1
|
Yu L, Shi X, Lu X, Zhao X, Yu Y, Fang Y, Wang D. Rehmannia glutinosa polysaccharides alleviate cyclophosphamide-induced immunosuppression by enhancing immunity and restoring intestinal homeostasis. Int J Biol Macromol 2025; 311:143692. [PMID: 40316077 DOI: 10.1016/j.ijbiomac.2025.143692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/16/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
This study investigated the immunomodulatory effects of Rehmannia glutinosa polysaccharides (RGP) in a cyclophosphamide (CTX)-induced immunosuppression model. RGP treatment alleviated weight loss, immune organ atrophy, and hematological abnormalities, restored B and T cell populations, and enhanced the immune function. It strengthened intestinal barrier integrity by upregulating tight junction proteins, increasing goblet cell numbers, and promoting IgA secretion, while also reducing pro-inflammatory cytokines and increasing IL-10 levels. RGP further regulated the gut microbiota composition, increasing beneficial bacteria and reducing pathogens, while promoting SCFA production and improving metabolic homeostasis. These findings highlight RGP as a potential natural immunomodulator, supporting further research into its molecular mechanisms and clinical applications.
Collapse
Affiliation(s)
- Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaofeng Shi
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuanqi Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuping Zhao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaming Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yushan Fang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Liu Y, Xu Y, Chen W, Gong H, Zhu L, Zhang T, Zhang C, Chen J, Shi S, Wu J, Wang S, Wang H. A new method for the quantification of polysaccharide structural domain: Rapid quantification of Rhamnogalacturonan-II by colorimetry. Carbohydr Polym 2025; 356:123423. [PMID: 40049985 DOI: 10.1016/j.carbpol.2025.123423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 05/13/2025]
Abstract
Polysaccharides are important pharmacodynamically active components in traditional Chinese medicines and based on the type of monosaccharides and glycosidic linkages, they can be divided into different structural domains. Rhamnogalacturonan II (RG-II) is among the most complex and conserved structural domain within polysaccharides and possesses significant pharmacological effects. Nevertheless, there is no suitable method for quantifying homogeneous polysaccharides that contain the RG-II structural domain. In this study, a colorimetric method was developed to rapidly quantify this particular polysaccharide, utilizing the principle that the unique monosaccharides (Kdo and Dha) in RG-II were derivatized and reacted with thiobarbituric acid (TBA) to produce a pink substance with a maximum absorption wavelength at 548 nm. The method demonstrates excellent specificity, linearity, stability, reproducibility, accuracy, and sensitivity. It also features the advantages of simple operation, low instrument requirements, low cost, and time efficiency. The critical application of this method in polysaccharide quality control lies in comparing the contents of RG-II in polysaccharide samples from different sources. This method also serves as a potential tool for screening RG-II-rich traditional Chinese medicines and foods, simplifying the structural characterization of RG-II-type polysaccharides and study the quantity-effect relationship of these polysaccharides.
Collapse
Affiliation(s)
- Yupeng Liu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yongbin Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Weihao Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Huan Gong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Lingyan Zhu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Tingting Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Caixia Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Jie Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Jianjun Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|
3
|
Zhang W, Cui N, Su F, Liu M, Li B, Sun Y, Zeng Y, Yang B, Kuang H, Wang Q. Effects of Rehmanniae Radix Praeparata polysaccharides on LPS-induced immune activation in mice based on gut microbiota, metabolomics and transcriptomics. Int J Biol Macromol 2025; 311:143981. [PMID: 40339850 DOI: 10.1016/j.ijbiomac.2025.143981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
This study explored the immunomodulatory effects of Rehmanniae Radix Praeparata polysaccharides (RP) on LPS-induced immune activation. RP, characterized as a heteropolysaccharide (6.34 kDa and 4.63 kDa) rich in galactose and glucose, was administered to LPS-challenged BALB/c mice at 25 mg/kg and 50 mg/kg doses. Results showed RP significantly reduced pro-inflammatory cytokines (TNF-α, IL-6), lowered oxidative stress (MDA), and boosted antioxidant enzymes (SOD, GSH-Px). It restored splenic structure, mitigated apoptosis, and suppressed the TNF-α/NF-κB/IL-6 pathway. Metabolomics linked RP to sphingolipid metabolism, while gut microbiota analysis revealed increased beneficial bacteria and elevated SCFAs. Transcriptomics confirmed RP's immune regulation via TNF signaling. These findings demonstrate RP's potential in alleviating immune overactivation by modulating inflammation, gut microbiota, and SCFA production, suggesting therapeutic promise for immune-related diseases.
