1
|
Zimmermann T, Deues M, Garbe T, Löbmann P, Mandel K, Wintzheimer S. Nature-Inspired Regenerative Fine-Dust-Catching Coatings to Improve Air Quality. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11104-11115. [PMID: 38358915 DOI: 10.1021/acsami.3c19074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Increased particulate matter (PM) concentrations in our ambient air are the cause of various life-threatening diseases and consequently need to be reduced to nonhazardous levels. The natural PM removal capabilities of leaves inspired the development of a low-cost coating technology that exploits natural weather phenomena for its PM catching and removal processes. The herein presented coating is based on microparticle-filled silicone with optimized chemical and physical surface properties. Its surface roughness was tuned using differently sized spray-dried particles, and its surface contact angle was adjusted through silicone tensides, polar ether groups incorporated in the silicon backbone, and the used amount of spray-dried particles. In such a way, optimized silicone coatings showed in laboratory experiments improved catching abilities (>300% relative to glass surfaces), a full retention of adsorbed PM during wind events, and the formation of large PM aggregates. Upon (simulated) rain events, these coatings were regenerated, and the content of harmful PM of various sizes dispersed in water was reduced between ∼73 and 100%. Furthermore, an outdoor test over 100 days showed the functioning of the coating under real-world conditions. These regenerative coatings are readily applicable on diverse surfaces and do not require any further technical infrastructure. Thus, they present an extension of the toolbox for PM reduction technologies.
Collapse
Affiliation(s)
- Thomas Zimmermann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstrasse 1, Erlangen D91058, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, Würzburg D97082, Germany
| | - Moritz Deues
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, Würzburg D97082, Germany
| | - Tobias Garbe
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, Würzburg D97082, Germany
| | - Peer Löbmann
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, Würzburg D97082, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstrasse 1, Erlangen D91058, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, Würzburg D97082, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstrasse 1, Erlangen D91058, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, Würzburg D97082, Germany
| |
Collapse
|
2
|
Konkol D, Popiela E, Skrzypczak D, Izydorczyk G, Mikula K, Moustakas K, Opaliński S, Korczyński M, Witek-Krowiak A, Chojnacka K. Recent innovations in various methods of harmful gases conversion and its mechanism in poultry farms. ENVIRONMENTAL RESEARCH 2022; 214:113825. [PMID: 35835164 DOI: 10.1016/j.envres.2022.113825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Poultry breeding takes place in intensive, high-production systems characterized by high animal density, which is a source of harmful emission of odorous volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S) and greenhouse gases, which in turn sustain animal welfare. This study identified and examined the characteristics of chemical compounds emitted in intensive poultry farming (laying hens, broilers) and their toxicity, which led to recommending methods of deodorization. Emphasis was placed on the law relative to air purification in poultry farms. Various methods of air treatment in poultry farms have been described: the modification of animal diet to improve nutrient retention and decrease the amount of their excrement; chemical oxidation technologies (ozonation, photocatalysis, Fenton reaction); various types/brands of biofilters, bioscrubbers and membrane reactors. Numerous studies show that biofilters can reduce ammonia emissions by 51%, hydrogen sulfide by 80%, odors by 67%, while scrubbers brings down ammonia emissions by 77% and odors by 42%, and the application of UV light lowers ammonia emissions by 28%, hydrogen sulfide by 55%, odors by 69% and VOCs by 52%. The paper presents both the solutions currently used in poultry farming and those which are currently in the research and development phase and, as innovative solutions, could be implemented in the near future.
Collapse
Affiliation(s)
- Damian Konkol
- Department of Animal Nutrition and Feed Management, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630, Wrocław, Poland
| | - Ewa Popiela
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630, Wrocław, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland.
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Sebastian Opaliński
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630, Wrocław, Poland
| | - Mariusz Korczyński
- Department of Animal Nutrition and Feed Management, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630, Wrocław, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
3
|
From Photocatalysis to Photo-Electrocatalysis: An Innovative Water Remediation System for Sustainable Fish Farming. SUSTAINABILITY 2022. [DOI: 10.3390/su14159067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this study, the effects of photo-electrocatalysis (PEC) were evaluated as an innovative application of conventional photocatalysis (PC) to remediate water in a recirculating system for rainbow trout (Oncorhynchus mykiss) culture, in relation to fish welfare and health, with a multidisciplinary approach. Three tanks were employed, equipped with conventional biological filters as a control system, and three tanks equipped with the PEC purification system. The concentrations of ammonia, nitrite and nitrate ions in water were monitored, and the fish’s oxidative damage and stress response were evaluated in parallel. The water of the PEC-treated experimental group showed lower ammonia (TAN) and nitrite concentrations and higher nitrate concentration, possibly deriving from TAN oxidation through PEC, also leading to gaseous N2. Histological analysis did not reveal any pathological alteration in the gills and liver of both groups. The superoxide dismutase (sod1), glutathione reductase (GR), glutathione peroxidase (GPx1), and Tumor necrosis factor (TNFα) gene expressions were significantly higher in the control group than in the PEC-treated group, while the Heat shock protein 70 (Hsp70) expression did not show any difference in the two groups. These results indicate that the use of PEC filters has a positive effect on water quality, compared to the use of conventional biological filters, inducing a high level of welfare in O. mykiss.
