1
|
Ou X, Yu Z, Pan C, Zheng X, Li D, Qiao Z, Zheng X. Paeoniflorin: a review of its pharmacology, pharmacokinetics and toxicity in diabetes. Front Pharmacol 2025; 16:1551368. [PMID: 40260393 PMCID: PMC12009869 DOI: 10.3389/fphar.2025.1551368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
The escalating global prevalence of diabetes underscores the urgency of addressing its treatment and associated complications. Paeoniflorin, a monoterpenoid glycoside compound, has garnered substantial attention in recent years owing to its potential therapeutic efficacy in diabetes management. Thus, this study aims to systematically overview the pharmacological effects, pharmacokinetics and toxicity of paeoniflorin in diabetes. Plenty of evidences have verified that paeoniflorin improves diabetes and its complication through reducing blood sugar, enhancing insulin sensitivity, regulating gut microbiota and autophagy, restoration of mitochondrial function, regulation of lipid metabolism, anti-inflammation, anti-oxidative stress, inhibition of apoptosis, immune regulation and so on. Paeoniflorin possess the characteristics of rapid absorption, wide distribution, rapid metabolism and renal excretion. Meanwhile, toxicity studies have suggested that paeoniflorin has low acute toxicity, minimal subacute and chronic toxicity, and no genotoxic or mutational toxic effects. In conclusion, this paper systematically elucidates the potential therapeutic application and safety profile of paeoniflorin in diabetes management.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Zhao M, Peng N, Zhou Y, Qu Y, Cao M, Zou Q, Yu Q, Lu L, Xiao F. The immunoregulatory effects of total glucosides of peony in autoimmune diseases. J Leukoc Biol 2025; 117:qiae095. [PMID: 38626175 DOI: 10.1093/jleuko/qiae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/09/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024] Open
Abstract
Total glucoside of peony and its main active ingredient paeoniflorin, extracted from the Chinese herb Paeonia lactiflora Pallas, exhibit potent immunomodulatory effects. Total glucoside of peony has been shown to inhibit inflammatory responses and disease progression in experimental models of multiple autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, Sjögren's syndrome, psoriasis, and so on. Total glucoside of peony shows broad immunomodulatory effects on many immune cells, such as T cells, macrophages, and dendritic cells, by regulating their activation, proliferation, differentiation, and production of effector molecules. Mechanistically, total glucoside of peony modulates intracellular signaling transductions, including JAK/STAT, NF-κB, MAPK, and PI3K/AKT/mTOR pathways. Moreover, total glucoside of peony has been applied in the clinical treatment of various autoimmune diseases with satisfactory therapeutic outcomes and minor side effects. Thus, available studies have demonstrated that total glucoside of peony and its bioactive constituents exhibit anti-inflammatory and immunomodulatory functions and may have extensive applications in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Mengna Zhao
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, China Three Gorges University, 443002 Yichang, China
| | - Yingbo Zhou
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
| | - Yuan Qu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Meng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu, China
| | - Qinghua Zou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, 400038 Chongqing, China
| | - Qinghong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Liwei Lu
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
- Chongqing International Institute for Immunology, 401300 Chongqing, China
- Centre for Oncology and Immunology, Hong Kong Science Park, New Territories, 999077 Hong Kong, China
| | - Fan Xiao
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, New Territories, 999077 Hong Kong, China
| |
Collapse
|
3
|
Deng L, Shi C, Li R, Zhang Y, Wang X, Cai G, Hong Q, Chen X. The mechanisms underlying Chinese medicines to treat inflammation in diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118424. [PMID: 38844252 DOI: 10.1016/j.jep.2024.118424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Diabetic kidney disease (DKD) is the main cause of end-stage renal disease (ESRD), which is a public health problem with a significant economic burden. Serious adverse effects, such as hypotension, hyperkalemia, and genitourinary infections, as well as increasing adverse cardiovascular events, limit the clinical application of available drugs. Plenty of randomized controlled trials(RCTs), meta-analysis(MAs) and systematic reviews(SRs) have demonstrated that many therapies that have been used for a long time in medical practice including Chinese patent medicines(CPMs), Chinese medicine prescriptions, and extracts are effective in alleviating DKD, but the mechanisms by which they work are still unknown. Currently, targeting inflammation is a central strategy in DKD drug development. In addition, many experimental studies have identified many Chinese medicine prescriptions, medicinal herbs and extracts that have the potential to alleviate DKD. And part of the mechanisms by which they work have been uncovered. AIM OF THIS REVIEW This review aims to summarize therapies that have been proven effective by RCTs, MAs and SRs, including CPMs, Chinese medicine prescriptions, and extracts. This review also focuses on the efficiency and potential targets of Chinese medicine prescriptions, medicinal herbs and extracts discovered in experimental studies in improving immune inflammation in DKD. METHODS We searched for relevant scientific articles in the following databases: PubMed, Google Scholar, and Web of Science. We summarized effective CPMs, Chinese medicine prescriptions, and extracts from RCTs, MAs and SRs. We elaborated the signaling pathways and molecular mechanisms by which Chinese medicine prescriptions, medicinal herbs and extracts alleviate inflammation in DKD according to different experimental studies. RESULTS After overviewing plenty of RCTs with the low hierarchy of evidence and MAs and SRs with strong heterogeneity, we still found that CPMs, Chinese medicine prescriptions, and extracts exerted promising protective effects against DKD. However, there is insufficient evidence to prove the safety of Chinese medicines. As for experimental studies, Experiments in vitro and in vivo jointly demonstrated the efficacy of Chinese medicines(Chinese medicine prescriptions, medicinal herbs and extracts) in DKD treatment. Chinese medicines were able to regulate signaling pathways to improve inflammation in DKD, such as toll-like receptors, NLRP3 inflammasome, Nrf2 signaling pathway, AMPK signaling pathway, MAPK signaling pathway, JAK-STAT, and AGE/RAGE. CONCLUSION Chinese medicines (Chinese medicine prescriptions, medicinal herbs and extracts) can improve inflammation in DKD. For drugs that are effective in RCTs, the underlying bioactive components or extracts should be identified and isolated. Attention should be given to their safety and pharmacokinetics. Acute, subacute, and subchronic toxicity studies should be designed to determine the magnitude and tolerability of side effects in humans or animals. For drugs that have been proven effective in experimental studies, RCTs should be designed to provide reliable evidence for clinical translation. In a word, Chinese medicines targeting immune inflammation in DKD are a promising direction.
Collapse
Affiliation(s)
- Lingchen Deng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Run Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yifan Zhang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiaochen Wang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| | - Xiangmei Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
4
|
Fan Z, Liu J, Wang X, Yang S, Wang Q, Yan L, Zhang Y, Wu X. Paeoniae Radix Rubra: A Review of Ethnopharmacology, Phytochemistry, Pharmacological Activities, Therapeutic Mechanism for Blood Stasis Syndrome, and Quality Control. Chem Biodivers 2024; 21:e202401119. [PMID: 38850115 DOI: 10.1002/cbdv.202401119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Paeoniae Radix Rubra (PRR) known as Chishao, in China, is the dried root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, with a history of over 2000 years in traditional Chinese medicine, is employed to clear heat, cool the blood, dispel blood stasis, and alleviate pain. Phytochemical investigations identified 264 compounds that contained monoterpenes and their glycosides, sesquiterpenes, triterpenes, steroids, flavonoids, lignans, tannins, volatile oils, and other compounds. It has been reported to have different pharmacological activities, including cardiovascular-protective, antidepressive, neuroprotective, antitumor, hepatoprotective, and anti-inflammatory effects. This study offers a comprehensive review covering ethnopharmacology, phytochemistry, pharmacological activities, therapeutic mechanism for blood stasis syndrome, and quality control of PRR. The comprehensive analysis aims to achieve a thorough understanding of its effects and serves as a foundation for future research and development.
Collapse
Affiliation(s)
- Zuowang Fan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- Sanming Medical and Polytechnic Vocational College, Sanming, 365000, China
| | - Jing Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xu Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Saisai Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Qi Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Li Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yao Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiuhong Wu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
5
|
Ke JY, Song JB, Li L, He ZF, Huang ZJ, Liu ZL, Chen GR, Wang HY, Wen SR, Zhou HL, Ma HL, Du Q, Wu YQ, Li YW, Chen XL. Advancements of Macrophages Involvement in Pathological Progression of Colitis-Associated Colorectal Cancer and Associated Pharmacological Interventions. Chin J Integr Med 2024; 30:565-576. [PMID: 38565799 DOI: 10.1007/s11655-024-4101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 04/04/2024]
Abstract
Intestinal macrophages play crucial roles in both intestinal inflammation and immune homeostasis. They can adopt two distinct phenotypes, primarily determined by environmental cues. These phenotypes encompass the classically activated pro-inflammatory M1 phenotype, as well as the alternatively activated anti-inflammatory M2 phenotype. In regular conditions, intestinal macrophages serve to shield the gut from inflammatory harm. However, when a combination of genetic and environmental elements influences the polarization of these macrophages, it can result in an M1/M2 macrophage activation imbalance, subsequently leading to a loss of control over intestinal inflammation. This shift transforms normal inflammatory responses into pathological damage within the intestines. In patients with ulcerative colitis-associated colorectal cancer (UC-CRC), disorders related to intestinal inflammation are closely correlated with an imbalance in the polarization of intestinal M1/M2 macrophages. Therefore, reinstating the equilibrium in M1/M2 macrophage polarization could potentially serve as an effective approach to the prevention and treatment of UC-CRC. This paper aims to scrutinize the clinical evidence regarding Chinese medicine (CM) in the treatment of UC-CRC, the pivotal role of macrophage polarization in UC-CRC pathogenesis, and the potential mechanisms through which CM regulates macrophage polarization to address UC-CRC. Our objective is to offer fresh perspectives for clinical application, fundamental research, and pharmaceutical advancement in UC-CRC.
