1
|
Vuksinic E, Miguel RE, Crespo DE, Young BJ. Comparative risk assessment of different agro-industrial wastewaters in an arid environment: lessons from Antinaco-Los Colorados Valley, Argentina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7976-7988. [PMID: 40048062 DOI: 10.1007/s11356-025-36191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/22/2025] [Indexed: 03/29/2025]
Abstract
Agro-industries generate significant volumes of wastewaters that cause environmental pollution due to they are discharged in soil or surface water. In particular, arid environments are especially vulnerable to this impact as they are characterized by water scarcity, high temperature, and unproductive soils. Thus, this study aimed to assess the comparative toxicity of winery, olive oil mill, table olive, tomato processing, and walnut shelling wastewaters from an arid region on aquatic and terrestrial organisms, and its relationship with physicochemical characteristics, and sodification and salinization indexes. The seed germination and root elongation toxicity test on Raphanus sativus and the immobilization Daphnia magna test were carried out in the whole effluent toxicity framework. Also, the salinity and sodicity risks of these wastewaters were evaluated. The most toxic wastewater was produced in the table olive industry, whereas the most harmless wastewater was produced in winery. Even after treatment, the wastewaters derived from table olive industry presented the highest risk of sodification and salinization. Toxicity was associated with high levels of sodicity, salinity, and polyphenols, but low values of BOD/COD ratio. The best wastewater quality for soil irrigation was found in the wine and tomato processing industries. Therefore, the comprehensive use of salinity and sodicity risk indicators together with toxicity tests improves the wastewater assessment to reuse them in food production systems as an alternative water source in arid lands.
Collapse
Affiliation(s)
- Evelyn Vuksinic
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Chilecito, Ruta de la Producción Km 7.5, Tilimuqui, 5360, Chilecito, La Rioja, Argentina
| | - Roberto Esteban Miguel
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Chilecito, Ruta de la Producción Km 7.5, Tilimuqui, 5360, Chilecito, La Rioja, Argentina
| | - Diana Elvira Crespo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Nicolás Repetto 2751, B1686, Hurlingham, Buenos Aires, Argentina
| | - Brian Jonathan Young
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Nicolás Repetto 2751, B1686, Hurlingham, Buenos Aires, Argentina.
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Carrer de Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
2
|
Arruda GL, Raymundo MTFR, Cruz-Santos MM, Shibukawa VP, Jofre FM, Prado CA, da Silva SS, Mussatto SI, Santos JC. Lignocellulosic materials valorization in second generation biorefineries: an opportunity to produce fungal biopigments. Crit Rev Biotechnol 2025; 45:393-412. [PMID: 38817002 DOI: 10.1080/07388551.2024.2349581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 06/01/2024]
Abstract
Second generation biorefineries play an important role in the production of renewable energy and fuels, utilizing forest and agro-industrial residues and by-products as raw materials. The integration of novel bioproducts, such as: xylitol, β-carotene, xylooligosaccharides, and biopigments into the biorefinery's portfolio can offer economic benefits in the valorization of lignocellulosic materials, particularly cellulosic and hemicellulosic fractions. Fungal biopigments, known for their additional antioxidant and antimicrobial properties, are appealing to consumers and can have applications in various industrial sectors, including food and pharmaceuticals. The use of lignocellulosic materials as carbon and nutrient sources for the growth medium helps to reduce production costs, increasing the competitiveness of fungal biopigments in the market. In addition, the implementation of biopigment production in biorefineries allows the utilization of underutilized fractions, such as hemicellulose, for value-added bioproducts. This study deals with the potential of fungal biopigments production in second generation biorefineries in order to diversify the produced biomolecules together with energy generation. A comprehensive and critical review of the recent literature on this topic has been conducted, covering the major possible raw materials, general aspects of second generation biorefineries, the fungal biopigments and their potential for incorporation into biorefineries.
Collapse
Affiliation(s)
- Gabriel L Arruda
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | | | - Mónica M Cruz-Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Vinícius P Shibukawa
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Fanny M Jofre
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Carina A Prado
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Silvio S da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Júlio C Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| |
Collapse
|
3
|
Paulinetti AP, Guerieri FF, Augusto IMG, Lazaro CZ, Albanez R, Lovato G, Ratusznei SM, Domingues Rodrigues JA. Thermophilic and mesophilic anaerobic digestion of soybean molasses: A performance vs. stability trade-off. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122508. [PMID: 39366238 DOI: 10.1016/j.jenvman.2024.122508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
One of the factors that has a direct impact on anaerobic digestion is the applied organic loading rate (OLRA). Increasing OLRA can boost methane production but can also cause process failure. As a result, establishing the appropriate OLRA for the procedure is critical. This study evaluated the effect of increasing the OLRA using soybean molasses in a thermophilic anaerobic reactor (R-Thermo), as well as the effect of feeding strategy and co-processing with okara. Furthermore, the performance versus stability trade-off between R-Thermo and mesophilic anaerobic digestion (R-Meso) was investigated. The increase of OLRA from 10 to 15 and 20 kg-COD/m³/d led to a decrease in COD removal efficiency (90, 86, and 75%), methane yield (12.0, 11.6, and 9.9 mol-CH4/kg-COD) and an increase in total volatile acids concentration (251, 456, and 1393 mg-HAc/L, respectively). At 15 kg-COD/m³/d, R-Meso performed similarly to R-Thermo, and at 20 kg-COD/m3/d, R-Meso outperformed (81% COD removal efficiency, 9.3 mol-CH4/kg-CODrem and 154.5 mol-CH4/m3/d). Temperature greatly influenced the distribution of metabolic pathways, as shown by thermodynamic and kinetic analyses, thus impacting bacterial diversity. At 55 °C, amongst the bacterial genera, Tepidiphilus stood out (>28.2%), followed by Acetomicrobium, Coprothermobacter and Candidatus_Caldatribacterium. The OLRA clearly impacted the archaeal community; Methanothermobacter (77.4%) was favored over Methanosarcina (14.8%). Under thermophilic temperature, it seems that syntrophic acetate oxidation (SAO) bacteria might have competed for substrate with acetoclastic methanogens, while in R-Meso microorganisms responsible for the initial steps of organic matter breakdown, such as members of the Firmicutes and Proteobacteria phyla (at least 67%), were dominant. In summary, R-Meso, characterized by a more uniform distribution of metabolic pathways, as well as a diverse and well-adapted microbial consortium, have exhibited enhanced stability and outperformed R-Thermo at high-loads.
Collapse
Affiliation(s)
- Ana Paula Paulinetti
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil; Department of Environmental Engineering Sciences, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400 - Zip Code 13.566-590, São Carlos/SP, Brazil
| | - Fernanda Furtunato Guerieri
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| | - Isabela Mehi Gaspari Augusto
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil; Department of Environmental Engineering Sciences, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400 - Zip Code 13.566-590, São Carlos/SP, Brazil
| | - Carolina Zampol Lazaro
- Department of Microbiology, Infectiology and Immunology, University of Montreal, H3C 3J7, Montreal/Quebec, Canada
| | - Roberta Albanez
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| | - Giovanna Lovato
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| | - Suzana Maria Ratusznei
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil.
| | - José Alberto Domingues Rodrigues
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| |
Collapse
|
4
|
Huang YZ, Lee YY, Fan C, Chung YC. Recycling of domestic sludge cake as the inoculum of anaerobic digestion for kitchen waste and its benefits to carbon negativity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122863. [PMID: 39405843 DOI: 10.1016/j.jenvman.2024.122863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Organic waste recovery has been a concerning issue in line with resource conservation. In the present study, the kitchen waste of vegetables, fish, and beef was digested anaerobically using domestic sludge as the inoculum, the methane and carbon dioxide were monitored, and the environmental benefits of the anaerobic digestion (AD) process were evaluated. AD using sludge cake as the inoculum was shown to treat kitchen waste effectively. Raw beef was found to produce more gas than raw fish or vegetables. Investigations also indicated that celluloses within vegetables were not as readily biodegradable as the proteins in beef and fish. Moreover, cooking altered the protein structures in beef and fish, thus increasing methane production. Meanwhile, oil inhibited methane generation as carbon dioxide generation remained, implying that the hydrolysis and acedogenesis still proceeded in the digestion process containing oil. Anaerolineaceae and Synergistaceae are the two most abundant microbial species observed in an anaerobic digestion system. However, the carbon conversions to liquid (i.e., leachate), solid (i.e., digestate), and gaseous (i.e., methane and carbon dioxide) occurred in the AD process, showing a diverse transforming process from waste to reusable valuables. Moreover, the kitchen waste treatment by domestic sludge cake was shown to have positive effects on reducing carbon dioxide emissions compared to the conventional treatment of kitchen waste and domestic sludge. More environmental benefits could be expected if the resulting products (i.e., methane gas, leachate, digestate) were applied as an energy source, liquid fertilizers, and soil conditioners.
Collapse
Affiliation(s)
- Ya-Zhen Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da-An District, Taipei, 10617, Taiwan.
| | - You-Yi Lee
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da-An District, Taipei, 10617, Taiwan.
| | - Chihhao Fan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da-An District, Taipei, 10617, Taiwan.
| | - Yi-Chun Chung
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da-An District, Taipei, 10617, Taiwan.
| |
Collapse
|
5
|
Lin S, Li Y, Guo C, Yang L, Ma Y, Dong R, Liu S. Effects of hydrothermal pretreatment on sulfadiazine degradation during two-stage anaerobic digestion of pig manure. CHEMOSPHERE 2024; 366:143475. [PMID: 39368499 DOI: 10.1016/j.chemosphere.2024.143475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/14/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Antibiotics in animal manure pose significant risks to the environment and health. While anaerobic digestion (AD) is commonly used for pig manure treatment, its efficiency in antibiotic removal has been considerably limited. This study investigated the impact of hydrothermal pretreatment (HTP) on sulfadiazine (SDZ) removal in a two-stage AD system. Results indicated that the HTP process reduced SDZ concentration by 40.61%. Furthermore, the SDZ removal efficiency of the AD system coupling HTP increased from 50.90% to 65.04% compared to the untreated system. Biogas yield was also improved by 26.17% while maintaining system stability. Changes induced by HTP in the microbial communities revealed that Firmicutes, Bacteroidetes, Caldatribacteriota, and Proteobacteria emerged as the primary bacterial phyla. Following HTP, the relative abundance of Prevotella, which exhibited a strong negative correlation with SDZ concentration, increased significantly by 25-fold in the acidogenic stage. Proteiniphilum, Syntrophomonas and Sedimentibacter showed notable increases in the methanogenic stage after HTP. The N-heterocyclic metabolism carried out by Prevotella might have been the predominant SDZ degradation pathway in the acidogenic stage, while the benzene ring metabolism and hydroxylation by the Proteiniphilum emerged as the primary degradation pathways in the methanogenic stages. Furthermore, biodegradation intermediates were proven to be less toxic than SDZ itself, indicating that the HTP-enhanced two-stage AD process could be a viable way to lower the environmental risks associated with SDZ. The findings from this study provide valuable insights for removing SDZ from the environment via two-stage AD.
