1
|
Cai K, Zhang W, Su S, Yan H, Liu H, Zhu Y, Shang E, Guo S, Liu F, Duan JA. Salvia miltiorrhiza stem-leaf of total phenolic acid conversion products alleviate myocardial ischemia by regulating metabolic profiles, intestinal microbiota and metabolites. Biomed Pharmacother 2024; 177:117055. [PMID: 38941891 DOI: 10.1016/j.biopha.2024.117055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Myocardial ischemia (MI) is a significant contributor to ischemic heart diseases like angina pectoris and myocardial infarction. Reactive oxygen species produced during MI can trigger lipid peroxidation, damaging cell structure and function. Salvia miltiorrhiza (SM) has been widely used clinically in the treatment of cardiovascular diseases. However, in the process of rooting, the aboveground parts of this plant are usually discarded by tons. To make better use of these plant resources, the phenolic acids extracted and purified from the aerial part of SM were studied and chemically transformed, and the potential protective effect and possible mechanism of salvianolic acids containing a higher content of salvianolic acid A on MI were obtained. The transformed products of SM stem-leaves total phenolic acids with 8.16 % salvianolic acid A showed a better protective effect on the isoproterenol (ISO)-induced acute MI injury rat model. It can improve ST segment changes and has good antioxidant, anti-inflammatory and anticoagulant effects. In addition, the dysbiosis of gut microbiota and the related metabolic levels of short chain fatty acids (SCFAs), phenylalanine and glycerophospholipids were improved. This was achieved by reducing the abundance of Bacteroides, Faecalibaculum, and L-phenylalanine levels. In addition, the abundance of probiotics in Butyricoccus, Roseburia, and norank_f_Eubacterium_coprostanoligenes_group, as well as the contents of propionic acid and isobutyric acid, LPCs and PCs were increased. In conclusion, total phenolic acids of SM stem-leaves showed protective effects against ISO-induced rats, especially the strongest effect after conversion, which is a new option for the prevention and treatment of MI.
Collapse
Affiliation(s)
- Ke Cai
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haifeng Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feng Liu
- Shaanxi Institute of International Trade and Commerce, Xianyang 710061, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Mu X, Yu H, Li H, Feng L, Ta N, Ling L, Bai L, A R, Borjigidai A, Pan Y, Fu M. Metabolomics analysis reveals the effects of Salvia Miltiorrhiza Bunge extract on ameliorating acute myocardial ischemia in rats induced by isoproterenol. Heliyon 2024; 10:e30488. [PMID: 38737264 PMCID: PMC11088323 DOI: 10.1016/j.heliyon.2024.e30488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Salvia miltiorrhiza Bunge (SM) is a widespread herbal therapy for myocardial ischemia (MI). Nevertheless, the therapeutic signaling networks of SM extract on MI is yet unknown. Emerging evidences suggested that alterations in cardiac metabolite influences host metabolism and accelerates MI progression. Herein, we employed an isoproterenol (ISO)-induced acute myocardial ischemia (AMI) rat model to confirm the pharmacological effects of SM extract (0.8, 0.9, 1.8 g/kg/day) via assessment of the histopathological alterations that occur within the heart tissue and associated cytokines; we also examined the underlying SM extract-mediated signaling networks using untargeted metabolomics. The results indicated that 25 compounds with a relative content higher than 1 % in SM aqueous extract were identified using LC-MS/MS analysis, which included salvianolic acid B, lithospermic acid, salvianolic acid A, and caffeic acid as main components. An in vivo experiment showed that pretreatment with SM extract attenuated ISO-induced myocardial injury, shown as decreased myocardial ischemic size, transformed electrocardiographic, histopathological, and serum biochemical aberrations, reduced levels of proinflammatory cytokines, inhibited oxidative stress (OS), and reversed the trepidations of the cardiac tissue metabolic profiles. Metabolomics analysis shows that the levels of 24 differential metabolites (DMs) approached the same value as controls after SM extract therapy, which were primarily involved in histidine; alanine, aspartate, and glutamate; glycerophospholipid; and glycine, serine, and threonine metabolisms through metabolic pathway analysis. Correlation analysis demonstrated that the levels of modulatory effects of SM extract on the inflammation and OS were related to alterations in endogenous metabolites. Overall, SM extract demonstrated significant cardioprotective effects in an ISO-induced AMI rat model, alleviating myocardial injury, inflammation and oxidative stress, with metabolomics analysis indicating potential therapeutic pathways for myocardial ischemia.
Collapse
Affiliation(s)
- Xiyele Mu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Hongzhen Yu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Huifang Li
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Lan Feng
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Na Ta
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ling Ling
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Li Bai
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Rure A
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Almaz Borjigidai
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Yipeng Pan
- Department of Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China
| | - Minghai Fu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
3
|
De G, Yang M, Cai W, Zhao Q, Lu L, Chen A. Salvia miltiorrhiza augments endothelial cell function for ischemic hindlimb recovery. Biol Chem 2024; 405:119-128. [PMID: 36869860 DOI: 10.1515/hsz-2022-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Salvia miltiorrhiza (Salvia miltiorrhiza) root, as a traditional herb, is widely applied to pharmacotherapy for vascular system disease. In this study, we elucidate the therapy mechanism of Salvia miltiorrhiza by using a model of hindlimb ischemia. Blood perfusion measurement showed that intravenous administration of the Water Extract of Salvia miltiorrhiza (WES) could facilitate damaged hindlimb blood flow recovery and blood vessel regeneration. In vitro mRNA screen assay in cultured human umbilical vein endothelial cells (HUVECs) show that WES induced increased NOS3, VEGFA, and PLAU mRNA levels. Endothelial NOS (eNOS) promotor reporter analysis revealed that WES and the major ingredients danshensu (DSS) could enhance eNOS promoter activity. Additionally, we found that WES and its ingredients, including DSS, protocatechuic aldehyde (PAI), and salvianolic acid A (SaA), promoted HUVECs growth by the endothelial cell viability assays. A mechanistic approach confirmed that WES augments HUVECs proliferation through the activation of extracellular signal-regulated kinase (ERK) signal pathway. This study reveals that WES promotes ischemic remodeling and angiogenesis through its multiple principal ingredients, which target and regulate multiple sites of the network of the blood vessel endothelial cell regenerating process.
Collapse
Affiliation(s)
- Gejing De
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Miyi Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Qinghe Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Lili Lu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Apeng Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
4
|
Dawuti A, Sun S, Wang R, Gong D, Liu R, Kong D, Yuan T, Zhou J, Lu Y, Wang S, Du G, Fang L. Salvianolic acid A alleviates heart failure with preserved ejection fraction via regulating TLR/Myd88/TRAF/NF-κB and p38MAPK/CREB signaling pathways. Biomed Pharmacother 2023; 168:115837. [PMID: 37931518 DOI: 10.1016/j.biopha.2023.115837] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a morbid, fatal, and common syndrome for which lack of evidence-based therapies. Salvianolic acid A (SAA), a major active ingredient of Salvia miltiorrhiza Burge, has shown potential to protect against cardiovascular diseases. This study aims to elucidate whether SAA possessed therapeutic activity against HFpEF and explore the potential mechanism. HFpEF mouse model was established infusing a combination of high-fat diet (HFD) and Nω-nitro-L-arginine methyl ester (L-NAME) for 14 weeks. After 10 weeks of feeding, HFpEF mice were given SAA (2.5, 5, 10 mg/kg) via oral gavage for four weeks. Body weight, blood pressure, blood lipids, glucose tolerance, exercise performance, cardiac systolic/diastolic function, cardiac pathophysiological changes, and inflammatory factors were assessed. Experimental results showed that SAA reduced HFpEF risk factors, such as body weight gain, glucose intolerance, lipid disorders, and increased exercise tolerance in HFpEF mice. Moreover, SAA not only relieved myocardial hypertrophy and fibrosis by reducing interventricular septal wall thickness, left ventricular posterior wall thickness, left ventricular mass, heart index, cardiomyocyte cross-sectional area and cardiac collagen content, but also improved cardiac diastolic function via reducing E/E' ratio. Finally, SAA inhibited TLR2/TLR4-mediated Myd88 activation and its downstream molecules TRAF6 and IRAK4, which decreases the release of proinflammatory cytokines and mediators through NF-κB and p38 MAPK pathways. In conclusion, SAA could attenuate cardiac inflammation and cardiac disfunction by TLR/Myd88/TRAF/NF-κB and p38MAPK/CREB signaling pathways in HFpEF mice, which provides evidence for SAA as a potential drug for treatment of HFpEF in clinic.