Collapse
Affiliation(s)
- Jun-Yu Ke
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Surgery II, Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Gaozhou, 525200, China
| | - Jin-Bin Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Long Li
- The First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, China
| | - Zhen-Fan He
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhuo-Jian Huang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zheng-Lin Liu
- The First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, China
| | - Gui-Rong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hai-Yan Wang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Su-Ru Wen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Heng-Li Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hui-Lin Ma
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qun Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yong-Qiang Wu
- Department of Surgery II, Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Gaozhou, 525200, China
| | - Yan-Wu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin-Lin Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Xu SY, Cao HY, Yang RH, Xu RX, Zhu XY, Ma W, Liu XB, Yan XY, Fu P. Genus Paeonia monoterpene glycosides: A systematic review on their pharmacological activities and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155483. [PMID: 38432036 DOI: 10.1016/j.phymed.2024.155483] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/11/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Genus Paeonia, which is the main source of Traditional Chinese Medicine (TCM) Paeoniae Radix Rubra (Chishao in Chinese), Paeoniae Radix Alba (Baishao in Chinese) and Moutan Cortex (Mudanpi in Chinese), is rich in active pharmaceutical ingredient such as monoterpenoid glycosides (MPGs). MPGs from Paeonia have extensive pharmacological effects, but the pharmacological effects and molecular mechanisms of MPGs has not been comprehensively reviewed. PURPOSE MPGs compounds are one of the main chemical components of the genus Paeonia, with a wide variety of compounds and strong pharmacological activities, and the structure of the mother nucleus-pinane skeleton is similar to that of a cage. The purpose of this review is to summarize the pharmacological activity and mechanism of action of MPGs from 2012 to 2023, providing reference direction for the development and utilization of Paeonia resources and preclinical research. METHODS Keywords and phrases are widely used in database searches, such as PubMed, Web of Science, Google Scholar and X-Mol to search for citations related to the new compounds, extensive pharmacological research and molecular mechanisms of MPGs compounds of genus Paeonia. RESULTS Modern research confirms that MPGs are the main compounds in Paeonia that exert pharmacological effects. MPGs with extensive pharmacological characteristics are mainly concentrated in two categories: paeoniflorin derivatives and albiflflorin derivatives among MPGs, which contains 32 compounds. Among them, 5 components including paeoniflorin, albiflorin, oxypaeoniflorin, 6'-O-galloylpaeoniflorin and paeoniflorigenone have been extensively studied, while the other 28 components have only been confirmed to have a certain degree of anti-inflammatory and anticomplementary effects. Studies of pharmacological effects are widely involved in nervous system, endocrine system, digestive system, immune system, etc., and some studies have identified clear mechanisms. MPGs exert pharmacological activity through multilateral mechanisms, including anti-inflammatory, antioxidant, inhibition of cell apoptosis, regulation of brain gut axis, regulation of gut microbiota and downregulation of mitochondrial apoptosis, etc. CONCLUSION: This systematic review delved into the pharmacological effects and related molecular mechanisms of MPGs. However, there are still some compounds in MPGs whose pharmacological effects and pharmacological mechanisms have not been clarified. In addition, extensive clinical randomized trials are needed to verify the efficacy and dosage of MPGs.
Collapse
Affiliation(s)
- Shi-Yi Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui-Yan Cao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rui-Hong Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rong-Xue Xu
- The Health Center of Longjiang Airlines, Harbin 150000, China; Qiqihar Medical University, Qiqihar 161003, China
| | - Xing-Yu Zhu
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiu-Bo Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China
| | - Xue-Ying Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Peng Fu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
7
|
Yang X, Wang Z, Huang H, Luo G, Cong L, Yang J, Ye J. Jianpi Yangxue Qufeng compound alleviates atopic dermatitis via TLR4/MyD88/NF-κB signaling pathway. Heliyon 2024; 10:e23278. [PMID: 38163133 PMCID: PMC10757010 DOI: 10.1016/j.heliyon.2023.e23278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Background Jianpi Yangxue Qufeng Compound (JPYXQFC) is a Chinese medicine widely used in the clinical treatment of atopic dermatitis (AD) and has a significantly therapeutic effect. However, the mechanism of JPYXQFC in AD has been not understood clearly. Objective This study aimed to explore the effect of JPYXQFC on AD model cells and rats by regulating TLR4/MyD88/NF-κB signaling pathway. Methods The rats (n > 5) were given JPYXQFC decoction orally twice a day for three days, and their abdominal aortic blood was collected. HaCaT cell proliferation rate was tested by cell counting kit-8 (CCK-8) assays. We induced AD rat model through 2, 4-dinitrofluorobenzene (DNFB). AD rats were given oral JPYXQFC decoction and cetirizine (positive control). HaCaT cells were pretreated with JPYXQFC drug serum or cetirizine for 0.5 h and then stimulated with TNF-α/IFN-γ for 1 h. The mRNA levels of TLR4, MyD88, NF-κB, IL-4, IL-13, MCP1, TNF-α and TSLP were detected by quantitative real-time PCR (Q-RT-PCR), and TLR4/MyD88/NF-κB pathway protein expression was tested by Western blot. The total serum levels of immunoglobulin E (IgE), thymus and activation regulated chemokine/chemokine (C-C motif) ligand 17 (TARC/CCL17) were detected by enzyme-linked immunosorbent assay (ELISA). The epidermal thickness was detected by hematoxylin and eosin (HE) staining. The dermatitis area and score were measured by a ruler and a four-point scoring method, respectively. Results JPYXQFC significantly inhibited mRNA and protein expression of the TLR4/MyD88/NF-κB pathway and Histone H3 in TNF-α/IFN-γ-induced HaCaT cells and DNFB-induced rats, decreased the mRNA of IL-4, IL-13, MCP1, CCL22, TSLP and the level of AD-related genes IgE and TAEC/CCL17 of TNF-α/IFN-γ-induced HaCaT cells. Meanwhile, JPYXQFC significantly reduced the dermatitis area and dermatitis score in DNFB-induced rats, inhibited the levels of pro-inflammatory cytokines IL-6 and TNF-α, and upregulated FLG, as well as inhibited the levels of IgE and TARC/CCL17 in the serum of AD rats. Conclusion JPYXQFC alleviates AD by inhibiting the activation of TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Xuesong Yang
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650032, Yunnan, China
| | - Zhimin Wang
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650032, Yunnan, China
| | - Hong Huang
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650032, Yunnan, China
| | - Guangyun Luo
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, China
| | - Lin Cong
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650032, Yunnan, China
| | - Jianting Yang
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650032, Yunnan, China
| | - Jianzhou Ye
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650032, Yunnan, China
| |
Collapse
|
8
|
Chaterjee O, Sur D. Artificially induced in situ macrophage polarization: An emerging cellular therapy for immuno-inflammatory diseases. Eur J Pharmacol 2023; 957:176006. [PMID: 37611840 DOI: 10.1016/j.ejphar.2023.176006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Macrophages are the mature form of monocytes that have high plasticity and can shift from one phenotype to another by the process of macrophage polarization. Macrophage has several vital pharmacological tasks like eliminating microorganism invasion, clearing dead cells, causing inflammation, repairing damaged tissues, etc. The function of macrophages is based on their phenotype. M1 macrophages are mostly responsible for the body's immune responses and M2 macrophages have healing properties. Inappropriate activation of any one of the phenotypes often leads to ROS-induced tissue damage and affects wound healing and angiogenesis. Therefore, maintaining tissue macrophage homeostasis is necessary. Studies are being done to find techniques for macrophage polarization. But, the process of macrophage polarization is very complex as it involves multiple signalling pathways involving innate immunity. Thus, identifying the right pathways for macrophage polarization is essential to apply the polarizing technique for the treatment of various inflammatory diseases where macrophage physiology influences the disease pathology. In this review, we highlighted the various techniques so far used to change macrophage plasticity. We believe that soon macrophage targeting therapeutics will hit the market for the management of inflammatory disease. Hence this review will help macrophage researchers choose suitable methods and materials/agents to polarize macrophages artificially in various disease models.