Collapse
Affiliation(s)
- Shupeng Lin
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yitao Li
- Department of Civil and Environmental Engineering, Virginia Tech, Arlington, VA 22202, USA
| | - Chunchun Guo
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Liangcheng Yang
- Department of Health Sciences Environmental Health and Sustainability Program, Illinois State University, USA.
| | - Yanfang Ma
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shan Liu
- College of Engineering, China Agricultural University, Beijing 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China.
| |
Collapse
|
6
|
Paulo LM, Liu YC, Castilla-Archilla J, Ramiro-Garcia J, Hughes D, Mahony T, Holohan BC, Wilmes P, O'Flaherty V. Full-scale study on high-rate low-temperature anaerobic digestion of agro-food wastewater: process performances and microbial community. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1239-1249. [PMID: 39215735 DOI: 10.2166/wst.2024.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
The fast-growing global population has led to a substantial increase in food production, which generates large volumes of wastewater during the process. Despite most industrial wastewater being discharged at lower ambient temperatures (<20 °C), majority of the high-rate anaerobic reactors are operated at mesophilic temperatures (>30 °C). High-rate low-temperature anaerobic digestion (LtAD) has proven successful in treating industrial wastewater both at laboratory and pilot scales, boasting efficient organic removal and biogas production. In this study, we demonstrated the feasibility of two full-scale high-rate LtAD bioreactors treating meat processing and dairy wastewater, and the microbial communities in both reactors were examined. Both reactors exhibited rapid start-up, achieving considerable chemical oxygen demand (COD) removal efficiencies (total COD removal >80%) and generating high-quality biogas (CH4% in biogas >75%). Long-term operations (6-12 months) underscored the robustness of LtAD bioreactors even during winter periods (average temperature <12 °C), as evidenced by sustained high COD removal rates (total COD removal >80%). The stable performance was underpinned by a resilient microbial community comprising active acetoclastic methanogens, hydrolytic, and fermentative bacteria. These findings underscore the feasibility of high-rate low-temperature anaerobic wastewater treatment, offering promising solutions to the zero-emission wastewater treatment challenge.
Collapse
Affiliation(s)
- Lara M Paulo
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland; Dairy Processing Technology Centre, University of Limerick, Analog Devices Building, Limerick V94 T9PX, Ireland
| | - Yu-Chen Liu
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland
| | - Juan Castilla-Archilla
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland; Dairy Processing Technology Centre, University of Limerick, Analog Devices Building, Limerick V94 T9PX, Ireland
| | - Javier Ramiro-Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dermot Hughes
- Dairy Processing Technology Centre, University of Limerick, Analog Devices Building, Limerick V94 T9PX, Ireland; NVP Energy, Galway Technology Centre, Mervue Business Park, Galway, Ireland
| | - Thérèse Mahony
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland; Dairy Processing Technology Centre, University of Limerick, Analog Devices Building, Limerick V94 T9PX, Ireland
| | - B Conall Holohan
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland; NVP Energy, Galway Technology Centre, Mervue Business Park, Galway, Ireland; Department of Microbiology, Huygensgebouw, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland; Dairy Processing Technology Centre, University of Limerick, Analog Devices Building, Limerick V94 T9PX, Ireland E-mail:
| |
Collapse
|
7
|
Song Z, Hua J, Zhang X, Li K. Bacterial networks and enzyme genes in bacterial floccules from hydrolysis and aeration reactors in a dairy wastewater treatment system. Lett Appl Microbiol 2024; 77:ovae066. [PMID: 38992231 DOI: 10.1093/lambio/ovae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/02/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
The dairy industry generates substantial wastewater, which is commonly treated using integrated anaerobic hydrolysis and aerated biofilm reactors. However, the bacterial composition and functional differences within the generated floccules remain unclear. In this study, we employed 16S rRNA and metagenomic sequencing to compare bacterial communities and enzyme gene profiles between suspended floccules from the hydrolysis ponds and the aeration ponds. Results revealed that the bacterial phyla Firmicutes, Proteobacteria, and Bacteroidetes dominated the wastewater treatment system and the relative abundance of these bacterial phyla varied in each pond. Additionally, the aeration ponds exhibited higher bacterial operational taxonomic units and enzyme gene abundance. Network analysis demonstrated a more complex bacterial network structure in the hydrolysis ponds compared to the aeration ponds. Furthermore, enzyme gene abundance revealed higher metabolic enzyme genes in the hydrolysis ponds, while signal transduction enzyme genes were more abundant in the aeration ponds. Notably, the top 10 bacterial genera, primarily Hydromonas in the hydrolysis ponds and Ferruginibacter in the aeration ponds, exhibited distinct contributions to signal transduction enzyme genes. Hydromonas dominated the metabolic enzyme genes in both ponds. These findings provide crucial insights for optimizing dairy wastewater treatment technologies.
Collapse
Affiliation(s)
- Zule Song
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jia Hua
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiao Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Kejun Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
8
|
Kuroda K, Takai M, Sekiguchi T, Ikarashi T, Kurashita H, Nakajima M, Nobu MK, Hatamoto M, Yamaguchi T, Nakaya Y, Satoh H, Yamauchi M, Yamada M, Narihiro T. Development of an internal two-stage upflow anaerobic reactor integrating biostimulation strategies to enhance the degradation of aromatic compounds in wastewater from purified terephthalic acid and dimethyl terephthalate manufacturing processes. WATER RESEARCH 2024; 258:121762. [PMID: 38754297 DOI: 10.1016/j.watres.2024.121762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
In this study, we aimed to establish high-rate biological treatment of purified terephthalic acid (PTA) and dimethyl terephthalate (DMT) wastewater that minimizes the inhibitory effects of high concentration benzoate and acetate. To achieve this, we developed a novel bioreactor system and biostimulation strategy. An internal two-stage upflow anaerobic (ITUA) reactor was operated with (i) a packed bed containing green tuff medium underlying (ii) a compartment seeded with anaerobic granular sludge. Ethylene glycol was amended to stimulate syntrophic interactions. Continuous operation of the system for 1,026 days achieve an organic removal rate of 11.0 ± 0.6 kg COD/m3/d. The abundance of aromatic degraders significantly increased during operation. Thus, we successfully developed a high-rate treatment system to treat wastewater from the PTA/DMT manufacturing processes by activating syntrophs in an ITUA reactor.
Collapse
Affiliation(s)
- Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Maho Takai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Takeo Sekiguchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Tomoya Ikarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Hazuki Kurashita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Meri Nakajima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan; Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Takashi Yamaguchi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yuki Nakaya
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Masahito Yamauchi
- Department of Urban Environmental Design and Engineering, National Institute of Technology, Kagoshima College, 1460-1 Shinkou, Hayato, Kirishima, Kagoshima 899-5193, Japan
| | - Masayoshi Yamada
- Department of Urban Environmental Design and Engineering, National Institute of Technology, Kagoshima College, 1460-1 Shinkou, Hayato, Kirishima, Kagoshima 899-5193, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
9
|
An X, Xu Y, Dai X. Biohythane production from two-stage anaerobic digestion of food waste: A review. J Environ Sci (China) 2024; 139:334-349. [PMID: 38105059 DOI: 10.1016/j.jes.2023.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 12/19/2023]
Abstract
The biotransformation of food waste (FW) to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems. To this end, a promising technique is two-stage anaerobic digestion (TSAD), in which the FW is transformed to biohythane, a gaseous mixture of biomethane and biohydrogen. This review summarises the main characteristics of FW and describes the basic principle of TSAD. Moreover, the factors influencing the TSAD performance are identified, and an overview of the research status; economic aspects; and strategies such as pre-treatment, co-digestion, and regulation of microbial consortia to increase the biohythane yield from TSAD is provided. Additionally, the challenges and future considerations associated with the treatment of FW by TSAD are highlighted. This paper can provide valuable reference for the improvement and widespread implementation of TSAD-based FW treatment.
Collapse
Affiliation(s)
- Xiaona An
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
10
|
Adnane I, Taoumi H, Elouahabi K, Lahrech K, Oulmekki A. Valorization of crop residues and animal wastes: Anaerobic co-digestion technology. Heliyon 2024; 10:e26440. [PMID: 38439870 PMCID: PMC10909651 DOI: 10.1016/j.heliyon.2024.e26440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
To switch the over-reliance on fossil-based resources, curb environmental quality deterioration, and promote the use of renewable fuels, much attention has recently been directed toward the implementation of sustainable and environmentally benign 'waste-to-energy' technology exploiting a clean, inexhaustible, carbon-neutral, and renewable energy source, namely agricultural biomass. From this perspective, anaerobic co-digestion (AcoD) technology emerges as a potent and plausible approach to attain sustainable energy development, foster environmental sustainability, and, most importantly, circumvent the key challenges associated with mono-digestion. This review article provides a comprehensive overview of AcoD as a biochemical valorization pathway of crop residues and livestock manure for biogas production. Furthermore, this manuscript aims to assess the different biotic and abiotic parameters affecting co-digestion efficiency and present recent advancements in pretreatment technologies designed to enhance feedstock biodegradability and conversion rate. It can be concluded that the substantial quantities of crop residues and animal waste generated annually from agricultural practices represent valuable bioenergy resources that can contribute to meeting global targets for affordable renewable energy. Nevertheless, extensive and multidisciplinary research is needed to evolve the industrial-scale implementation of AcoD technology of livestock waste and crop residues, particularly when a pretreatment phase is included, and bridge the gap between small-scale studies and real-world applications.
Collapse
Affiliation(s)
- Imane Adnane
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Hamza Taoumi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Karim Elouahabi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Khadija Lahrech
- Sidi Mohamed Ben Abdellah University (USMBA), ENSA, Fez, Morocco
| | - Abdellah Oulmekki
- Laboratory of Processes, Materials and Environment (LPME), Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
11
|
Gonçalves MJ, González-Fernández C, Greses S. Long hydraulic retention time mediates stable volatile fatty acids production against slight pH oscillations. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:140-148. [PMID: 38281345 DOI: 10.1016/j.wasman.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
The effect of operational conditions on the stability of acidogenic fermentation (AF) devoted to volatile fatty acids (VFAs) production still presents numerous gaps to achieve high yields and fully understand the responses of open microbiomes associated to this technology. To cope with that, this investigation was designed to assess the stability of VFAs production via AF of agro-food wastes at high hydraulic retention times (HRTs) (20 and 30 d) and pH oscillations (5.8-6.2). Similar bioconversion efficiencies (∼50 %) were reached regardless of the HRT, revealing that HRT of 20 d can be considered as a threshold from which, no further improvement was achieved. The combination of long HRTs, 25 °C and acid pHs promoted a robust microbiome that resulted in a stable outcome against pH variations, being Clostridiales order identified as key player of AF stability. These conditions mediated a high selectivity in the VFAs production profile, with acetic and butyric acids, prevailing in the VFAs pool (∼80 % of total VFAs) at HRT 20 d. The selection of appropriated conditions was shown to be critical to maximize the hydrolysis and acidogenesis of the substrate and attain a stable effluent against pH oscillations.