Collapse
Affiliation(s)
- Awaguli Dawuti
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuchan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ranran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Difei Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruiqi Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dewen Kong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Lu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Wu C, Chen F, Huang S, Zhang Z, Wan J, Zhang W, Liu X. Progress on the role of traditional Chinese medicine in therapeutic angiogenesis of heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115770. [PMID: 36191661 DOI: 10.1016/j.jep.2022.115770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular diseases are still the leading cause of death worldwide. Heart failure (HF), as the terminal stage of many cardiovascular diseases, has brought a heavy burden to the global medical system. Microvascular rarefaction (decreased myocardial capillary density) with reduced coronary flow reserve is a hallmark of HF and therapeutic myocardial angiogenesis is now emerging as a promising approach for the prevention and treatment in HF. Traditional Chinese medicine (TCM) has made remarkable achievements in the treatment of many cardiovascular diseases. Growing evidence have shown that their protective effect in HF is closely related to therapeutic angiogenesis. AIM OF THE STUDY This review is to enlighten the therapeutic effect and pro-angiogenic mechanism of TCM in HF, and provide valuable hints for the development of pro-angiogenic drugs for the treatment of HF. MATERIALS AND METHODS The relevant information about cardioprotective TCM was collected from electronic scientific databases such as PubMed, Web of Science, ScienceDirect, and China National Knowledge Infrastructure (CNKI). RESULTS The studies showed that TCM formulas, extracts, and compounds from herbal medicines can provide therapeutic effect in HF with their pro-angiogenic activity. Their actions are achieved mainly by regulating the key angiogenesis factors particularly VEGF, as well as related regulators including signal molecules and pathways, non-coding miRNAs and stem cells. CONCLUSION TCM and their active components might be promising in therapeutic angiogenesis for the treatment of HF.
Collapse
Affiliation(s)
- Chennan Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Fei Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Si Huang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Jingjing Wan
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China; Academy of Interdisciplinary Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
6
|
Hu KS, Chen CL, Ding HR, Wang TY, Zhu Q, Zhou YC, Chen JM, Mei JQ, Hu S, Huang J, Zhao WR, Mei LH. Production of Salvianic Acid A from l-DOPA via Biocatalytic Cascade Reactions. Molecules 2022; 27:molecules27186088. [PMID: 36144828 PMCID: PMC9501478 DOI: 10.3390/molecules27186088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Salvianic acid A (SAA), as the main bioactive component of the traditional Chinese herb Salvia miltiorrhiza, has important application value in the treatment of cardiovascular diseases. In this study, a two-step bioprocess for the preparation of SAA from l-DOPA was developed. In the first step, l-DOPA was transformed to 3,4-dihydroxyphenylalanine (DHPPA) using engineered Escherichia coli cells expressing membrane-bound L-amino acid deaminase from Proteus vulgaris. After that, the unpurified DHPPA was directly converted into SAA by permeabilized recombinant E. coli cells co-expressing d-lactate dehydrogenase from Pediococcus acidilactici and formate dehydrogenase from Mycobacterium vaccae N10. Under optimized conditions, 48.3 mM of SAA could be prepared from 50 mM of l-DOPA, with a yield of 96.6%. Therefore, the bioprocess developed here was not only environmentally friendly, but also exhibited excellent production efficiency and, thus, is promising for industrial SAA production.
Collapse
Affiliation(s)
- Ke Shun Hu
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
- Department of Chemical and Biological Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chong Le Chen
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Huan Ru Ding
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Tian Yu Wang
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Qin Zhu
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Yi Chen Zhou
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Jia Min Chen
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Jia Qi Mei
- Hangzhou Huadong Medicine Group Co. Ltd., Hangzhou 310011, China
| | - Sheng Hu
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Jun Huang
- Department of Chemical and Biological Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Wei Rui Zhao
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
- Correspondence: (W.R.Z.); (L.H.M.); Tel.: +86-574-881-301-30 (W.R.Z.); +86-571-879-531-61(L.H.M.)
| | - Le He Mei
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Jinhua Advanced Research Institute, Jinhua 321019, China
- Correspondence: (W.R.Z.); (L.H.M.); Tel.: +86-574-881-301-30 (W.R.Z.); +86-571-879-531-61(L.H.M.)
| |
Collapse
|
7
|
Li J, Li R, Wu X, Zheng C, Shiu PHT, Rangsinth P, Lee SMY, Leung GPH. An Update on the Potential Application of Herbal Medicine in Promoting Angiogenesis. Front Pharmacol 2022; 13:928817. [PMID: 35928282 PMCID: PMC9345329 DOI: 10.3389/fphar.2022.928817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis, the formation of new capillaries from pre-existing vascular networks, plays an important role in many physiological and pathological processes. The use of pro-angiogenic agents has been proposed as an attractive approach for promoting wound healing and treating vascular insufficiency-related problems, such as ischemic heart disease and stroke, which are the leading causes of death worldwide. Traditional herbal medicine has a long history; however, there is still a need for more in-depth studies and evidence-based confirmation from controlled and validated trials. Many in vitro and in vivo studies have reported that herbal medicines and their bioactive ingredients exert pro-angiogenic activity. The most frequently studied pro-angiogenic phytochemicals include ginsenosides from Panax notoginseng, astragalosides and calycosin from Radix Astragali, salvianolic acid B from Salvia miltiorrhiza, paeoniflorin from Radix Paeoniae, ilexsaponin A1 from Ilex pubescens, ferulic acid from Angelica sinensis, and puerarin from Radix puerariae. This review summarizes the progress in research on these phytochemicals, particularly those related to pro-angiogenic mechanisms and applications in ischemic diseases, tissue repair, and wound healing. In addition, an outline of their limitations and challenges during drug development is presented.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa Macao SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: George Pak-Heng Leung,
| |
Collapse
|
8
|
Wang LS, Yen PT, Weng SF, Hsu JH, Yeh JL. Clinical Patterns of Traditional Chinese Medicine for Ischemic Heart Disease Treatment: A Population-Based Cohort Study. Medicina (B Aires) 2022; 58:medicina58070879. [PMID: 35888597 PMCID: PMC9320598 DOI: 10.3390/medicina58070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background and objectives: Traditional Chinese medicines (TCMs) are widely prescribed to relieve ischemic heart disease (IHD); however, no cohort studies have been conducted on the use of TCMs for patients with IHD. The aim of the study was to analyze TCM prescription patterns for patients with IHD. Materials and Methods: The retrospective population-based study employed a randomly sampled cohort of 4317 subjects who visited TCM clinics. Data were obtained from the National Health Insurance Research Database (NHIRD) of Taiwan for the period covering 2000 to 2017. Data analysis focused on the top ten most commonly prescribed formulae and single TCMs. We also examined the most common two- and three-drug combinations of TCM in single prescriptions. Demographic characteristics included age and sex distributions. Analysis was performed on 22,441 prescriptions. Results: The majority of TCM patients were male (53.6%) and over 50 years of age (65.1%). Zhi-Gan-Cao-Tang (24.76%) was the most frequently prescribed formulae, and Danshen (28.89%) was the most frequently prescribed single TCM for the treatment of IHD. The most common two- and three-drug TCM combinations were Xue-Fu-Zhu-Yu-Tang and Danshen” (7.51%) and “Zhi-Gan-Cao-Tang, Yang-Xin-Tang, and Gua-Lou-Xie-Bai-Ban-Xia-Tang” (2.79%). Conclusions: Our results suggest that most of the frequently prescribed TCMs for IHD were Qi toning agents that deal with cardiovascular disease through the promotion of blood circulation. The widespread use of these drugs warrants large-scale, randomized clinical trials to investigate their effectiveness and safety.
