1
|
Baei B, Askari P, Askari FS, Kiani SJ, Mohebbi A. Pharmacophore modeling and QSAR analysis of anti-HBV flavonols. PLoS One 2025; 20:e0316765. [PMID: 39804828 PMCID: PMC11730388 DOI: 10.1371/journal.pone.0316765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Due to its global burden, Targeting Hepatitis B virus (HBV) infection in humans is crucial. Herbal medicine has long been significant, with flavonoids demonstrating promising results. Hence, the present study aimed to establish a way of identifying flavonoids with anti-HBV activities. Flavonoid structures with anti-HBV activities were retrieved. A flavonol-based pharmacophore model was established using LigandScout v4.4. Screening was performed using the PharmIt server. A QSAR equation was developed and validated with independent sets of compounds. The applicability domain (AD) was defined using Euclidean distance calculations for model validation. The best model, consisting of 57 features, was generated. High-throughput screening (HTS) using the flavonol-based model resulted in 509 unique hits. The model's accuracy was further validated using a set of FDA-approved chemicals, demonstrating a sensitivity of 71% and a specificity of 100%. Additionally, the QSAR model with two predictors, x4a and qed, exhibited predictive solid performance with an adjusted-R2 value of 0.85 and 0.90 of Q2. PCA showed essential patterns and relationships within the dataset, with the first two components explaining nearly 98% of the total variance. Current HBV therapies tend to fail to provide a complete cure, emphasizing the need for new therapies. This study's importance was to highlight flavonols as potential anti-HBV medicines, presenting a supplementary option for existing therapy. The QSAR model has been validated with two separate chemical sets, guaranteeing its reproducibility and usefulness for other flavonols by utilizing the predictive characteristics of X4A and qed. These results provide new possibilities for discovering future anti-HBV drugs by integrating modeling and experimental research.
Collapse
Affiliation(s)
- Basireh Baei
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parnia Askari
- Department of Life and Science, York University, Toronto, Ontario, Canada
| | | | - Seyed Jalal Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mohebbi
- Vista Aria Rena Gene Inc., Gorgan, Golestan, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Li N, Feng X, An C, Liu G, Liu C. Metabolites from traditional Chinese botanical drugs with anti-hepatitis B virus activity - a review. Front Pharmacol 2024; 15:1331967. [PMID: 39070799 PMCID: PMC11272473 DOI: 10.3389/fphar.2024.1331967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Hepatitis B virus (HBV)-related liver disease poses a major threat to human health worldwide. Although interferon and nucleoside analogues are commonly administered for treating chronic HBV infection, their use is limited by considerable side effects, drug resistance and incapacity for HBV elimination. Hence, novel HBV therapeutics are urgently required. For numerous years, traditional Chinese botanical drugs have been widely used to treat HBV-related diseases. The natural metabolites derived from these traditional drugs exhibit significant anti-HBV effects and serve as potential novel drugs for treating HBV. For overall understanding the therapeutic potential of these metabolites, the anti-HBV effects and mechanisms of action of 107 natural metabolites are summarized in this article. Mechanistically, these natural metabolites exert their anti-HBV effects by influencing the expression and function of host and/or viral genes, which differs from the mechanism of action of nucleoside analogues. Indeed, combining natural metabolites with nucleoside analogues can exert synergistic effects. Accordingly, natural metabolites or their chemically modified derivatives represent potential novel drugs and adjuvants for anti-HBV treatment.