Collapse
Affiliation(s)
- M J Gonçalves
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - C González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, Valladolid, 47011, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, Valladolid, 47011, Spain.
| | - S Greses
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| |
Collapse
|
12
|
Sillero L, Solera R, Perez M. Agronomic and phytotoxicity test with biosolids from anaerobic CO-DIGESTION with temperature and micro-organism phase separation, based on sewage sludge, vinasse and poultry manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120146. [PMID: 38341911 DOI: 10.1016/j.jenvman.2024.120146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 02/13/2024]
Abstract
This study deals with energy and agronomic valorisation by anaerobic co-digestion with temperature and microorganism phase separation of sewage sludge, vinasse and poultry manure, with the aim of achieving an integral waste management, obtaining bioenergy and biofertilizer that returns nutrients to the soil in a natural way. The yields obtained were 40 mL H2/gVS and 391 mLCH4/gVS. The resulting effluent showed more than 98 % removal of E. coli and Total Coliforms, as well as total removal of Salmonella. The results obtained in the phytotoxicity tests showed that all the proportions studied had phytostimulant and phytonutrient properties, with 20 % having the highest germination index (GI) with mean values of 145.30 %. Finally, the agronomic trial carried out with strawberry crops (Fragaria sp.) showed that the addition of this biosolid has fertilising properties and can be used as an agronomic amendment, with an increase of 145 % in fresh weight and 102.5 % in dry weight, and fruit production doubled with respect to the control. The ANOVA statistical study corroborated that there were significant differences in crop growth when applying different proportions of biofertilizer in the fertilizer. Therefore, these results show that this technology is promising and would contribute environmentally, socially and economically to the transfer towards a circular economy model.
Collapse
Affiliation(s)
- Leonor Sillero
- Department of Environmental Technologies, IVAGRO, Faculty of Marine and Environmental Sciences (CASEM), University of Cádiz, Pol. Río San Pedro S/n, 11510, Puerto Real, Cádiz, Spain
| | - Rosario Solera
- Department of Environmental Technologies, IVAGRO, Faculty of Marine and Environmental Sciences (CASEM), University of Cádiz, Pol. Río San Pedro S/n, 11510, Puerto Real, Cádiz, Spain.
| | - Montserrat Perez
- Department of Environmental Technologies, IVAGRO, Faculty of Marine and Environmental Sciences (CASEM), University of Cádiz, Pol. Río San Pedro S/n, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
13
|
Heyer R, Hellwig P, Maus I, Walke D, Schlüter A, Hassa J, Sczyrba A, Tubbesing T, Klocke M, Mächtig T, Schallert K, Seick I, Reichl U, Benndorf D. Breakdown of hardly degradable carbohydrates (lignocellulose) in a two-stage anaerobic digestion plant is favored in the main fermenter. WATER RESEARCH 2024; 250:121020. [PMID: 38128305 DOI: 10.1016/j.watres.2023.121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The yield and productivity of biogas plants depend on the degradation performance of their microbiomes. The spatial separation of the anaerobic digestion (AD) process into a separate hydrolysis and a main fermenter should improve cultivation conditions of the microorganisms involved in the degradation of complex substrates like lignocellulosic biomass (LCB) and, thus, the performance of anaerobic digesters. However, relatively little is known about such two-stage processes. Here, we investigated the process performance of a two-stage agricultural AD over one year, focusing on chemical and technical process parameters and metagenome-centric metaproteomics. Technical and chemical parameters indicated stable operation of the main fermenter but varying conditions for the open hydrolysis fermenter. Matching this, the microbiome in the hydrolysis fermenter has a higher dynamic than in the main fermenter. Metaproteomics-based microbiome analysis revealed a partial separation between early and common steps in carbohydrate degradation and primary fermentation in the hydrolysis fermenter but complex carbohydrate degradation, secondary fermentation, and methanogenesis in the main fermenter. Detailed metagenomics and metaproteomics characterization of the single metagenome-assembled genomes showed that the species focus on specific substrate niches and do not utilize their full genetic potential to degrade, for example, LCB. Overall, it seems that a separation of AD in a hydrolysis and a main fermenter does not improve the cleavage of complex substrates but significantly improves the overall process performance. In contrast, the remaining methanogenic activity in the hydrolysis fermenter may cause methane losses.
Collapse
Affiliation(s)
- Robert Heyer
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany; Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Patrick Hellwig
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany; Research Center Jülich GmbH, Institute of Bio- and Geosciences (IBG), IBG-5: Computational Metagenomics, Leo-Brandt-Str., 52428 Jülich, Germany.
| | - Daniel Walke
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Otto von Guericke University, Database and Software Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Alexander Sczyrba
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany; Research Center Jülich GmbH, Institute of Bio- and Geosciences (IBG), IBG-5: Computational Metagenomics, Leo-Brandt-Str., 52428 Jülich, Germany; Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Tom Tubbesing
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany; Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Michael Klocke
- Institute of Agricultural and Urban Ecological Projects affiliated to Berlin Humboldt University (IASP), Philippstraße 13, 10115 Berlin, Germany.
| | - Torsten Mächtig
- Christian-Albrechts-Universität Kiel, Institute of Agricultural Engineering, Olshausenstr. 40, 24098 Kiel, Germany.
| | - Kay Schallert
- Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany.
| | - Ingolf Seick
- Urban Water Management/Wastewater, Hochschule Magdeburg-Stendal, Breitscheidstrasse 2, 39114 Magdeburg, Germany.
| | - Udo Reichl
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
| | - Dirk Benndorf
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany; Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Microbiology, Bernburger Straße 55, 06354 Köthen, Germany.
| |
Collapse
|
14
|
Kelbert M, Daronch NA, Pereira CS, Cesca K, Michels C, Soares HM. Inhibitory impact of the anticancer drug doxorubicin on anaerobic microbial community. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106706. [PMID: 37837867 DOI: 10.1016/j.aquatox.2023.106706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
The inhibitory effect of the anticancer drug doxorubicin (DOX) on biogas production was evaluated in short-term and long-term exposure assays. The short-term assays reached the DOX IC50 value on 648 ± 50 µg·L-1. In addition, it was found that inhibition caused by the exposure of 10×103 µg·L-1 was reversible after removing DOX from the feeding synthetic medium. Furthermore, DOX can be rapidly sorbed by the biomass (despite the low Kow), which might contribute to the inhibitory effect. The results of long-term exposure assays, when the DOX volumetric loading rate was increased from 100 µgDOX·L-1·day-1 to 200 µgDOX·L-1·day-1, showed that biogas production and COD removal decreased rapidly. However, the methanogenic Archaeas could recover from this exposure, corroborating the results on short-term exposure assays. In conclusion, DOX can play a key role in inhibiting biological wastewater treatment processes if its concentration in hospital wastewater treatment plants increases abruptly.
Collapse
Affiliation(s)
- Maikon Kelbert
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Naionara Ariete Daronch
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Camila Senna Pereira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Karina Cesca
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Camila Michels
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Hugo Moreira Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
15
|
Zheng T, Bian C, Xiao B, Chen X, Wang J, Li L. Performance enhancement of integrating microbial electrolysis cell on two-stage anaerobic digestion of food waste: Electro-methanogenic stage versus electro-two stages. BIORESOURCE TECHNOLOGY 2023; 386:129562. [PMID: 37506942 DOI: 10.1016/j.biortech.2023.129562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The effects of microbial electrolysis cell (MEC) integration stage on two-stage anaerobic digestion (TSAD) of food waste (FW) were studied via semi-continuous experiments. The results showed that both MEC (with 1.2 V) integrations enhanced the performances of the TSADs, with the enhancement of electro-two stages being higher. The methane production of TSAD increased from 1.36 ± 0.04 L/L/d to 1.53 ± 0.05 L/L/d (electro-methanogenic stage) and 1.54 ± 0.04 L/L/d (electro-two stages) during the steady period. Electro-acidogenesis decreased propionic acid production and enhanced hydrogen production, while electro-methanogenesis promoted the conversion of volatile fatty acids to methane. The MEC integration improved energy recovery from the organic matter in FW by 11.65-16.15% and reduced the mass loss, with those of the electro-two stages being higher and the electro-methanogenic stage being dominant in the electro-two stages. The integration of MEC enhanced anaerobic fermentation by enriching Olsenella, norank_f__ST-12K33 and Proteiniphilum and improved methanogenesis by enriching Methanobacterium and Candidatus_Methanofastidiosum.
Collapse
Affiliation(s)
- Tianlong Zheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Bian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Benyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiangyu Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Lin Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Sukphun P, Wongarmat W, Imai T, Sittijunda S, Chaiprapat S, Reungsang A. Two-stage biohydrogen and methane production from sugarcane-based sugar and ethanol industrial wastes: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 386:129519. [PMID: 37468010 DOI: 10.1016/j.biortech.2023.129519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The transition to renewable energy sources is crucial to ensure a sustainable future. Although the sugar and ethanol industries benefit from this transition, there are untapped opportunities to utilize the waste generated from the sugar and ethanol process chains through two-stage anaerobic digestion (TSAD). This review comprehensively discusses the utilization of various sugarcane-based industrial wastes by TSAD for sequential biohydrogen and methane production. Factors influencing TSAD process performance, including pH, temperature, hydraulic retention time, volatile fatty acids and alkalinity, nutrient imbalance, microbial population, and inhibitors, were discussed in detail. The potential of TSAD to reduce emissions of greenhouse gases is demonstrated. Recent findings, implications, and promising future research related to TSAD, including the integration of meta-omics approaches, gene manipulation and bioaugmentation, and application of artificial intelligence, are highlighted. The review can serve as important literature for the implementation, improvement, and advancements in TSAD research.
Collapse
Affiliation(s)
- Prawat Sukphun
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Worapong Wongarmat
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tsuyoshi Imai
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 755-8611, Japan
| | - Sureewan Sittijunda
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sumate Chaiprapat
- Department of Civil and Environment Engineering, PSU Energy Systems Research Institute (PERIN), Faculty of Engineering, Prince of Songkla University, Songkla 90002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; Academy of Science, Royal Society of Thailand, Bangkok 10400, Thailand.
| |
Collapse
|
17
|
Li W, Li L, Li B, Peng L, Xu Y, Li R, Song K. Effect and mechanism of perfluorooctanoic acid (PFOA) on anaerobic digestion sludge dewaterability. CHEMOSPHERE 2023:139142. [PMID: 37290510 DOI: 10.1016/j.chemosphere.2023.139142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Perfluorooctanoic acid (PFOA) as nonbiodegradable organic pollutant, its presence and risks in wastewater treatment system has aroused wide concern. This study investigated the effect and underlying mechanism of PFOA on anaerobic digestion sludge (ADS) dewaterability. Long-term exposure experiments were set up to investigate the effect with various concentration of PFOA dosed. Experimental results suggested that the existence of high concentration PFOA (over 1000 μg/L) could deteriorate ADS dewaterability. The long-term exposure to 100,000 μg/L PFOA of ADS increased specific resistance filtration (SRF) by 81.57%. It was found that PFOA promoted the release of extracellular polymeric substances (EPS), which was strongly associated with sludge dewaterability. The fluorescence analysis revealed that the high PFOA concentration could significantly improve the percentage of protein-like substances and soluble microbial by-product-like content, and then further deteriorated the dewaterability. The FTIR results showed that long-term exposure of PFOA caused loose protein structure in sludge EPS, which led to loose sludge floc structure. The loose sludge floc structure aggravated the deterioration of sludge dewaterability. The solids-water distribution coefficient (Kd) decreased with the increase of initial PFOA concentration. Moreover, PFOA significantly affected microbial community structure. Metabolic function prediction results showed significant decrease of fermentation function exposed to PFOA. This study revealed that the PFOA with high concentration could deteriorated sludge dewaterability, which should be highly concerned.