Collapse
|
4
|
Mitigation of Air Pollutants by UV-A Photocatalysis in Livestock and Poultry Farming: A Mini-Review. Catalysts 2022. [DOI: 10.3390/catal12070782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ultraviolet (UV)-based photocatalysis has been the subject of numerous investigations focused on mitigating undesirable pollutants in the gas phase. Few works report on applications beyond the proof of the concept. Even less is known about the current state of the art of UV photocatalysis in the context of animal agriculture. A growing body of research published over the last 15 years has advanced the knowledge and feasibility of UV-A photocatalysis for swine and poultry farm applications. This review paper summarizes UV-A photocatalysis technology’s effectiveness in mitigating targeted air pollutants in livestock and poultry farms. Specifically, air pollutants include odor, odorous VOCs, NH3, H2S and greenhouse gases (CO2, CH4, N2O). We trace the progression of UV-A photocatalysis applications in animal farming since the mid-2000 and developments from laboratory to farm-scale trials. In addition, this review paper discusses the practical limitations and outlines the research needs for increasing the technology readiness and practical UV application in animal farming.
Collapse
|
5
|
Islam MA, Ikeguchi A, Naide T. Effectiveness of an air cleaner device in reducing aerosol numbers and airborne bacteria from an enclosed type dairy barn. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53022-53035. [PMID: 35277823 DOI: 10.1007/s11356-022-19514-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
There is growing pressure to find technically feasible and economically viable solutions in reducing emissions of pollutants from various occupational settings to minimise environmental pollution. Hence, it is essential to develop and test methods for controlling pollutants from occupational backgrounds. We have tested an air cleaner device in reducing aerosol numbers by filtration and airborne bacteria by photocatalysis from an enclosed type dairy barn. Here, we had shown a significant reduction of larger size aerosol numbers (2.0-10.0 µm) and airborne total aerobic bacteria and Staphylococcus aureus (S. aureus) and complete clearance of Escherichia coli (E. coli) in the exhaust air of the air cleaner device. A greater 8.05% and 61.56% reduction of 5.0-10.0 µm aerosol numbers and airborne E. coli, respectively, were observed in the instantly treated central air of the dairy barn. We had found an increasing trend of aerosol numbers and airborne bacteria concentrations in the central air of the dairy barn after stopping the air cleaner device. We also had observed increased bacterial load in the filter paper of the air treatment chamber of the air cleaner device with the advancement of cleaning time. These findings are essential to validate air cleanings from various types of dairy microenvironments.
Collapse
Affiliation(s)
- Md Aminul Islam
- Department of Agricultural and Environmental Engineering, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
- Department of Medicine, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Atsuo Ikeguchi
- Department of Environmental Engineering, Faculty of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, 321-8505, Japan
| | - Takanori Naide
- Earth Environmental Service Co., Ltd., 17 Kanda-konyacho, Chiyodaku, Tokyo, 101-0035, Japan
| |
Collapse
|
6
|
Mitigation of Particulate Matter and Airborne Pathogens in Swine Barn Emissions with Filtration and UV-A Photocatalysis. Catalysts 2021. [DOI: 10.3390/catal11111302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study evaluated the use of filtration and UV-A photocatalysis for the reduction of particulate matter (PM) and airborne bacterial pathogens in swine barns. Two MERV filters (8 and 15) were used to mitigate PM concentrations measured at the PM 1, PM 2.5, respirable PM, and PM 10 ranges. Filtration was also used to generate different levels of airborne pathogens to be treated by UV-A. Results show that MERV 8 and 15 filters effectively reduced PM concentrations (96–98%) in air exhausted from a swine barn (p ranged from <0.01 to 0.04). UV-A photocatalysis did not mitigate PM concentrations. UV-A photocatalysis treatment reduced measured colony-forming units (CFUs) by 15–95%. The CFU percent reduction was higher when airborne PM concentration was low. The numeric results suggested a real mitigation effect despite p-values that did not meet the usual statistical cut-off of <0.05 for significance due to the large variability of the CFU control samples. Normalization of measured airborne pathogen concentrations by smaller PM size range concentrations led to emerging significant treatment differences for CFUs. A significant decrease (~51% reduction; p < 0.02) in the concentration of viable airborne bacteria was shown for all PM below the 10 micron range.