Collapse
Affiliation(s)
- Wensen Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Na Cui
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Fazhi Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Meng Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Biao Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Yuanning Zeng
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica (Guangdong Pharmaceutical University, School of Chinese Materia Medica), Guangdong 510006, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Qiuhong Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica (Guangdong Pharmaceutical University, School of Chinese Materia Medica), Guangdong 510006, China
| |
Collapse
|
4
|
Ge T, Zou R, Zhang M, Hu J, He K, Li G, Zhang T, Fan X. Natural products alleviate atrial fibrillation by modulating mitochondrial quality control. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156555. [PMID: 40056631 DOI: 10.1016/j.phymed.2025.156555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/02/2025] [Accepted: 02/21/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Atrial fibrillation (AF), one of the most common cardiac arrhythmias, is associated with high mortality rates and significant healthcare burdens. Mitochondrial homeostasis has recently emerged as a critical factor in AF pathogenesis but remains at the experimental stage. Current drug and surgical treatments for AF often involve side effects and require ongoing treatment plan evaluation and adjustment. In contrast, natural products (NPs), which have been utilized in China for over 2,000 years, show remarkable efficacy in treating AF and are receiving growing attention. PURPOSE We aimed to investigate the regulatory effects of NPs on mitochondrial quality control (MQC) and their impact on AF occurrence and progression. By constructing a novel NP-mitochondria-AF axis, we propose a framework to translate experimental findings into clinical practice and identify potential therapeutic strategies for AF. METHODS Databases such as PubMed, Web of Science, and China National Knowledge Infrastructure were searched (up to October 2024) using the following keywords: "atrial fibrillation," "traditional Chinese medicine," "mitochondrial biogenesis," "mitochondrial dynamics," "mitophagy," "apoptosis," "oxidative stress," "inflammation," and "Ca2+ concentration." NP targets were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, while disease targets were retrieved from Online Mendelian Inheritance in Man, GeneCards, and Therapeutic Target Database. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed using the Metascape database. Protein-protein interactions were analyzed using the STRING database, and core monomers and hub genes were identified using Cytoscape 3.7.2. RESULTS We found a strong relationship between mitochondrial homeostasis and AF development. KEGG pathway analysis indicated that commonly used NPs regulate mitochondrial homeostasis, affecting AF progression through various hub genes, including protein kinase B-alpha (AKT1), jun proto-oncogene (JUN), and tumor necrosis factor (TNF). Molecular docking analysis revealed that NP core monomers exhibited binding affinities to hub genes below -5 kcal/mol and to transforming growth factor-β (TGF-β) below -7 kcal/mol. CONCLUSION NPs, including traditional Chinese medicine (TCM) compounds, TCM monomers, and traditional Chinese patent medicines, alleviate AF by modulating MQC with minimal side effects and high efficacy. These findings highlight the therapeutic potential of NPs as promising candidates for AF treatment and further underscore the importance of MQC in AF pathogenesis.
Collapse
Affiliation(s)
- Teng Ge
- School of Second Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Rongjun Zou
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, PR China; Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, PR China; Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, PR China
| | - Miao Zhang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jinlin Hu
- School of Second Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Kunyang He
- School of Second Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Guanmou Li
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, PR China
| | - Tong Zhang
- Heart Failure Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong, PR China.
| | - Xiaoping Fan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, PR China; Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, PR China; Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, PR China.
| |
Collapse
|
5
|
Shi R, Yang S, Zeng S, Lin J, Wang X, Yu J, Liang Y, Li J, Zhou T, Deng Y, Duan X, Chen C, Yu M, Sun G, Dong J, Shu Z. Effect of structural changes of Rehmannia glutinosa polysaccharide before and after processing on anti-aging activity. Int J Biol Macromol 2025; 309:143168. [PMID: 40239790 DOI: 10.1016/j.ijbiomac.2025.143168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Rehmannia glutinosa is often used to delay aging in traditional Chinese medicine (TCM). The processing methods utilized in TCM can enhance its anti-aging properties. Polysaccharides are the primary active constituents of R. glutinosa. Against this background, this study aims to investigate the alterations in polysaccharide structure before and after the processing of R. glutinosa, as well as the correlation between aging activity and polysaccharide structure. In this paper, Rehmanniae Radix polysaccharide (RGP50-2) and Rehmanniae Radix Praeparata(SDP50-2) were purified from R. glutinosa before and after processing. Structural analysis showed that compared with RGP50-2, the molecular weight of SDP50-2 (9.8-9.6 kDa) decreased, and the content of Ara (22.5 %-55.49 %) increased. NMR results show that the main chains of RGP50-2 and SDP50-2 are both →6)-β-Galp-(1→, →3,4,6)-α-Galp-(1→ and →2,3,5)-α-Araf-(1→, but the branching degree of SDP50-2 is lower. Pharmacological assessments showed that SDP50-2 had superior anti-aging activity over RGP50-2 by modulating the IIS signaling pathway. In conclusion, processing significantly alters the chemical structure of R. glutinosa polysaccharides, enhancing their anti-aging efficacy. Our research provides a theoretical framework and a reference for optimizing processing techniques and advancing development strategies for R. glutinosa polysaccharides.
Collapse
Affiliation(s)
- Ruixiang Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Simin Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuting Zeng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiazi Lin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiamin Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yefang Liang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianhua Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tong Zhou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yong'an Deng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaodong Duan
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chengkai Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Miao Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guibo Sun
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jun Dong
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510665, China.
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
6
|
Gao R, Wang F, Liu X, Yuan C, Shan G. Rehmanniae Radix Praeparata in Blood Deficiency Syndrome: UPLC-Q-TOF-MS Profiling, Network Pharmacology, and PI3K-AKT Activation. Int J Mol Sci 2025; 26:3914. [PMID: 40332770 PMCID: PMC12027966 DOI: 10.3390/ijms26083914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
This study investigated the therapeutic mechanism of Rehmanniae Radix Praeparata (RRP) in treating blood deficiency syndrome (BDS) through integrated chemical analysis and pharmacological validation. UPLC-Q-TOF-MS identified chemical components of Rehmanniae Radix (RR) and RRP, with network pharmacology analysis suggesting AKT1 and NOS3 in the PI3K-AKT pathway as potential therapeutic targets. Pharmacodynamic evaluations using ELISA, hematological analysis, histopathology, and immunohistochemistry demonstrated RRP's efficacy in improving hematological parameters, energy metabolism, and organ pathology in BDS mice. Experimental validation via RT-qPCR and Western blot confirmed significant upregulation of AKT1 and NOS3 mRNA and protein expression following RRP treatment. The findings indicate that RRP alleviates BDS by activating the PI3K-Akt signaling pathway to modulate AKT1 and NOS3 expression, providing mechanistic insights into its therapeutic actions.