Collapse
Affiliation(s)
- Wenkai Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Biqing Li
- Guangzhou Sewage Purification Co. Ltd., Guangzhou, 510655, China
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Yifeng Xu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Zhejiang, 325035, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| |
Collapse
|
18
|
Guo H, Ji M, Du T, Xu W, Liu J, Bai R, Teng Z, Li T. Salt stress altered anaerobic microbial community and carbon metabolism characteristics: The trade-off between methanogenesis and chain elongation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118111. [PMID: 37156025 DOI: 10.1016/j.jenvman.2023.118111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Discharge of saline organic wastewater is increasing worldwide, yet how salt stress disrupts the microbial community's structure and metabolism in bioreactors has not been systematically investigated. The non-adapted anaerobic granular sludge was inoculated into wastewater with varying salt concentration (ranging from 0% to 5%) to examine the effects of salt stress on the structure and function of the anaerobic microbial community. Result indicated that salt stress had a significant impact on the metabolic function and community structure of the anaerobic granular sludge. Specifically, we observed a notable reduction in methane production in response to all salt stress treatments (r = -0.97, p < 0.01), while an unexpected increase in butyrate production (r = 0.91, p < 0.01) under moderate salt stress (1-3%) with ethanol and acetate as carbon sources. In addition, analysis of microbiome structures and networks demonstrated that as the degree of salt stress increased, the networks exhibited lower connectance and increased compartmentalization. The abundance of interaction partners (methanogenic archaea and syntrophic bacteria) decreased under salt stress. In contrast, the abundance of chain elongation bacteria, specifically Clostridium kluyveri, increased under moderate salt stress (1-3%). As a consequence, the microbial carbon metabolism patterns shifted from cooperative mode (methanogenesis) to independent mode (carbon chain elongation) under moderate salt stress. This study provides evidence that salt stress altered the anaerobic microbial community and carbon metabolism characteristics, and suggests potential guidance for steering the microbiota to promote resource conversion in saline organic wastewater treatment.
Collapse
Affiliation(s)
- Huiyuan Guo
- CAS Key Laboratory of Green Process and Engineering, Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meina Ji
- CAS Key Laboratory of Green Process and Engineering, Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Wuhan Institute of Technology, Wuhan, 430205, China
| | - Tianxiao Du
- CAS Key Laboratory of Green Process and Engineering, Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weichao Xu
- CAS Key Laboratory of Green Process and Engineering, Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianwei Liu
- Beijing Research Center of Sustainable Urban Drainage System and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Renbi Bai
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China
| | - Zedong Teng
- CAS Key Laboratory of Green Process and Engineering, Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tinggang Li
- CAS Key Laboratory of Green Process and Engineering, Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Ganjiang Innovation Academy, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China.
| |
Collapse
|
19
|
Kumar V, Vangnai AS, Sharma N, Kaur K, Chakraborty P, Umesh M, Singhal B, Utreja D, Carrasco EU, Andler R, Awasthi MK, Taherzadeh MJ. Bioengineering of biowaste to recover bioproducts and bioenergy: A circular economy approach towards sustainable zero-waste environment. CHEMOSPHERE 2023; 319:138005. [PMID: 36731660 DOI: 10.1016/j.chemosphere.2023.138005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The inevitable need for waste valorisation and management has revolutionized the way in which the waste is visualised as a potential biorefinery for various product development rather than offensive trash. Biowaste has emerged as a potential feedstock to produce several value-added products. Bioenergy generation is one of the potential applications originating from the valorisation of biowaste. Bioenergy production requires analysis and optimization of various parameters such as biowaste composition and conversion potential to develop innovative and sustainable technologies for most effective utilization of biowaste with enhanced bioenergy production. In this context, feedstocks, such as food, agriculture, beverage, and municipal solid waste act as promising resources to produce renewable energy. Similarly, the concept of microbial fuel cells employing biowaste has clearly gained research focus in the past few decades. Despite of these potential benefits, the area of bioenergy generation still is in infancy and requires more interdisciplinary research to be sustainable alternatives. This review is aimed at analysing the bioconversion potential of biowaste to renewable energy. The possibility of valorising underutilized biowaste substrates is elaborately presented. In addition, the application and efficiency of microbial fuel cells in utilizing biowaste are described in detail taking into consideration of its great scope. Furthermore, the review addresses the significance bioreactor development for energy production along with major challenges and future prospects in bioenergy production. Based on this review it can be concluded that bioenergy production utilizing biowaste can clearly open new avenues in the field of waste valorisation and energy research. Systematic and strategic developments considering the techno economic feasibilities of this excellent energy generation process will make them a true sustainable alternative for conventional energy sources.
Collapse
Affiliation(s)
- Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India.
| | - Alisa S Vangnai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Neha Sharma
- Metagenomics and Bioprocess Design Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Komalpreet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Pritha Chakraborty
- School of Allied Healthcare and Sciences, Jain (Deemed to Be) University, Whitefield, Bangalore-66, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Barkha Singhal
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | | | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de Los Recursos Naturales (Cenbio), Universidad Católica Del Maule, Chile
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | | |
Collapse
|
20
|
Almeida PDS, de Menezes CA, Camargo FP, Sakamoto IK, Lovato G, Rodrigues JAD, Varesche MBA, Silva EL. Biomethane recovery through co-digestion of cheese whey and glycerol in a two-stage anaerobic fluidized bed reactor: Effect of temperature and organic loading rate on methanogenesis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117117. [PMID: 36584460 DOI: 10.1016/j.jenvman.2022.117117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion for CH4 recovery in wastewater treatment has been carried out with different strategies to increase process efficiency, among which co-digestion and the two-stage process can be highlighted. In this context, this study aimed at evaluating the co-digestion of cheese whey and glycerol in a two-stage process using fluidized bed reactors, verifying the effect of increasing the organic loading rate (OLR) (2-20 g-COD.L-1.d-1) and temperature (thermophilic and mesophilic) in the second stage methanogenic reactor. The mesophilic methanogenic reactor (R-Meso) (mean temperature of 22 °C) was more tolerant to high OLR and its best performance was at 20 g-COD.L-1.d-1, resulting in methane yield (MY) and methane production (MPR) of 273 mL-CH4.g-COD-1 and 5.8 L-CH4.L-1.d-1 (with 67% of CH4), respectively. Through 16S rRNA gene massive sequencing analysis, a greater diversity of microorganisms was identified in R-Meso than in R-Thermo (second stage methanogenic reactor, 55 °C). Firmicutes was the phyla with higher relative abundance in R-Thermo, while in R-Meso the most abundant ones were Proteobacteria and Bacteroidetes. Regarding the Archaea domain, a predominance of hydrogenotrophic microorganisms could be observed, being the genera Methanothermobacter and Methanobacterium the most abundant in R-Thermo and R-Meso, respectively. The two-stage system composed with a thermophilic acidogenic reactor + R-Meso was more adequate for the co-digestion of cheese whey and glycerol than the single-stage process, promoting increases of up to 47% in the energetic yield (10.3 kJ.kg-COD-1) and 14% in organic matter removal (90.5%).
Collapse
Affiliation(s)
- Priscilla de Souza Almeida
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, Km 235, Zip Code 13.565-905, São Carlos, SP, Brazil
| | - Camila Aparecida de Menezes
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, Zip Code 13.563-120, São Carlos, SP, Brazil
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, Zip Code 13.563-120, São Carlos, SP, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, Zip Code 13.563-120, São Carlos, SP, Brazil
| | - Giovanna Lovato
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano Do Sul, SP, Brazil
| | - José Alberto Domingues Rodrigues
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano Do Sul, SP, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, Zip Code 13.563-120, São Carlos, SP, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, Km 235, Zip Code 13.565-905, São Carlos, SP, Brazil.
| |
Collapse
|
21
|
Silva AFR, Lebron YAR, Moreira VR, Ribeiro LA, Koch K, Amaral MCS. High-retention membrane bioreactors for sugarcane vinasse treatment: Opportunities for environmental impact reduction and wastewater valorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117001. [PMID: 36565496 DOI: 10.1016/j.jenvman.2022.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Ethanol production has increased over the years, and Brazil ranking second in the world using sugarcane as the main raw material. However, 10-15 L of vinasse are generated per liter of ethanol produced. Besides large volumes, this wastewater has high polluting potential due to its low pH and high concentrations of organic matter and nutrients. Given the high biodegradability of the organic matter, the treatment of this effluent by anaerobic digestion and membrane separation processes results in the generation of high value-added byproducts such as volatile fatty acids (VFAs), biohydrogen and biogas. Membrane bioreactors have been widely evaluated due to the high efficiency achieved in vinasse treatment. In recent years, high retention membrane bioreactors, in which high retention membranes (nanofiltration, reverse osmosis, forward osmosis and membrane distillation) are combined with biological processes, have gained increasing attention. This paper presents a critical review focused on high retention membrane bioreactors and the challenges associated with the proposed configurations. For nanofiltration membrane bioreactor (NF-MBR), the main drawback is the higher fouling propensity due to the hydraulic driving force. Nonetheless, the development of membranes with high permeability and anti-fouling properties is uprising. Regarding osmotic membrane bioreactor (OMBR), special attention is needed for the selection of a proper draw solution, which desirably should be low cost, have high osmolality, reduce reverse salt flux, and can be easily reconcentrated. Membrane distillation bioreactor (MDBR) also exhibit some shortcomings, with emphasis on energy demand, that can be solved with the use of low-grade and residual heat, or renewable energies. Among the configurations, MDBR seems to be more advantageous for sugarcane vinasse treatment due to the lower energy consumption provided by the use of waste heat from the effluent, and due to the VFAs recovery, which has high added value.
Collapse
Affiliation(s)
- A F R Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Y A R Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - V R Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - L A Ribeiro
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - K Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - M C S Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
22
|
Andrade LRS, Cruz IA, Fuess LT, Iqbal HM, Bharagava RN, de Melo Oliveira AC, Figueiredo RT, Lucena de Souza R, Rahdar A, Romanholo Ferreira LF. Application of TiO2 nanoplates anatase [001] impregnated on Luffa Cylindrica for biostimulation of biogas production from cassava wastewater. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023; 48:102653. [DOI: 10.1016/j.bcab.2023.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
23
|
Biohythane Production in Hydrogen-Oriented Dark Fermentation of Aerobic Granular Sludge (AGS) Pretreated with Solidified Carbon Dioxide (SCO 2). Int J Mol Sci 2023; 24:ijms24054442. [PMID: 36901872 PMCID: PMC10003144 DOI: 10.3390/ijms24054442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Though deemed a prospective method, the bioconversion of organic waste to biohydrogen via dark fermentation (DF) has multiple drawbacks and limitations. Technological difficulties of hydrogen fermentation may, in part, be eliminated by making DF a viable method for biohythane production. Aerobic granular sludge (AGS) is a little-known organic waste spurring a growing interest in the municipal sector; its characteristics indicate the feasibility of its use as a substrate for biohydrogen production. The major goal of the present study was to determine the effect of AGS pretreatment with solidified carbon dioxide (SCO2) on the yield of H2 (biohythane) production during anaerobic digestion (AD). It was found that an increasing dose of SCO2 caused an increase in concentrations of COD, N-NH4+, and P-PO43- in the supernatant at the SCO2/AGS volume ratios from 0 to 0.3. The AGS pretreatment at SCO2/AGS ratios within the range of 0.1-0.3 was shown to enable the production of biogas with over 8% H2 (biohythane) content. The highest yield of biohythane production, reaching 481 ± 23 cm3/gVS, was obtained at the SCO2/AGS ratio of 0.3. This variant produced 79.0 ± 6% CH4 and 8.9 ± 2% H2. The higher SCO2 doses applied caused a significant decrease in the pH value of AGS, modifying the anaerobic bacterial community to the extent that diminished anaerobic digestion performance.