Collapse
Affiliation(s)
- Lung-Shuo Wang
- Department of Chinese Medicine, Sin-Lau Hospital, Tainan 70142, Taiwan; (L.-S.W.); (P.-T.Y.)
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Pei-Tzu Yen
- Department of Chinese Medicine, Sin-Lau Hospital, Tainan 70142, Taiwan; (L.-S.W.); (P.-T.Y.)
| | - Shih-Feng Weng
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jong-Hau Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.H.); (J.-L.Y.)
| | - Jwu-Lai Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.H.); (J.-L.Y.)
| |
Collapse
|
9
|
Yang Y, Yang J, Fu W, Zhou P, He Y, Fang M, Wan H, Zhou H. Pharmacokinetic Comparison of Nine Bioactive Compounds of Guanxinshutong Capsule in Normal and Acute Myocardial Infarction Rats. Eur J Drug Metab Pharmacokinet 2022; 47:653-665. [PMID: 35751765 DOI: 10.1007/s13318-022-00777-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Guanxinshutong capsules (GXST) are usually used to treat acute myocardial infarction (AMI), and the clinical effect of GXST is significant. However, there have been only a few studies on the pharmacokinetics of GXST against AMI injury. The objective of this study was to investigate the pharmacokinetics of nine bioactive compounds of GXST in normal and AMI rats. METHODS In this work, a rat model of AMI was established by ligating the left anterior descending coronary artery. The pharmacokinetic parameters of nine bioactive compounds (gallic acid, danshensu, protocatechuic aldehyde, rosmarinic acid, salvianolic acid B and salvianolic acid A, dihydrotanshinone I, cryptotanshinone, and tanshinone IIA) in the plasma of AMI and normal rats were compared under the same dose of GXST by a LC-MS/MS method. Then, we selected P-glycoprotein (P-gp) and some representative cytochrome P450 enzymes (CYPs) for molecular docking to further analyze the interaction between these compounds. RESULTS The pharmacokinetic studies showed that the area under the concentration-time curve (AUC) and maximum concentration (Cmax) of phenolic acids were relatively large, while the half-life (T½) of tanshinones was longer. Among the nine components, salvianolic acid B in AMI rats had the maximum area under the concentration-time curve (AUC0-∞ = 1961.8 ng·h/mL), which showed a significant difference compared with normal rats (P < 0.05). Tanshinone IIA in AMI rats had the longest half-life (T½ = 10.1 h), and it was markedly longer than that in normal rats (P < 0.01). In addition, compared with the normal group, the AUC, Cmax, T½ , and time to reach Cmax (Tmax) of gallic acid increased significantly in AMI rats (P < 0.05 or P < 0.01). For the molecular docking results, it was found that gallic acid may interact with CYP1A2, CYP2D6, and CYP2C9, while danshensu may interact with CYP2C9. Tanshinones may interact with CYP1A2, CYP2D6, CYP2C9, and P-gp. CONCLUSIONS The results suggest that the pathological injury caused by AMI has a significant impact on the pharmacokinetic characteristics of some active compounds in GXST, which are conducive to providing a reference and promoting rational clinical drug use.
Collapse
Affiliation(s)
- Yuting Yang
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Wei Fu
- Buchang Pharmaceutical Co., Ltd., Xi'an, 710075, People's Republic of China
| | - Peng Zhou
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yu He
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Mingsun Fang
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Haitong Wan
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
10
|
Fu R, Wang W, Tao H, Wang M, Chen Y, Gao H, Yue S, Tang Y. Quantitative evaluation of Danqi tablet by ultra‐performance liquid chromatography coupled with triple quadrupole mass spectrometry integrated with bioassay. J Sep Sci 2021; 44:1552-1563. [DOI: 10.1002/jssc.202000932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/11/2020] [Accepted: 01/17/2021] [Indexed: 01/01/2023]
Affiliation(s)
- Rui‐Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| | - Wen‐Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| | - Hui‐Juan Tao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| | - Mei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| | - Yan‐Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| | - Huan Gao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| | - Shi‐Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| | - Yu‐Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Shaanxi University of Chinese Medicine Xi′an P. R. China
| |
Collapse
|
11
|
Bu L, Dai O, Zhou F, Liu F, Chen JF, Peng C, Xiong L. Traditional Chinese medicine formulas, extracts, and compounds promote angiogenesis. Biomed Pharmacother 2020; 132:110855. [PMID: 33059257 DOI: 10.1016/j.biopha.2020.110855] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemic diseases, such as ischemic heart diseases and ischemic stroke, are the leading cause of death worldwide. Angiogenic therapy is a wide-ranging approach to fighting ischemic diseases. However, compared with anti-angiogenesis therapy for tumors, less attention has been paid to therapeutic angiogenesis. Recently, Traditional Chinese medicine (TCM) has garnered increasing interest for its definite curative effect and low toxicity. A growing number of studies have reported that TCM formulas, extracts, and compounds from herbal medicines exert pro-angiogenic activity, which has been confirmed in a few clinical trials. For comprehensive analysis of relevant literature, global and local databases including PubMed, Web of Science, and China National Knowledge Infrastructure were searched using keywords such as "angiogenesis," "neovascularization," "traditional Chinese medicine," "formula," "extract," and "compound." Articles were chosen that are closely and directly related to pro-angiogenesis. This review summarizes the pro-angiogenic activity and the mechanism of TCM formulas, extracts, and compounds; it delivers an in-depth understanding of the relationship between TCM and pro-angiogenesis and will provide new ideas for clinical practice.
Collapse
Affiliation(s)
- Lan Bu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ou Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jin-Feng Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liang Xiong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
12
|
Effect of Active Ingredients of Chinese Herbal Medicine on the Rejuvenation of Healthy Aging: Focus on Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7307026. [PMID: 32724327 PMCID: PMC7366228 DOI: 10.1155/2020/7307026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
Stem cells (SCs) are special types of cells with the ability of self-renewal and multidirectional differentiation. As the organism ages, the ability to maintain homeostasis and regeneration deteriorates and the number and activity of stem cells decline. Theoretically, the restoration of stem cells might reverse aging. However, due to their own aging, donor-derived immune rejection, and difficulties in stem cell differentiation control, a series of problems need to be solved to realize the potential for clinical application of stem cells. Chinese herbal medicine is a nature drug library which is suitable for the long-term treatment of aging-related diseases. Modern pharmacological studies have revealed that many active ingredients of Chinese herbal medicines with the effect of promoting stem cells growth and differentiation mainly belong to “reinforcing herbs.” In recent years, exploration of natural active ingredients from Chinese herbal medicines for delaying aging, improving the stem cell microenvironment, and promoting the proliferation and differentiation of endogenous stem cells has attracted substantial attention. This article will focus on active ingredients from Chinese herbs-mediated differentiation of stem cells into particular cell type, like neural cells, endothelial cells, cardiomyocytes, and osteoblasts. We will also discuss the effects of these small molecules on Wnt, Sonic Hedgehog, Notch, eNOS-cGMP, and MAP kinase signal transduction pathways, as well as reveal the role of estrogen receptor α and PPAR γ on selectively promoting or inhibiting stem cells differentiation. This review will provide new insights into the health aging strategies of active ingredients in Chinese herbal medicine in regenerative medicine.