Collapse
Affiliation(s)
| | | | | | | | - Guoshun Shan
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; (R.G.); (F.W.); (X.L.); (C.Y.)
| |
Collapse
|
7
|
Tu L, Xing B, Ma S, Zou Z, Wang S, Feng J, Cheng M, Jin Y. A review on polysaccharide-based tumor targeted drug nanodelivery systems. Int J Biol Macromol 2025; 304:140820. [PMID: 39933669 DOI: 10.1016/j.ijbiomac.2025.140820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
The tumor-targeted drug delivery system (TTDNS) uses nanocarriers to transport chemotherapeutic agents to target tumor cells or tissues precisely. This innovative approach considerably increases the effective concentration of these drugs at the tumor site, thereby enhancing their therapeutic efficacy. Many chemotherapeutic agents face challenges, such as low bioavailability, high cytotoxicity, and inadequate drug resistance. To address these obstacles, TTDNS comprising natural polysaccharides have gained increasing popularity in the field of nanotechnology owing to their ability to improve safety, bioavailability, and biocompatibility while reducing toxicity. In addition, it enhances permeability and allows for controlled drug delivery and release. This review focuses on the sources of natural polysaccharides and their direct and indirect mechanisms of anti-tumor activity. We also explored the preparation of various polysaccharide-based nanocarriers, including nanoparticles, nanoemulsions, nanohydrogels, nanoliposomes, nanocapsules, nanomicelles, nanocrystals, and nanofibers. Furthermore, this review delves into the versatile applications of polysaccharide-based nanocarriers, elucidating their capabilities for in vivo targeting, controlled release, and responsiveness to endogenous and exogenous stimuli, such as pH, reactive oxygen species, glutathione, light, ultrasound, and magnetic fields. This sophisticated design substantially enhances the chemotherapeutic efficacy of the encapsulated drugs at tumor sites and provides a basis for preclinical and clinical research. However, the in vivo stability, drug loading, and permeability of these preparations into tumor tissues still need to be improved. Most of the currently developed biomarker-sensitive polysaccharide nanocarriers are still in the laboratory stage, more innovative delivery mechanisms and clinical studies are needed to develop commercial nanocarriers for medical use.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Shufei Ma
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China; Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
8
|
Wen Y, Chen G, Hu L. Optimization of ultrasound-assisted deep eutectic solvent extraction, characterization, and bioactivities of polysaccharide from Plantaginis Semen. Prep Biochem Biotechnol 2025; 55:434-445. [PMID: 39495074 DOI: 10.1080/10826068.2024.2423640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Plantaginis Semen (PS) are the dried mature seeds of Plantago asiatica L. or Plantagodepressa Willd. in the Plantago family. Its polysaccharides are important components of PS. Response surface methodology was used to optimize the ultrasonic-assisted deep eutectic solvent (DES) extraction process of PS polysaccharides (PSP). The results showed that the optimal extraction parameters were a solid-liquid ratio of 1:35 g/mL, an extraction time of 73 min, and a molar ratio of 2:1. The yield of PSP was 0.64% and 1.20% by water immersion and ultrasonic water extraction, respectively, indicating that the DES extraction method (2.21 ± 0.06%) is superior to these two methods, and the optimization effect is good. Through the α-glucosidase and α-amylase inhibition activities experiment, it was found that the IC50 values of PSPs-1 were 1122 and 220.5 μg/mL. DPPH·and ABTS+ scavenging activity experiments showed that the IC50 values of PSPs-1 were 19.2 and 4.3 μg/mL, respectively. Its molar ratio of monosaccharide composition is rhamnose: galactose: galacturonic acid: glucose: glucuronic acid: arabinose: mannose: xylose = 33.6:13.3:6.5:3:2.6:2:1.4:1. Therefore, this study can provide an experimental basis for the establishment of an industrialized production process of polysaccharides and the study of their biological activities.
Collapse
Affiliation(s)
- Yao Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Geping Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
9
|
Hassan MAM, Fahmy MI, Azzam HN, Ebrahim YM, El-Shiekh RA, Aboulmagd YM. Multifaceted therapeutic potentials of catalpol, an iridoid glycoside: an updated comprehensive review. Inflammopharmacology 2025:10.1007/s10787-025-01694-1. [PMID: 40097877 DOI: 10.1007/s10787-025-01694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Catalpol, classified as an iridoid glucoside, is recognized for its significant role in medicine, particularly in the treatment of various conditions such as diabetes mellitus, neuronal disorders, and inflammatory diseases. This review aims to evaluate the biological implications of catalpol and the mechanisms underlying its diverse pharmacological effects. A thorough exploration of existing literature was conducted utilizing the keyword "Catalpol" across prominent public domains like Google Scholar, PubMed, and EKB. Catalpol has demonstrated a diverse array of pharmacological effects in experimental models, showcasing its anti-diabetic, cardiovascular-protective, neuroprotective, anticancer, hepatoprotective, anti-inflammatory, and antioxidant properties. In summary, catalpol manifests a spectrum of biological effects through a myriad of mechanisms, prominently featuring its anti-inflammatory and antioxidant capabilities. Its diverse pharmacological profile underscores its potential for therapeutic applications across a range of conditions. Further research is warranted to fully elucidate the clinical implications of catalpol and optimize its use in medical practice.
Collapse
Affiliation(s)
- Mennat-Allah M Hassan
- Department of Pharmacology & Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohamed I Fahmy
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Hany N Azzam
- Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Yasmina M Ebrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Yara M Aboulmagd
- Department of Pharmacology & Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
10
|
Liu C, Liu X, Liu J, Zhang H, Zhang P, Huo X, Song H, Zhu Y. Huoshan Dendrobium Zengye Jiedu Formula mitigates radiation-induced oral mucositis and improves oral immune microenvironment by targeting the EGFR/PI3K/AKT pathway: evidence from network pharmacology, molecular docking, and experimental validation. Front Immunol 2025; 16:1559400. [PMID: 40129983 PMCID: PMC11931053 DOI: 10.3389/fimmu.2025.1559400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Radiation-induced oral mucositis (RIOM) manifests as mucosal ulceration, pain, and dysphagia, disrupting treatment and quality of life. Its pathogenesis involves inflammatory imbalance and immune dysregulation, driven by microbial infiltration and cytokine storms. Current therapies remain inadequate, necessitating deeper exploration of immune-microbial interactions for effective interventions. Methods Bioactive components of Huoshan Dendrobium Zengye Jiedu Formula (HDZJF) and RIOM-related targets were retrieved from public databases. Core therapeutic targets and pathways were systematically analyzed via protein-protein interaction (PPI) networks, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Molecular docking evaluated interactions between HDZJF components and key targets. A rat RIOM model validated HDZJF efficacy by assessing mucositis severity, inflammatory cytokines, and EGFR/PI3K/AKT pathway protein expression. Results A total of 102 bioactive components and 379 potential targets for RIOM were identified. GO and KEGG enrichment analyses suggest that HDZJF exerts therapeutic effects on RIOM by modulating processes such as angiogenesis, inflammation, and apoptosis through pathways like PI3K-AKT. Molecular docking confirmed strong binding affinities between HDZJF components and key targets. In vivo, HDZJF reduced inflammation, promoted mucosal healing, improved body weight, and modulated protein expression related to EGFR/PI3K/AKT. Discussion The findings highlight HDZJF's capacity to alleviate RIOM by targeting the EGFR/PI3K/AKT pathway, thereby suppressing inflammatory responses and apoptotic processes. These results underscore HDZJF's translational potential for RIOM treatment and justify further clinical investigation into its therapeutic utility.
