range of cellular processes, including regulation of cell attachment and migration, proliferation, differentiation, immune responses, angiogenesis, and remodeling of the extracellular matrix. In this respect, IF proteins now emerge as multifactorial and tissue-specific integrators of tissue regeneration, thereby acting as essential guardian biopolymers at the interface between health and disease, the failing of which contributes to a diverse range of pathologies.
Collapse
Affiliation(s)
- Fang Cheng
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.,Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| | - John E Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.,Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| |
Collapse
|
47
|
Mobley RJ, Abell AN. Controlling Epithelial to Mesenchymal Transition through Acetylation of Histone H2BK5. JOURNAL OF NATURE AND SCIENCE 2017; 3:e432. [PMID: 28936481 PMCID: PMC5604895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Large-scale epigenetic changes take place when epithelial cells with cell-cell adhesion and apical-basal polarity transition into invasive, individual, mesenchymal cells through a process known as epithelial to mesenchymal transition (EMT). Importantly, cancers with stem cell properties disseminate and form distant metastases by reactivating the developmental EMT program. Recent studies have demonstrated that the epigenetic histone modification, H2BK5 acetylation (H2BK5Ac), is important in the regulation of EMT. For example, in trophoblast stem (TS) cells, H2BK5Ac promotes the expression of genes important to the maintenance of an epithelial phenotype. This finding led to the discovery that TS cells and stem-like claudin-low breast cancer cells share similar H2BK5Ac-regulated gene expression, linking developmental and cancer cell EMT. An improved understanding of the role of H2BK5Ac in developmental EMT and stemness will further our understanding of epigenetics in EMT-related pathologies. Here, we examine the binders and regulators of H2BK5Ac and discuss the roles of H2BK5Ac in stemness and EMT.
Collapse
Affiliation(s)
- Robert J. Mobley
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Amy N. Abell
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
48
|
IL-36γ Induced by the TLR3-SLUG-VDR Axis Promotes Wound Healing via REG3A. J Invest Dermatol 2017; 137:2620-2629. [PMID: 28774595 DOI: 10.1016/j.jid.2017.07.820] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/02/2017] [Accepted: 07/09/2017] [Indexed: 01/06/2023]
Abstract
IL-36 family members are highly expressed in hyperproliferative keratinocytes and play an important role in the pathogenesis of skin diseases such as psoriasis. However, whether and how IL-36 cytokines are induced to promote wound healing remains unknown. Here we showed that skin injury increased the expression of IL-36γ to promote wound healing. Mechanistically, the expression of IL-36γ was induced by RNAs from damaged cells via the activation of toll-like receptor 3 (TLR3) and TIR-domain-containing adapter-inducing IFN-β (TRIF) followed by the induction of a zinc finger protein SLUG to abrogate the inhibitory effect of vitamin D receptor (VDR) on the promoter of IL-36γ gene. IL-36γ acted back on keratinocytes to induce REG3A, which regulated keratinocyte proliferation and differentiation, thus promoting wound re-epithelialization. These observations show that skin injury increases IL-36γ via the activation of TLR3-SLUG-VDR axis and that IL-36γ induces REG3A to promote wound healing. These findings also provide insights into pathways contributing to wound repair.
Collapse
|
49
|
Reprogramming to developmental plasticity in cancer stem cells. Dev Biol 2017; 430:266-274. [PMID: 28774727 DOI: 10.1016/j.ydbio.2017.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/26/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022]
Abstract
During development and throughout adult life, sub-populations of cells exist that exhibit phenotypic plasticity - the ability to differentiate into multiple lineages. This behaviour is important in embryogenesis, is exhibited in a more limited context by adult stem cells, and can be re-activated in cancer cells to drive important processes underlying tumour progression. A well-studied mechanism of phenotypic plasticity is the epithelial-to-mesenchymal transition (EMT), a process which has been observed in both normal and cancerous cells. The epigenetic and metabolic modifications necessary to facilitate phenotypic plasticity are first seen in development and can be re-activated both in normal regeneration and in cancer. In cancer, the re-activation of these mechanisms enables tumour cells to acquire a cancer stem cell (CSC) phenotype with enhanced ability to survive in hostile environments, resist therapeutic interventions, and undergo metastasis. However, recent research has suggested that plasticity may also expose weaknesses in cancer cells that could be exploited for future therapeutic development. More research is needed to identify developmental mechanisms that are active in cancer, so that these may be targeted to reduce tumour growth and metastasis and overcome therapeutic resistance.
Collapse
|
50
|
|