Collapse
|
13
|
Lu P, Xing Y, Peng H, Liu Z, Zhou Q(T, Xue Z, Ma Z, Kebebe D, Zhang B, Liu H. Physicochemical and Pharmacokinetic Evaluation of Spray-Dried Coformulation of Salvia miltiorrhiza Polyphenolic Acid and L-Leucine with Improved Bioavailability. J Aerosol Med Pulm Drug Deliv 2020; 33:73-82. [DOI: 10.1089/jamp.2019.1538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Peng Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Yue Xing
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Hui Peng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Zhifeng Xue
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Zhe Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
- School of Pharmacy, Institute of Health Science, Jimma University, Jimma, Ethiopia
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Hongfei Liu
- College of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Du G, Song J, Du L, Zhang L, Qiang G, Wang S, Yang X, Fang L. Chemical and pharmacological research on the polyphenol acids isolated from Danshen: A review of salvianolic acids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 87:1-41. [PMID: 32089230 DOI: 10.1016/bs.apha.2019.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Danshen, the dried root of Salvia miltiorrhiza Bge, is a common medicinal herb in Traditional Chinese Medicine, which has been used for the treatment of a number of diseases for thousands of years. More than 2000 years ago, the Chinese early pharmacy monograph "Shennong Materia Medica" recorded that Danshen could be used for the treatment of gastrointestinal diseases, cardiovascular diseases, certain gynecological diseases, etc. Since then, Danshen has been widely used clinically in many different prescriptions for many different diseases, especially for the treatment of cardiovascular diseases. Nowadays, many pharmacological studies about the water-soluble components from Danshen have been reported, especially salvianolic acids. It turned out that salvianolic acids showed strong anti-lipid peroxidation and anti-thrombic activities, and among them, SalAA and SalAB were the most potent. This review focused on the achievements in research of salvianolic acids regarding their bioactivities and pharmacological effects. These studies not only shed light on the water-soluble active components of Danshen and their mechanisms at the molecular level, but also provided theoretical information for the development of new medicines from Danshen for the treatment of cardiovascular and cerebrovascular diseases, inflammatory diseases, metabolic diseases, etc.
Collapse
Affiliation(s)
- Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Junke Song
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lida Du
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Li Zhang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guifen Qiang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shoubao Wang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiuying Yang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lianhua Fang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Combination of Ligusticum Chuanxiong and Radix Paeonia Promotes Angiogenesis in Ischemic Myocardium through Notch Signalling and Mobilization of Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7912402. [PMID: 30906416 PMCID: PMC6398078 DOI: 10.1155/2019/7912402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/10/2019] [Accepted: 02/03/2019] [Indexed: 01/07/2023]
Abstract
Objective To study the cardioprotective mechanism by which the combination of Chuanxiong (CX) and Chishao (CS) promotes angiogenesis. Methods Myocardial infarction (MI) mouse models were induced by ligation of the left anterior descending coronary artery. The effects on cardiac function were evaluated in the perindopril tert-butylamine group (PB group) (3 mg/kg/d), CX group (55 mg/kg/d), CS group (55 mg/kg/d), and CX and CS combination (CX-CS) group (27.5 mg/kg/d CX plus 27.5 mg/kg/d CS). RO4929097, an inhibitor of Notch γ secretase, was used (10 mg/kg/d) to explore the role of Notch signalling in the CX-CS-induced promotion of angiogenesis in the myocardial infarcted border zone (IBZ). The left ventricular ejection fraction (LVEF) and percentage of MI area were evaluated with animal ultrasound and Masson staining. The average optical densities (AODs) of CD31 and vWF in the myocardial IBZ were detected by immunofluorescence. Angiogenesis-related proteins including hypoxia-inducible factor 1-alpha (HIF-1α), fibroblast growth factor receptor 1 (FGFR-1), Notch1 and Notch intracellular domain (NICD), and stem cell mobilization-related proteins including stromal cell-derived factor 1 (SDF-1), C-X-C chemokine receptor type 4 (CXCR-4), and cardiotrophin1 were detected by western blot analysis. Results Compared with the model group, the CX-CS and PB groups both showed markedly improved LVEF and decreased percentage of MI area after 21 days of treatment. Although the CX group and CS group showed increased LVEF and decreased MI areas compared with the model group, the difference was not significant. The AOD of CD31 in the IBZ in both the model and the CX-CS-I group was markedly reduced compared with that in the sham group. CX-CS significantly increased the CD31 AOD in the IBZ and decreased the AODs of CD31 and vWF in the infarct zone compared with those in the model group. The expression of HIF-1α in both the model group and the CX-CS group was higher than that in the sham group. Compared with the model group, the expression of FGFR-1, SDF-1, cardiotrophin1, Notch1, and NICD was increased in the CX-CS group. Notch1 and NICD expression in the CX-CS-I group was reduced compared with that in the CX-CS group. Conclusions The combination of CX and CS protected cardiomyocytes in the IBZ better than CX or CS alone. The mechanism by which CX-CS protects ischemic myocardium may be related to the proangiogenesis effect of CX-CS exerted through Notch signalling and the mobilization of stem cells to the IBZ.
Collapse
|
16
|
Ma L, Tang L, Yi Q. Salvianolic Acids: Potential Source of Natural Drugs for the Treatment of Fibrosis Disease and Cancer. Front Pharmacol 2019; 10:97. [PMID: 30842735 PMCID: PMC6391314 DOI: 10.3389/fphar.2019.00097] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Salvianolic acids, the most effective and abundant compounds extracted from Salvia miltiorrhiza (Danshen), are well known for its good anti-oxidative activity. Danshen has been extensively used as a traditional medicine to treat cardiovascular-related diseases in China and other Asian countries for hundreds of years. Recently, more and more studies have demonstrated that salvianolic acids also have a good effect on the alleviation of fibrosis disease and the treatment of cancer. In vivo and in vitro experiments have demonstrated that salvianolic acids can modulate signal transduction within fibroblasts and cancer cells. It is discovered that the cancer treatment of salvianolic acids is not only because salvianolic acids promote the apoptosis of cancer cells, but also due to the inhibition of cancer-associated epithelial-mesenchymal transition processes. In this article, we review a variety of studies focusing on the comprehensive roles of salvianolic acids in the treatment of fibrosis disease and cancer. These perspectives on the therapeutic potential of salvianolic acids highlight the importance of these compounds, which could be the novel and attractive drugs for fibrosis disease and cancer.
Collapse
Affiliation(s)
- Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Liao W, Ma X, Li J, Li X, Guo Z, Zhou S, Sun H. A review of the mechanism of action of Dantonic® for the treatment of chronic stable angina. Biomed Pharmacother 2019; 109:690-700. [DOI: 10.1016/j.biopha.2018.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 01/04/2023] Open
|
18
|
Yang Y, Zhang L, La X, Li Z, Li H, Guo S. Salvianolic acid A inhibits tumor-associated angiogenesis by blocking GRP78 secretion. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:467-480. [DOI: 10.1007/s00210-018-1585-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022]
|
19
|
Jiao S, Tang B, Wang Y, Li C, Zeng Z, Cui L, Zhang X, Shao M, Guo D, Wang Q. Pro-angiogenic Role of Danqi Pill Through Activating Fatty Acids Oxidation Pathway Against Coronary Artery Disease. Front Pharmacol 2018; 9:1414. [PMID: 30564122 PMCID: PMC6289089 DOI: 10.3389/fphar.2018.01414] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
Coronary artery disease (CAD) is one of the leading causes of deaths worldwide. Energy metabolism disorders, including a reduction in fatty acids oxidation and upregulation of glycolysis pathway, are involved in the process of CAD. Therapeutic angiogenesis has become a promising treatment for CAD. Traditional Chinese medicines, such as Danqi Pill (DQP), have been proven to be effective in treating CAD in China for many years. However, the pro-angiogenic effects of DQP based on fatty acids oxidation are still unknown and the mechanism is worthy of investigation. In this study, left anterior descending (LAD) coronary artery was ligated to induce the CAD models in vivo, and cardiac functions were examined using echocardiography. Human umbilical vein endothelial cells (HUVEC) were subjected to H2O2-induced oxidative stress in vitro. The effects of DQP on CAD rat models and in vitro HUVEC were detected. Our results showed that DQP had cardio-protective effects in rat model. The intensity of capillaries in the marginal area of infarction of the rat heart was increased remarkably in DQP group, and the expression of PPARα and VEGF-2 were increased. The key enzymes involved in the transportation and intake of fatty acids, including CPT1A and CD36, both increased. In H2O2-induced endothelial cells injury models, DQP also showed protective roles and promoted capillary-like tube formation. DQP up-regulated key enzymes in fatty acids oxidation in H2O2-treated HUVEC. In addition, inhibition of CPT1A compromised the pro-angiogenic effects of DQP. In conclusion, fatty acids oxidation axis PPARα-CD36-CPT1A was involved in the pro-angiogenic roles of DQP against CAD. Cardiac CPT1A may serve as a target in therapeutic angiogenesis in clinics.