Collapse
Affiliation(s)
- Chang Liu
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Xinru Liu
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Jiabao Liu
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Hao Zhang
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Pengcheng Zhang
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingxing Huo
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hang Song
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yongfu Zhu
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
- Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Guo-jun Hu Inheritance Talent Training Office, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
11
|
Liu X, Zang Z, Ji R, Wang Z. Extraction, purification, structural characterization, and biological activity of polysaccharides from Aralia: A review. Fitoterapia 2025; 181:106379. [PMID: 39778720 DOI: 10.1016/j.fitote.2025.106379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Aralia Linn. Plants (ALPs) is a member of the Araliaceae family, a genus of more than thirty species, some plants of Aralia Linn are commonly used as herbal medicines. ALPs is commonly utilized for relieving the symptoms of neurasthenia, rheumatoid arthritis, etc. The principal extraction approaches of polysaccharides of ALPs (AEP) encompass water extraction, ultrasonic-assisted, compound enzyme and microwave-assisted. Various extraction approaches and extraction conditions will affect the extraction rate and purity of the AEP. AEP is mainly composed of arabinose (Ara), galactose (Gal), rhamnose (Rha), xylose (Xyl) and so on with different proportions of monosaccharides. AEP is one of the principal active components of ALPs, which has a variety of biological activities. Studies have shown that activities of AEP are anti-tumor, cardioprotective, hepatoprotective, anti-radiation, and hypoglycemic. One of the anti-tumor mechanisms of AEP is mitochondrial apoptosis pathway, and its regulatory process is described in detail. This review mainly summarizes the researches on extraction, separation, structural characterization and pharmacological activities of some AEP both the latest local and international in recent years. It lays a foundation for clinical safety application and the broadening of the application scope.
Collapse
Affiliation(s)
- Xiaolan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Zhikun Zang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Rong Ji
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China..
| |
Collapse
|
12
|
Li YK, Chen Z, Zhang C. Historical evolution and processing mechanism of 'nine steaming and nine drying' of traditional Chinese medicine preparation. PHARMACEUTICAL BIOLOGY 2024; 62:436-446. [PMID: 38755954 PMCID: PMC11104706 DOI: 10.1080/13880209.2024.2354345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Nine steaming and nine drying is a traditional Chinese medicine (TCM) processing method and it is widely used for processing tonifying herbs. Modern research reveals that the repeated steaming and drying process varies the composition and clinical efficacy of TCM. OBJECTIVE This paper analyzes and explores the historical evolution, research progress, development strategies, and problems encountered in the nine steaming and nine drying process so as to provide a reasonable explanation for this method. METHODS English and Chinese literature from 1986 to 2023 was collected from databases including Web of Science, PubMed, Elsevier, Chinese Pharmacopoeia 2020 (CP), and CNKI (Chinese). Nine steaming and nine drying, processing, TCM and pharmacological activity were used as the key words. RESULTS Nine steaming and nine drying has undergone thousands of years of clinical practice. Under specific processing conditions of nine steaming and nine drying, the ingredients of the TCM have significant changes, which in turn altered clinical applications. CONCLUSIONS This review provides sufficient evidence to prove the rationality and scientific value of nine steaming and nine drying and puts forward a development direction for future research.
Collapse
Affiliation(s)
- Yong-kang Li
- College of Pharmacy, Shandong University of TCM, Jinan, China
| | - Zhi Chen
- College of Pharmacy, Shandong University of TCM, Jinan, China
| | - Chao Zhang
- College of Pharmacy, Shandong University of TCM, Jinan, China
| |
Collapse
|
13
|
He Y, Gao W, Zhang Y, Sun M, Kuang H, Sun Y. Progress in the preparation, structure and bio-functionality of Dictyophora indusiata polysaccharides: A review. Int J Biol Macromol 2024; 283:137519. [PMID: 39577539 DOI: 10.1016/j.ijbiomac.2024.137519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024]
Abstract
Dictyophora indusiata (D. indusiata) is an elegant fungus known as the "mushroom queen" because of its rich nutritional value and resemblance to dancers wearing clean white dresses. Due to the harsh growth environment, the yield of D. indusiata is relatively low. Polysaccharides are the most abundant component among them and it is valued for its unique physiological function. Multiple extraction and purification methods have been used to separate and purify polysaccharides from D. indusiata. These polysaccharides have demonstrated strong biological activities in vitro and in vivo, including anti-inflammatory, anti-tumour, immunomodulatory, antioxidant and anti-hyperlipidemic effects. In addition, D. indusiata polysaccharides have shown promising potential for development and application in the areas of food, healthcare products, pharmaceuticals, and cosmetics. Recent advances in the extraction, purification, structural characterization, biological activities and application prospects of D. indusiata polysaccharides were summarized. This review may enrich the knowledge about bioactive polysaccharides from D. indusiata and provide a theoretical basis. Due to diverse potential health-promoting properties of D. indusiata polysaccharides, further development for their application in functional foods and pharmaceuticals is expected.