Collapse
|
7
|
Wang YC, Han MF, Jia TP, Hu XR, Zhu HQ, Tong Z, Lin YT, Wang C, Liu DZ, Peng YZ, Wang G, Meng J, Zhai ZX, Zhang Y, Deng JG, Hsi HC. Emissions, measurement, and control of odor in livestock farms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145735. [PMID: 33640544 DOI: 10.1016/j.scitotenv.2021.145735] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Odor emissions from intensive livestock farms have attracted increased attention due to their adverse impacts on the environment and human health. Nevertheless, a systematic summary regarding the characteristics, sampling detection, and control technology for odor emissions from livestock farms is currently lacking. This paper compares the development of odor standards in different countries and summarizes the odor emission characteristics of livestock farms. Ammonia, the most common odor substance, can reach as high as 4100 ppm in the compost area. Sampling methods for point and area source odor emissions are introduced in this paper, and odor analysis methods are compared. Olfactometers, odorometers, and the triangle odor bag method are usually used to measure odor concentration. Odor control technologies are divided into three categories: physical (activated carbon adsorption, masking, and dilution diffusion), chemical (plant extract spraying, wet scrubbing, combustion, non-thermal plasma, and photocatalytic oxidation), and biological (biofiltration, biotrickling, and bioscrubbing). Each technology is elucidated, and the performance in the removal of different pollutants is summarized. The application scopes, costs, operational stability, and secondary pollution of the technologies are compared. The generation of secondary pollution and long-term operation stability are issues that should be considered in future technological development. Lastly, a case analysis for engineering application is conducted.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Meng-Fei Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ti-Pei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xu-Rui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Huai-Qun Zhu
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhen Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - De-Zhao Liu
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Yong-Zhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Gen Wang
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China
| | - Jie Meng
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China; Tianjin Sinodour Environmental Technology Co., Ltd, Tianjin 300191, China
| | - Zeng-Xiu Zhai
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China; Tianjin Sinodour Environmental Technology Co., Ltd, Tianjin 300191, China
| | - Yan Zhang
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China; Tianjin Sinodour Environmental Technology Co., Ltd, Tianjin 300191, China
| | - Ji-Guang Deng
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| |
Collapse
|
8
|
Mitigation of Odor and Gaseous Emissions from Swine Barn with UV-A and UV-C Photocatalysis. ATMOSPHERE 2021. [DOI: 10.3390/atmos12050585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
UV-A (ca. 365 nm wavelength, a.k.a. ‘black light’) photocatalysis has been investigated to comprehensively mitigate odor and selected air pollutants in the livestock environment. This study was conducted to confirm the performance of UV-A photocatalysis on the swine farm. The objectives of this research were to (1) scale-up of the UV-A photocatalysis treatment, (2) evaluate the mitigation of odorous gases from swine slurry pit, (3) test different UV sources, (4) evaluate the effect of particulate matter (PM) and (5) conduct preliminary economic analyses. We tested UV-A photocatalysis at a mobile laboratory-scale capable of treating ~0.2–0.8 m3·s−1 of barn exhaust air. The targeted gaseous emissions of barn exhaust air were significantly mitigated (p < 0.05) up to 40% reduction of measured odor; 63%, 44%, 32%, 40%, 66% and 49% reduction of dimethyl disulfide, isobutyric acid, butanoic acid, p-cresol, indole and skatole, respectively; 40% reduction of H2S; 100% reduction of O3; and 13% reduction of N2O. The PM mitigation effect was not significant. Formaldehyde levels did not change, and a 21% generation of CO2 was observed. The percent reduction of targeted gases decreased as the airborne PM increased. Simultaneous chemical and sensory analysis confirmed that UV-A treatment changed the overall nuisance odor character of swine barn emissions into weaker manure odor with ‘toothpaste and ‘mint’ notes. The smell of benzoic acid generated in UV-A treatment was likely one of the compounds responsible for the less-offensive overall odor character of the UV-treated emissions. Results are needed to inform the design of a farm-scale trial, where the interior barn walls can be treated with the photocatalyst.
Collapse
|
9
|
Lee M, Koziel JA, Murphy W, Jenks WS, Chen B, Li P, Banik C. Evaluation of TiO 2 Based Photocatalytic Treatment of Odor and Gaseous Emissions from Swine Manure with UV-A and UV-C. Animals (Basel) 2021; 11:ani11051289. [PMID: 33946294 PMCID: PMC8146479 DOI: 10.3390/ani11051289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Poor indoor air quality and gaseous emissions are undesirable side effects of livestock and poultry production. Gaseous emissions of odor, odorous volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), and greenhouse gases (GHGs) have detrimental effects on the quality of life in rural communities, the environment, and climate. Proven mitigation technologies are needed to increase the sustainability of animal agriculture. This study’s objective was to evaluate the ultraviolet (UV) light treatment of odor and common air pollutant emissions from stored swine manure on a pilot-scale. To our knowledge, this is the first study of this scope that was needed for scaling up technologies treating gaseous emissions of odor, odorous VOCs, NH3, H2S, ozone, and GHGs. The study bridged the knowledge gap between lab-scales and simplified treatment of model gases to the treatment of complex gaseous mixtures emitted from swine manure in fast-moving air. The manure emissions were treated in fast-moving air using a mobile lab equipped with UV-A and UV-C lights and photocatalytic surface coating. The percent reduction of targeted gases depended on the UV dose and wavelength. While generally mitigating targeted gases, some UV treatments resulted in CO2 and ozone (O3). The results proved that the UV technology was sufficiently effective in treating odorous gases, and the mobile lab was ready for farm-scale trials. The UV technology can be considered for the scaled-up treatment of emissions and air quality improvement inside livestock barns. Abstract It is essential to mitigate gaseous emissions that result from poultry and livestock production to increase industry sustainability. Odorous volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), and greenhouse gases (GHGs) have detrimental effects on the quality of life in rural communities, the environment, and climate. This study’s objective was to evaluate the photocatalytic UV treatment of gaseous emissions of odor, odorous VOCs, NH3, and other gases (GHGs, O3—sometimes considered as by-products of UV treatment) from stored swine manure on a pilot-scale. The manure emissions were treated in fast-moving air using a mobile lab equipped with UV-A and UV-C lights and TiO2-based photocatalyst. Treated gas airflow (0.25–0.76 m3∙s−1) simulates output from a small ventilation fan in a barn. Through controlling the light intensity and airflow, UV dose was tested for techno-economic analyses. The treatment effectiveness depended on the UV dose and wavelength. Under UV-A (367 nm) photocatalysis, the percent reduction of targeted gases was up to (i) 63% of odor, (ii) 51%, 51%, 53%, 67%, and 32% of acetic acid, propanoic acid, butanoic acid, p-cresol, and indole, respectively, (iii) 14% of nitrous oxide (N2O), (iv) 100% of O3, and 26% generation of CO2. Under UV-C (185 + 254 nm) photocatalysis, the percent reductions of target gases were up to (i) 54% and 47% for p-cresol and indole, respectively, (ii) 25% of N2O, (iii) 71% of CH4, and 46% and 139% generation of CO2 and O3, respectively. The results proved that the UV technology was sufficiently effective in treating odorous gases, and the mobile lab was ready for farm-scale trials. The UV technology can be considered for the scaled-up treatment of emissions and air quality improvement inside livestock barns. Results from this study are needed to inform the experimental design for future on-farm research with UV-A and UV-C.