Collapse
Affiliation(s)
| | | | - Cheng An
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guijian Liu
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Liu
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Omarova BA, Shults EE, Zhakipbekov KS, Abekova АО, Ishmuratova MY, Petrova TN, Kartbayeva EB. Biological effects and phytochemical study of the underground part of Iris scariosa Willd. ex Link extract: A new source of bioactive constituents. Fitoterapia 2024; 175:105920. [PMID: 38531480 DOI: 10.1016/j.fitote.2024.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
The expected toxicity and resistance of chemotherapeutic agents necessitate and encourage for the use of natural chemotherapeutic sources of plant origin in the clinical stage of cancer therapy. Plants of the genus Iris (Iridaceae) used by local populations for the treatment of cancer, bacterial and viral infections. In this study, an ethanol extract of rhizomes of I. scariosa was prepared and tested for the cytotoxicity using the MTT assay. The extract exhibited the most potent cytotoxicity against the breast cancer cell line MCF7 (IC50 = 9.28 ± 0.49 μg/ml, selectively index ˃5), and induced apoptosis in MCF7 lines. Notably, the extract significantly inhibited the colony formation of MCF7 and HepG2 cancer cells at a concentration range from 10.6 to 85.0 μg/ml, including non-toxic concentrations for HepG2 cells. The ethanol extract was analyzed by HPLC, revealed the identification of 5 secondary metabolites (quercetin, rutin, myricetin, apigenin, artemisetin), the content of which was shown to reach around 15% of the extract. The petroleum ether (PE) part of the extract (yield 2.62%) was analyzed by GC-MS. The composition of tert-butyl methyl ether (TBME) part of the extract (yield 23.72%) was studied. Total of 15 individual compounds: two benzophenones, eight isoflavones, four flavones and a (2R)-flavanone were isolated. The pentamethoxyflavone artemisetin and flavanone pinocembrin were isolated for the first from Iris sp. The readily available isoflavones from the TBME part of extract (irilone, iriflogenin, irigenin and tectorigenin) may serve as new leads for the discovery of anticancer drugs.
Collapse
Affiliation(s)
- Botagoz A Omarova
- Asfendiyarov Kazakh National Medical University, Tole Bi St. 94, Almaty 050000, Republic of Kazakhstan
| | - Elvira E Shults
- Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentyev Ave. 9, 630090 Novosibirsk, Russia.
| | - Kairat S Zhakipbekov
- Asfendiyarov Kazakh National Medical University, Tole Bi St. 94, Almaty 050000, Republic of Kazakhstan.
| | - Аssima О Abekova
- JSC «Scientific Center for Anti-Infectious Drugs», al-Farabi Ave. 75A, 050060 Almaty, Republic of Kazakhstan
| | - Margarita Yu Ishmuratova
- NCJSC "Buketov Karaganda University", Universitetskaya Str., 28/3, 100028 Karaganda, Republic of Kazakhstan
| | - Tatyana N Petrova
- Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentyev Ave. 9, 630090 Novosibirsk, Russia
| | - Elmira B Kartbayeva
- Asfendiyarov Kazakh National Medical University, Tole Bi St. 94, Almaty 050000, Republic of Kazakhstan; Higher School of Medicine, Al-Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Republic of Kazakhstan
| |
Collapse
|
4
|
Naderi M, Salavatiha Z, Gogoi U, Mohebbi A. An overview of anti-Hepatitis B virus flavonoids and their mechanisms of action. Front Cell Infect Microbiol 2024; 14:1356003. [PMID: 38487354 PMCID: PMC10937540 DOI: 10.3389/fcimb.2024.1356003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Flavonoids, a diverse group of polyphenolic compounds found in various plant-based foods, have garnered attention for their potential in combating Hepatitis B Virus (HBV) infection. Flavonoids have demonstrated promising anti-HBV activities by interfering with multiple stages of the HBV life cycle, making them promising candidates for novel antiviral agents. Certain plant families, such as Theaceae, Asteraceae, Lamiaceae, and Gentianaceae, are of particular interest for their flavonoid-rich members with anti-HBV activities. Evidences, both in vitro and in vivo, supports the anti-HBV potential of flavonoids. These subsets of compound exert their anti-HBV effects through various mechanisms, including inhibiting viral entry, disrupting viral replication, modulating transcription factors, enhancing the immune response, and inducing autophagy. The antioxidant properties of flavonoids play a crucial role in modulating oxidative stress associated with HBV infection. Several flavonoids like epigallocatechin gallate (EGCG), proanthocyanidin (PAC), hexamethoxyflavone, wogonin, and baicalin have shown significant anti-HBV potential, holding promise as therapeutic agents. Synergistic effects between flavonoids and existing antiviral therapies offer a promising approach to enhance antiviral efficacy and reduce drug resistance. Challenges, including limited bioavailability, translation from preclinical studies to clinical practice, and understanding precise targets, need to be addressed. Future research should focus on clinical trials, combination therapies, and the development of flavonoid derivatives with improved bioavailability, and optimizing their effectiveness in managing chronic HBV infections.