Collapse
Affiliation(s)
- Oishani Chaterjee
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, 700114, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, 700114, India.
| |
Collapse
|
9
|
Zhang XE, Pang YB, Bo Q, Hu SY, Xiang JY, Yang ZR, Zhang XM, Chen AJ, Zeng JH, Ma X, Guo J. Protective effect of paeoniflorin in diabetic nephropathy: A preclinical systematic review revealing the mechanism of action. PLoS One 2023; 18:e0282275. [PMID: 37733659 PMCID: PMC10513216 DOI: 10.1371/journal.pone.0282275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/10/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Paeoniflorin (PF), the main active glucoside of Paeonia Lactiflora, has many pharmacological activities, such as inhibition of vasodilation, hypoglycemia, and immunomodulation. Although the current evidence has suggested the therapeutic effects of PF on diabetic nephropathy (DN), its potential mechanism of action is still unclear. PURPOSE A systematic review and meta-analysis of the existing literature on paeoniflorin treatment in DN animal models was performed to evaluate the efficacy and mechanism of PF in DN animal models. METHODS The risk of bias in each study was judged using the CAMARADES 10-item quality checklist with the number of criteria met varying from 4 / 10 to 7 / 10, with an average of 5.44. From inception to July 2022, We searched eight databases. We used the Cochrane Collaboration's 10-item checklist and RevMan 5.3 software to assess the risk of bias and analyze the data. Three-dimensional dose/time-effect analyses were conducted to examine the dosage/time-response relations between PF and DN. RESULTS Nine animal studies were systematically reviewed to evaluate the effectiveness of PF in improving animal models of DN. Meta-analysis data and intergroup comparisons indicated that PF slowed the index of mesangial expansion and tubulointerstitial injury, 24-h urinary protein excretion rate, expression of anti-inflammatory mediators (mRNA of MCP-1, TNF-α, iNOS, and IL-1 β), and expression of immune downstream factors (P-IRAK1, TIRF, P-IRF3, MyD88, and NF-κBp-p65). Furthermore, modeling methods, animal species, treatment duration, thickness of tissue sections during the experiment, and experimental procedures were subjected to subgroup analyses. CONCLUSION The present study demonstrated that the reno-protective effects of PF were associated with its inhibition on macrophage infiltration, reduction of inflammatory mediators, and immunomodulatory effects. In conclusion, PF can effectively slow down the progression of DN and hold promise as a protective drug for the treatment of DN. Due to the low bioavailability of PF, further studies on renal histology in animals are urgently needed. We therefore recommend an active exploration of the dose and therapeutic time frame of PF in the clinic and in animals. Moreover, it is suggested to actively explore methods to improve the bioavailability of PF to expand the application of PF in the clinic.
Collapse
Affiliation(s)
- Xue-Er Zhang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao-bin Pang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qu Bo
- Department of Nephropathy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang-Yuan Hu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju-Yi Xiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zheng-Ru Yang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Mei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - An-Jing Chen
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Hao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Liu T, Zhuang Z, Wang D. Paeoniflorin mitigates high glucose-induced lifespan reduction by inhibiting insulin signaling in Caenorhabditis elegans. Front Pharmacol 2023; 14:1202379. [PMID: 37405055 PMCID: PMC10315627 DOI: 10.3389/fphar.2023.1202379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
In organisms, high glucose can cause several aspects of toxicity, including the lifespan reduction. Paeoniflorin is the major component of Paeoniaceae plants. Nevertheless, the possible effect of paeoniflorin to suppress high glucose toxicity in reducing lifespan and underlying mechanism are largely unclear. Thus, in this study, we examined the possible effect of paeoniflorin in suppressing high glucose (50 mM)-induced lifespan reduction and the underlying mechanism in Caenorhabditis elegans. Administration with 16-64 mg/L paeoniflorin could prolong the lifespan in glucose treated nematodes. Accompanied with this beneficial effect, in glucose treated nematodes, expressions of daf-2 encoding insulin receptor and its downstream kinase genes (age-1, akt-1, and akt-2) were decreased and expression of daf-16 encoding FOXO transcriptional factor was increased by 16-64 mg/L paeoniflorin administration. Meanwhile, the effect of paeoniflorin in extending lifespan in glucose treated nematodes was enhanced by RNAi of daf-2, age-1, akt-1, and akt-2 and inhibited by RNAi of daf-16. In glucose treated nematodes followed by paeoniflorin administration, the increased lifespan caused by daf-2 RNAi could be suppressed by RNAi of daf-16, suggesting that DAF-2 acted upstream of DAF-16 to regulate pharmacological effect of paeoniflorin. Moreover, in glucose treated nematodes followed by paeoniflorin administration, expression of sod-3 encoding mitochondrial Mn-SOD was inhibited by daf-16 RNAi, and the effect of paeoniflorin in extending lifespan in glucose treated nematodes could be suppressed by sod-3 RNAi. Molecular docking analysis indicated the binding potential of paeoniflorin with DAF-2, AGE-1, AKT-1, and AKT-2. Therefore, our results demonstrated the beneficial effect of paeoniflorin administration in inhibiting glucose-induced lifespan reduction by suppressing signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16-SOD-3 in insulin signaling pathway.
Collapse
Affiliation(s)
- Tianwen Liu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
- Medical School, Southeast University, Nanjing, China
| | - Ziheng Zhuang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Xu W, Xu JG, He XY, Lin XH. Paeoniflorin exhibits anti- Helicobacter pylori activity by regulating macrophage activity. Shijie Huaren Xiaohua Zazhi 2023; 31:334-339. [DOI: 10.11569/wcjd.v31.i8.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) often causes gastritis, gastric ulcer, and other stomach diseases. At present, there are many drugs available to kill H. pylori, but they are mainly Western medicines, not suitable for long-term use, and often associated with relapse. Traditional Chinese medicines have few side effects, but their mechanism of action is not completely clear.
AIM To analyze the anti-H. pylori activity and mechanisms of action of paeoniflorin (PF).
METHODS Six Kunming mice and four New Zealand rabbits were selected to prepare PF-containing serum. Mouse peritoneal macrophages were collected and divided into a study group, a control group, and a blank group. The study group was supplemented with 5% drug-containing serum, and the control group was supplemented with drug-free serum. Both groups were treated with H. pylori 11637, and the cells was collected 6 h after treatment. The contents of monocyte chemoattractant protein-1 (MCP-1), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in macrophages of each group were detected by ELISA. The expression of heat shock protein 70 (HSP70), inducible nitric oxide synthase (iNOS), Toll-like receptor-2 (TLR2), and Toll-like receptor-4 (TLR4) was detected by Western blot analysis. The relative mRNA expression of HSP70, TLR2, and TLR4 in mouse macrophages was detected by quantitative polymerase chain reaction.
RESULTS The contents of MCP-1, IL-1β, and TNF-α in the control group were significantly higher than those in the blank group, and the contents of MCP-1, IL-1β, and TNF-α in the study group were significantly lower than those in the control group (P < 0.05). The protein expression of iNOS, TLR4, and TLR2 in macrophages of the control group was significantly higher than that in the blank group, and the expression of iNOS, TLR4, and TLR2 in the macrophages of the study group was significantly lower than that in the control group (P < 0.05). The relative expression of TLR4 and TLR2 mRNA in macrophages of the control group was higher than that of the blank group, and the relative expression of TLR4 and TLR2 mRNA in the macrophages of the study group was lower than that of the control group (P < 0.05). The expression of HSP70 mRNA and protein in macrophages of the control group was higher than that of the blank group, and the expression of HSP70 mRNA and protein in macrophages of the study group was lower than that of the control group (P < 0.05).
CONCLUSION Paeoniflorin can inhibit the secretion of inflammatory cytokines and HSP70 by macrophages by regulating their activity. The anti-inflammatory effect may be related to the inhibition of the TLR2/4 signaling pathway.
Collapse
|
12
|
Long Z, Xiang W, He Q, Xiao W, Wei H, Li H, Guo H, Chen Y, Yuan M, Yuan X, Zeng L, Yang K, Deng Y, Huang Z. Efficacy and safety of dietary polyphenols in rheumatoid arthritis: A systematic review and meta-analysis of 47 randomized controlled trials. Front Immunol 2023; 14:1024120. [PMID: 37033930 PMCID: PMC10073448 DOI: 10.3389/fimmu.2023.1024120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/27/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To evaluate safety and efficacy of dietary polyphenols in the treatment of rheumatoid arthritis (RA). Methods CNKI, Pubmed, Cochrane library, Embase were searched to collect randomized controlled trials (RCTs) of dietary polyphenols in the treatment of RA. The databases were searched from the time of their establishment to November 8nd, 2022. After 2 reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, Meta-analysis was performed using RevMan5.4 software. Results A total of 49 records (47 RCTs) were finally included, involving 3852 participants and 15 types of dietary polyphenols (Cinnamon extract, Cranberry extract, Crocus sativus L. extract, Curcumin, Garlic extract, Ginger extract, Hesperidin, Olive oil, Pomegranate extract, Puerarin, Quercetin, Resveratrol, Sesamin, Tea polyphenols, Total glucosides of paeony). Pomegranate extract, Resveratrol, Garlic extract, Puerarin, Hesperidin, Ginger extract, Cinnamon extract, Sesamin only involve in 1 RCT. Cranberry extract, Crocus sativus L. extract, Olive oil, Quercetin, Tea polyphenols involve in 2 RCTs. Total glucosides of paeony and Curcumin involve in more than 3 RCTs. These RCTs showed that these dietary polyphenols could improve disease activity score for 28 joints (DAS28), inflammation levels or oxidative stress levels in RA. The addition of dietary polyphenols did not increase adverse events. Conclusion Dietary polyphenols may improve DAS28, reduce C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), and improve oxidative stress, etc. However, more RCTs are needed to verify or modify the efficacy and safety of dietary polyphenols. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022315645.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wei Xiao
- The First People's Hospital of Changde City, Changde, China
| | - Huagen Wei
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hao Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuling Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Xiao Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Zhen Huang
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
13
|
Peng L, Ma Z, Chu W, Jiang P, Fu Y, Wang P. Identification and hepatoprotective activity of total glycosides of paeony with high content of paeoniflorin extracted from Paeonia lactiflora Pall. Food Chem Toxicol 2023; 173:113624. [PMID: 36681265 DOI: 10.1016/j.fct.2023.113624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
The aims of this work were to obtain total glucosides of paeony (TGP) with high content of paeoniflorin and evaluate the hepo-protective properties of TGP. After optimization by response surface methodology, optimized conditions were as follows: extraction time 33.0 min, extraction temperature 48 °C, ethanol content 44%, and the yield of TGP was 47.68 mg/g. Moreover, under established macroporous resin purification, paeoniflorin content of TGP achieved 67.6% in 1.5 L scale-up verification experiment. Purified TGP (p-TGP) was further analyzed by UHPLC-Q-Orbitrap-MS/MS, and 35 compouds including paeoniflorin were identified. The obtained p-TGP effectively reduced biochemical indexes and inflammatory cytokines in liver tissue of acute alcoholic liver injury mice model. Depending on this work, TGP with definitive compound composition exhibited great protective effect against acute alcoholic liver injury in vivo. Furthermore, the finding of this work will be helpful to understand the relationship between compound composition and functional properties of Chinese herb extracts.