Collapse
Affiliation(s)
- Myeongseong Lee
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA; (M.L.); (W.M.); (B.C.); (P.L.); (C.B.)
| | - Jacek A. Koziel
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA; (M.L.); (W.M.); (B.C.); (P.L.); (C.B.)
- Correspondence: ; Tel.: +1-515-294-4206
| | - Wyatt Murphy
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA; (M.L.); (W.M.); (B.C.); (P.L.); (C.B.)
| | - William S. Jenks
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA;
| | - Baitong Chen
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA; (M.L.); (W.M.); (B.C.); (P.L.); (C.B.)
| | - Peiyang Li
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA; (M.L.); (W.M.); (B.C.); (P.L.); (C.B.)
| | - Chumki Banik
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA; (M.L.); (W.M.); (B.C.); (P.L.); (C.B.)
| |
Collapse
|
10
|
Design and Testing of Mobile Laboratory for Mitigation of Gaseous Emissions from Livestock Agriculture with Photocatalysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041523. [PMID: 33562692 PMCID: PMC7915192 DOI: 10.3390/ijerph18041523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 11/29/2022]
Abstract
Livestock production systems generate nuisance odor and gaseous emissions affecting local communities and regional air quality. There are also concerns about the occupational health and safety of farmworkers. Proven mitigation technologies that are consistent with the socio-economic challenges of animal farming are needed. We have been scaling up the photocatalytic treatment of emissions from lab-scale, aiming at farm-scale readiness. In this paper, we present the design, testing, and commissioning of a mobile laboratory for on-farm research and demonstration of performance in simulated farm conditions before testing to the farm. The mobile lab is capable of treating up to 1.2 m3/s of air with titanium dioxide, TiO2-based photocatalysis, and adjustable UV-A dose based on LED lamps. We summarize the main technical requirements, constraints, approach, and performance metrics for a mobile laboratory, such as the effectiveness (measured as the percent reduction) and cost of photocatalytic treatment of air. The commissioning of all systems with standard gases resulted in ~9% and 34% reduction of ammonia (NH3) and butan-1-ol, respectively. We demonstrated the percent reduction of standard gases increased with increased light intensity and treatment time. These results show that the mobile laboratory was ready for on-farm deployment and evaluating the effectiveness of UV treatment.
Collapse
|
11
|
Lee M, Li P, Koziel JA, Ahn H, Wi J, Chen B, Meiirkhanuly Z, Banik C, Jenks WS. Pilot-Scale Testing of UV-A Light Treatment for Mitigation of NH 3, H 2S, GHGs, VOCs, Odor, and O 3 Inside the Poultry Barn. Front Chem 2020; 8:613. [PMID: 32903735 PMCID: PMC7438853 DOI: 10.3389/fchem.2020.00613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/11/2020] [Indexed: 11/14/2022] Open
Abstract
Poultry farmers are producing eggs, meat, and feathers with increased efficiency and lower carbon footprint. Technologies to address concerns about the indoor air quality inside barns and the gaseous emissions from farms to the atmosphere continue to be among industry priorities. We have been developing and scaling up a UV air treatment that has the potential to reduce odor and other gases on the farm scale. In our recent laboratory-scale study, the use of UV-A (a less toxic ultraviolet light, a.k.a. “black light”) and a special TiO2-based photocatalyst reduced concentrations of several important air pollutants (NH3, CO2, N2O, O3) without impact on H2S and CH4. Therefore, the objectives of this research were to (1) scale up the UV treatment to pilot scale, (2) evaluate the mitigation of odor and odorous volatile organic compounds (VOCs), and (3) complete preliminary economic analyses. A pilot-scale experiment was conducted under commercial poultry barn conditions to evaluate photocatalyst coatings on surfaces subjected to UV light under field conditions. In this study, the reactor was constructed to support interchangeable wall panels and installed on a poultry farm. The effects of a photocatalyst's presence (photocatalysis and photolysis), UV intensity (LED and fluorescent), and treatment time were studied in the pilot-scale experiments inside a poultry barn. The results of the pilot-scale experiments were consistent with the laboratory-scale one: the percent reduction under photocatalysis was generally higher than photolysis. In addition, the percent reduction of target gases at a high light intensity and long treatment time was higher. The percent reduction of NH3 was 5–9%. There was no impact on H2S, CH4, and CO2 under any experimental conditions. N2O and O3 concentrations were reduced at 6–12% and 87–100% by both photolysis and photocatalysis. In addition, concentrations of several VOCs responsible for livestock odor were reduced from 26 to 62% and increased with treatment time and light intensity. The odor was reduced by 18%. Photolysis treatment reduced concentrations of N2O, VOCs, and O3, only. The initial economic analysis has shown that LEDs are more efficient than fluorescent lights. Further scale-up and research at farm scale are warranted.