Collapse
Affiliation(s)
- Malihe Naderi
- Department of Microbiology & Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Salavatiha
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Alireza Mohebbi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vista Aria Rena Gene Inc., Gorgan, Golestan, Iran
| |
Collapse
|
5
|
Guo X, Yao YD, Kang JL, Luo FK, Mu XJ, Zhang YY, Chen MT, Liu MN, Lao CC, Tan ZH, Huang YF, Xie Y, Xu YH, Wu P, Zhou H. Iristectorigenin C suppresses LPS-induced macrophages activation by regulating mPGES-1 expression and p38/JNK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116706. [PMID: 37301305 DOI: 10.1016/j.jep.2023.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used clinically to treat inflammatory diseases clinically. However, the adverse effects of NSAIDs cannot be ignored. Therefore, it is critical for us to find alternative anti-inflammatory drugs that can reduce adverse reactions to herbal medicine, such as Iris tectorum Maxim., which has therapeutic effects and can treat inflammatory diseases and liver-related diseases. AIM OF THE STUDY This study aimed to isolate active compounds from I. tectorum and investigate their anti-inflammatory effects and action mechanisms. MATERIALS AND METHODS Fourteen compounds were isolated from I. tectorum using silica gel column chromatography, Sephadex LH-20, ODS and high performance liquid chromatography, and their structures were identified by examining physicochemical properties, ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. Classical inflammatory cell models were established using lipopolysaccharide (LPS)-stimulated RAW264.7 cells and rat primary peritoneal macrophages to examine the effect of these compounds. To examine the action mechanisms, the nitric oxide (NO) levels were measured by Griess reagent and the levels of inflammatory cytokines in the supernatant were measured by ELISA; The expressions of major proteins in prostaglandin E2 (PGE2) synthesis and the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were examined by Western blotting, and the mRNA expression levels were measured by quantitative real-time polymerase chain reaction; and the nuclear translocation of p65 was examined by high content imaging. Molecular docking was used to predict the binding of active compound to target protein. RESULTS Our findings revealed that Iristectorigenin C (IT24) significantly inhibited the levels of NO and PGE2 without affecting cyclooxygenase (COX)-1/COX-2 expression in LPS-induced RAW264.7 cells and rat peritoneal macrophages. Furthermore, IT24 was shown to decrease the expression of microsomal prostaglandin synthetase-1 (mPGES-1) in LPS-induced rat peritoneal macrophages. IT24 did not suppress the phosphorylation and nuclear translocation of proteins in the NF-κB pathway, but it inhibited the phosphorylation of p38/JNK in LPS-stimulated RAW264.7 cells. Additionally, molecular docking analysis indicated that IT24 may directly bind to the mPGES-1 protein. CONCLUSION IT24 might inhibit mPGES-1 and the p38/JNK pathway to exert its anti-inflammatory effects and could be also developed as an inhibitor of mPGES-1 to prevent and treat mPGES-1-related diseases, such as inflammatory diseases, and holds promise for further research and drug development.
Collapse
Affiliation(s)
- Xin Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Jun-Li Kang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Fu-Kang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Xi-Jun Mu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China
| | - Yan-Yu Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Ming-Tai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, PR China
| | - Meng-Nan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chi-Chou Lao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Zi-Hao Tan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Yu-Feng Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China
| | - Ying Xie
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China.
| | - You-Hua Xu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao.