Collapse
Affiliation(s)
- Lin Peng
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China
| | - Zhe Ma
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China
| | - Wenhui Chu
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China
| | - Peisi Jiang
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China
| | - Yongqian Fu
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China.
| | - Pan Wang
- Traditional Chinese Medicine Industry Development and Promotion Center of Pan'an County, 89 Guyue Road, Pan'an, 322300, China.
| |
Collapse
|
14
|
Zhang S, Qu-Bie JZ, Feng MK, Qu-Bie AX, Huang Y, Zhang ZF, Yan XJ, Liu Y. Illuminating the biosynthesis pathway genes involved in bioactive specific monoterpene glycosides in Paeonia veitchii Lynch by a combination of sequencing platforms. BMC Genomics 2023; 24:45. [PMID: 36698081 PMCID: PMC9878870 DOI: 10.1186/s12864-023-09138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Paeonia veitchii Lynch, a well-known herb from the Qinghai-Tibet Plateau south of the Himalayas, can synthesize specific monoterpene glycosides (PMGs) with multiple pharmacological activities, and its rhizome has become an indispensable ingredient in many clinical drugs. However, little is known about the molecular background of P. veitchii, especially the genes involved in the biosynthetic pathway of PMGs. RESULTS A corrective full-length transcriptome with 30,827 unigenes was generated by combining next-generation sequencing (NGS) and single-molecule real-time sequencing (SMRT) of six tissues (leaf, stem, petal, ovary, phloem and xylem). The enzymes terpene synthase (TPS), cytochrome P450 (CYP), UDP-glycosyltransferase (UGT), and BAHD acyltransferase, which participate in the biosynthesis of PMGs, were systematically characterized, and their functions related to PMG biosynthesis were analysed. With further insight into TPSs, CYPs, UGTs and BAHDs involved in PMG biosynthesis, the weighted gene coexpression network analysis (WGCNA) method was used to identify the relationships between these genes and PMGs. Finally, 8 TPSs, 22 CYPs, 7 UGTs, and 2 BAHD genes were obtained, and these putative genes were very likely to be involved in the biosynthesis of PMGs. In addition, the expression patterns of the putative genes and the accumulation of PMGs in tissues suggested that all tissues are capable of biosynthesizing PMGs and that aerial plant parts could also be used to extract PMGs. CONCLUSION We generated a large-scale transcriptome database across the major tissues in P. veitchii, providing valuable support for further research investigating P. veitchii and understanding the genetic information of plants from the Qinghai-Tibet Plateau. TPSs, CYPs, UGTs and BAHDs further contribute to a better understanding of the biology and complexity of PMGs in P. veitchii. Our study will help reveal the mechanisms underlying the biosynthesis pathway of these specific monoterpene glycosides and aid in the comprehensive utilization of this multifunctional plant.
Collapse
Affiliation(s)
- Shaoshan Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Jun-zhang Qu-Bie
- grid.412723.10000 0004 0604 889XCollege of Pharmacy, Southwest Minzu University, Chengdu, 610041 China
| | - Ming-kang Feng
- grid.412723.10000 0004 0604 889XCollege of Pharmacy, Southwest Minzu University, Chengdu, 610041 China
| | - A-xiang Qu-Bie
- grid.412723.10000 0004 0604 889XCollege of Pharmacy, Southwest Minzu University, Chengdu, 610041 China
| | - Yanfei Huang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Zhi-feng Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Xin-jia Yan
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Yuan Liu
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| |
Collapse
|
15
|
Xu P, Li Q, Liang W, Hu Y, Chen R, Lou K, Zhan L, Wu X, Pu J. A tissue-specific profile of miRNAs and their targets related to paeoniaflorin and monoterpenoids biosynthesis in Paeonia lactiflora Pall. by transcriptome, small RNAs and degradome sequencing. PLoS One 2023; 18:e0279992. [PMID: 36701382 PMCID: PMC9879538 DOI: 10.1371/journal.pone.0279992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Paeonia lactiflora Pall. (Paeonia) has aroused many concerns due to its extensive medicinal value, in which monoterpene glucoside paeoniflorin and its derivatives are the active chemical components. However, little is known in the molecular mechanism of monoterpenoids biosynthesis, and the regulation network between small RNAs and mRNAs in monoterpenoids biosynthesis has not been investigated yet. Herein, we attempted to reveal the tissue-specific regulation network of miRNAs and their targets related to paeoniaflorin and monoterpenoids biosynthesis in Paeonia by combining mRNA and miRNA expression data with degradome analysis. In all, 289 miRNAs and 30177 unigenes were identified, of which nine miRNAs from seven miRNA families including miR396, miR393, miR835, miR1144, miR3638, miR5794 and miR9555 were verified as monoterpenoids biosynthesis-related miRNAs by degradome sequencing. Moreover, the co-expression network analysis showed that four monoterpenoids-regulating TFs, namely AP2, MYBC1, SPL12 and TCP2, were putatively regulated by five miRNAs including miR172, miR828, miR858, miR156 and miR319, respectively. The present study will improve our knowledge of the molecular mechanisms of the paeoniaflorin and monoterpenoids biosynthesis mediated by miRNA to a new level, and provide a valuable resource for further study on Paeonia.
Collapse
Affiliation(s)
- Pan Xu
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Quanqing Li
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang Province, China
| | - Weiqing Liang
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yijuan Hu
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Rubing Chen
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kelang Lou
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Lianghui Zhan
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xiaojun Wu
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jinbao Pu
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
16
|
Yang R, Yang Y. Albiflorin attenuates high glucose-induced endothelial apoptosis via suppressing PARP1/NF-κB signaling pathway. Inflamm Res 2023; 72:159-169. [PMID: 36357814 DOI: 10.1007/s00011-022-01666-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Paeonia lactiflora Pall has long been recognized as an anti-inflammatory traditional Chinese herbal medicine. We aimed to study the pharmacological action of albiflorin, an active ingredient extracted from the roots of Paeonia lactiflora Pall, on diabetic vascular complications. METHODS Human umbilical vein endothelial cells (HUVECs) were stimulated with high glucose and treated with 5, 10, and 20 μM albiflorin. CCK-8 assay, EdU staining, Annexin V-FITC staining, transwell assay, scratch test, RT-PCR, ELISA, Western blot, and immunofluorescence were carried out. SwissTargetPrediction database was used for screening targets of albiflorin and molecular docking was done using Autodock Vina software. RESULTS Albiflorin treatment dose-dependently alleviated high glucose-induced viability loss of HUVECs. In addition, albiflorin promoted the proliferation and migration, while inhibited apoptosis and the release of TNF-α, IL-6, and IL-1β in HUVECs. PARP1 was predicted and confirmed to be a target for albiflorin in vitro. Albiflorin targeted PARP1 to inhibit the activation of NF-κB. Transfection of HUVECs with PARP1 overexpression plasmids effectively reversed the effects of albiflorin on high glucose-treated HUVECs. CONCLUSIONS Albiflorin suppressed high glucose-induced endothelial cell apoptosis and inflammation, suggesting its potential in treating diabetic vascular complications. The action of albiflorin possibly caused by its regulation on inhibiting PARP1/NF-κB signaling.