Collapse
Affiliation(s)
- Myeongseong Lee
- Department of Animal Biosystems Sciences, Chungnam National University, Daejeon, South Korea.,Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Peiyang Li
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Jacek A Koziel
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Heekwon Ahn
- Department of Animal Biosystems Sciences, Chungnam National University, Daejeon, South Korea.,Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Jisoo Wi
- Department of Animal Biosystems Sciences, Chungnam National University, Daejeon, South Korea.,Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Baitong Chen
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Zhanibek Meiirkhanuly
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Chumki Banik
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - William S Jenks
- Department of Chemistry, Iowa State University, Ames, IA, United States
| |
Collapse
|
12
|
Abstract
Control of gaseous emissions from livestock operations is needed to ensure compliance with environmental regulations and sustainability of the industry. The focus of this research was to mitigate livestock odor emissions with UV light. Effects of the UV dose, wavelength, TiO2 catalyst, air temperature, and relative humidity were tested at lab scale on a synthetic mixture of nine odorous volatile organic compounds (VOCs) and real poultry manure offgas. Results show that it was feasible to control odorous VOCs with both photolysis and photocatalysis (synthetic VOCs mixture) and with photocatalysis (manure offgas). The treatment effectiveness R (defined as % conversion), was proportional to the light intensity for synthetic VOCs mixtures and followed an order of UV185+254 + TiO2 > UV254 + TiO2 > UV185+254; no catalyst > UV254; no catalyst. VOC conversion R > 80% was achieved when light energy was >~60 J L−1. The use of deep UV (UV185+254) improved the R, particularly when photolysis was the primary treatment. Odor removal up to ~80% was also observed for a synthetic VOCs mixture, and actual poultry manure offgas. Scale-up studies are warranted.
Collapse
|
13
|
Effects of UV-A Light Treatment on Ammonia, Hydrogen Sulfide, Greenhouse Gases, and Ozone in Simulated Poultry Barn Conditions. ATMOSPHERE 2020. [DOI: 10.3390/atmos11030283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gaseous emissions, a side effect of livestock and poultry production, need to be mitigated to improve sustainability. Emissions of ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases (GHGs), and odorous volatile organic compounds (VOCs) have a detrimental effect on the environment, climate, and quality of life in rural communities. We are building on previous research to bring advanced oxidation technologies from the lab to the farm. To date, we have shown that ultraviolet A (UV-A) has the potential to mitigate selected odorous gases and GHGs in the context of swine production. Much less research on emissions mitigation has been conducted in the context of poultry production. Thus, the study objective was to investigate whether the UV-A can mitigate NH3, H2S, GHGs, and O3 in the simulated poultry barn environment. The effects of several variables were tested: the presence of photocatalyst, relative humidity, treatment time, and dust accumulation under two different light intensities (facilitated with fluorescent and light-emitting diode, LED, lamps). The results provide evidence that photocatalysis with TiO2 coating and UV-A light can reduce gas concentrations of NH3, CO2, N2O, and O3, without a significant effect on H2S and CH4. The particular % reduction depends on the presence of photocatalysts, relative humidity (RH), light type (intensity), treatment time, and dust accumulation on the photocatalyst surface. In the case of NH3, the reduction varied from 2.6–18.7% and was affected by RH and light intensity. The % reduction of NH3 was the highest at 12% RH and increased with treatment time and light intensity. The % reduction of NH3 decreased with the accumulation of poultry dust. The % reduction for H2S had no statistical difference under any experimental conditions. The proposed treatment of NH3 and H2S was evaluated for a potential impact on important ambient air quality parameters, the possibility of simultaneously mitigating or generating GHGs. There was no statistically significant change in CH4 concentrations under any experimental conditions. CO2 was reduced at 3.8%–4.4%. N2O and O3 concentrations were reduced by both direct photolysis and photocatalysis, with the latter having greater % reductions. As much as 6.9–12.2% of the statistically-significant mitigation of N2O was observed. The % reduction for O3 ranged from 12.4–48.4%. The results warrant scaling up to a pilot-scale where the technology could be evaluated with economic analyses.
Collapse
|
14
|
Wojtyła S, Śpiewak K, Baran T. Synthesis, characterization and activity of doped graphitic carbon nitride materials towards photocatalytic oxidation of volatile organic pollutants emitted from 3D printer. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Lied EB, Morejon CFM, Basso RLDO, Trevisan AP, Bittencourt PRS, Fronza FL. Photocatalytic degradation of H 2S in the gas-phase using a continuous flow reactor coated with TiO 2-based acrylic paint. ENVIRONMENTAL TECHNOLOGY 2019; 40:2276-2289. [PMID: 29436967 DOI: 10.1080/09593330.2018.1440010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
For the photocatalytic degradation of the hydrogen sulphide (H2S) in the gas-phase it was developed a rectangular reactor, coated with acrylic paint supported on fiber cement material. The surface formed by the paint coverage was characterized structural and morphologically by scanning electron microscopy with energy dispersive X-ray and X-ray diffraction analysis. The flow rate and the inlet concentration of H2S were evaluated as operational performance parameters of the reactor. Removal efficiencies of up to 94% were obtained at a flow rate of 2 L min-1 (residence time of 115 s) and inlet concentration of 31 ppm of H2S. In addition, the H2S degradation kinetics was modelled according to the Langmuir-Hinshelwood (L-H) model for the inlet concentrations of 8-23 ppm of H2S. The results suggest that flow rate has a more important influence on photocatalytic degradation than the inlet concentration. It is assumed that H2S has been oxidized to SO42- , a condition that led to a deactivation of the photocatalyst after 193 min of semi-continuous use.