Collapse
Affiliation(s)
- Yujia He
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Wuyou Gao
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yuping Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Minghao Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
14
|
Li XD, Cao YG, Zhang YH, Ren YJ, Zeng MN, Liu YL, Chen X, Ma XY, Zhao BX, Zheng XK, Feng WS. Apocarotenoids from the fresh roots of Rehmannia glutinosa and their anti-pulmonary fibrosis activity. Fitoterapia 2024; 179:106247. [PMID: 39395698 DOI: 10.1016/j.fitote.2024.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Six undescribed compounds (1-6) and twenty-three known analogues (7-29) were isolated from the fresh roots of Rehmannia glutinosa. The structures of the compounds (1-29) were established through the application of spectroscopic analysis. Compounds 3, 4, 6, 8, 13, 18, 21, 22, 25, and 28 exhibited excellent anti-pulmonary fibrosis activity. The potential mechanistic pathway of 3 was also investigated, whose results indicate that compound 3 ameliorate TGF-β1 induced BEAS-2B cell injury via PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiang-Da Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Yan-Gang Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Yu-Han Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Ying-Jie Ren
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Meng-Nan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Yan-Ling Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Xu Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Xin-Yi Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Bing-Xian Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Xiao-Ke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Construction by Henan province & Education Ministry of P. R. China, Zhengzhou 450046, China.
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Construction by Henan province & Education Ministry of P. R. China, Zhengzhou 450046, China.
| |
Collapse
|
15
|
Liu L, Zhang CS, Zhang AL, Cai Y, Xue CC. Oral Chinese herbal medicine combined with donepezil for mild cognitive impairment: A systematic review and meta-analysis. J Am Geriatr Soc 2024; 72:3890-3902. [PMID: 39134455 PMCID: PMC11637298 DOI: 10.1111/jgs.19125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/22/2024] [Accepted: 07/12/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND This study aims to evaluate the add-on effects of oral Chinese herbal medicine (CHM) for mild cognitive impairment (MCI), when used in addition to donepezil compared to donepezil alone. METHODS Randomized controlled trials comparing these treatments across all types of MCI were identified from nine databases and three registers until August 2023. Outcome measures were Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and adverse events (AEs). Methodological quality was assessed using Cochrane risk-of-bias tool, and evidence certainty was evaluated using the GRADE method. RESULTS Involving 1611 participants across 20 studies, meta-analysis results indicate that oral CHM combined with donepezil significantly improved cognitive function in MCI patients compared to donepezil alone, as evidenced by MMSE (1.88 [1.52, 2.24], I2 = 41%, 12 studies, 993 participants) and MoCA (MD: 2.01 [1.57, 2.44], I2 = 52%, 11 studies, 854 participants). Eleven studies reported details of AEs, identifying gastrointestinal symptoms and insomnia as the most common symptoms. No significant difference in AEs frequency was found between the groups (RR: 0.91 [0.59, 1.39], I2 = 4%, 11 studies, 808 participants). All 20 studies were evaluated as having "some concerns" regarding the overall risk of bias. The certainty of evidence for MMSE was "moderate" and "low" for MoCA. From frequently utilized herbs, two classical CHM formulae were identified: Kai xin san and Si wu decoction. The observed treatment effects of commonly used herbs may be exerted through multiple pharmacological mechanisms, including anti-inflammatory, anti-oxidative stress, anti-apoptotic actions, promotion of neuronal survival and modulation of the cholinergic system. CONCLUSIONS The concurrent use of oral CHM and donepezil appears to be more effective than donepezil alone in improving the cognitive function of MCI, without leading to an increase in AEs. While recognizing concerns of overall methodological quality, this combined therapy should be considered as an alternative option for clinical practice.
Collapse
Affiliation(s)
- Lingling Liu
- The China‐Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT UniversityMelbourneVictoriaAustralia
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
| | - Claire Shuiqing Zhang
- The China‐Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT UniversityMelbourneVictoriaAustralia
| | - Anthony Lin Zhang
- The China‐Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT UniversityMelbourneVictoriaAustralia
| | - Yefeng Cai
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
| | - Charlie Changli Xue
- The China‐Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT UniversityMelbourneVictoriaAustralia
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
| |
Collapse
|
16
|
Gu L, Lai Y, Zhang G, Yang Y, Zhang B, Wang J, Zhang Z, Li M. Genome-Wide Identification of the Rehmannia glutinosa miRNA Family and Exploration of Their Expression Characteristics Caused by the Replant Disease Formation-Related Principal Factor. Genes (Basel) 2024; 15:1239. [PMID: 39336830 PMCID: PMC11431045 DOI: 10.3390/genes15091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Rehmannia glutinosa, a highly valuable medicinal plant in China, is encountering severe replant disease. Replant disease represents a complex stress driven by multiple principal factors (RDFs), including allelochemicals, microbes, and their interactions. miRNAs are recognized as key regulators of plant response to stresses; however, their specific roles within RDFs are not entirely clear. Methods: This study builds six RDF treatments, comprising R. glutinosa continuously planted (SP), normally planted (NP), and NP treated with ferulic acid (FA), Fusarium oxysporum (FO), and a combination of FA with FO (FAFO). sRNA-seq technology was used to identify crucial miRNAs in response to diverse RDFs. Results: In total, 30 sRNA datasets were generated from the SP, NP, FA, FO, and FAFO samples. A total of 160 known and 41 novel miRNAs (RgmiRNAs) were identified in the R. glutinosa genome based on the sRNA database. Abundance analysis revealed that RgmiRNAs in SP exhibited a distinct expression profile in comparison with others. Of these, 124, 86, 86, and 90 RgmiRNAs were differentially expressed in SP, FA, FO, and FAFO compared with NP. Target analysis indicated that RgmiRNAs downregulated in both SP and RDFs impede the organism growth of R. glutinosa. RgmiRNAs upregulated in SP can disrupt root formation and nutrient metabolism, in which, two RgmiR398 were uniquely expressed in SP. It was confirmed to target RgCSD genes. The expression patterns of RgmiR398 and RgCSD indicated that replant disease induces the oxidative damage of R. glutinosa through RgmiR398. Conclusions:RgmiRNA profiling under RDFs provides a theoretical basis for the further clarification of RgmiRNA function in replant disease.