Collapse
Affiliation(s)
- Rong Yang
- Department of Rheumatology and Immunology, Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yang Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Yu W, Ilyas I, Hu X, Xu S, Yu H. Therapeutic potential of paeoniflorin in atherosclerosis: A cellular action and mechanism-based perspective. Front Immunol 2022; 13:1072007. [PMID: 36618414 PMCID: PMC9811007 DOI: 10.3389/fimmu.2022.1072007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies have shown that the incidence, prevalence and mortality of atherosclerotic cardiovascular disease (ASCVD) are increasing globally. Atherosclerosis is characterized as a chronic inflammatory disease which involves inflammation and immune dysfunction. P. lactiflora Pall. is a plant origin traditional medicine that has been widely used for the treatment of various diseases for more than a millennium in China, Japan and Korean. Paeoniflorin is a bioactive monomer extracted from P. lactiflora Pall. with anti-atherosclerosis effects. In this article, we comprehensively reviewed the potential therapeutic effects and molecular mechanism whereby paeoniflorin protects against atherosclerosis from the unique angle of inflammation and immune-related pathway dysfunction in vascular endothelial cells, smooth muscle cells, monocytes, macrophages, platelets and mast cells. Paeoniflorin, with multiple protective effects in atherosclerosis, has the potential to be used as a promising therapeutic agent for the treatment of atherosclerosis and its complications. We conclude with a detailed discussion of the challenges and future perspective of paeoniflorin in translational cardiovascular medicine.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China,Center for Drug Research and Development, Anhui Renovo Pharmaceutical Co., Ltd, Center for Drug Research and Development, Hefei, Anhui, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuerui Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Hebei University of Technology, Tianjin, China,*Correspondence: Hui Yu,
| |
Collapse
|
18
|
Li Y, Yin S, Chen X, Shi F, Wang J, Yang H. The inhibitory effect of paeoniflorin on reactive oxygen species alleviates the activation of NF-κB and MAPK signalling pathways in macrophages. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35920812 DOI: 10.1099/mic.0.001210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Paeoniflorin (PF) has been proven to possess a protective effect in some inflammatory diseases, but the underlying mechanism remains unclear. Macrophages play central roles in inflammatory responses and LPS-stimulated RAW264.7 macrophage is an ideal model for studying the anti-inflammatory effects and mechanisms of drugs. Thus, it was used to explore the anti-inflammatory mechanism of PF in this study. The results showed that PF markedly attenuated the activation of NF-κB, extracellular signal-regulated kinase (ERK1/2) and p38 mitogen activated protein kinase (p38) signalling pathways induced by LPS exposure. In addition, PF pretreatment dose-dependently suppressed the production of cytokines and the expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Concomitantly, PF pretreatment dramatically inhibited the accumulation of intracellular reactive oxygen species (ROS) without affecting the phagocytosis of macrophages. Furthermore, it has proved the scavenging effect of PF on ROS was involved in the anti-inflammatory process. This study provides a novel aspect to the understanding of the anti-inflammatory mechanism of PF.
Collapse
Affiliation(s)
- Yanyan Li
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Shaojie Yin
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China.,School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaolan Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Feifei Shi
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Jing Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Haifeng Yang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| |
Collapse
|
19
|
Wogonin protects glomerular podocytes by targeting Bcl-2-mediated autophagy and apoptosis in diabetic kidney disease. Acta Pharmacol Sin 2022; 43:96-110. [PMID: 34253875 PMCID: PMC8724322 DOI: 10.1038/s41401-021-00721-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/18/2021] [Indexed: 01/31/2023]
Abstract
Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 μM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1β as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.
Collapse
|
20
|
Wang L, Lu Q, Gao W, Yu S. Recent advancement on development of drug-induced macrophage polarization in control of human diseases. Life Sci 2021; 284:119914. [PMID: 34453949 DOI: 10.1016/j.lfs.2021.119914] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Macrophages, an important part of human immune system, possess a high plasticity and heterogeneity (macrophage polarization) as classically activated macrophages (M1) and alternatively activated macrophages (M2), which exert pro-inflammatory/anti-tumor and anti-inflammatory/pro-tumor effects, respectively. Thus, drug development in induction of macrophage polarization could be used to treat different human diseases. This review summarizes the recent advancement on modulation of macrophage polarization and its related molecular mechanisms induced by a number of agents. Research on the anti-inflammatory drugs to regulate the macrophage polarization accounts for a large proportion in the field and types of diseases investigated could include atherosclerosis, enteritis, nephritis, and the nervous system and skeletal diseases, while study of the anti-tumor agents to modify macrophage polarization is a novel area of research. Future study of the molecular mechanisms by which the different agents regulate the macrophage polarization could lead to an effective control of various human diseases, including inflammation and cancers.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China; School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qi Lu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Wenwen Gao
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China
| | - Shuwen Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Qilu Hospital of Shandong University, Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
21
|
Jiao F, Varghese K, Wang S, Liu Y, Yu H, Booz GW, Roman RJ, Liu R, Fan F. Recent Insights Into the Protective Mechanisms of Paeoniflorin in Neurological, Cardiovascular, and Renal Diseases. J Cardiovasc Pharmacol 2021; 77:728-734. [PMID: 34001724 PMCID: PMC8169546 DOI: 10.1097/fjc.0000000000001021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT The monoterpene glycoside paeoniflorin (PF) is the principal active constituent of the traditional Chinese herbal medicines, Radix Paeoniae Alba and Radix Paeoniae Rubra, which have been used for millennia to treat cardiovascular diseases (eg, hypertension, bleeding, and atherosclerosis) and neurological ailments (eg, headaches, vertigo, dementia, and pain). Recent evidence has revealed that PF exerts inhibitory effects on inflammation, fibrosis, and apoptosis by targeting several intracellular signaling cascades. In this review, we address the current knowledge about the pharmacokinetic properties of PF and its molecular mechanisms of action. We also present results from recent preclinical studies supporting the utility of PF for the treatment of pain, cerebral ischemic injury, and neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Moreover, new evidence suggests a general protective role of PF in heart attack, diabetic kidney, and atherosclerosis. Mechanistically, PF exerts multiple anti-inflammatory actions by targeting toll-like receptor-mediated signaling in both parenchymal and immune cells (in particular, macrophages and dendritic cells). A better understanding of the molecular actions of PF may lead to the expansion of its therapeutic uses.
Collapse
Affiliation(s)
- Feng Jiao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Kevin Varghese
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - George W. Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
22
|
Traditional Chinese medicine is a useful and promising alternative strategy for treatment of Sjogren's syndrome: A review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:191-202. [PMID: 33509710 DOI: 10.1016/j.joim.2021.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023]
Abstract
Primary Sjogren's syndrome (pSS) is a chronic autoimmune disease involving exocrine glands. Current studies have found that the occurrence of the disease is closely related to genetic, environmental and neuroendocrine factors, as well as abnormal activation of T and B lymphocytes. The etiology and pathogenesis of pSS is complex, and there is a lack of specific targeted drugs. Traditional Chinese medicines (TCMs) have been comprehensively investigated for their treatment effects on pSS. Through a systematic review of the literature, we summarized the TCMs used to treat pSS, and find that there are four major ways that TCMs are used, including upregulation of aquaporin proteins, suppression of cell apoptosis, suppression of the abnormal activation of B lymphocytes and suppression of the abnormal activation of T lymphocytes (balancing T helper type [Th]1/Th2 & Th17/Treg and suppressing follicular helper T [Tfh] cells). However, there are not enough data about the active constituents, quality control, pharmacokinetics, toxicity and modern preparations of these TCMs; therefore, more investigations are needed. This paper highlights the importance of TCMs for treating pSS and provides guidance for future investigations.