Collapse
Affiliation(s)
- Eduardo Borges Lied
- a Department of Biological and Environmental Sciences, Federal University of Technology - Paraná , Medianeira , Brazil
- b Postgraduate Program of Chemical Engineering, West Paraná State University , Toledo , Brazil
| | | | | | - Ana Paula Trevisan
- d Postgraduate Program of Agricultural Engineering, West Paraná State University , Cascavel , Brazil
| | | | - Fábio Luiz Fronza
- a Department of Biological and Environmental Sciences, Federal University of Technology - Paraná , Medianeira , Brazil
| |
Collapse
|
16
|
Heterostructure Cu2O/(001)TiO2 Effected on Photocatalytic Degradation of Ammonia of Livestock Houses. Catalysts 2019. [DOI: 10.3390/catal9030267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this paper, a heterogeneous composite catalyst Cu2O/(001)TiO2 was prepared by the impregnation-reduction method. The crystal form, highly active facet content, morphology, optical properties, and the photogenerated electron-hole recombination rate of the as-prepared catalysts were investigated. The performance of Cu2O/(001)TiO2 was appraised by photocatalytic degradation of ammonia under sunlight and was compared with lone P25, Cu2O, and (001)TiO2 at the same reaction conditions. The results showed that 80% of the ammonia concentration (120 ± 3 ppm) was removed by Cu2O/(001)TiO2, which was a higher degradation rate than that of pure P25 (12%), Cu2O (12%), and (001)TiO2 (15%) during 120 min of reaction time. The reason may be due to the compound’s (Cu2O/(001)TiO2) highly active (001) facets content that increased by 8.2% and the band gap width decreasing by 1.02 eV. It was also found that the air flow impacts the photocatalytic degradation of ammonia. Therefore, learning how to maintain the degradation effect of Cu2O/(001)TiO2 with ammonia will be important in future practical applications.
Collapse
|
17
|
Preparation of RGO-P25 Nanocomposites for the Photocatalytic Degradation of Ammonia in Livestock Farms. Catalysts 2018. [DOI: 10.3390/catal8050189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
18
|
Koivisto AJ, Jensen ACØ, Kling KI, Kling J, Budtz HC, Koponen IK, Tuinman I, Hussein T, Jensen KA, Nørgaard A, Levin M. Particle emission rates during electrostatic spray deposition of TiO 2 nanoparticle-based photoactive coating. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:218-227. [PMID: 28780436 DOI: 10.1016/j.jhazmat.2017.07.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO2)-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m3 test chamber while measuring concentrations of 5.6nm to 31μm-size particles and volatile organic compounds (VOC), as well as particle deposition onto room surfaces and on the spray gun user hand. The particle emission and deposition rates were quantified using aerosol mass balance modelling. The geometric mean particle number emission rate was 1.9×1010s-1 and the mean mass emission rate was 381μgs-1. The respirable mass emission-rate was 65% lower than observed for the entire measured size-range. The mass emission rates were linearly scalable (±ca. 20%) to the process duration. The particle deposition rates were up to 15h-1 for <1μm-size and the deposited particles consisted of mainly TiO2, TiO2 mixed with Cl and/or Ag, TiO2 particles coated with carbon, and Ag particles with size ranging from 60nm to ca. 5μm. As expected, no significant VOC emissions were observed as a result of spraying. Finally, we provide recommendations for exposure model parameterization.
Collapse
Affiliation(s)
- Antti J Koivisto
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark.
| | - Alexander C Ø Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Kirsten I Kling
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Jens Kling
- Center for Electron Nanoscopy, Technical University of Denmark, Fysikvej 307, DK-2800 Kgs., Lyngby, Denmark
| | - Hans Christian Budtz
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Ismo K Koponen
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Ilse Tuinman
- TNO, CBRN Protection, Lange Kleiweg 137, 2288 GJ, Rijswijk, Netherlands
| | - Tareq Hussein
- The University of Jordan, Faculty of Science, Department of Physics, Amman, JO-11942 Jordan
| | - Keld A Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Asger Nørgaard
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Marcus Levin
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark; ACT. Global, Kajakvej 2, 2770, Kastrup, Denmark
| |
Collapse
|
19
|
Mitigation of Livestock Odors Using Black Light and a New Titanium Dioxide-Based Catalyst: Proof-of-Concept. ATMOSPHERE 2017. [DOI: 10.3390/atmos8060103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Costa A. Ammonia Concentrations and Emissions from Finishing Pigs Reared in Different Growing Rooms. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:255-260. [PMID: 28380565 DOI: 10.2134/jeq2016.04.0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Even with the adoption of Best Available Techniques (BAT) standards, pig producers have observed different degrees of fouling on the floor during the finishing phase. These differences depend on the excretory behavior of pigs reared in different growing facilities. Our objectives in this study were to measure ammonia (NH) concentrations and emissions from finishing pigs reared in different growing rooms and subsequently housed in identical BAT room types. The 1600 pigs used in the study were reared in growing rooms with a slatted floor and a vacuum system for manure removal (WSF) or in growing rooms with a solid floor and an outside alley and storage pit (WCF). Pigs were grouped by type of growing room and allocated to two WCF finishing rooms per group. Mean NH concentration (7.45 vs. 5.31 mg m) and degree of fouling on the floor (77 vs. 37%) were significantly greater ( < 0.001) in the WSF compared with the WCF finishing rooms. Pigs in the WCF emitted 4.63 g NH pig during the measurement period, whereas those in the WSF emitted 6.55 g NH pig. Our results indicate that, because pigs' fouling behavior is established during the growing phase, the finishing phase should be performed in a similar facility designed to maintain the NH reduction provided by BAT systems. In this study, growers housed in a WSF facility exhibited the same defecating and urinating habits when moved to the WCF facility despite the availability of an outside alley. This management choice limited the capability to lower NH concentrations and emissions, negatively affecting animal performance.