Collapse
Affiliation(s)
- Shihong Jiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Binghua Tang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zifan Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lixia Cui
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xuefeng Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyan Shao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Dongqing Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Cinnamaldehyde accelerates wound healing by promoting angiogenesis via up-regulation of PI3K and MAPK signaling pathways. J Transl Med 2018; 98:783-798. [PMID: 29463877 DOI: 10.1038/s41374-018-0025-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 11/08/2022] Open
Abstract
The bark of Cinnamomum cassia (C. cassia) has been used for the management of coronary heart disease (CHD) and diabetes mellitus. C. cassia may target the vasculature, as it stimulates angiogenesis, promotes blood circulation and wound healing. However, the active components and working mechanisms of C. cassia are not fully elucidated. The Shexiang Baoxin pill (SBP), which consists of seven medicinal materials, including C. cassia etc., is widely used as a traditional Chinese patent medicine for the treatment of CHD. Here, 22 single effective components of SBP were evaluated against the human umbilical vein endothelial cells (HUVECs). We demonstrated that in HUVECs, cinnamaldehyde (CA) stimulated proliferation, migration, and tube formation. CA also activated the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. Furthermore, the secretion of vascular endothelial growth factor (VEGF) from HUVECs was increased by CA. In vivo, CA partially restored intersegmental vessels in zebrafish pretreated with PTK787, which is a selective inhibitor for vascular endothelial growth factor receptor (VEGFR). CA also showed pro-angiogenic efficacy in the Matrigel plug assay. Additionally, CA attenuated wound sizes in a cutaneous wound model, and elevated VEGF protein and CD31-positive vascular density at the margin of these wounds. These results illustrate that CA accelerates wound healing by inducing angiogenesis in the wound area. The potential mechanism involves activation of the PI3K/AKT and MAPK signaling pathways. Such a small non-peptide molecule may have clinical applications for promoting therapeutic angiogenesis in chronic diabetic wounds and myocardial infarction.
Collapse
|
21
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
22
|
Guo D, Murdoch CE, Liu T, Qu J, Jiao S, Wang Y, Wang W, Chen X. Therapeutic Angiogenesis of Chinese Herbal Medicines in Ischemic Heart Disease: A Review. Front Pharmacol 2018; 9:428. [PMID: 29755358 PMCID: PMC5932161 DOI: 10.3389/fphar.2018.00428] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022] Open
Abstract
Ischemic heart disease (IHD) is one of the primary causes of death around the world. Therapeutic angiogenesis is a promising innovative approach for treating IHD, improving cardiac function by promoting blood perfusion to the ischemic myocardium. This treatment is especially important for targeting patients that are unable to undergo angioplasty or bypass surgery. Chinese herbal medicines have been used for more than 2,500 years and they play an important role alongside contemporary medicines in China. Growing evidence in animal models show Chinese herbal medicines can provide therapeutic effect on IHD by targeting angiogenesis. Identifying the mechanism in which Chinese herbal medicines can promote angiogenesis in IHD is a major topic in the field of traditional Chinese medicine, and has the potential for advancing therapeutic treatment. This review summarizes the progression of research and highlights potential pro-angiogenic mechanisms of Chinese herbal medicines in IHD. In addition, an outline of the limitations of Chinese herbal medicines and challenges they face will be presented.
Collapse
Affiliation(s)
- Dongqing Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Colin E Murdoch
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Tianhua Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Qu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Shihong Jiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
23
|
Feng SQ, Aa N, Geng JL, Huang JQ, Sun RB, Ge C, Yang ZJ, Wang LS, Aa JY, Wang GJ. Pharmacokinetic and metabolomic analyses of the neuroprotective effects of salvianolic acid A in a rat ischemic stroke model. Acta Pharmacol Sin 2017; 38:1435-1444. [PMID: 28836583 DOI: 10.1038/aps.2017.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022]
Abstract
Salvianolic acid A (SAA), a water-soluble phenolic acid isolated from the root of Dan Shen, displays distinct antioxidant activity and effectiveness in protection against cerebral ischemia/reperfusion (I/R) damage. However, whether SAA can enter the central nervous system and exert its protective effects by directly targeting brain tissue remains unclear. In this study, we evaluated the cerebral protection of SAA in rats subjected to transient middle cerebral artery occlusion (tMCAO) followed by reperfusion. The rats were treated with SAA (5, 10 mg/kg, iv) when the reperfusion was performed. SAA administration significantly decreased cerebral infarct area and the brain water content, attenuated the neurological deficit and pathology, and enhanced the anti-inflammatory and antioxidant capacity in tMCAO rats. The concentration of SAA in the plasma and brain was detected using LC-MS/MS. A pharmacokinetic study revealed that the circulatory system exposure to SAA was equivalent in the sham controls and I/R rats, but the brain exposure to SAA was significantly higher in the I/R rats than in the sham controls (fold change of 9.17), suggesting that the enhanced exposure to SAA contributed to its cerebral protective effect. Using a GC/MS-based metabolomic platform, metabolites in the serum and brain tissue were extracted and profiled. According to the metabolomic pattern of the tissue data, SAA administration significantly modulated the I/R-caused perturbation of metabolism in the brain to a greater extent than that in the serum, demonstrating that SAA worked at the brain tissue level rather than the whole circulation system. In conclusion, a larger amount of SAA enters the central nervous system in ischemia/reperfusion rats to facilitate its protective and regulatory effects on the perturbed metabolism.
Collapse
|
24
|
Zhang Z, Qi D, Wang X, Gao Z, Li P, Liu W, Tian X, Liu Y, Yang M, Liu K, Fan H. Protective effect of Salvianolic acid A on ischaemia-reperfusion acute kidney injury in rats through protecting against peritubular capillary endothelium damages. Phytother Res 2017; 32:103-114. [DOI: 10.1002/ptr.5954] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/13/2017] [Accepted: 09/21/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Zuokai Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Dong Qi
- Department of Nephrology; Yu-Huang-Ding Hospital/Qingdao University; 264000 Yantai Shandong P.R. China
| | - Xuekai Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Zhenfang Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Peng Li
- Department of Nephrology; Yu-Huang-Ding Hospital/Qingdao University; 264000 Yantai Shandong P.R. China
| | - Wenbo Liu
- Medical Research Center; Binzhou Medical University; 264003 Yantai Shandong China
| | - Xiao Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Yue Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Mingyan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Ke Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Huaying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| |
Collapse
|
25
|
Li Y, Zhang X, Cui L, Chen R, Zhang Y, Zhang C, Zhu X, He T, Shen Z, Dong L, Zhao J, Wen Y, Zheng X, Li P. Salvianolic acids enhance cerebral angiogenesis and neurological recovery by activating JAK2/STAT3 signaling pathway after ischemic stroke in mice. J Neurochem 2017; 143:87-99. [PMID: 28771727 DOI: 10.1111/jnc.14140] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Yaoru Li
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xiangjian Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Lili Cui
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Rong Chen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Ye Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Cong Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xingyuan Zhu
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Tingting He
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Zuyuan Shen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Lipeng Dong
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Jingru Zhao
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Ya Wen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xiufen Zheng
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Pan Li
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| |
Collapse
|
26
|
Danshensu accelerates angiogenesis after myocardial infarction in rats and promotes the functions of endothelial progenitor cells through SDF-1α/CXCR4 axis. Eur J Pharmacol 2017; 814:274-282. [PMID: 28864209 DOI: 10.1016/j.ejphar.2017.08.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/16/2023]
Abstract
The present study was performed to investigate the potential role of Danshensu in therapeutic angiogenesis in ischemic myocardium and endothelial progenitor cells (EPCs) function. The rat model of myocardial infarction (MI) injury was induced by left anterior descending coronary artery ligation for 14 days. Danshensu significantly alleviated myocardial ischemia injury by ameliorating left ventricular function and reducing infarct size. Furthermore, Danshensu potentiated post-ischemia neovascularization as evidenced by increased microvessel density in infarction boundary zone, as well as the expression of marker proteins vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Moreover, Danshensu notably promoted stromal cell-derived factor-1α (SDF-1α) level in plasma and C-X-C chemokine receptor type 4 (CXCR4) expression in peri-infarction myocardium, and AMD3100 (CXCR4 antagonist) could reverse the angiogenic and cardioprotective effects of Danshensu. For in vitro study, EPCs were isolated from bone marrow of rats. On the one hand, Danshensu provided significant cytoprotection against hypoxia insult by boosting EPCs viability and inhibiting apoptosis, and upregulated Akt phosphorylation. On the other hand, Danshensu enhanced proangiogenic functions of EPCs on cell migration and tube formation, and increased SDF-1α and CXCR4 expression. Likewise, the cytoprotection and proangiogenic functions of Danshensu on EPCs were partly negated by LY294002 (PI3K antagonist) and CXCR4 siRNA, respectively. Taken together, our results suggested that the cardioprotection of Danshensu in MI rats may be related to promoting myocardial neovascularization. The possible mechanisms may involve improving EPCs survival in hypoxia condition through Akt phosphorylation, and accelerating EPCs proangiogenic functions through SDF-1α/CXCR4 axis.