Collapse
|
24
|
Microbial Behavior and Influencing Factors in the Anaerobic Digestion of Distiller: A Comprehensive Review. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Anaerobic digestion technology is regarded as the most ideal technology for the treatment of a distiller in terms of environmental protection, resource utilization, and cost. However, there are some limitations to this process, the most prominent of which is microbial activity. The purpose of this paper is to provide a critical review of the microorganisms involved in the anaerobic digestion process of a distiller, with emphasis on the archaea community. The effects of operating parameters on microbial activity and process, such as pH, temperature, TAN, etc., are discussed. By understanding the activity of microorganisms, the anaerobic treatment technology of a distiller can be more mature. Aiming at the problem that anaerobic treatment of a distiller alone is not effective, the synergistic effect of different substrates is briefly discussed. In addition, the recent literature on the use of microorganisms to purify a distiller was collected in order to better purify the distiller and reduce harm. In the future, more studies are needed to elucidate the interactions between microorganisms and establish the mechanisms of microbial interactions in different environments.
Collapse
|
25
|
Mukherjee S, Basak A, Chakraborty A, Goswami R, Ray K, Ali MN, Santra S, Hazra AK, Tripathi S, Banerjee H, Layek J, Panwar AS, Ravisankar N, Ansari MA, Chatterjee G. Revisiting the oldest manure of India, Kunapajala: Assessment of its animal waste recycling potential as a source of plant biostimulant. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1073010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
India's oldest documented manure, most commonly referred to as Kunapajala, has a long history of over 1,000 years in crop cultivation. Kunapajala is primarily an in-situ decomposition technology of animal waste and can potentially provide an eco-friendly pipeline for recycling bio-waste into essential plant nutrients. This traditional animal manure, in addition, also contains dairy excreta (e.g., feces and urine), dairy products (e.g., milk and ghee), natural resources (e.g., honey), broken seeds or grains, and their non-edible by-product waste. Here, we aimed to assess the waste recycling and plant biostimulant potential of Kunapajala prepared from livestock (e.g., Black Bengal goats) or fish (e.g., Bombay duck) post-processed wastes over different decomposition periods, e.g., (0, 30, 60, and 90-days). In this study, an in-situ quantification of livestock- (lKPJ) and fish-based Kunapajala (fKPJ) reveals a dynamic landscape of essential plant primary nutrients, e.g., (0.70 > NH4-N < 3.40 g•L−1), (100.00 > P2O5 < 620.00 mg•L−1), and (175.00 > K2O < 340.00 mg•L−1), including other physico-chemical attributes of Kunapajala. Using correlation statistics, we find that the plant-available nutrient content of Kunapajala depicts a significant (p < 0.0001) transformation over decomposition along with microbial dynamics, abundance, and diversities, delineating a microbial interface to animal waste decomposition and plant growth promotion. Importantly, this study also reports the indole 3-acetic acid (IAA) content (40.00 > IAA < 135.00 mg•L−1) in Kunapajala. Furthermore, the bacterial screening based on plant growth-promoting traits and their functional analyses elucidate the mechanism of the plant biostimulant potential of Kunapajala. This assay finally reports two best-performing plant growth-promoting bacteria (e.g., Pseudomonas chlororaphis and Bacillus subtilis) by the 16S ribotyping method. In support, in-planta experiments have demonstrated, in detail, the bio-stimulative effects of Kunapajala, including these two bacterial isolates alone or in combination, on seed germination, root-shoot length, and other important agronomic, physio-biochemical traits in rice. Together, our findings establish that Kunapajala can be recommended as a source of plant biostimulant to improve crop quality traits in rice. Overall, this work highlights Kunapajala, for the first time, as a promising low-cost microbial technology that can serve a dual function of animal waste recycling and plant nutrient recovery to promote sustainable intensification in agroecosystems.
Collapse
|
26
|
El Ibrahimi M, Khay I, El Maakoul A, Bakhouya M. Techno-economic and carbon footprint evaluation of anaerobic digestion plants treating agro-industrial and municipal wastes in North African countries. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:84-95. [PMID: 36215753 DOI: 10.1016/j.wasman.2022.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/12/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The agro-industrial activity, which is regarded as a pillar of the North-African economy, is responsible for generating considerable waste quantities. These byproducts can be treated through anaerobic digestion (AD), which offers various financial and ecological benefits over traditional waste disposal methods. However, the transition to this sustainable process is faced with several challenges due to the heterogeneity and seasonality of agro-industrial wastes. In this study, we proposed and evaluated three waste management strategies for treating agro-industrial wastes in large-scale AD plants conceived in specific North-African countries. These strategies involve co-digesting seasonal agro-industrial wastes, i.e., three-phase olive pomace (3POP), grape pomace, and orange peel, with the organic fraction of municipal solid waste (OFMSW) throughout the year (MS1); co-digesting the dominant agro-industrial waste (3POP) with OFMSW during the olive harvest season and mono-digesting OFMSW during the rest of the year (MS2); and co-digesting 3POP and OFMSW year-round by storing 3POP in cold storage facilities (MS3). The techno-economic findings show that the proposed AD plants would be profitable in Morocco and Algeria under both MS1 and MS2, with internal rate of return (IRR) values respectively reaching 10.8% and 18.4% under MS1 and 12.4% and 20.1% under MS2. In contrast, the conceived Tunisian plants would be financially feasible only if MS2 is adopted (IRR of 10.7%). Furthermore, the sensitivity analysis indicates that the economic performance of the proposed plants would mostly be affected by the biomethane selling price and capital cost. Additionally, the carbon footprint analysis suggests that the AD plants could, during their lifetime, reduce the CO2-eq emissions by 411, 208, and 26 Mt (under respectively MS1, MS2, and MS3) compared to the currently used waste disposal practices in the North African region.
Collapse
Affiliation(s)
- Mohammed El Ibrahimi
- International University of Rabat, College of Engineering and Architecture, LERMA Lab, 11100 Sala Al Jadida, Morocco.
| | - Ismail Khay
- International University of Rabat, College of Engineering and Architecture, LERMA Lab, 11100 Sala Al Jadida, Morocco
| | - Anas El Maakoul
- International University of Rabat, College of Engineering and Architecture, LERMA Lab, 11100 Sala Al Jadida, Morocco
| | - Mohamed Bakhouya
- International University of Rabat, College of Engineering and Architecture, LERMA Lab, 11100 Sala Al Jadida, Morocco
| |
Collapse
|
27
|
Yuan Y, Zhang L, Chen T, Huang Y, Qian X, He J, Li Z, Ding C, Wang A. Simultaneous recovery of bio-sulfur and bio-methane from sulfate-rich wastewater by a bioelectrocatalysis coupled two-phase anaerobic reactor. BIORESOURCE TECHNOLOGY 2022; 363:127883. [PMID: 36067888 DOI: 10.1016/j.biortech.2022.127883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The microbial electrolysis cell coupled the two-phase anaerobic digestion (MEC-TPAD) was developed for simultaneous recovery of bio-sulfur and bio-methane from sulfate-rich wastewater. In acidogenic phase, the produced sulfides were efficiently converted into bio-sulfur via anodic bio-oxidation, with a maximum recovery of 59 ± 5.5 %. The anode coupled acidogenesis produced more volatile fatty acids which were benefit for the subsequent methanogenesis. The cathode in methanogenic phase created a suitable pH condition and enhanced the methanogenesis. Correspondingly, the maximum bio-methane yield in MEC-TPAD was 2 times higher than that in TPAD. Microbial communities revealed that major functional consortia capable of sulfides oxidation (e.g. Alcaligenes) in anode biofilm, hydrogenotrophic methanogenesis (e.g. Methanobacterium) in cathode biofilm, and acetotrophic methanogenesis (e.g. Methanosaeta) in methanogenic sludge were enriched. Economic benefit could totally cover the cost of input electric energy. This work opens an appealing avenue for recovering nutrient and energy from wastewater.
Collapse
Affiliation(s)
- Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Lulu Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yutong Huang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xucui Qian
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Juan He
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaoxia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Aijie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
28
|
Andrade Cruz I, Andrade LRS, Jesus AAD, Vasconcelos BRD, Bharagava RN, Bilal M, Figueiredo RT, Souza RLD, Romanholo Ferreira LF. Potential of eggshell waste derived calcium for sustainable production of biogas from cassava wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:116000. [PMID: 35987054 DOI: 10.1016/j.jenvman.2022.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Cassava is a staple crop that plays a significant role in the food security of many countries. However, its processing produces a liquid by-product known as cassava wastewater (CW), which can have adverse environmental consequences if discarded without treatment. Despite its cyanide content, CW has a high organic content and may be profitable when used to produce biogas. In this study, the influence of calcium particles from eggshell residues was investigated on the anaerobic digestion of CW. Moreover, the performance of the bioreactor was remotely monitored. Calcium particles from milled-calcined chicken eggshells were added to the bioreactor, and biogas production was investigated for 21 days. Adding 1 g/L and 3 g/L of calcium particles increased biogas (Bio H2 + Bio CH4) production by 195% and 338%, respectively. Finally, the requirement for digestate post-treatment before use in agriculture was observed after assessing its phytotoxicity through the germination and root growth of L. sativa seeds.
Collapse
Affiliation(s)
- Ianny Andrade Cruz
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Biomass Technology Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, J1K 2R1, Québec, Canada.
| | - Larissa Renata Santos Andrade
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Biomass Technology Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, J1K 2R1, Québec, Canada
| | | | - Bruna Rego de Vasconcelos
- Biomass Technology Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, J1K 2R1, Québec, Canada
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Renan Tavares Figueiredo
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Waste and Effluent Treatment Laboratory, Institute of Technology and Research, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Ranyere Lucena de Souza
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Waste and Effluent Treatment Laboratory, Institute of Technology and Research, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Waste and Effluent Treatment Laboratory, Institute of Technology and Research, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil.
| |
Collapse
|
29
|
Godvin Sharmila V, Kumar G, Sivashanmugham P, Piechota G, Park JH, Adish Kumar S, Rajesh Banu J. Phase separated pretreatment strategies for enhanced waste activated sludge disintegration in anaerobic digestion: An outlook and recent trends. BIORESOURCE TECHNOLOGY 2022; 363:127985. [PMID: 36126843 DOI: 10.1016/j.biortech.2022.127985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 05/16/2023]
Abstract
A significant ecological problem was developed on disposing the enormous amounts of waste activated sludge (WAS) produced by traditional wastewater treatment. There have been various attempts recently originated to develop innovative methods for substantial sludge treatment. The most frequently used approach for treating sludge to produces methane and reduces sludge is anaerobic treatment. The hydrolysis phase in WAS limits the breakdown of complex macrobiotic compounds. The presence of extracellular polymeric substances (EPS) in biomass prevents the substrate from being hydrolyzed. Enhancing substrate hydrolysis involves removal of EPS preceded by phase separated pretreatment. Hence, a critical assessment of various phase separated pretreatment that has a remarkable effect on the anaerobic digestion process was documented in detail. Moreover, the economic viability and energy requirement of this treatment process was also discussed. Perspectives and recommendations for methane production were also provided to attain effectual sludge management.