Collapse
|
21
|
Exploring the Use of Unprocessed Waste Chicken Eggshells for UV-Protective Applications. SUSTAINABILITY 2017. [DOI: 10.3390/su9020232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Summary of performance data for technologies to control gaseous, odor, and particulate emissions from livestock operations: Air management practices assessment tool (AMPAT). Data Brief 2016; 7:1413-29. [PMID: 27158660 PMCID: PMC4845084 DOI: 10.1016/j.dib.2016.03.070] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
The livestock and poultry production industry, regulatory agencies, and researchers lack a current, science-based guide and data base for evaluation of air quality mitigation technologies. Data collected from science-based review of mitigation technologies using practical, stakeholders-oriented evaluation criteria to identify knowledge gaps/needs and focuses for future research efforts on technologies and areas with the greatest impact potential is presented in the Literature Database tab on the air management practices tool (AMPAT). The AMPAT is web-based (available at www.agronext.iastate.edu/ampat) and provides an objective overview of mitigation practices best suited to address odor, gaseous, and particulate matter (PM) emissions at livestock operations. The data was compiled into Excel spreadsheets from a literature review of 265 papers was performed to (1) evaluate mitigation technologies performance for emissions of odor, volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), particulate matter (PM), and greenhouse gases (GHGs) and to (2) inform future research needs.
Collapse
|
23
|
Ming T, de Richter R, Shen S, Caillol S. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6119-38. [PMID: 26805926 DOI: 10.1007/s11356-016-6103-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/11/2016] [Indexed: 05/22/2023]
Abstract
Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite "greenhouse gas removal," to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2.
Collapse
Affiliation(s)
- Tingzhen Ming
- School of Civil Engineering and Architecture, Wuhan University of Technology, No. 122, Luoshi Road, Wuhan, 430070, China
| | - Renaud de Richter
- Institut Charles Gerhardt Montpellier - UMR5253 CNRS-UM2 - ENSCM-UM1 - Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296, Montpellier Cedex 5, France.
| | - Sheng Shen
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Sylvain Caillol
- Institut Charles Gerhardt Montpellier - UMR5253 CNRS-UM2 - ENSCM-UM1 - Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296, Montpellier Cedex 5, France
| |
Collapse
|
24
|
Gallus M, Ciuraru R, Mothes F, Akylas V, Barmpas F, Beeldens A, Bernard F, Boonen E, Boréave A, Cazaunau M, Charbonnel N, Chen H, Daële V, Dupart Y, Gaimoz C, Grosselin B, Herrmann H, Ifang S, Kurtenbach R, Maille M, Marjanovic I, Michoud V, Mellouki A, Miet K, Moussiopoulos N, Poulain L, Zapf P, George C, Doussin JF, Kleffmann J. Photocatalytic abatement results from a model street canyon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18185-18196. [PMID: 26178827 DOI: 10.1007/s11356-015-4926-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
During the European Life+ project PhotoPAQ (Demonstration of Photocatalytic remediation Processes on Air Quality), photocatalytic remediation of nitrogen oxides (NOx), ozone (O3), volatile organic compounds (VOCs), and airborne particles on photocatalytic cementitious coating materials was studied in an artificial street canyon setup by comparing with a colocated nonactive reference canyon of the same dimension (5 × 5 × 53 m). Although the photocatalytic material showed reasonably high activity in laboratory studies, no significant reduction of NOx, O3, and VOCs and no impact on particle mass, size distribution, and chemical composition were observed in the field campaign. When comparing nighttime and daytime correlation plots of the two canyons, an average upper limit NOx remediation of ≤2% was derived. This result is consistent only with three recent field studies on photocatalytic NOx remediation in the urban atmosphere, whereas much higher reductions were obtained in most other field investigations. Reasons for the controversial results are discussed, and a more consistent picture of the quantitative remediation is obtained after extrapolation of the results from the various field campaigns to realistic main urban street canyon conditions.