Collapse
|
27
|
Salvianolic Acid Exerts Cardioprotection through Promoting Angiogenesis in Animal Models of Acute Myocardial Infarction: Preclinical Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8192383. [PMID: 28713492 PMCID: PMC5497657 DOI: 10.1155/2017/8192383] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/09/2017] [Accepted: 04/24/2017] [Indexed: 12/21/2022]
Abstract
Radix Salviae miltiorrhizae, danshen root (danshen), is one of the widely used Chinese herbal medicines in clinics, containing rich phenolic compounds. Salvianolic acid is the main active compound responsible for the pharmacologic effects of danshen. Here, we aimed to evaluate the effects of salvianolic acid on cardioprotection through promoting angiogenesis in experimental myocardial infarction. Studies of salvianolic acid in animal models of myocardial infarction were obtained from 6 databases until April 2016. The outcome measures were vascular endothelium growth factor (VEGF), blood vessel density (BVD), and myocardial infarct size. All the data were analyzed using Rev-Man 5.3 software. Ultimately, 14 studies were identified involving 226 animals. The quality score of studies ranged from 3 to 6. The meta-analysis of six studies showed significant effects of salvianolic acid on increasing VEGF expression compared with the control group (P < 0.01). The meta-analysis of the two salvianolic acid A studies and three salvianolic acid B studies showed significantly improving BVD compared with the control group (P < 0.01). The meta-analysis of five studies showed significant effects of salvianolic acid for decreasing myocardial infarct size compared with the control group (P < 0.01). In conclusion, these findings demonstrated that salvianolic acid can exert cardioprotection through promoting angiogenesis in animal models of myocardial infarction.
Collapse
|
28
|
Wang L, Yu J, Fordjour PA, Xing X, Gao H, Li Y, Li L, Zhu Y, Gao X, Fan G. Danshen injection prevents heart failure by attenuating post-infarct remodeling. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:22-32. [PMID: 28465251 DOI: 10.1016/j.jep.2017.04.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/16/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danshen Injection (DSI) is a traditional Chinese medicine extracted from Danshen, prepared from the dried root and rhizome of Salvia miltiorrhiza Bunge. Danshen is an ancient antipyretic traditional Chinese medicine which is mostly used to improve blood circulation and dispel blood stasis. Danshen decoction or liquor-fried Danshen (with grain-based liquor) which is cool in nature is traditionally used to 'cool the blood' and reduce the swelling of sores and abscesses. AIM OF STUDY The present study aimed to examine the effect and mechanism of DSI in LAD induced heart injury. MATERIALS AND METHODS One day after LAD surgery, adult male Sprague-Dawley rats were randomized to 3 groups: MI group; DSI group (1.5ml/kg/d, intramuscular); and Valsartan group (10mg/kg/d, intragastric). Echocardiography and hemodynamic measurements (Pressure-Volume loop) were performed to evaluate cardiac function. Pathological methods (Masson, and Sirus red staining) were used to check myocardial fibrosis. Western blotting assay was used to detect the protein expression of MMP-2. RT-PCR was used to detect the gene expression of MMP-9, MPO, iNOS, Bcl-2 and Bax. RESULTS DSI administration to LAD rats resulted in improved cardiac functions, hemodynamic parameters and normalized ventricular mass. Furthermore, DSI-treated group demonstrated potential regulation of myocardial collagen I and III deposition associated with MMP-2 expression. Also, DSI administration decreased gene expression of iNOS, MPO and MMP-9, and increased Bcl-2/Bax ratio. CONCLUSION Myocardial fibrosis, cardiac hypertrophy, hemodynamic deterioration as well as systolic and diastolic dysfunctions which characterize a failing hearts were significantly prevented by DSI. Our study may provide future directions to focus on the anti-hypertrophic mechanisms of DSI and pathological roles played by MMP-2 in myocardial hypertrophy. Meanwhile, DSI also performed the effect of anti-inflammation by the way of decreasing iNOS and MPO. The way Danshen Injection increasing Bcl-2/Bax presented the possibility that it may has the effect of inhibiting cell death.
Collapse
Affiliation(s)
- Lingyan Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of traditional Chinese Medicine, Tianjin, PR China.
| | - Jiahui Yu
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of traditional Chinese Medicine, Tianjin, PR China.
| | - Patrick Asare Fordjour
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of traditional Chinese Medicine, Tianjin, PR China.
| | - Xiaoxue Xing
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of traditional Chinese Medicine, Tianjin, PR China.
| | - Hui Gao
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of traditional Chinese Medicine, Tianjin, PR China.
| | - Yanyan Li
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of traditional Chinese Medicine, Tianjin, PR China.
| | - Lingyan Li
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of traditional Chinese Medicine, Tianjin, PR China.
| | - Yan Zhu
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of traditional Chinese Medicine, Tianjin, PR China.
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of traditional Chinese Medicine, Tianjin, PR China; State Key Laboratory of Modern Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Medicine, Nankai District, Tianjin, PR China.
| | - Guanwei Fan
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of traditional Chinese Medicine, Tianjin, PR China; Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, NanKai District, Tianjin, PR China.
| |
Collapse
|
29
|
Hydroxysafflor yellow A promotes neovascularization and cardiac function recovery through HO-1/VEGF-A/SDF-1α cascade. Biomed Pharmacother 2017; 88:409-420. [PMID: 28122306 DOI: 10.1016/j.biopha.2017.01.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/12/2017] [Indexed: 01/01/2023] Open
Abstract
AIM The present study was to investigate the proangiogenic and cardioprotective effects of hydroxysafflor yellow A (HSYA) against myocardial infarction (MI) injury and the underlying mechanisms. METHODS MI model was induced by ligation of the left coronary artery in normal and heme oxygenase-1 (HO-1) knockout mice and the ones receiving vascular endothelial growth factor-A (VEGF-A) or stromal cell-derived factor-1α (SDF-1α) antagonists. They were treated with three doses or single dose of HSYA for 28days. The cardiac function, endothelial progenitor cells (EPCs) mobilization, angiogenesis, the expression of HO-1, VEGF-A, SDF-1α and apoptosis or fibrosis related proteins in the peri-infarct area were evaluated at respective times. We further examined the effect of HSYA on EPCs CXC chemokiner receptor 4 (CXCR4) expression and the role of SDF-1α on EPCs function in vitro. RESULTS HSYA could dose dependently reduce left ventricular function impairment, myocardial apoptosis and fibrosis, and promote EPCs mobilization and myocardial neovascularization. Further, HO-1 knockout abolished HSYA-induced up-regulation of HO-1, VEGF-A and SDF-1α. VEGF antagonist significantly reduced HSYA-increased VEGF-A and SDF-1α levels and SDF-1 antagonist abolished HSYA-simulated up-regulation of SDF-1α. Meanwhile, HO-1 knockout, administration of VEGF and SDF-1 antibodies abrogated HSYA-promoted expression of the marker proteins of newborn microvessels and cardiac functional recovery. In vitro, HSYA dose dependently promoted (CXCR4) expression on EPCs. SDF-1α significantly accelerated EPCs function which was reversed by CXCR4 antagonist. CONCLUSION HSYA could promote EPCs function through the HO-1/VEGF-A/SDF-1α signaling cascade, which contributed largely to myocardial neovascularization and further improved cardiac function in MI mice.