| | - Peng Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
6
|
Deng W, Chen F, Zhao Y, Zhou M, Guo M. Anti-hepatitis B virus activities of natural products and their antiviral mechanisms. Chin J Nat Med 2023; 21:803-811. [PMID: 38035936 DOI: 10.1016/s1875-5364(23)60505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 12/02/2023]
Abstract
Chronic hepatitis B (CHB) infections caused by the hepatitis B virus (HBV) continue to pose a significant global public health challenge. Currently, the approved treatments for CHB are limited to interferon and nucleos(t)ide analogs, both of which have their limitations, and achieving a complete cure remains an elusive goal. Therefore, the identification of new therapeutic targets and the development of novel antiviral strategies are of utmost importance. Natural products (NPs) constitute a class of substances known for their diverse chemical structures, wide-ranging biological activities, and low toxicity profiles. They have shown promise as potential candidates for combating various diseases, with a substantial number demonstrating anti-HBV properties. This comprehensive review focuses on the current applications of NPs in the fight against HBV and provides a summary of their antiviral mechanisms, considering their impact on the viral life cycle and host hepatocytes. By offering insights into the world of anti-HBV NPs, this review aims to furnish valuable information to support the future development of antiviral drugs.
Collapse
Affiliation(s)
- Wanyu Deng
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Fu Chen
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, School of Life Science&Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ming Zhou
- BGI-Shenzhen, Shenzhen 518000, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518110, China; Liver-biotechnology (Shenzhen) Co., Ltd., Shenzhen 518110, China.
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science&Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
7
|
Ponticelli M, Bellone ML, Parisi V, Iannuzzi A, Braca A, de Tommasi N, Russo D, Sileo A, Quaranta P, Freer G, Pistello M, Milella L. Specialized metabolites from plants as a source of new multi-target antiviral drugs: a systematic review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-79. [PMID: 37359711 PMCID: PMC10008214 DOI: 10.1007/s11101-023-09855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/30/2023] [Indexed: 06/28/2023]
Abstract
Viral infections have always been the main global health challenge, as several potentially lethal viruses, including the hepatitis virus, herpes virus, and influenza virus, have affected human health for decades. Unfortunately, most licensed antiviral drugs are characterized by many adverse reactions and, in the long-term therapy, also develop viral resistance; for these reasons, researchers have focused their attention on investigating potential antiviral molecules from plants. Natural resources indeed offer a variety of specialized therapeutic metabolites that have been demonstrated to inhibit viral entry into the host cells and replication through the regulation of viral absorption, cell receptor binding, and competition for the activation of intracellular signaling pathways. Many active phytochemicals, including flavonoids, lignans, terpenoids, coumarins, saponins, alkaloids, etc., have been identified as potential candidates for preventing and treating viral infections. Using a systematic approach, this review summarises the knowledge obtained to date on the in vivo antiviral activity of specialized metabolites extracted from plant matrices by focusing on their mechanism of action.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Laura Bellone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Annamaria Iannuzzi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Nunziatina de Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Daniela Russo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Annalisa Sileo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | | | - Giulia Freer
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
8
|
Zhu S, Wen H, Wang W, Chen Y, Han F, Cai W. Anti-hepatitis B virus activity of lithospermic acid, a polyphenol from Salvia miltiorrhiza, in vitro and in vivo by autophagy regulation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115896. [PMID: 36334815 DOI: 10.1016/j.jep.2022.115896] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/15/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza (the roots of S. miltiorrhiza Bunge, Danshen in Chinese), a traditional Chinese medicine, has been clinically used to prevent and treat various diseases, such as cardiovascular and cerebrovascular diseases, diabetes, and hepatitis B, in China and some other Asian countries. Lithospermic acid (LA), a polyphenol derived from S. miltiorrhiza, has been reported to exhibit multiple pharmacological properties, such as anti-inflammatory, anti-HIV, and anti-carbon tetrachloride-induced liver injury activities. However, little is known about the anti-hepatitis B virus (HBV) activity of LA. AIM OF THE STUDY The study was projected to investigate the anti-HBV activity of LA in vitro (HepG2.2.15 and pHBV1.3-transfected HepG2 cells) and in vivo (pAAV-HBV1.2 hydrodynamic injection [HBV-HDI] mice) and explore the potential mechanism as well. MATERIALS AND METHODS Hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) contents were detected by ELISA kits. HBV DNA and hepatitis B core antigen (HBcAg) levels were evaluated by quantitative real-time polymerase chain reaction and immunohistochemistry assay, respectively. The proteins in autophagy process, lysosomal acidic function, and autophagy-related signaling pathways were examined by Western blot. Transmission electron microscopy was used to observe the number of autophagosomes and autolysosomes. Confocal microscopy was applied to analyze the autophagic flux and lysosomal acidification, using mCherry-enhanced green fluorescent protein (EGFP)-microtubule-associated protein light chain (LC)3 and lysosomal probes, respectively. RESULTS LA exhibited anti-HBV activity by inhibiting HBV DNA replication in HepG2.2.15 and pHBV-transfected HepG2 cells in dose- and time-dependent manners and hampering HBsAg and HBeAg levels in HepG2.2.15 cells to a certain extent. LA reduced HBV DNA, HBsAg/HBeAg, and HBcAg levels in the serum/liver tissues of HBV-HDI C57BL/6 mice during the 3-week treatment and suppressed the withdrawal rebound of HBV DNA and HBsAg in the mice serum. LA increased LC3-II protein expression and the number of autolysosomes/autophagosomes and promoted the degradation of sequestosome 1(p62) protein in vitro and in vivo. LA enhanced the co-localization of LC3 protein with autolysosomes, further confirming the ability of LA to induce a complete autophagy. Knockdown of autophagy-related gene (Atg) 7 or 5 in vitro and administration of 3-methyladenine (an autophagic inhibitor) in vivo disabled the inhibitory efficacy of LA on HBV DNA replication, suggesting that the anti-HBV efficacy of LA depended on its ability of inducing autophagy. LA could enhance lysosomal acidification and improve the function of lysosomes by promoting the protein expression of lysosomal-associated membrane protein (LAMP)-1, LAMP-2, and mature cathepsin D, which may contribute to the autophagic induction of LA. LA inhibited the activation of AKT and mammalian target of rapamycin (mTOR) induced by HBV, which was reversed by IGF-1 (an agonist of the PI3K/AKT/mTOR signaling pathway), indicating that LA elicited autophagy through hampering the PI3K/AKT/mTOR signaling pathway. CONCLUSION We revealed the anti-HBV activity and mechanism of LA in vitro and in vivo. This study facilitates a new understanding of the anti-HBV potent components of S. miltiorrhiza and sheds light on LA for further development as an active constituent or candidate used in the therapy against HBV infection.
Collapse
Affiliation(s)
- Shiqi Zhu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Haimei Wen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wenling Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Fengmei Han
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Wentao Cai
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
9
|
Liu J, Zhang Y, Zhang M, Wang Q, Xie J. Ultrasonic-assisted extraction of swertisin from sour Jujube seed and comprehensive revelation of its antioxidant activity. J Food Biochem 2022; 46:e14433. [PMID: 36198041 DOI: 10.1111/jfbc.14433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 01/13/2023]
Abstract
As a typical flavonoid glycoside, swertisin mainly exists in sour Jujube seed. In this study, swertisin was extracted by ultrasound-assisted extraction method optimized with Box-Behnken design and response surface methodology. The antioxidant effect of swertisin was determined in vitro and in Caenorhabditis elegans (C. elegans). Furthermore, the potential mechanisms of its antioxidant stress were comprehensively evaluated and explored with network pharmacology and molecular docking technology. The results showed obvious scavenging ability of swertisin on free radical and swertisin (50, 250, and 500 μmol/L) significantly enhanced antioxidative enzymes activity (GST-4, SOD-3, and GSH-PX ) and reduced the reactive oxygen species and malondialdehyde accumulation in C. elegans, thereby protecting them from oxidative stress (heat stress and hydrogen peroxide). A total of 139 antioxidant targets of swertisin were screened and 70 signal pathways were enriched, including cancer-related pathways, lipid metabolism, liver injury-related pathways, acute lung injury, nervous system diseases, etc. This study provides the basis for further investigation on the antioxidant stress mechanism and contributes to the development of relevant drugs from natural products. PRACTICAL APPLICATIONS: The imbalance between the antioxidant defense system and reactive oxygen species is one of the main causes of neurodegenerative diseases, cardiovascular diseases, cancer, and aging. Therefore, alleviating oxidative stress injury has become a common strategy, which is helpful for the multi-target treatment of related diseases. The flavonoid of sour Jujube seed possesses potential antioxidant activity with multiple food health effects. From this study results, we optimized ultrasound-assisted extraction method for extracting the swertisin from sour Jujube seed and supported the use of C. elegans as an in vivo experimental model. We can recommend that the swertisin as a natural ingredient has a positive effect on antioxidation, which provided a scientific basis for treating related diseases through relevant pharmacological mechanisms and making antiaging functional food formula.