Collapse
Affiliation(s)
- M Gallus
- Physikalische und Theoretische Chemie/FB C, Bergische Universität Wuppertal (BUW), Gaußstr. 20, 42119, Wuppertal, Germany
| | - R Ciuraru
- Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France
- University of Bordeaux, EPOC UMR 5805, F-33405, Talence cedex, France
- CNRS, EPOC UMR 5805, F-33405, Talence cedex, France
| | - F Mothes
- Leibniz-Institut für Troposphärenforschung e.V. (TROPOS), Atmospheric Chemistry Department, Permoserstraße 15, 04318, Leipzig, Germany
| | - V Akylas
- Laboratory of Heat Transfer and Environmental Engineering (LHTEE), Aristotle University of Thessaloniki, Box 483, GR 54124, Thessaloniki, Greece
| | - F Barmpas
- Laboratory of Heat Transfer and Environmental Engineering (LHTEE), Aristotle University of Thessaloniki, Box 483, GR 54124, Thessaloniki, Greece
| | - A Beeldens
- Belgian Road Research Centre (BRRC), Woluwedal 42-1200, Brussels, Belgium
| | - F Bernard
- Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France
| | - E Boonen
- Belgian Road Research Centre (BRRC), Woluwedal 42-1200, Brussels, Belgium
| | - A Boréave
- Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France
| | - M Cazaunau
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique, Orléans, France
| | - N Charbonnel
- Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France
| | - H Chen
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique, Orléans, France
| | - V Daële
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique, Orléans, France
| | - Y Dupart
- Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France
| | - C Gaimoz
- LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, France
| | - B Grosselin
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique, Orléans, France
| | - H Herrmann
- Leibniz-Institut für Troposphärenforschung e.V. (TROPOS), Atmospheric Chemistry Department, Permoserstraße 15, 04318, Leipzig, Germany
| | - S Ifang
- Physikalische und Theoretische Chemie/FB C, Bergische Universität Wuppertal (BUW), Gaußstr. 20, 42119, Wuppertal, Germany
| | - R Kurtenbach
- Physikalische und Theoretische Chemie/FB C, Bergische Universität Wuppertal (BUW), Gaußstr. 20, 42119, Wuppertal, Germany
| | - M Maille
- LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, France
| | - I Marjanovic
- LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, France
| | - V Michoud
- LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, France
| | - A Mellouki
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique, Orléans, France
| | - K Miet
- LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, France
| | - N Moussiopoulos
- Laboratory of Heat Transfer and Environmental Engineering (LHTEE), Aristotle University of Thessaloniki, Box 483, GR 54124, Thessaloniki, Greece
| | - L Poulain
- Leibniz-Institut für Troposphärenforschung e.V. (TROPOS), Atmospheric Chemistry Department, Permoserstraße 15, 04318, Leipzig, Germany
| | - P Zapf
- LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, France
| | - C George
- Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France
| | - J F Doussin
- LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, France
| | - J Kleffmann
- Physikalische und Theoretische Chemie/FB C, Bergische Universität Wuppertal (BUW), Gaußstr. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
25
|
Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal 2013; 7 Suppl 2:220-34. [PMID: 23739465 DOI: 10.1017/s1751731113000876] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although livestock production accounts for a sizeable share of global greenhouse gas emissions, numerous technical options have been identified to mitigate these emissions. In this review, a subset of these options, which have proven to be effective, are discussed. These include measures to reduce CH4 emissions from enteric fermentation by ruminants, the largest single emission source from the global livestock sector, and for reducing CH4 and N2O emissions from manure. A unique feature of this review is the high level of attention given to interactions between mitigation options and productivity. Among the feed supplement options for lowering enteric emissions, dietary lipids, nitrates and ionophores are identified as the most effective. Forage quality, feed processing and precision feeding have the best prospects among the various available feed and feed management measures. With regard to manure, dietary measures that reduce the amount of N excreted (e.g. better matching of dietary protein to animal needs), shift N excretion from urine to faeces (e.g. tannin inclusion at low levels) and reduce the amount of fermentable organic matter excreted are recommended. Among the many 'end-of-pipe' measures available for manure management, approaches that capture and/or process CH4 emissions during storage (e.g. anaerobic digestion, biofiltration, composting), as well as subsurface injection of manure, are among the most encouraging options flagged in this section of the review. The importance of a multiple gas perspective is critical when assessing mitigation potentials, because most of the options reviewed show strong interactions among sources of greenhouse gas (GHG) emissions. The paper reviews current knowledge on potential pollution swapping, whereby the reduction of one GHG or emission source leads to unintended increases in another.
Collapse
|
26
|
Montes F, Meinen R, Dell C, Rotz A, Hristov AN, Oh J, Waghorn G, Gerber PJ, Henderson B, Makkar HPS, Dijkstra J. SPECIAL TOPICS — Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options1. J Anim Sci 2013; 91:5070-94. [DOI: 10.2527/jas.2013-6584] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- F. Montes
- Plant Science Department, Pennsylvania State University, University Park 16802
| | - R. Meinen
- Animal Science Department, Pennsylvania State University, University Park 16802
| | - C. Dell
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA 16802
| | - A. Rotz
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA 16802
| | - A. N. Hristov
- Department of Animal Science, Pennsylvania State University, University Park 16802
| | - J. Oh
- Department of Animal Science, Pennsylvania State University, University Park 16802
| | | | - P. J. Gerber
- Agriculture and Consumer protection Department, Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - B. Henderson
- Agriculture and Consumer protection Department, Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - H. P. S. Makkar
- Agriculture and Consumer protection Department, Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - J. Dijkstra
- Wageningen University, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
27
|
Ma JZ, Liu YH, Bao Y, Liu JL, Zhang J. Research advances in polymer emulsion based on "core-shell" structure particle design. Adv Colloid Interface Sci 2013; 197-198:118-31. [PMID: 23726300 DOI: 10.1016/j.cis.2013.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
In recent years, quite many studies on polymer emulsions with unique core-shell structure have emerged at the frontier between material chemistry and many other fields because of their singular morphology, properties and wide range of potential applications. Organic substance as a coating material onto either inorganic or organic internal core materials promises an unparalleled opportunity for enhancement of final functions through rational designs. This contribution provides a brief overview of recent progress in the synthesis, characterization, and applications of both inorganic-organic and organic-organic polymer emulsions with core-shell structure. In addition, future research trends in polymer composites with core-shell structure are also discussed in this review.
Collapse
|