Collapse
|
23
|
Jiang H, Li J, Wang L, Wang S, Nie X, Chen Y, Fu Q, Jiang M, Fu C, He Y. Total glucosides of paeony: A review of its phytochemistry, role in autoimmune diseases, and mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112913. [PMID: 32371143 DOI: 10.1016/j.jep.2020.112913] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniae Radix Alba (PRA, called baishao in China), the root of Paeonia lactiflora Pall., has shown a rich medicinal value for more than 2000 years. PRA is used in local medicine and traditional medicine for autoimmune diseases associated with inflammation. At present, total glucosides of paeony (TGP), the main active ingredient of PRA, has been developed into a preparation for the treatment of autoimmune diseases, as TGP exhibits the effect of regulating immunity, anti-inflammatory, and analgesic effects. AIM OF THE REVIEW TGP was developed and applied to inflammation-related autoimmune diseases in modern clinical practice. Based on its application in traditional prescriptions, this article reviews PRA's botany and phytochemistry (including its extraction process and quality control), and discusses the clinical application and pharmacological research of TGP as an anti-inflammatory drug from the perspective of ethnopharmacology. Additionally, we review modern pharmacological and molecular-target research on TGP and discuss the mechanisms of TGP in treating autoimmune diseases. Through a systematic literature review, we also highlight the clinical efficacy of TGP in the treatment of immune diseases, and provide a reference for the continued scientific development and quality control of TGP so that its wider application and clinical value can be fully realized. MATERIALS AND METHODS Literature search was conducted through the Web of Science, Baidu Scholar, ScienceDirect, PubMed, CNKI, and WanFang DATA using the keywords "Total glucosides of paeony", "Paeonia lactiflora Pall. ", "Paeonia veitchii Lynch", "Paeoniae Radix Alba or white peony", "Paeoniae Radix Rubra or red peony", "Paeoniflorin", "Albiflorin", "Autoimmune diseases", and their combinations. In addition, information was collected from relevant textbooks, reviews, and documents. RESULTS Approximately 15 compounds have been identified in TGP, of which paeoniflorin and albiflorin are the most common constituents. In recent years, studies have found that TGP and its main chemical components are effective in the treatment of autoimmune diseases, such as rheumatoid arthritis, psoriasis, oral lichen planus, and Sjogren's syndrome. TGP has a variety of pharmacological effects related to PRA traditional effects, including anti-organ-damage, anti-inflammatory, analgesic, antioxidant, cardiovascular, and nervous-system protection. Previously published reports on TGP treatment of autoimmune diseases have shown that TGP regulates intracellular pathways, such as the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathways. However, there is no standardized preparation method for TGP, and there is insufficient quality control of formulations. Many related pharmacological studies have not tested TGP components, and the validity of such pharmacological results requires further verification. CONCLUSIONS Modern pharmacological research on TGP is based on the traditional usage of PRA, and its folk medicinal value in the treatment of autoimmune diseases has now been verified. In particular, TGP has been developed into a formulation used clinically for the treatment of autoimmune diseases. The combination of TGP capsules and chemicals to treat autoimmune diseases has the effect of increasing efficacy and reducing toxicity. Based on further research on its preparation, quality control, and mechanisms of action, TGP is expected to eventually play a greater role in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Huajuan Jiang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Jie Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Lin Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Shengju Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Xin Nie
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Yi Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Qiang Fu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Maoyuan Jiang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Chaomei Fu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Yao He
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| |
Collapse
|
24
|
Zhou YX, Gong XH, Zhang H, Peng C. A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects. Biomed Pharmacother 2020; 130:110505. [PMID: 32682112 DOI: 10.1016/j.biopha.2020.110505] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing pharmacological evidence supports that paeoniflorin, a water-soluble monoterpene glycoside isolated from Paeonia lactiflora Pall. (Shaoyao in Chinese), has a wide range of medicinal properties including anti-inflammatory, antioxidant, antithrombotic, anticonvulsive, analgesic, cardioprotective, neuroprotective, hepatoprotective, antidepressant-like, antitumoral, and immune-regulatory activities; as well as enhancing cognition and attenuating learning impairment. In addition to pharmacodynamic studies, information on pharmacokinetics is also significant for the further development and utilization of paeoniflorin. The present review focuses on the absorption, distribution, metabolism, and excretion of paeoniflorin, especially main pharmacological activities of paeoniflorin on inflammation and immune function. According to the findings obtained both in vitro and in vivo, a broad application prospect has been opened for paeoniflorin. However, further studies are needed to clarity the direct molecular mechanisms and key targets underlying the beneficial effects of paeoniflorin on inflammation and immunity.
Collapse
Affiliation(s)
- Yan-Xi Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Library, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Hong Gong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hong Zhang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
25
|
Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol Ther 2019; 207:107452. [PMID: 31836457 DOI: 10.1016/j.pharmthera.2019.107452] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
As a Traditional Chinese Medicine, Paeonia lactiflora Pallas has been used to treat pain, inflammation and immune disorders for more than 1000 years in China. Total glycoside of paeony (TGP) is extracted from the dried root of Paeonia lactiflora Pallas. Paeoniflorin (Pae) is the major active component of TGP. Our research group has done a lot of work in the pharmacological mechanisms of Pae and found that Pae possessed extensive anti-inflammatory and immune regulatory effects. Pae could inhibit inflammation in the animal models of autoimmune diseases, such as experimental arthritis, psoriatic mice and experimental autoimmune encephalomyelitis, and so on. Pae modulates the functions and activation of immune cells, decreases inflammatory medium production, and restores abnormal signal pathway. Pae could balance the subsets of immune cells through inhibiting abnormal activated cell subsets and restoring regulatory cell subsets. Pae could regulate signaling pathways (GPCR pathway, MAPKs /NF-κB patway, PI3K /Akt /mTOR pathway, JAK2 /STAT3 pathway, TGFβ /Smads, and etc.). TGP is composed of Pae, hydroxyl-paeoniflorin, paeonin, albiflorin and benzoylpaeoniflorin etc. Pae accounts for more than 40% of TGP. Like Pae, TGP has anti-inflammatory and immune regulatory effects. TGP has been widely used to treat autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriasis, allergic contact dermatitis, and etc. in China. Furthermore, TGP has some superior features with immune regulation, gentle effect, many indications and few adverse drug reactions. These findings suggest that TGP may be a promising anti-inflammatory and immune drug with soft regulation and has more superiority in the treatment of AIDs. Currently, TGP is used for the treatment of RA, SLE and other AIDs in more than 1000 hospitals in China, which obtained great social and economic benefits.
Collapse
|
26
|
Sun H, Wang J, Lv J. Effects of glycyrrhizin on the pharmacokinetics of paeoniflorin in rats and its potential mechanism. PHARMACEUTICAL BIOLOGY 2019; 57:550-554. [PMID: 31429612 PMCID: PMC6713085 DOI: 10.1080/13880209.2019.1651876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Context: Paeoniflorin is reported to possess numerous pharmacological activities. Paeoniflorin and glycyrrhizin are always used together for the treatment of disease in China clinics; however, the drug-drug interaction between glycyrrhizin and paeoniflorin is still unknown. Objective: This study investigates the effects of glycyrrhizin on the pharmacokinetics of paeoniflorin in rats. Materials and methods: The pharmacokinetics of orally administered paeoniflorin (20 mg/kg) with or without glycyrrhizin pre-treatment (at a dose of 100 mg/kg/day for 7 days) were investigated in male Sprague-Dawley rats using LC-MS/MS. Additionally, Caco-2 cell transwell model and rat liver microsome incubation experiments were also conducted to investigate its potential mechanism. Results: The results showed that when the rats were pre-treated with glycyrrhizin, the Cmax of paeoniflorin decreased from 59.57 ± 10.24 to 45.36 ± 8.61 ng/mL, and AUC0-inf also decreased from 282.02 ± 35.06 to 202.29 ± 28.28 μg·h/L. The t1/2 value of paeoniflorin decreased from 8.48 ± 2.01 to 5.88 ± 1.15 h (p < 0.05). The Caco-2 cell transwell experiments indicated that glycyrrhizin could increase the efflux ratio of paeoniflorin from 2.71 to 3.52, and the rat liver microsome incubation experiments showed that glycyrrhizin could significantly increase its intrinsic clearance rate from 53.7 ± 4.6 to 85.6 ± 7.1 μL/min/mg protein. Conclusions: These results indicated that glycyrrhizin could affect the pharmacokinetics of paeoniflorin, and it might work through decreasing the absorption of paeoniflorin by inducing the activity of P-gp or through increasing the clearance rate in rat liver by inducing the activity of CYP450 enzyme.
Collapse
Affiliation(s)
- Hongjuan Sun
- Department of Pediatrics, Liaocheng Dongchangfu People’s Hospital, Liaocheng, China
- CONTACT Hongjuan Sun Department of Pediatrics, Liaocheng Dongchangfu People’s Hospital, No. 128, Songgui Road, Liaocheng, Shandong 252004, China
| | - Jingfeng Wang
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Juan Lv
- Department of Pediatrics, Liaocheng Dongchangfu People’s Hospital, Liaocheng, China
| |
Collapse
|
27
|
Shao YX, Gong Q, Qi XM, Wang K, Wu YG. Paeoniflorin Ameliorates Macrophage Infiltration and Activation by Inhibiting the TLR4 Signaling Pathway in Diabetic Nephropathy. Front Pharmacol 2019; 10:566. [PMID: 31191309 PMCID: PMC6540689 DOI: 10.3389/fphar.2019.00566] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
Paeoniflorin (PF) is the primary component of total glucosides of paeony (TGP). It exerts multiple effects, including immunoregulatory and anti-inflammatory effects. Our previous study has found that PF has a remarkable renal-protective effect in diabetic mice, but exact mechanism has not been clarified. This study mainly explores whether PF affects macrophage infiltration and activation in diabetic kidney through TLR4 pathway. Thus, this study was conducted to investigate the effect of PF on a streptozotocin (STZ)-induced experimental DN model. The results suggested that the onset and clinical symptoms of DN in mice were remarkably ameliorated after the administration of PF. Moreover, the number of infiltrating macrophages in the mouse kidneys was also markedly decreased. Instead of inhibiting the activation of macrophages directly, PF could influence macrophages by suppressing iNOS expression as well as the production of TNF-α, IL-1β, and MCP-1 both in vivo and in vitro. These effects might be attributable to the inhibition of the TLR4 signaling pathway. The percentage of M1-phenotype cells as well as the mRNA levels of iNOS, TNF-α, IL-1β, and MCP-1 were downregulated when PF-treated polarized macrophages were cultured under conditions of high glucose (HG) levels. In addition, the expression of TLR4, along with that of downstream signaling molecule proteins, was also reduced. Our study has provided new insights into the potential of PF as a promising therapeutic agent for treating DN and has illustrated the underlying mechanism of PF from a new perspective.