Collapse
|
30
|
He S, Zhao T, Guo H, Meng Y, Qin G, Goukassian DA, Han J, Gao X, Zhu Y. Coordinated Activation of VEGF/VEGFR-2 and PPARδ Pathways by a Multi-Component Chinese Medicine DHI Accelerated Recovery from Peripheral Arterial Disease in Type 2 Diabetic Mice. PLoS One 2016; 11:e0167305. [PMID: 27930695 PMCID: PMC5145164 DOI: 10.1371/journal.pone.0167305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/12/2016] [Indexed: 12/26/2022] Open
Abstract
Diabetic mellitus (DM) patients are at an increased risk of developing peripheral arterial disease (PAD). Danhong injection (DHI) is a Chinese patent medicine widely used for several cardiovascular indications but the mechanism of action is not well-understood. We investigated the therapeutic potential of DHI on experimental PAD in mice with chemically induced as well as genetic (KKAy) type 2 DM and the overlapping signaling pathways regulating both therapeutic angiogenesis and glucose homeostasis. Compared with normal genetic background wild type (WT) mice, both DM mice showed impaired perfusion recovery in hind-limb ischemia (HLI) model. DHI treatment significantly accelerated perfusion recovery, lowered blood glucose and improved glucose tolerance in both DM models. Bioluminescent imaging demonstrated a continuous ischemia-induced vascular endothelial growth factor receptor 2 (VEGFR-2) gene expressions with a peak time coincident with the maximal DHI stimulation. Flow cytometry analysis showed a DHI-mediated increase in endothelial progenitor cell (EPC) mobilization from bone marrow to circulating peripheral blood. DHI administration upregulated the expression of vascular endothelial growth factor A (VEGF-A) and VEGF receptor-2 (VEGFR-2) in ischemic muscle. A cross talk between ischemia-induced angiogenesis and glucose tolerance pathways was analyzed by Ingenuity Pathway Analysis (IPA) which suggested an interaction of VEGF-A/VEGFR-2 and peroxisome proliferator-activated receptor δ (PPARδ)/peroxisome proliferator-activated receptor γ (PPARγ) genes. We confirmed that upregulation of VEGF-A/VEGFR-2 by DHI promoted PPARδ gene expression in both type 2 diabetic mice. Our findings demonstrated that a multi-component Chinese medicine DHI effectively increased blood flow recovery after tissue ischemia in diabetic mice by promoting angiogenesis and improving glucose tolerance through a concomitant activation of VEGF-A/VEGFR-2 and PPARδ signaling pathways.
Collapse
Affiliation(s)
- Shuang He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Tiechan Zhao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Hao Guo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Yanzhi Meng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Gangjian Qin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Medicine-Cardiology and Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - David A. Goukassian
- Center of Biomedical Research, Tufts University School of Medicine, Boston, United States of America
| | - Jihong Han
- State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin, China
| | - Xuimei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
- Molecular Cardiology Research Institute, Tufts Medical Center and Tufts University School of Medicine, Boston, United States of America
- * E-mail:
| |
Collapse
|
31
|
Degradation Kinetics and Mechanism of Lithospermic Acid under Low Oxygen Condition Using Quantitative 1H NMR with HPLC-MS. PLoS One 2016; 11:e0164421. [PMID: 27776128 PMCID: PMC5077101 DOI: 10.1371/journal.pone.0164421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/23/2016] [Indexed: 01/13/2023] Open
Abstract
A novel quantitative 1H NMR (Q-NMR) combined with HPLC-MS method has been proposed for investigating the degradation process of traditional Chinese medicine (TCM) components. Through this method, in-situ monitoring of dynamics degradation process of lithospermic acid (LA), one of the popular polyphenolic acids in TCM, was realized under low oxygen condition. Additionally, this methodology was proved to be simple, rapid and specific. Degradation kinetic runs have been carried out to systematically investigate the effects of two key environmental factors, initial pH values and temperatures. Eight main degradation products of LA were detected, seven of which were tentatively structural elucidated with the help of both NMR and LC-MS in this work and salvianolic acid A (Sal A) was the primary degradation product of LA. A possible degradation pathway of LA was proposed, subsequently. The results showed that the degradation of LA followed pseudo-first-order kinetics. The apparent degradation kinetic constants increased as the initial pH value of the phosphate buffer increased. Under the given conditions, the rate constants of overall degradation as a function of temperature obeyed the Arrhenius equation. Our results proved that the Q-NMR combined with HPLC-MS method can be one of the most promising techniques for investigating degradation process of active components in TCM.
Collapse
|
32
|
Zheng X, Chen S, Yang Q, Cai J, Zhang W, You H, Xing J, Dong Y. Salvianolic acid A reverses the paclitaxel resistance and inhibits the migration and invasion abilities of human breast cancer cells by inactivating transgelin 2. Cancer Biol Ther 2016; 16:1407-14. [PMID: 26176734 DOI: 10.1080/15384047.2015.1070990] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Multidrug resistance and tumor migration and invasion are the major obstacles to effective breast cancer chemotherapy, but the underlying molecular mechanisms remain unclear. This study investigated the potential of transgelin 2 and salvianolic acid A to modulate the resistance and the migration and invasion abilities of paclitaxel-resistant human breast cancer cells (MCF-7/PTX). MCF-7/PTX cells were found to exhibit not only a high degree of resistance to paclitaxel, but also strong migration and invasion abilities. Small interfering RNA-mediated knockdown of TAGLN2 sensitized the MCF-7/PTX cells to paclitaxel, and inhibited their migration and invasion abilities. In addition, we also observed that combined salvianolic acid A and paclitaxel treatment could reverse paclitaxel resistance, markedly inhibit tumor migration and invasion, and suppress the expression of transgelin 2 in MCF-7/PTX cells. These findings indicate that salvianolic acid A can reverse the paclitaxel resistance and inhibit the migration and invasion abilities of human breast cancer cells by down-regulating the expression of transgelin 2, and hence could be useful in breast cancer treatments.
Collapse
Affiliation(s)
- Xiaowei Zheng
- a Department of Pharmacy ; The First Affiliated Hospital of Xi'an Jiaotong University ; Xi'an , Shaanxi , PR China
| | - Siying Chen
- a Department of Pharmacy ; The First Affiliated Hospital of Xi'an Jiaotong University ; Xi'an , Shaanxi , PR China
| | - Qianting Yang
- a Department of Pharmacy ; The First Affiliated Hospital of Xi'an Jiaotong University ; Xi'an , Shaanxi , PR China
| | - Jiangxia Cai
- b Department of Pharmacy ; The People's Hospital of Bayingol Mongolian Autonomous Prefecture ; Korla , Xinjiang , PR China
| | - Weipeng Zhang
- a Department of Pharmacy ; The First Affiliated Hospital of Xi'an Jiaotong University ; Xi'an , Shaanxi , PR China
| | - Haisheng You
- a Department of Pharmacy ; The First Affiliated Hospital of Xi'an Jiaotong University ; Xi'an , Shaanxi , PR China
| | - Jianfeng Xing
- c School of Pharmacy; Xi'an Jiaotong University ; Xi'an , Shaanxi , PR China
| | - Yalin Dong
- a Department of Pharmacy ; The First Affiliated Hospital of Xi'an Jiaotong University ; Xi'an , Shaanxi , PR China
| |
Collapse
|
33
|
Angiogenesis in Ischemic Stroke and Angiogenic Effects of Chinese Herbal Medicine. J Clin Med 2016; 5:jcm5060056. [PMID: 27275837 PMCID: PMC4929411 DOI: 10.3390/jcm5060056] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/06/2023] Open
Abstract
Stroke is one of the major causes of death and adult disability worldwide. The underlying pathophysiology of stroke is highly complicated, consisting of impairments of multiple signalling pathways, and numerous pathological processes such as acidosis, glutamate excitotoxicity, calcium overload, cerebral inflammation and reactive oxygen species (ROS) generation. The current treatment for ischemic stroke is limited to thromolytics such as recombinant tissue plasminogen activator (tPA). tPA has a very narrow therapeutic window, making it suitable to only a minority of stroke patients. Hence, there is great urgency to develop new therapies that can protect brain tissue from ischemic damage. Recent studies have shown that new vessel formation after stroke not only replenishes blood flow to the ischemic area of the brain, but also promotes neurogenesis and improves neurological functions in both animal models and patients. Therefore, drugs that can promote angiogenesis after ischemic stroke can provide therapeutic benefits in stroke management. In this regard, Chinese herbal medicine (CHM) has a long history in treating stroke and the associated diseases. A number of studies have demonstrated the pro-angiogenic effects of various Chinese herbs and herbal formulations in both in vitro and in vivo settings. In this article, we present a comprehensive review of the current knowledge on angiogenesis in the context of ischemic stroke and discuss the potential use of CHM in stroke management through modulation of angiogenesis.