Collapse
Affiliation(s)
- Jinrui Liu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Mei Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Qing Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Saputro AH, Artarini AA, Tjahjono DH, Damayanti S. The long and stumble way to find potential active compounds from plants for defeating hepatitis B and C: review. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e85160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hepatitis is a liver illness caused by virus such as hepatitis A virus, hepatitis B virus and hepatitis C virus. Hepatitis B and C are considerably more usual and induce more cirrhosis and dead worldwide than hepatitis A. Although drugs that are currently often used in the medication of hepatitis B and C, the finding of recent drug from various resources including herbal has been intensively developed. Therefore, the purpose of this review is to consider the possibility of plant’s compounds as anti-HBV and anti-HCV. From the results of a review of several articles, several plant’s compound have shown effectiveness againts HBV and HCV by in silico, in vitro and in vivo studies. In conclusion, several plant’s active compounds are possibility to be developed as anti-hepatitis B and C.
Collapse
|
11
|
LIU Y, YOU YX, RAO L, HE Q, SU Y, FAN Y, LI YZ, XU YK, ZHANG CR. Geranyl phenyl ethers from Illicium micranthum and their anti-HBV activity. Chin J Nat Med 2022; 20:139-147. [DOI: 10.1016/s1875-5364(21)60112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 11/03/2022]
|
12
|
Sadiea RZ, Sultana S, Chaki BM, Islam T, Dash S, Akter S, Islam MS, Kazi T, Nagata A, Spagnuolo R, Mancina RM, Hossain MG. Phytomedicines to Target Hepatitis B Virus DNA Replication: Current Limitations and Future Approaches. Int J Mol Sci 2022; 23:ijms23031617. [PMID: 35163539 PMCID: PMC8836293 DOI: 10.3390/ijms23031617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatitis B virus infection (HBV) is one of the most common causes of hepatitis, and may lead to cirrhosis or hepatocellular carcinoma. According to the World Health Organization (WHO), approximately 296 million people worldwide are carriers of the hepatitis B virus. Various nucleos(t)ide analogs, which specifically suppress viral replication, are the main treatment agents for HBV infection. However, the development of drug-resistant HBV strains due to viral genomic mutations in genes encoding the polymerase protein is a major obstacle to HBV treatment. In addition, adverse effects can occur in patients treated with nucleos(t)ide analogs. Thus, alternative anti-HBV drugs of plant origin are being investigated as they exhibit excellent safety profiles and have few or no side effects. In this study, phytomedicines/phytochemicals exerting significant inhibitory effects on HBV by interfering with its replication were reviewed based on different compound groups. In addition, the chemical structures of these compounds were developed. This will facilitate their commercial synthesis and further investigation of the molecular mechanisms underlying their effects. The limitations of compounds previously screened for their anti-HBV effect, as well as future approaches to anti-HBV research, have also been discussed.
Collapse
Affiliation(s)
- Rahila Zannat Sadiea
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (R.Z.S.); (S.S.); (T.I.)
| | - Shahnaj Sultana
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (R.Z.S.); (S.S.); (T.I.)
| | - Bijan Mohon Chaki
- Department of Chemistry (Organic Chemistry Division), Begum Rokeya University, Rangpur 5400, Bangladesh;
| | - Tasnim Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (R.Z.S.); (S.S.); (T.I.)
| | - Sharmy Dash
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Sharmin Akter
- Department of Physiology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md Sayeedul Islam
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan;
| | - Taheruzzaman Kazi
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (T.K.); (A.N.)
| | - Abir Nagata
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (T.K.); (A.N.)
| | - Rocco Spagnuolo
- Experimental and Clinical Medicine Department, Magna Graecia University, 88100 Catanzaro, Italy;
| | | | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (R.Z.S.); (S.S.); (T.I.)