Collapse
Affiliation(s)
- V Godvin Sharmila
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - P Sivashanmugham
- Department of Chemical Engineering, National Institute of Technology, Tiruchirapalli, Tamil Nadu, India
| | - Grzegorz Piechota
- GPCHEM, Laboratory of Biogas Research and Analysis, 40a/3 Legionów Str., 87-100 Toruń, Poland
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| | - S Adish Kumar
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamilnadu, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamilnadu 610005, India.
| |
Collapse
|
30
|
Chen H, Yang T, Shen Z, Yang E, Liu K, Wang H, Chen J, Sanjaya EH, Wu S. Can digestate recirculation promote biohythane production from two-stage co-digestion of rice straw and pig manure? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115655. [PMID: 35839651 DOI: 10.1016/j.jenvman.2022.115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/05/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Digestate recirculation is often considered an important way to improve system stability (system acidification, ammonia inhibition, hydrolysis limitations, etc.) and gas production performance. However, it is not clear how the promotion of biohythane production works in anaerobic co-digestion with digestate recirculation of rice straw (RS) and pig manure (PM). Two sets of laboratory-scale two-stage continuous stirred tank reactors were operated continuously for 95 d to investigate the performance of biohythane production in the first/second phase under mesophilic (M)/thermophilic (T) and digestate recirculation conditions. Firstly, biohythane was not produced by PM with RS under digestate recirculation. The main reasons were: 1) Digestive recirculation promoted the growth of hydrogenotrophic methanogenic bacteria; and 2) limitations in hydrolysis. Secondly, digestate recirculation has positive effects on the removal rates (removal rates of TS, VS, polysaccharide, protein and TCOD increased by 30.4%, 22.3%, 9.9%, 31.4%, and 11.9%, respectively) and energy yield (up to 68.7%). Finally, there was a higher abundance of hydrogen-producing bacteria (Fervidobacterium [44.9%] and Coprothermobacter [18.8%]) in T2, accounting for >80% of the total, and of which the huge hydrogen production potential cannot be ignored. The results provide new ideas for alleviating the energy crisis and developing green energy in the future.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Tao Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ke Liu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Jing Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | | | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| |
Collapse
|
31
|
Sani K, Jariyaboon R, O-Thong S, Cheirsilp B, Kaparaju P, Raketh M, Kongjan P. Deploying two-stage anaerobic process to co-digest greasy sludge and waste activated sludge for effective waste treatment and biogas recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115307. [PMID: 35658258 DOI: 10.1016/j.jenvman.2022.115307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
High-strength waste activated sludge (WAS) and greasy sludge (GS) were largely generated from canned tuna processing. This study reports the performance of the two-stage anaerobic process for co-digesting WAS and GS. Various WAS:GS mixing ratios of 0:100, 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20, 90:10, and 100:00 (volatile solids (VS) basis) were investigated in batch acidogenic stage at ambient (30 °C ± 3 °C), 55 °C, and 60 °C temperatures. Subsequently, the effluents from the first stage were used to produce methane in the second methanogenic stage at an ambient temperature. The highest methane yield of 609 mL CH4/g-VSadded was achieved using acidogenic effluents generated from a WAS:GS mixing ratio of 40:60 at an ambient temperature. The first-order kinetic constants (k) for the first (k1) and second (k2) stages were subsequently estimated to be 0.457 d-1 and 0.139 d-1, respectively. The obtained k constants were further used to predict the hydraulic retention time (HRT) for the two continuously stirred tank reactors (CSTR) in series. Consequently, the calculated 4-day HRT and 20-day HRT for 50-L CSTR1 and 250-L CSTR2, respectively, were used to operate the continuous two-stage process at an ambient temperature by feeding with a 40:60-WAS:GS mixing ratio. A satisfactory methane yield of 470-mL CH4/g-VS along with 75% chemical oxygen demand (COD) removal was generated. Furthermore, the predicted methane yield of 450-mL CH4/g-VS obtained from the simple kinetic CSTR model resembled the experimental yield with 96% accuracy. The obtained experimental results demonstrate that WAS and GS co-digestion could be successfully accomplished using a practical two-stage anaerobic process operated at an ambient temperature.
Collapse
Affiliation(s)
- Khaliyah Sani
- Energy Technology Program, Faculty of Engineering, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand; Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Prince of Songkla University, Pattani, 94000, Thailand
| | - Rattana Jariyaboon
- Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Prince of Songkla University, Pattani, 94000, Thailand; Department of Science, Faculty of Science and Technology, Prince of Songkla University, Meung, Pattani, 94000, Thailand
| | - Sompong O-Thong
- International College, Thaksin University, Songkhla, 90000, Thailand
| | - Benjamas Cheirsilp
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
| | - Prasad Kaparaju
- School of Engineering and Built Environment, Griffith University, Nathan, 4111, Australia
| | - Marisa Raketh
- Energy Technology Program, Faculty of Engineering, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand; Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Prince of Songkla University, Pattani, 94000, Thailand
| | - Prawit Kongjan
- Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Prince of Songkla University, Pattani, 94000, Thailand; Department of Science, Faculty of Science and Technology, Prince of Songkla University, Meung, Pattani, 94000, Thailand.
| |
Collapse
|
32
|
Sani K, Jariyaboon R, O-Thong S, Cheirsilp B, Kaparaju P, Wang Y, Kongjan P. Performance of pilot scale two-stage anaerobic co-digestion of waste activated sludge and greasy sludge under uncontrolled mesophilic temperature. WATER RESEARCH 2022; 221:118736. [PMID: 35714466 DOI: 10.1016/j.watres.2022.118736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Waste-activated sludge (WAS) and greasy sludge (GS) discharged from the canned tuna industry are considerably characterized as harsh organic wastes to be individually treated by using traditional anaerobic digestion. This study was attempted to anaerobically co-digest WAS and GS in continuous pilot scale two-stage process, comprising the first 50 L continuous stir tank reactor (CSTR1) and the second 250 L continuous stir tank reactor (CSTR2). The two-stage co-digesting operation of dewatered WAS:GS ratio of 0.4:1 (g-VS) at ambient temperature with the organic loading rate (OLR) of 12.6 ± 0.75 g-VS/L·d and 2.26 ± 0.13 g-VS/L·d, corresponding to 3-day and 17-day hydraulic retention time (HRT) for the first and second stage, respectively generated highest methane production rate of 957 ± 86 mL-CH4/L·d, corresponding to methane yield of 423.4 ± 36 mL-CH4/g-VS. Organic removal efficiency obtained was around 67.5% on COD basis. The microbial diversity was depended on the process's activity. Bacteria were mostly detected in the CSTR1, dominating with the phylum Firmicutes and Proteobacteria, whereas genus Methanosaeta archaea were found dominantly in the CSTR2. The economic analysis of process shows payback period (PBP), internal rate of return (IRR), and net present value (NPV) of 3 years, 30%, and 250,177 USD, respectively. This study demonstrated the potential approach to applying the two-stage anaerobic co-digestion process to stabilize both WAS and GS along with generating valuable bioenergy carriers.
Collapse
Affiliation(s)
- Khaliyah Sani
- Energy Technology Program, Faculty of Engineering, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Prince of Songkla University, Pattani 94000, Thailand
| | - Rattana Jariyaboon
- Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Prince of Songkla University, Pattani 94000, Thailand; Department of Science, Faculty of Science and Technology, Prince of Songkla University, Meung, Pattani 94000, Thailand
| | - Sompong O-Thong
- International College, Thaksin University, Songkhla 90000, Thailand
| | - Benjamas Cheirsilp
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Prasad Kaparaju
- School of Engineering and Built Environment, Griffith University, Nathan 4111, Australia
| | - Yi Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Prawit Kongjan
- Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Prince of Songkla University, Pattani 94000, Thailand; Department of Science, Faculty of Science and Technology, Prince of Songkla University, Meung, Pattani 94000, Thailand.
| |
Collapse
|
33
|
Hydrogen and Methane Production from Anaerobic Co-Digestion of Sorghum and Cow Manure: Effect of pH and Hydraulic Retention Time. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The need for alternative energy sources is constantly growing worldwide, while the focus has shifted to the valorization of biomass. The aim of the present study was to determine the optimal pH and hydraulic retention time (HRT) values for treating a mixture of sorghum biomass solution with liquid cow manure (in a ratio 95:5 v/v) through anaerobic digestion, in a two-stage system. Batch tests were initially carried out for the investigation of the pH effect on bio-hydrogen and volatile fatty acids (VFA) production. The highest hydrogen yield of 0.92 mol H2/mol carbohydratesconsumed was obtained at pH 5.0, whereas the maximum degradation of carbohydrates and VFA productivity was observed at pH 6.0. Further investigation of the effect of HRT on hydrogen and methane production was carried out. The maximum yield of 1.68 mol H2/mol carbohydratesconsumed was observed at an HRT of 5 d, with H2 productivity of 0.13 L/LR·d. On the other hand, the highest CH4 production rate of 0.44 L/LR·d was achieved at an HRT of 25 d, with a methane yield of 295.3 mL/g VSadded, whereas at a reduced HRT of 20 d the process exhibited inhibition and/or overload, as indicated by an accumulation of VFAs and decline in CH4 productivity.
Collapse
|
34
|
Two-Phase Anaerobic Digestion of Corn Steep Liquor in Pilot Scale Biogas Plant with Automatic Control System with Simultaneous Hydrogen and Methane Production. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Experimental studies of two-phase anaerobic digestion of corn steep liquor in semi-continuous automatic and semi-automatic modes of operation of a cascade of two anaerobic bioreactors with monitoring and control systems were performed. Corn steep liquor—a waste product from the process of treating corn grain for starch extraction—was used as a substrate in the process of anaerobic digestion with simultaneous hydrogen and methane production. The daily yields of biohydrogen in bioreactor 1 of the cascade (with a working volume of 8 dm3) are variable. In good operation, they are in the range of 0.7 to 1.0 L of biogas from a 1 dm3 working volume of the bioreactor, and the optimal pH is in the range of 5.0–5.5. The concentration of hydrogen in the biogas from the hydrogen bioreactor 1 is in the range of 14–34.7%. The daily yields of biomethane in bioreactor 2 of the cascade (with a working volume of 80 dm3) vary in the range 0.4 to 0.85 L of biogas from a 1 dm3 working volume of the bioreactor, and the concentration of methane in the biogas from bioreactor 2 is high and remains practically constant (in the range 65–69%). At a dilution rate of 0.4 day−1 and an organic loading rate of 20 gL for bioreactor 1, respectively, and a dilution rate of 0.05 day−1 for bioreactor 2, the best results were obtained. The computer control system is presented. Some energetical considerations were discussed.