Collapse
Affiliation(s)
- Yun-Xia Shao
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University Hefei, Hefei, China.,Department of Nephrology, The Second People's Hospital of Wuhu, Wuhu, China
| | - Qian Gong
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University Hefei, Hefei, China
| | - Xiang-Ming Qi
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University Hefei, Hefei, China
| | - Kun Wang
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University Hefei, Hefei, China
| | - Yong-Gui Wu
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University Hefei, Hefei, China
| |
Collapse
|
28
|
Tu J, Guo Y, Hong W, Fang Y, Han D, Zhang P, Wang X, Körner H, Wei W. The Regulatory Effects of Paeoniflorin and Its Derivative Paeoniflorin-6'-O-Benzene Sulfonate CP-25 on Inflammation and Immune Diseases. Front Pharmacol 2019; 10:57. [PMID: 30804784 PMCID: PMC6370653 DOI: 10.3389/fphar.2019.00057] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
The plant extract "total glucosides of peony" (TGP) constitutes a mixture of glycosides that is isolated from the roots of the well-known traditional Chinese herb Paeonia lactiflora Pall. Paeoniflorin (Pae) is the most abundant component and the main biologically active ingredient of TGP. Pharmacologically, Pae exhibits powerful anti-inflammatory and immune regulatory effects in some animal models of autoimmune diseases including Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE). Recently, we modified Pae with an addition of benzene sulfonate to achieve better bioavailability and higher anti-inflammatory immune regulatory effects. This review summarizes the pharmacological activities of Pae and the novel anti-inflammatory and immunomodulatory agent Paeoniflorin-6'-O-benzenesulfonate (CP-25) in various chronic inflammatory and autoimmune disorders. The regulatory effects of Pae and CP-25 make them promising agents for other related diseases, which require extensive investigation in the future.
Collapse
Affiliation(s)
- Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yawei Guo
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wenming Hong
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yilong Fang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Dafei Han
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Pengying Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Heinrich Körner
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Sosorburam D, Wu ZG, Zhang SC, Hu P, Zhang HY, Jiang T, Ahiasi-Mensah J, He X. Therapeutic effects of traditional Chinese herbal prescriptions for primary dysmenorrhea. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
30
|
Li R, Zhang JF, Wu YZ, Li YC, Xia GY, Wang LY, Qiu BL, Ma M, Lin S. Structures and Biological Evaluation of Monoterpenoid Glycosides from the Roots of Paeonia lactiflora. JOURNAL OF NATURAL PRODUCTS 2018; 81:1252-1259. [PMID: 29741372 DOI: 10.1021/acs.jnatprod.8b00087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fractionation of an aqueous extract of the air-dried roots of a traditional Chinese medicinal plant, Paeonia lactiflora, yielded the new monoterpenoid glycosides 1-10. Their structures were assigned via spectroscopic techniques, and the absolute configurations of 1, 4-6, and 8 were verified via chemical methods, specific rotation, and electronic circular dichroism data. Compounds 1-4 are rare compared to the reported cage-like paeoniflorin derivatives; that is, they comprised two monoterpenoidal moieties. In the in vitro assay, compounds 5, 8, and 9 showed weak inhibitions against lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophages, with IC50 values of 64.8, 60.1, and 97.5 μM, respectively.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Jing-Fang Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Yu-Zhuo Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Yan-Cheng Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Gui-Yang Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Ling-Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Bo-Lin Qiu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Min Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Sheng Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| |
Collapse
|
31
|
Jing Y, Wu F, Li D, Yang L, Li Q, Li R. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol 2018; 461:256-264. [PMID: 28935544 DOI: 10.1016/j.mce.2017.09.025] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/24/2017] [Accepted: 09/16/2017] [Indexed: 11/20/2022]
Abstract
Obesity is reported to be a chronic low-grade inflammatory state. Adipose tissue macrophages play a key role in obesity-related inflammation. Metformin, the most widely used anti-diabetic drug, has recently been reported to have an effect on inflammation, but the mechanism is poorly understood. This study aims to investigate how metformin works on chronic low-grade inflammation in obesity and whether the mechanism underlying it is associated with macrophage polarization. Metformin was administered for 7 weeks to high fat-fed C57/6J male mice in vivo. Metformin, compound C (an AMPK inhibitor) and AICAR (an AMPK activator) were used for the in vitro intervention. The gene expression of macrophages markers was examined. Pro-inflammatory cytokines IL-6 and TNF-α were tested by ELISA. The macrophage subsets were analyzed by flow cytometry. In vivo, we discovered that metformin not only decreased the serum level of the pro-inflammatory cytokines IL-6 and TNF-α but also lowered the expression of the M1 macrophage markers CD11c and MCP-1 in adipose tissue. In vitro, metformin reduced the secretion of IL-6 and TNF-α in palmitate-stimulated RAW264.7 macrophages, while compound C treatment blocked the effect of metformin. Moreover, treatment with metformin and AICAR decreased the proportion of M1 macrophages and increased the proportion of M2 macrophages, as analyzed by flow cytometry, in palmitate-stimulated BMDMs. In addition, the effect of AICAR on macrophage polarization was stronger than that of metformin. These results suggest that metformin improves low-grade inflammation in obesity and modulates macrophage polarization to an anti-inflammatory, M2 phenotype partly via the activation of AMPK.
Collapse
Affiliation(s)
- Yuanyuan Jing
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fan Wu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dai Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lei Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qi Li
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rong Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
32
|
Wang X, Li D, Fan L, Xiao Q, Zuo H, Li Z. CAPE- pNO 2 ameliorated diabetic nephropathy through regulating the Akt/NF-κB/ iNOS pathway in STZ-induced diabetic mice. Oncotarget 2017; 8:114506-114525. [PMID: 29383098 PMCID: PMC5777710 DOI: 10.18632/oncotarget.23016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most severe complications of diabetes mellitus. This study aimed to determine the effects and potential mechanism of caffeic acid para-nitro phenethyl ester (CAPE-pNO2), a derivative of caffeic acid phenethyl ester (CAPE), on DN; In vivo, intraperitoneal injections of streptozotocin (STZ) were used to induce diabetes in mice; then, the mice were intraperitoneally injected daily with CAPE or CAPE-pNO2 for 8 weeks. The mice were sacrificed, and blood samples and kidney tissues were collected to measure biological indexes. The results showed that CAPE and CAPE-pNO2 could lower serum creatinine, blood urea nitrogen, 24-h albumin excretion, malondialdehyde and myeloperoxidase levels and increase superoxide dismutase activity in diabetic mice. According to HE, PAS and Masson staining, these two compounds ameliorated structural changes and fibrosis in the kidneys. In addition, the immunohistochemical and western blot results showed that CAPE and CAPE-pNO2 inhibited inflammation through the Akt/NF-κB pathway and prevented renal fibrosis through the TGF-β/Smad pathway. In vitro, CAPE and CAPE-pNO2 inhibited glomerular mesangial cell (GMC) proliferation, arrested cell cycle progression and suppressed ROS generation. These compounds also inhibited ECM accumulation via regulating the TGF-β1, which was a similar effect to that of the NF-κB inhibitor PDTC. More importantly, CAPE and CAPE-pNO2 could up-regulate nitric oxide synthase expression in STZ-induced diabetic mice and HG-induced GMCs. CAPE-pNO2 had stronger effects than CAPE both in vivo and in vitro. These data suggest that CAPE-pNO2 ameliorated DN by suppressing oxidative stress, inflammation, and fibrosis via the Akt/NF-κB/ iNOS pathway.
Collapse
Affiliation(s)
- Xiaoling Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Dejuan Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Lu Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Qianhan Xiao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
33
|
Gu J, Su S, Guo J, Zhu Y, Zhao M, Duan JA. Anti-inflammatory and anti-apoptotic effects of the combination of Ligusticum chuanxiong and Radix Paeoniae against focal cerebral ischaemia via TLR4/MyD88/MAPK/NF-κB signalling pathway in MCAO rats. J Pharm Pharmacol 2017; 70:268-277. [DOI: 10.1111/jphp.12841] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/26/2017] [Indexed: 01/09/2023]
Abstract
Abstract
Objective
This study was performed to assess the anti-inflammatory and anti-apoptotic effects of the combination of Ligusticum chuanxiong and Radix Paeoniae (XS) on focal cerebral ischaemic stroke.
Methods
MCAO rats were used to evaluate the effect of XS on stroke. Cerebral water content was measured, and the levels of IFN-γ, IL-1β, IL-6 and IL-12 in serum and brain were assessed by ELISA kits. Protein expressions including p-p38, p-38, TLR-4, p-ERK, ERK, TLR-5, NF-κBp65, Myd88, Caspase-3 and Caspase-12 were examined by WB and IHC. Q-PCR was applied to examine IL-1β and IL-6 mRNA levels in the rat brain of each group.
Key findings
XS treatment remarkedly decreased the levels of IFN-γ, IL-1β, IL-6 and IL-12 in serum and brain tissues of MCAO rats. In the ischaemic brain, the expressions of TLR-4, TLR-5, p-p38, p-ERK, Myd88, NF-κBp65, Caspase-3 and Caspase-12 were increased significantly, while the treatment attenuated the activated expressions by MCAO. XS also downregulated Caspase-3 and Caspase-12 expressions. IL-1β and IL-6 mRNA levels in MCAO brain tissue were decreased by XS treatment.