- Correspondence:
| |
Collapse
|
13
|
Functional Characterization of a Novel Glycosyltransferase (UGT73CD1) from Iris tectorum Maxim. for the Substrate promiscuity. Mol Biotechnol 2021; 63:1030-1039. [PMID: 34196922 DOI: 10.1007/s12033-021-00364-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Glycosylflavonoids are a class of natural products with multiple pharmacological activities and a lot of glycosyltransferases from various plant species have been reported that they were involved in the biosynthesis of these phytochemicals. However, no corresponding glycosyltransferase has been identified from the famous horticultural and medicinal plant Iris tectorum Maxim. Here, UGT73CD1, a novel glycosyltransferase, was identified from I. tectorum. based on transcriptome analysis and functional identification. Phylogenetic analysis revealed that UGT73CD1 grouped into the clade of flavonoid 7-OH OGTs. Biochemical analysis showed that UGT73CD1 was able to glycosylate tectorigenin at 7-OH to produce tectoridin, and thus assigned as a 7-O-glycosyltransferase. In addition, it also possessed robust catalytic promiscuity toward 12 structurally diverse flavonoid scaffolds and 3, 4-dichloroaniline, resulting in forming O- and N-glycosides. This work will provide insights into efficient biosynthesis of structurally diverse flavonoid glycosides for drug discovery.
Collapse
|
14
|
Liu J, Xie X, Zhang W, Cao Y. Immune-enhanced effect of Iris polysaccharide is protective against leptospirosis. Microb Pathog 2021; 154:104855. [PMID: 33757897 DOI: 10.1016/j.micpath.2021.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Leptospirosis, caused by pathogenic Leptospira species, is an essential but neglected zoonosis. There are more than 300 serovars of pathogenic Leptospira, while inactivated bacteria offers only short-term serovar-specific protection. Leptospirosis treatment is mainly dependent on the use of antibiotics. However, the side effects of antibiotics and the risk of antibiotic resistance remain major problems. Thus, alternative agents which are fewer side effects on humans and efficient in leptospirosis would be welcome. Many studies have reported that polysaccharides could be used as immunostimulants in treating infection and cancer. In this study, we examined the protective effect of polysaccharides isolated from Iris against leptospirosis. To our knowledge, it is the first time to report Iris polysaccharides (IP) as an immunostimulant in treating infection. The results showed that IP treatment significantly increased the survival rate of hamsters challenged by a lethal dose of leptospires. Besides, the tissue injury and leptospiral load were reduced in IP-treated infection group compared with the untreated infection group at 4 days post-infection (p.i.). Intriguingly, IP treatment sustained intense immune response at 4 days p.i. analyzed by qPCR. The results exhibited that the gene expression of TLR2 and TLR4 was significantly increased in the group coinjected with IP and leptospires than in the infected controls. And the expression of IL-1β and TNF-α were also up-regulated after IP treatment, except the expression of IL-1β in the kidney. Our results not only broaden the medicinal value of Iris, but also provide a competent candidate for the control of Leptospira infection.
Collapse
Affiliation(s)
- Jiuxi Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
15
|
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35:3447-3483. [PMID: 33590931 PMCID: PMC8013762 DOI: 10.1002/ptr.7039] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity's survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite significant progress made in immunization and regenerative medicine, numerous viruses still lack prophylactic vaccines and specific antiviral treatments that are so often influenced by the generation of viral escape mutants. Of importance, medicinal herbs offer a wide variety of therapeutic antiviral chemotypes that can inhibit viral replication by preventing viral adsorption, adhering to cell receptors, inhibiting virus penetration in the host cell, and competing for pathways of activation of intracellular signals. The present review will comprehensively summarize the promising antiviral activities of medicinal plants and their bioactive molecules. Furthermore, it will elucidate their mechanism of action and possible implications in the treatment/prevention of viral diseases even when their mechanism of action is not fully understood, which could serve as the base for the future development of novel or complementary antiviral treatments.
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| |
Collapse
|
16
|
Ye M, Qiao X, Xu LL, Zhang Y, Chai Y, Chen K, Wang HD, Yang CG. Differentiation of belamcandae rhizoma and iridis tectori rhizoma by thin-layer chromatography and high-performance liquid chromatography. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_79_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|