Collapse
|
35
|
Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector. ENERGIES 2022. [DOI: 10.3390/en15124413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The urgent need to meet climate goals provides unique opportunities to promote small-scale farm anaerobic digesters that valorize on-site wastes for producing renewable electricity and heat, thereby cushioning agribusinesses against energy perturbations. This study explored the economic viability of mono-digestion of cow manure (CWM) and piglet manure (PM) in small manured-based 99 kWel plants using three treatment schemes (TS): (1) typical agricultural biogas plant, (2) a single-stage expanded granular sludge bed (EGSB) reactor, and (3) a multistage EGSB with a continuous stirred tank reactor. The economic evaluation attempted to take advantage of the financial incentives provided by The Renewable Energy Sources Act in Germany. To evaluate these systems, batch tests on raw and solid substrate fractions were conducted. For the liquid fraction, data of continuous tests obtained in a laboratory was employed. The economical evaluation was based on the dynamic indicators of net present value and internal return rate (IRR). Sensitivity analyses of the electricity and heat selling prices and hydraulic retention time were also performed. Furthermore, an incremental analysis of IRR was conducted to determine the most profitable alternative. The most influential variable was electricity selling price, and the most profitable alternatives were TS1 (CWM) > TS1 (PM) > TS3 (CWM). However, further studies on co-digestion using TS3 are recommended because this scheme potentially provides the greatest technical flexibility and highest environmental sustainability.
Collapse
|
36
|
Fernando Herrera Adarme O, Eduardo Lobo Baêta B, Cardoso Torres M, Camilo Otalora Tapiero F, Vinicius Alves Gurgel L, de Queiroz Silva S, Francisco de Aquino S. Biogas production by anaerobic co-digestion of sugarcane biorefinery byproducts: Comparative analyses of performance and microbial community in novel single-and two-stage systems. BIORESOURCE TECHNOLOGY 2022; 354:127185. [PMID: 35439561 DOI: 10.1016/j.biortech.2022.127185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic co-digestion (AcD) of sugarcane biorefinery byproducts (hemicelluloses hydrolysate (HH), vinasse, yeast extract and sugarcane bagasse fly ashes was evaluated using new anaerobic reactors fed with organic loading rates (OLR) from 0.9 to 10.8 gCODL-1d-1. The best results were obtained in a two-stage system when the OLR was 5.65 gCODL-1d-1, leading to a total chemical oxygen demand (COD) removal of 87.6 % and methane yield of 243NmLCH4gCODr-1. Microbial community analyses of sludge from both systems (one and two-stages) revealed structural changes and relationship among the main genus found (Clostridium (62.8%), Bacteroides(11.3 %), Desulfovibrio (19.1 %), Lactobacillus(67.7 %), Lactococcus (22.5%), Longilinea (78%), Methanosaeta (19.2 %) and Syntrophus (18.9 %)) with processes performance, kinetic and hydrodynamic parameters. Moreover, biomass granulation was observed in the novel structured anaerobic reactor operated at single stage due to sugarcane bagasse fly ash addition.
Collapse
Affiliation(s)
- Oscar Fernando Herrera Adarme
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | - Bruno Eduardo Lobo Baêta
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | - Murillo Cardoso Torres
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | | | - Leandro Vinicius Alves Gurgel
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | - Silvana de Queiroz Silva
- Laboratory of Microbiology and Microorganisms Technology, Department of Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | - Sérgio Francisco de Aquino
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil.
| |
Collapse
|
37
|
Biogas Production Enhancement through Chicken Manure Co-Digestion with Pig Fat. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chicken manure and pig fat are found abundantly around the globe, and there is a challenge to get rid of them. This waste has considerable energy potential to be recovered into fuel, but extracting this energy from some by-products, especially fat, isn’t an easy task. When anaerobic digestion technology stepped to the level of anaerobic co-digestion, the utilisation of hardly degradable waste became feasible. Our research was conducted on anaerobic co-digestion of chicken manure as the primary substrate with pig fat as a fat reach supplement in a semi-continuous mode at different organic load rates. The influence of fat waste on the process of biogas production from chicken manure and the composition of the obtained products was determined using an organic load rate of 3.0–4.5 kg VS·(m3·day)−1. A sturdy and continuously growing biogas production was observed at all organic load rates, implying the synergetic effect on chicken manure and pig fat co-digestion. The highest specific methane yield, 441.3 ± 7.6 L·kg VS−1, was observed at an organic load rate of 4.5 kg VS·(m3·day)−1. The research results showed that co-digestion of chicken manure with pig fat is an appropriate measure for fat utilisation and contributes to the increase in biogas yield, methane concentration, and overall methane yield at investigated organic load rates.
Collapse
|
38
|
Microbial Biogas Production from Pork Gelatine. HYDROGEN 2022. [DOI: 10.3390/hydrogen3020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This research describes the results of the anaerobic digestion of gelatine as a potential hydrogen source with heat-shocked inoculum. The concentrations of applied gelatine were of VSS (volatile suspended solids) ranging from 10 g VSS/L to 30 g VSS/L. The initial process pH was 5.5, and, depending on the concentration, reached pH values from 7.5 to 7.8 after 55 days. Although the inoculum was heat-shocked in 30 g VSS/L of collagen, the process that occurred was hydrogenotrophic anaerobic digestion. In gelatine concentrations below 30 g VSS/L, hydrogen production was dominant only during the first 5 days of the experiments. Then, there was a change from dark fermentation to hydrogenotrophic methane production. The optimal hydrogen and methane yields resulted from the concentrations of 10 g VSS/L (7.65 mL ± 0.01 mL H2/g VSS and 3.49 ± 0.01 L CH4/g VSS). Additionally, 10 g VSS/L had the lowest accumulated emission of hydrogen sulphide (10.3 ± 0.01 mL of H2S), while 30 g VSS/L (0.440 ± 0.01mL H2S/g VSS) produced the lowest yield. After a lag time, the hydrogen production and hydrogen sulphide grew with a specific ratio, depending on the concentration. The hydrogen sulphide emission and sulphur added analysis proved that hydrogen sulphide originating from biogas created by bacteria remains longer than that from a substrate.
Collapse
|
39
|
Donkor KO, Gottumukkala LD, Lin R, Murphy JD. A perspective on the combination of alkali pre-treatment with bioaugmentation to improve biogas production from lignocellulose biomass. BIORESOURCE TECHNOLOGY 2022; 351:126950. [PMID: 35257881 DOI: 10.1016/j.biortech.2022.126950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) is a bioprocess technology that integrates into circular economy systems, which produce renewable energy and biofertilizer whilst reducing greenhouse gas emissions. However, improvements in biogas production efficiency are needed in dealing with lignocellulosic biomass. The state-of-the-art of AD technology is discussed, with emphasis on feedstock digestibility and operational difficulty. Solutions to these challenges including for pre-treatment and bioaugmentation are reviewed. This article proposes an innovative integrated system combining alkali pre-treatment, temperature-phased AD and bioaugmentation techniques. The integrated system as modelled has a targeted potential to achieve a biodegradability index of 90% while increasing methane production by 47% compared to conventional AD. The methane productivity may also be improved by a target reduction in retention time from 30 to 20 days. This, if realized has the potential to lower energy production cost and the levelized cost of abatement to facilitate an increased resource of sustainable commercially viable biomethane.
Collapse
Affiliation(s)
- Kwame O Donkor
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland; Celignis Limited, Mill Court, Upper William Street, Limerick V94 N6D2, Ireland
| | | | - Richen Lin
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, PR China.
| | - Jerry D Murphy
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| |
Collapse
|
40
|
Dharma Patria R, Rehman S, Vuppaladadiyam AK, Wang H, Lin CSK, Antunes E, Leu SY. Bioconversion of food and lignocellulosic wastes employing sugar platform: A review of enzymatic hydrolysis and kinetics. BIORESOURCE TECHNOLOGY 2022; 352:127083. [PMID: 35364238 DOI: 10.1016/j.biortech.2022.127083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Bioenergy and biochemicals can be sustainably produced through fermentation and anaerobic digestion (AD). However, this bioconversion processes could be more economical if the hydrolysis rates of substrates in bioreactors can be accelerated. In this review, the feasibilities of including enzymatic hydrolysis (EH) in various bioconversion systems were studied to facilitate the biological synergy. The reaction kinetics of EH in bioconversion systems comparing pretreated lignocellulosic biomass (LCB) and food waste (FW) substrates were reviewed. Possible strategies to improve the hydrolysis efficiency were explored, including co-cultivation during enzyme production and replacement of pure enzyme with on-site produced fungal mash during EH. Key insights into improvement of current AD and fermentation technologies were summarized and further formed into suggestions of future directions in techno-economic feasibility of biorefinery using mixture of the first-generation food crop feedstock with FW; and/or co-digestion of FW with LCB.
Collapse
Affiliation(s)
- Raffel Dharma Patria
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shazia Rehman
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Arun K Vuppaladadiyam
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Huaimin Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Elsa Antunes
- College of Science and Engineering, James Cook University, Australia
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
41
|
Brojanigo S, Gronchi N, Cazzorla T, Wong TS, Basaglia M, Favaro L, Casella S. Engineering Cupriavidus necator DSM 545 for the one-step conversion of starchy waste into polyhydroxyalkanoates. BIORESOURCE TECHNOLOGY 2022; 347:126383. [PMID: 34808314 DOI: 10.1016/j.biortech.2021.126383] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Starch-rich by-products could be efficiently exploited for polyhydroxyalkanoates (PHAs) production. Unfortunately, Cupriavidus necator DSM 545, one of the most efficient PHAs producers, is not able to grow on starch. In this study, a recombinant amylolytic strain of C. necator DSM 545 was developed for the one-step PHAs production from starchy residues, such as broken rice and purple sweet potato waste. The glucodextranase G1d from Arthrobacter globiformis I42 and the α-amylase amyZ from Zunongwangia profunda SM-A87 were co-expressed into C. necator DSM 545. The recombinant C. necator DSM 545 #11, selected for its promising hydrolytic activity, produced high biomass levels with noteworthy PHAs titers: 5.78 and 3.65 g/L from broken rice and purple sweet potato waste, respectively. This is the first report on the engineering of C. necator DSM 545 for efficient amylase production and paves the way to the one-step conversion of starchy waste into PHAs.
Collapse
Affiliation(s)
- Silvia Brojanigo
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Nicoletta Gronchi
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Tiziano Cazzorla
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Tuck Seng Wong
- Department of Chemical & Biological Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom; National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Marina Basaglia
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, (PD), Italy.
| | - Sergio Casella
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| |
Collapse
|
42
|
Continuous Co-Digestion of Agro-Industrial Mixtures in Laboratory Scale Expanded Granular Sludge Bed Reactors. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Anaerobic co-digestion often improves the yields and stability of single anaerobic digestion. However, finding the right substrate proportions within mixtures and corresponding optimal operating conditions using a particular reactor technology often presents a challenge. This research investigated the anaerobic digestion of three mixtures from the liquid fractions of piglet manure (PM), cow manure (CWM), starch wastewater (SWW), and sugar beet (SBT) using three 30 L expanded granular sludge bed (EGSB) reactors. The synergistic effects of two three-substrate mixtures (i.e., PM+CWM+SWW and PM+CWM+SBT) were studied using the PM+CWM mixture as a benchmark. These were used to detect the predicted synergistic interactions found in previous batch tests. The methane productivity of both three-substrate mixtures (~1.20 LCH4/Lreact/d) was 2× the productivity of the benchmark mixture (0.64 LCH4/Lreact/d). Furthermore, strong indications of the predicted synergistic effects were found in the three-substrate mixtures, which were also stable due to their appropriate carbon-to-nitrogen ratio values. Moreover, the lowest averaged solid to hydraulic retention times ratio calculated for samples obtained from the top of the reactors was > 1. This confirmed the superior biomass retention capacity of the studied EGSB reactors over typical reactors that have been used in agricultural biogas plants with a continuous stirred tank reactor.