Collapse
Affiliation(s)
- Li Gu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanlin Lai
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guojun Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
| | - Bao Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jianming Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongyi Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingjie Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Wang H, Laram Y, Hu L, Hu Y, Chen M. Exploring the potential mechanisms of Rehmannia glutinosa in treating sepsis based on network pharmacology. BMC Infect Dis 2024; 24:893. [PMID: 39217296 PMCID: PMC11366132 DOI: 10.1186/s12879-024-09796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The present study utilized network pharmacology to identify therapeutic targets and mechanisms of Rehmannia glutinosa in sepsis treatment. RNA-sequencing was conducted on peripheral blood samples collected from 23 sepsis patients and 10 healthy individuals. Subsequently, the RNA sequence data were analyzed for differential expression. Identification of active components and their putative targets was achieved through the HERB and SwissTarget Prediction databases, respectively. Functional enrichment analysis was performed using GO and KEGG pathways. Additionally, protein-protein interaction networks were constructed and survival analysis of key targets was conducted. Single-cell RNA sequencing provided cellular localization data, while molecular docking explored interactions with central targets. Results indicated significant involvement of identified targets in inflammation and Th17 cell differentiation. Survival analysis linked several targets with mortality rates, while molecular docking highlighted potential interactions between active components and specific targets, such as rehmaionoside a with ADAM17 and rehmapicrogenin with CD81. Molecular dynamics simulations confirmed the stability of these interactions, suggesting Rehmannia glutinosa's role in modulating immune functions in sepsis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, People's Republic of China
| | - Yongchu Laram
- Department of Clinical Medicine, Southwest Medical University, Luzhou, People's Republic of China
| | - Li Hu
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Yingchun Hu
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China.
| | - Muhu Chen
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China.
| |
Collapse
|
18
|
Chen X, He L, Chen Y, Zheng G, Su Y, Chen Y, Zheng D, Lu Y. Evaluating stability and bioactivity of Rehmannia-derived nanovesicles during storage. Sci Rep 2024; 14:19966. [PMID: 39198513 PMCID: PMC11358329 DOI: 10.1038/s41598-024-70334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Plant-derived nanovesicles (PDNVs) have garnered growing attention in the biomedical field owing to their abundance in plant-derived ribonucleic acids (RNA), proteins, lipids and metabolites. The question about the preservation of PDNVs is a crucial and unavoidable concern in both experiments' settings and their potential clinical application. The objective of this research was to examine the impact of varying storage temperatures on the stability and bioactivity of Rehmannia-derived nanovesicles (RDNVs). The results showed that RDNVs aggregated after 2 weeks of storage period at 4 °C, and the particle size of some RDNVs gradually increased with time, along with the increase of solution potential. After 2 months of storage, all RDNVs exhibited varying levels of aggregation irrespective of storage temperature. The bioactivities of nanovesicles under different temperature storage conditions revealed a gradual decline in cell proliferation inhibition bioactivity over time, significantly lower than that of freshly prepared RDNVs. In contrast, the preservation of anti-migratory activity in RDNVs was found to be more effective when subjected to rapid freezing in liquid nitrogen followed by storage at - 80 °C, as opposed to direct storage at - 80 °C. These findings suggest that temperature alone may not be sufficient in safeguarding the activity and stability of RDNVs, highlighting the necessity for the development of novel protective agents for PDNVs.
Collapse
Affiliation(s)
- Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lianghang He
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yao Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Genggeng Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yating Su
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yingcong Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
19
|
Jo HG, Kim H, Baek E, Seo J, Lee D. Efficacy and Safety of Orally Administered East Asian Herbal Medicine Combined with Narrowband Ultraviolet B against Psoriasis: A Bayesian Network Meta-Analysis and Network Analysis. Nutrients 2024; 16:2690. [PMID: 39203826 PMCID: PMC11357435 DOI: 10.3390/nu16162690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Psoriasis is a chronic, immune-mediated inflammatory skin disease with many complications and a poor prognosis that imposes a significant burden on individuals and society. Narrowband ultraviolet B (NB-UVB) represents a cost-effective non-drug therapeutic intervention for psoriasis. East Asian herbal medicine (EAHM) is currently being investigated for its potential as a safe and effective psoriasis treatment. Consequently, it has the potential to be employed as a combination therapy with NB-UVB. The objective was to ascertain the efficacy and safety of the EAHM with NB-UVB combination therapy and to identify important drugs for further research. In this study, randomized controlled trials (RCTs) were retrieved from ten databases in Korea, China, and Japan. All statistical analyses were conducted using R software version 4.3.0. The primary outcomes were the Psoriasis Area and Severity Index (PASI) and the incidence rate of adverse events (AEs), while the secondary outcomes were hematologic markers and the Dermatology Life Quality Index (DLQI), which reflect the immune-mediated inflammatory pathology of psoriasis. The analysis of 40 RCTs, including 3521 participants, demonstrated that EAHM with NB-UVB combination therapy exhibited a statistically significant superiority over NB-UVB monotherapy with respect to primary and secondary outcomes. The Bayesian network meta-analysis revealed that Investigator Presciption 3 and Ziyin Liangxue Decoction exhibited a consistent relative advantage with respect to each PASI-based efficacy metric. The network analysis estimated the potential influence ranking for all individual herbs according to PageRank centrality. The findings of this study suggest that EAHMs co-administered with NB-UVB may provide additional efficacy and safety-related benefits for patients with psoriasis. However, the quality of evidence is still low, and further high-quality trials are needed to reach more definitive conclusions.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Seongnam-si 13120, Republic of Korea;
- Naturalis Inc., 6, Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea
| | - Hyehwa Kim
- KC Korean Medicine Hospital 12, Haeol 2-gil, Paju-si 10865, Republic of Korea
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Jihye Seo
- Siho Korean Medicine Clinic, 407, Dongtansillicheon-ro, Hwaseong-si 18484, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
20
|
Huan C, Yao J, Wang X, Zhang H, Wang X, Jiang L, Gao S. Rehmmannia glutinosa polysaccharide exerts antiviral activity against pseudorabies virus and antioxidant activity. Int J Biol Macromol 2024; 274:133455. [PMID: 38945342 DOI: 10.1016/j.ijbiomac.2024.133455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Pseudorabies virus (PRV) is an important pathogen harming the global pig industry. Vaccines available for swine cannot protect against PRV completely. Furthermore, no antiviral drugs are available to treat PRV infections. Rehmmannia glutinosa polysaccharide (RGP) possesses several medicinal properties. However, its antiviral activity is not reported. In the present study, we found that RGP can inhibit PRV/XJ5 infection by western blotting, immunofluorescent assay (IFA), and TCID50 assay quantitative polymerase chain reaction (qPCR). We revealed RGP can inhibit virus adsorption and invasion into PK-15 cells in a dose-dependent manner via western blotting, IFA, TCID50 assay, and quantitative polymerase chain reaction (qPCR), and suppressed PRV/XJ5 replication through western blotting, and qPCR. Additionally, it also reduced PRV/XJ5-induced ROS, lipid oxidation, and improved SOD levels in PK-15 cells, which was observed by using corresponding test kits. To conclude, our findings suggest that RGP might be a novel therapeutic agent for preventing and controlling PRV infection and antioxidant agent.