Conclusions
XS could protect MCAO rats by anti-inflammation and anti-apoptosis through TLR4/MyD88/MAPK/NF-κB signalling pathway. Furthermore, the combination has a more meaningful improvement on focal cerebral ischaemic stroke.
Collapse
Affiliation(s)
- Junfei Gu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
34
|
Shao YX, Xu XX, Wang K, Qi XM, Wu YG. Paeoniflorin attenuates incipient diabetic nephropathy in streptozotocin-induced mice by the suppression of the Toll-like receptor-2 signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3221-3233. [PMID: 29184392 PMCID: PMC5687495 DOI: 10.2147/dddt.s149504] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Toll-like receptors (TLRs) may be involved in diabetic nephropathy (DN). Paeoniflorin (PF) is an effective Chinese traditional medicine with anti-inflammatory and immunoregulatory effects that may inhibit the TLR2 signaling pathway. In this study, we investigated the effects of PF on the kidneys of mice with streptozotocin-induced type 1 diabetes mellitus using TLR2 knockout mice (TLR2−/−) and wild-type littermates (C57BL/6J-WT). After 12 weeks of intraperitoneal injection of PF at doses of 25, 50, and 100 mg/kg once a day, diabetic mice had significantly reduced albuminuria and attenuated renal histopathology. These changes were associated with substantially alleviated macrophage infiltration and decreased expression of TLR2 signaling pathway biomarkers. These data support a role of TLR2 in promoting inflammation and indicate that the effect of PF is associated with the inhibition of the TLR2 pathway in the kidneys of diabetic mice. PF thus shows therapeutic potential for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Yun-Xia Shao
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University, Hefei.,Department of Nephrology, The Second People's Hospital of Wuhu, Wuhu, Anhui, People's Republic of China
| | - Xing-Xin Xu
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University, Hefei
| | - Kun Wang
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University, Hefei
| | - Xiang-Ming Qi
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University, Hefei
| | - Yong-Gui Wu
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University, Hefei
| |
Collapse
|
35
|
Fan Y, Hu L, Zhu S, Han Y, Liu W, Yang Y, Li Q. Paeoniflorin attenuates postoperative pain by suppressing Matrix Metalloproteinase‐9/2 in mice. Eur J Pain 2017; 22:272-281. [DOI: 10.1002/ejp.1116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Y.‐x. Fan
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention Department of Pharmacology Nanjing Medical University China
- Department of Pharmacy Sir Run Run Shaw Hospital Affiliated to Nanjing Medical University China
| | - L. Hu
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention Department of Pharmacology Nanjing Medical University China
| | - S.‐h. Zhu
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention Department of Pharmacology Nanjing Medical University China
| | - Y. Han
- Jiangsu Province Key Laboratory of Anesthesiology School of Anesthesiology Xuzhou Medical University China
| | - W.‐t. Liu
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention Department of Pharmacology Nanjing Medical University China
| | - Y.‐j. Yang
- Jiangsu Key Laboratory of Oral Disease Nanjing Medical University China
| | - Q.‐p. Li
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention Department of Pharmacology Nanjing Medical University China
| |
Collapse
|
36
|
Yang QL, Shen JQ, Jiang ZH, Shi YL, Wan XL, Yang YC. TLR2 signal influences the iNOS/NO responses and worm development in C57BL/6J mice infected with Clonorchis sinensis. Parasit Vectors 2017; 10:379. [PMID: 28784165 PMCID: PMC5547496 DOI: 10.1186/s13071-017-2318-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Although the responses of inducible nitric oxide synthase (iNOS) and associated cytokine after Clonorchis sinensis infection have been studied recently, their mechanisms remain incompletely understood. In this study, we investigated the effects of toll-like receptor 2 (TLR2) signals on iNOS/nitric oxide (NO) responses after C. sinensis infection. We also evaluated the correlations between iNOS responses and worm development, which are possibly regulated by TLR2 signal. METHODS TLR2 wild-type and mutant C57BL/6 J mice were infected with 60 C. sinensis metacercariae, and the samples were collected at 30, 60, 90 and 120 days post-infection (dpi). The total serum NO levels were detected using Griess reagent after nitrate was reduced to nitrite. Hepatic tissue samples from the infected mice were sliced and stained with hematoxylin and eosin (HE) to observe worm development in the intrahepatic bile ducts. The iNOS mRNA transcripts in the splenocytes were examined by real time reverse transcriptase polymerase chain reaction (qRT-PCR), and iNOS expression was detected by immunohistochemistry. RESULTS Developing C. sinensis juvenile worms were more abundant in the intrahepatic bile ducts of TLR2 mutant mice than those of TLR2 wild-type mice. However, no eggs were found in the faeces of both mice samples. The serum levels of total NO significantly increased in TLR2 mutant mice infected with C. sinensis at 30 (t (5) = 2.595, P = 0.049), 60 (t (5) = 7.838, P = 0.001) and 90 dpi (t (5) = 3.032, P = 0.029). Meanwhile, no changes occurred in TLR2 wild-type mice compared with uninfected controls during the experiment. The iNOS expression in splenocytes showed unexpected higher background levels in TLR2 mutant mice than those in TLR2 wild-type mice. Furthermore, the iNOS mRNA transcripts in splenocytes were significantly increased in the TLR2 wild-type mice infected with C. sinensis at 30 (t (5) = 5.139, P = 0.004), 60 (t (5) = 6.138, P = 0.002) and 90 dpi (t (5) = 6.332, P = 0.001). However, the rising of iNOS transcripts dropped under the uninfected control level in the TLR2 mutant mice at 120 dpi (t (5) = -9.082, P < 0.0001). Both total NO and iNOS transcripts were significantly higher in the TLR2 mutant mice than those in the TLR2 wild-type mice at 30 (t (5) = 3.091/2.933, P = 0.027/0.033) and 60 dpi (t (5) = 2.667/6.331, P = 0.044/0.001), respectively. In addition, the remarkable increase of iNOS expressions was immunohistochemically detected in the splenic serial sections of TLR2 wild-type mice at 30 and 60 dpi. However, the expressions of iNOS were remarkably decreased in the splenocytes of both TLR2 wild-type and mutant mice at 120 dpi. CONCLUSIONS These results demonstrate that TLR2 signal plays an important role in the regulation of iNOS expression after C. sinensis infection. TLR2 signal is also beneficial to limiting worm growth and development and contributing to the susceptibility to C. sinensis in which the iNOS/NO reactions possibly participate.
Collapse
Affiliation(s)
- Qing-Li Yang
- Guangxi Key Laboratory for Viral Hepatitis Prevention and Control, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, 530028 Guangxi People’s Republic of China
| | - Ji-Qing Shen
- Department of Parasitology, Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Zhi-Hua Jiang
- Guangxi Key Laboratory for Viral Hepatitis Prevention and Control, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, 530028 Guangxi People’s Republic of China
| | - Yun-Liang Shi
- Guangxi Key Laboratory for Viral Hepatitis Prevention and Control, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, 530028 Guangxi People’s Republic of China
| | - Xiao-Ling Wan
- Guangxi Key Laboratory for Viral Hepatitis Prevention and Control, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, 530028 Guangxi People’s Republic of China
| | - Yi-Chao Yang
- Guangxi Key Laboratory for Viral Hepatitis Prevention and Control, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, 530028 Guangxi People’s Republic of China
| |
Collapse
|
37
|
Wang J, Liu J, Wang Y, Lin M, Tian W, Zhou L, Ye X, Lin L. High glucose induces alternative activation of macrophages via PI3K/Akt signaling pathway. J Recept Signal Transduct Res 2017; 37:409-415. [PMID: 28292218 DOI: 10.1080/10799893.2017.1298131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE It has been proved that lactate-4.25% dialysate could result in peritoneal fibrosis by inducing alternative activation of macrophages in our previous study, but the mechanism of high glucose-induced alternative activation has not been elucidated. This study was, therefore, to investigate the mechanism by high glucose stimuli. METHODS In this study, Raw264.7 (murine macrophage cell line) cells were cultured and stimulated by 4.25% glucose medium, and mannitol medium was used as osmotic pressure control. Cells were harvested at 0 h, 4 h, 8 h, and 12 h to examine the expression of Arg-1, CD206, and p-Akt. After blocking PI3K by LY294002, the expression of Arg-1, CD206, and p-Akt was examined again. RESULTS The expression of Arg-1 and CD206 was increased in a time-dependent manner induced by high glucose medium. On the contrary, there was mainly no Agr-1 or CD206 expressed in cells cultured in the mannitol medium with the same osmotic pressure. What's more, Akt was phosphorylated at the eighth hour stimulated by high glucose medium, and LY294002 inhibited the expression of Arg-1 and CD206 by blocking the phosphorylation of Akt. CONCLUSIONS Our study indicated that high glucose rather than high osmotic pressure induced M2 phenotype via PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jie Wang
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| | - Jingjing Liu
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| | - Yuying Wang
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| | - Minghui Lin
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| | - Wei Tian
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| | - Lingling Zhou
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| | - Xiaoyin Ye
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| | - Lihang Lin
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| |
Collapse
|