Collapse
|
43
|
Stasinakis AS, Charalambous P, Vyrides I. Dairy wastewater management in EU: Produced amounts, existing legislation, applied treatment processes and future challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114152. [PMID: 34861503 DOI: 10.1016/j.jenvman.2021.114152] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 05/27/2023]
Abstract
Dairy industry consumes high water amounts and generates highly contaminated wastewater. EU-27 is the second largest milk producer and the main cheese exporter in the world. The main objectives of the current study was to estimate the amounts of dairy wastewater (DWW) that are produced annually in different EU countries and to present the relevant existing EU legislation. The main treatment practices currently applied as well as the future opportunities for sustainable DWW management were also discussed. According to the results a total amount of 192.5 × 106 m3 of DWW are annually produced in EU-27 countries, 49% of them are due to the production of cheeses, while 19%, 18% and 13% are due to the production of drinking milk, acidified milk and butterfat products, respectively. Six countries (Germany, France, Italy, Poland, Spain and Netherlands) contribute to the generation of more than 73% of DWW, while the annual per capita DWW production ranges between 36 L (Luxembourg) and 1441 L (Ireland). Since 2019, EU has established best available techniques (BAT) for the dairy industry in order to achieve efficient monitoring of the produced wastewater, reduced water consumption and increased resource efficiency. The main on-site treatment processes that are currently applied include in series wastewater pretreatment for the removal of fat and pH adjustment, anaerobic or/and aerobic biological processes for the decrease of organic loading and nutrients and use of membranes for the cases that recovered water is going to be reused. Limited information is so far available for the operational treatment cost of the different processes. Data originated from a large dairy industry in Cyprus showed an operational cost equal to 1.21 €/m3 of treated wastewater. The main future challenge for the dairy industry and water treatment sector is the adoption of novel processes aiming to DWW valorization under the frame of circular economy.
Collapse
Affiliation(s)
- Athanasios S Stasinakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100, Mytilene, Greece; Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Str., P.O. BOX 50329, 3603, Limassol, Cyprus.
| | - Panagiotis Charalambous
- Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Str., P.O. BOX 50329, 3603, Limassol, Cyprus
| | - Ioannis Vyrides
- Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Str., P.O. BOX 50329, 3603, Limassol, Cyprus
| |
Collapse
|
44
|
Manikandan S, Subbaiya R, Saravanan M, Ponraj M, Selvam M, Pugazhendhi A. A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. CHEMOSPHERE 2022; 289:132867. [PMID: 34774910 DOI: 10.1016/j.chemosphere.2021.132867] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 05/28/2023]
Abstract
One of the modern challenges is to provide clean and affordable drinking water. Water scarcity is caused by the growing population in the world and pollutants contaminate all remaining water sources. Innovative water treatment solutions have been provided by nanotechnology. Microorganisms, organic suspensions, and inorganic heavy metal ions, among other things, are common water contaminants. Since antiquity, a wide range of water clean-up methods have been employed to address this issue. Breakthroughs in water purification procedures have occurred during the previous four decades, with the most significant one being the use of nanomaterials and nanomembranes. Nanoparticles and nanomembranes (polymeric membranes) have recently been used in engineered materials (TiO2, ZnO, CuO, Ag, CNT's and mixed oxide nanoparticles, for example). Engineered nanomembranes, nanocomposites and nanoparticles have been used in this review article's discussion of water purification technologies. The review also discusses the risk and solutions of using nanoparticles and nanocomposites in the future.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box, 21692, Kitwe, Zambia
| | - Muthupandian Saravanan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 60007, Chennai, India.
| | - Mohanadoss Ponraj
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box, 21692, Kitwe, Zambia
| | - Masilamani Selvam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, 600 095, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
45
|
de Gois Araújo Tavares T, Peiter FS, Chaves TC, Gois GNSB, de Amorim ELC. Effect of thermophilic temperatures on hydrogen and ethanol production in anaerobic fluidized bed reactor from cassava wastewater. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00222-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Yaashikaa PR, Senthil Kumar P, Varjani S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. BIORESOURCE TECHNOLOGY 2022; 343:126126. [PMID: 34673193 DOI: 10.1016/j.biortech.2021.126126] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 05/26/2023]
Abstract
Energy recovery from waste resources is a promising approach towards environmental consequences. In the prospect of environmental sustainability, utilization of agro-industrial waste residues as feedstock for biorefinery processes have gained widespread attention. In the agro-industry, various biomasses are exposed to different unit processes for offering value to various agro-industrial waste materials. Agro-industrial wastes can generate a substantial amount of valuable products such as fuels, chemicals, energy, electricity, and by-products. This paper reviews the methodologies for valorization of agro-industrial wastes and their exploitation for generation of renewable energy products. In addition, management of agro-industrial wastes and products from agro-industrial wastes have been elaborated. The waste biorefinery process using agro-industrial wastes does not only offer energy, it also offers environmentally sustainable modes, which address effective management of waste streams. This review aims to highlight the cascading use of biomass from agro-industrial wastes into the systemic approach for economic development.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India.
| |
Collapse
|
47
|
Guimarães de Oliveira M, Marques Mourão JM, Souza Silva FS, Bezerra Dos Santos A, Lopes Pereira E. Effect of microaerophilic treatment on swine wastewater (SWW) treatment: Engineering and microbiological aspects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113598. [PMID: 34481377 DOI: 10.1016/j.jenvman.2021.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/22/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
The microaerobic process on swine wastewater (SWW) treatment was investigated, evaluating its effect on organic matter hydrolysis and removal, biogas production, operational stability, and microbial community structure. UASB reactors operating under higher organic loading rates (OLRs) and lower hydraulic retention times (HRTs) than those found in the SWW treatment literature were also assessed. The microaerophilic reactor R2 presented a higher total and particulate organic matter removals and operational stability than the anaerobic reactor R1, reaching CODP removals of 79.4 ± 4.6%. In the specific methanogenic activity (SMA) tests, the microaerobic sludge (R2) showed hydrolytic and acetogenic/methanogenic activity superior to inoculum and anaerobic sludge (R1). The microbiological evaluation of R2 revealed the high presence of hydrolytic microorganisms, therefore justifying the higher hydrolytic activity found in the SMA tests and higher particulate organic matter removal found in the microaerobic reactor.
Collapse
Affiliation(s)
| | - José Marcos Marques Mourão
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Erlon Lopes Pereira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
48
|
Goutam Mukherjee A, Ramesh Wanjari U, Chakraborty R, Renu K, Vellingiri B, George A, C R SR, Valsala Gopalakrishnan A. A review on modern and smart technologies for efficient waste disposal and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113347. [PMID: 34314963 DOI: 10.1016/j.jenvman.2021.113347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 05/28/2023]
Abstract
In the current scenario, the word waste management holds much importance in every individual's life. Pollution and the generation of vast waste quantities with no proper waste management process have become one of humanity's biggest threats. This review article provides a complete review of the innovative technologies currently employed to handle and dispose of the waste successfully. This work aims to include the different solid, liquid, gaseous, and radioactive waste management processes. The novel and improved plasma gasification concepts, transmutation, incineration, bio-refineries, microbial fuel cells (MFC) have been thoroughly explained. In addition, some new techniques like Mr. Trash Wheel and the Smart bin approach provide much hope of adequately managing waste. The work's novelty lies in adopting several successful methods of various countries for waste disposal and management. To incorporate or improve India'sIndia's same techniques and processes, we have to tackle the ever-increasing waste disposal problems and find economic and eco-friendly ways of waste management.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biochemistry, Kamla Nehru Mahavidyalaya, Nagpur, 440024, Maharashtra, India
| | - Rituraj Chakraborty
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Kaviyarasi Renu
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, 680005, Kerala, India
| | - Sundara Rajan C R
- VIT Business School, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
49
|
Park YK, González-Fernández C, Robles-Iglesias R, Vidal L, Fontanille P, Kennes C, Tomás Pejó E, Nicaud JM, Fickers P. Bioproducts generation from carboxylate platforms by the non-conventional yeast Yarrowia lipolytica. FEMS Yeast Res 2021; 21:6359137. [PMID: 34453534 DOI: 10.1093/femsyr/foab047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Abstract
In recent years, there has been a growing interest in the use of renewable sources for bio-based production aiming at developing sustainable and feasible approaches towards a circular economy. Among these renewable sources, organic wastes (OWs) can be anaerobically digested to generate carboxylates like volatile fatty acids (VFAs), lactic acid, and longer-chain fatty acids that are regarded as novel building blocks for the synthesis of value-added compounds by yeasts. This review discusses on the processes that can be used to create valuable molecules from OW-derived VFAs; the pathways employed by the oleaginous yeast Yarrowia lipolytica to directly metabolize such molecules; and the relationship between OW composition, anaerobic digestion, and VFA profiles. The review also summarizes the current knowledge about VFA toxicity, the pathways by which VFAs are metabolized and the metabolic engineering strategies that can be employed in Y. lipolytica to produce value-added biobased compounds from VFAs.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | | | - Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, E-15008 La Coruña, Spain
| | - Lea Vidal
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Pierre Fontanille
- Institut Pascal UMR CNRS 6602, Polytech Clermont-Ferrand, Université Clermont Auvergne (UCA), F-63178 Aubière, France
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, E-15008 La Coruña, Spain
| | - Elia Tomás Pejó
- Biotechnological Processes Unit, IMDEA Energy, Avenida Ramón De La Sagra, 3. 28935, Móstoles, Madrid, Spain
| | - Jean-Marc Nicaud
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| |
Collapse
|
50
|
Assessment of Single- vs. Two-Stage Process for the Anaerobic Digestion of Liquid Cow Manure and Cheese Whey. ENERGIES 2021. [DOI: 10.3390/en14175423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The growing interest in processes that involve biomass conversion to renewable energy, such as anaerobic digestion, has stimulated research in this field in order to assess the optimum conditions for biogas production from abundant feedstocks, like agro-industrial wastes. Anaerobic digestion is an attractive process for the decomposition of organic wastes via a complex microbial consortium and subsequent conversion of metabolic intermediates to hydrogen and methane. The present study focused on the exploitation of liquid cow manure (LCM) and cheese whey (CW) as noneasily and easily biodegradable sources, respectively, using continuous stirred-tank reactors for biogas production, and a comparison was presented between single- and two-stage anaerobic digestion systems. No significant differences were found concerning LCM treatment, in a two-stage system compared to a single one, concluding that LCM can be treated by implementing a single-stage process, as a recalcitrant substrate, with the greatest methane production rate of 0.67 L CH4/(LR·d) at an HRT of 16 d. On the other hand, using the easily biodegradable CW as a monosubstrate, the two-stage process was considered a better treatment system compared to a single one. During the single-stage process, operational problems were observed due to the limited buffering capacity of CW. However, the two-stage anaerobic digestion of CW produced a stable methane production rate of 0.68 L CH4/(LR·d) or 13.7 L CH4/Lfeed, while the total COD was removed by 76%.
Collapse
|