Collapse
Affiliation(s)
- Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.
| | - Jingting Yao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Xiaotong Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - HanYu Zhang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - XiaoBing Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Luyao Jiang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Song Gao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.
| |
Collapse
|
21
|
She Y, Shao CY, Liu YF, Huang Y, Yang J, Wan HT. Catalpol reduced LPS induced BV2 immunoreactivity through NF-κB/NLRP3 pathways: an in Vitro and in silico study. Front Pharmacol 2024; 15:1415445. [PMID: 38994205 PMCID: PMC11237369 DOI: 10.3389/fphar.2024.1415445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Background: Ischemic Stroke (IS) stands as one of the primary cerebrovascular diseases profoundly linked with inflammation. In the context of neuroinflammation, an excessive activation of microglia has been observed. Consequently, regulating microglial activation emerges as a vital target for neuroinflammation treatment. Catalpol (CAT), a natural compound known for its anti-inflammatory properties, holds promise in this regard. However, its potential to modulate neuroinflammatory responses in the brain, especially on microglial cells, requires comprehensive exploration. Methods: In our study, we investigated into the potential anti-inflammatory effects of catalpol using lipopolysaccharide (LPS)-stimulated BV2 microglial cells as an experimental model. The production of nitric oxide (NO) by LPS-activated BV2 cells was quantified using the Griess reaction. Immunofluorescence was employed to measure glial cell activation markers. RT-qPCR was utilized to assess mRNA levels of various inflammatory markers. Western blot analysis examined protein expression in LPS-activated BV2 cells. NF-κB nuclear localization was detected by immunofluorescent staining. Additionally, molecular docking and molecular dynamics simulations (MDs) were conducted to explore the binding affinity of catalpol with key targets. Results: Catalpol effectively suppressed the production of nitric oxide (NO) induced by LPS and reduced the expression of microglial cell activation markers, including Iba-1. Furthermore, we observed that catalpol downregulated the mRNA expression of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β, as well as key molecules involved in the NLRP3 inflammasome and NF-κB pathway, including NLRP3, NF-κB, caspase-1, and ASC. Our mechanistic investigations shed light on how catalpol operates against neuroinflammation. It was evident that catalpol significantly inhibited the phosphorylation of NF-κB and NLRP3 inflammasome activation, both of which serve as upstream regulators of the inflammatory cascade. Molecular docking and MDs showed strong binding interactions between catalpol and key targets such as NF-κB, NLRP3, and IL-1β. Conclusion: Our findings support the idea that catalpol holds the potential to alleviate neuroinflammation, and it is achieved by inhibiting the activation of NLRP3 inflammasome and NF-κB, ultimately leading to the downregulation of pro-inflammatory cytokines. Catalpol emerges as a promising candidate for the treatment of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Yong She
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chong-yu Shao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuan-feng Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Huang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hai-tong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Zhou G, Zhuang Y, Dai Y, Chen C, Jiang B, Li G, Yin L. A LC-MS-based serum pharmacochemistry approach to reveal the compatibility features of mutual promotion/assistance herb pairs in Xijiao Dihuang decoction. J Pharm Biomed Anal 2024; 243:116111. [PMID: 38493752 DOI: 10.1016/j.jpba.2024.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Xijiao Dihuang decoction (XDT), a famous formula, was usually used to improve the prognosis of patients with blood-heat and blood-stasis syndrome-related diseases. There were some mutual promotion and mutual assistance herb pairs in XDT. However, the exact functions of these herb pairs in the compatibility of XDT were not elucidated due to the lack of appropriate methodologies. Based on the theory of serum pharmacochemistry, a systematic method was established for the qualitative and quantitative analysis of characteristic components in the extracts and drug-containing plasma samples of XDT and its relational mutual promotion/assistance herb pairs. For qualitative analysis, 85 characteristic components were identified using the liquid chromatography with triple time-of-flight mass/mass spectrometry (LC-Triple QTOF-MS/MS) based on the mass defect filtering, product ion filtering, neutral loss filtering and isotope pattern filtering techniques. For quantitative detection, a relative quantitation assay using an extract ion chromatogram (EIC) of the full scan MS experiment was validated and employed to assess the quantity of the 85 identified compounds in the test samples of single herb, herb pairs and XDT. The results of multivariate statistical analyses indicated that both the assistant and guide herbs could improve the solubilization of active compounds from the sovereign and minister herbs in XDT in vitro, might change the trans-membrane transportation, and regulate metabolism in vivo. The methods used in present study might be also valuable for the investigation of multiple components from other classic TCM formulas for the purpose of compatibility feature study.