Collapse
|
34
|
Huang J, Zheng Y, Wu W, Xie T, Yao H, Pang X, Sun F, Ouyang L, Wang J. CEMTDD: The database for elucidating the relationships among herbs, compounds, targets and related diseases for Chinese ethnic minority traditional drugs. Oncotarget 2016; 6:17675-84. [PMID: 25970778 PMCID: PMC4627337 DOI: 10.18632/oncotarget.3789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/06/2015] [Indexed: 02/05/2023] Open
Abstract
China has different ethnic minorities that establish their own medical systems and practice experience for thousand years, thereafter named Chinese Ethnic Minority Traditional Drugs (CEMTDs) (http://www.cemtdd.com/index.html). Since many compounds from CEMTDs have been reported to perturb human's dysfunction network and restore human normal physiological conditions, the relationships amongst a series of compounds from specific herbs, their targets and relevant diseases have become our main focus in CEMTD modernization. Herein, we have constructed the first Chinese Ethnic Minority Traditional Drug Database (CEMTDD) mainly from Xinjiang Uygur Autonomous Region (XUAR), retrieving CEMTD-related information from different resources. CEMTDD contains about 621 herbs, 4, 060 compounds, 2, 163 targets and 210 diseases, among which most of herbs can be applied into gerontology therapy including inflammation, cardiovascular disease and neurodegenerative disease. Gerontology is highly occurred in XUAR, and has abundant experience in treating such diseases, which may benefit for developing a new gerontology therapeutic strategy. CEMTDD displays networks for intricate relationships between CEMTDs and treated diseases, as well as the interrelations between active compounds and action targets, which may shed new light on the combination therapy of CEMTDs and further understanding of their herb molecular mechanisms for better modernized utilizations of CEMTDs, especially in gerontology.
Collapse
Affiliation(s)
- Jian Huang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yaxin Zheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenxi Wu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Tao Xie
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Yao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaobo Pang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Fuzhou Sun
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhui Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,School of Pharmacy, Shihezi University, Shihezi, China
| |
Collapse
|
35
|
YiXin-Shu, a ShengMai-San-based traditional Chinese medicine formula, attenuates myocardial ischemia/reperfusion injury by suppressing mitochondrial mediated apoptosis and upregulating liver-X-receptor α. Sci Rep 2016; 6:23025. [PMID: 26964694 PMCID: PMC4786861 DOI: 10.1038/srep23025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
Positive evidence from clinical trials has fueled growing acceptance of traditional Chinese medicine (TCM) for the treatment of cardiac diseases; however, little is known about the underlying mechanisms. Here, we investigated the nature and underlying mechanisms of the effects of YiXin-Shu (YXS), an antioxidant-enriched TCM formula, on myocardial ischemia/reperfusion (MI/R) injury. YXS pretreatment significantly reduced infarct size and improved viable myocardium metabolism and cardiac function in hypercholesterolemic mice. Mechanistically, YXS attenuated myocardial apoptosis by inhibiting the mitochondrial mediated apoptosis pathway (as reflected by inhibition of mitochondrial swelling, cytochrome c release and caspase-9 activity, and normalization of Bcl-2 and Bax levels) without altering the death receptor and endoplasmic reticulum-stress death pathways. Moreover, YXS reduced oxidative/nitrative stress (as reflected by decreased superoxide and nitrotyrosine content and normalized pro- and anti-oxidant enzyme levels). Interestingly, YXS upregulated endogenous nuclear receptors including LXRα, PPARα, PPARβ and ERα, and in-vivo knockdown of cardiac-specific LXRα significantly blunted the cardio-protective effects of YXS. Collectively, these data show that YXS is effective in mitigating MI/R injury by suppressing mitochondrial mediated apoptosis and oxidative stress and by upregulating LXRα, thereby providing a rationale for future clinical trials and clinical applications.
Collapse
|
36
|
Su CY, Ming QL, Rahman K, Han T, Qin LP. Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology. Chin J Nat Med 2016; 13:163-82. [PMID: 25835361 DOI: 10.1016/s1875-5364(15)30002-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Indexed: 02/07/2023]
Abstract
Salvia miltiorrhiza Bunge (SM) is a very popular medicinal plant that has been extensively applied for many years to treat various diseases, especially coronary heart diseases and cerebrovascular diseases, either alone or in combination with other Chinese plant-based medicines. Although a large number of studies on SM have been performed, they are scattered across a variety of publications. The present review is an up-to-date summary of the published scientific information about the traditional uses, chemical constituents, pharmacological effects, side effects, and drug interactions with SM, in order to lay the foundation for further investigations and better utilization of SM. SM contains diverse chemical components including diterpenoid quinones, hydrophilic phenolic acids, and essential oils. Many pharmacological studies have been done on SM during the last 30 years, focusing on the cardiovascular and cerebrovascular effects, and the antioxidative, neuroprotective, antifibrotic, anti-inflammatory, and antineoplastic activities. The research results strongly support the notion that SM has beneficial therapeutic properties and has a potential of being an effective adaptogenic remedy.
Collapse
Affiliation(s)
- Chun-Yan Su
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, China
| | - Qian-Liang Ming
- Department of Pharmacognosy, School of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
37
|
Zhang H, Liu YY, Jiang Q, Li KR, Zhao YX, Cao C, Yao J. Salvianolic acid A protects RPE cells against oxidative stress through activation of Nrf2/HO-1 signaling. Free Radic Biol Med 2014; 69:219-28. [PMID: 24486344 DOI: 10.1016/j.freeradbiomed.2014.01.025] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/03/2014] [Accepted: 01/20/2014] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) impair the physiological functions of retinal pigment epithelial (RPE) cells, which is known as one major cause of age-related macular degeneration. Salvianolic acid A (Sal A) is the main effective aqueous extract of Salvia miltiorrhiza. The aim of this study was to test the potential role of Sal A against oxidative stress in cultured RPE cells and to investigate the underlying mechanistic signaling pathways. We observed that Sal A significantly inhibited hydrogen peroxide (H2O2)-induced primary and transformed RPE cell death and apoptosis. H2O2-stimulated mitogen-activated protein kinase activation, ROS production, and subsequent proapoptotic AMP-activated protein kinase activation were largely inhibited by Sal A. Further, Sal A stimulation resulted in a fast and dramatic activation of Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling, followed by phosphorylation, accumulation, and nuclear translocation of the NF-E2-related factor 2 (Nrf2), along with increased expression of the antioxidant-response element-dependent gene heme oxygenase-1 (HO-1). Both Nrf2 and HO-1 were required for Sal A-mediated cytoprotective effect, as Nrf2/HO-1 inhibition abolished Sal A-induced beneficial effects against H2O2. Meanwhile, the PI3K/Akt/mTORC1 chemical inhibitors not only suppressed Sal A-induced Nrf2/HO-1 activation, but also eliminated its cytoprotective effect in RPE cells. These observations suggest that Sal A activates the Nrf2/HO-1 axis in RPE cells and protects against oxidative stress via activation of Akt/mTORC1 signaling.
Collapse
Affiliation(s)
- Hui Zhang
- The Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yuan-yuan Liu
- Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Qin Jiang
- The Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Ke-ran Li
- The Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yu-xia Zhao
- The Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Cong Cao
- The Eye Hospital, Nanjing Medical University, Nanjing 210029, China; Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Jin Yao
- The Eye Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|