Collapse
Affiliation(s)
- Guisheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Zhuang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuihua Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Baoping Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guochun Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lian Yin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
23
|
Liu P, Fei L, Wu D, Zhang Z, Chen W, Li W, Yang Y. Progress in the metabolic kinetics and health benefits of functional polysaccharides from plants, animals and microbes: A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2024; 7:100526. [DOI: 10.1016/j.carpta.2024.100526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
24
|
Zhao Y, Hou J, Liu Y, Xu J, Guo Y. An arabinose-rich heteropolysaccharide isolated from Belamcanda chinensis (L.) DC treats liver cancer by targeting FAK and activating CD40. Carbohydr Polym 2024; 331:121831. [PMID: 38388048 DOI: 10.1016/j.carbpol.2024.121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/24/2024]
Abstract
An undisclosed polysaccharide, BCP80-2, was isolated from Belamcanda chinensis (L.) DC. Structural investigation revealed that BCP80-2 consists of ten monosaccharide residues including t-α-Araf-(1→, →3,5)-α-Araf-(1→, →5)-α-Araf-(1→, →4)-β-Xylp-(1→, →3)-α-Rhap-(1→, →4)-β-Manp-(1→, t-β-Glcp-(1→, →6)-α-Glcp-(1→, t-β-Galp-(1→, and→3)-α-Galp-(1→. In vivo activity assays showed that BCP80-2 significantly suppressed neoplasmic growth, metastasis, and angiogenesis in zebrafish. Mechanistic studies have shown that BCP80-2 inhibited cell migration of HepG2 cells by suppressing the FAK signaling pathway. Moreover, BCP80-2 also activated immunomodulation and upregulated the secretion of co-stimulatory molecules CD40, CD86, CD80, and MHC-II. In conclusion, BCP80-2 inhibited tumor progression by targeting the FAK signaling pathway and activating CD40-induced adaptive immunity.
Collapse
Affiliation(s)
- Yinan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
25
|
Jin X, Zhang J, Shen X, Yao S, Xu M, Wang C, Li J, Yao C, Guo DA. High-Performance Thin-Layer Chromatography Coupled with Single Quadrupole: Application the Identification and Differentiation of Rehmanniae Radix and Its Different Processing Products from Raw Materials to Commercial Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10106-10116. [PMID: 38629120 DOI: 10.1021/acs.jafc.4c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The authentication of ingredients in formulas is crucial yet challenging, particularly for constituents with comparable compositions but vastly divergent efficacy. Rehmanniae Radix and its derivatives are extensively utilized in food supplements, which contain analogous compositions but very distinct effects. Rehmanniae Radix, also a difficult-to-detect herbal ingredient, was chosen as a case to explore a novel HPTLC-QDa MS technique for the identification of herbal ingredients in commercial products. Through systematic condition optimization, including thin layer and mass spectrometry, a stable and reproducible HPTLC-QDa MS method was established, which can simultaneously detect oligosaccharides and iridoids. Rehmannia Radix and its processed products were then analyzed to screen five markers that could distinguish between raw and prepared Rehmannia Radix. An HPTLC-QDa-SIM method was further established for formula detection by using the five markers and validated using homemade prescriptions and negative controls. Finally, this method was applied to detect raw and prepared Rehmannia Radix in 12 commercial functional products and supplements.
Collapse
Affiliation(s)
- Xu Jin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Jianqing Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Xuanjing Shen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Shuai Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Meng Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Cuicui Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Jiayuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - De-An Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| |
Collapse
|
26
|
Luan F, Zou J, Zhang X, Zeng J, Peng X, Li R, Shi Y, Zeng N. The extraction, purification, structural features, bioactivities, and applications of Schisandra chinensis polysaccharides: A review. Int J Biol Macromol 2024; 262:130030. [PMID: 38336330 DOI: 10.1016/j.ijbiomac.2024.130030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Schisandra chinensis, as a famous medicinal and food homologous plant, has a long history of medicinal and dietary therapy. It has the functions of nourishing the kidney, calming the heart, tranquilising the mind, tonifying Qi and producing fluid to relieve mental stress, based on the theory of traditional Chinese medicine. Accumulating evidence has shown that S. chinensis polysaccharides (SCPs) are one of the most important bioactive macromolecules and exhibit diverse biological activities in vitro and in vivo, including neuroprotective, hepatoprotective, immunomodulatory, antioxidant, hypoglycemic, cardioprotective, antitumour and anti-inflammatory activities, etc. This review aims to thoroughly review the recent advances in the extraction and purification methods, structural features, biological activities and structure-activity relationships, potential applications and quality assessment of SCPs, and further highlight the therapeutic potentials and health functions of SCPs in the fields of therapeutic agents and functional food development. Future insights and challenges of SCPs were also critically discussed. Overall, the present review provides a theoretical overview for the further development and utilization of S. chinensis polysaccharides in the health food and pharmaceutical fields.
Collapse
Affiliation(s)
- Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Ruiyu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China.
| |
Collapse
|
27
|
Chen S, Qin F, Yang Y, Zhao Y, Xiao S, Li W, Akihisa T, Jantrawut P, Ji J, Zhang J. Extraction, purification, structural characterization, and bioactivities of the genus Schisandra polysaccharides: A review. Int J Biol Macromol 2024; 262:130257. [PMID: 38423904 DOI: 10.1016/j.ijbiomac.2024.130257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
The genus Schisandra, a member of the Magnoliaceae family, is a well-known tonic traditional Chinese medicine with a long history of traditional medicinal and functional food used in China. Polysaccharides are one of its main active constituents, which have a wide range of bioactivities, such as anti-inflammatory, anti-tumor, neuroprotection, anti-diabetes, hepatoprotection, immunomodulation, and anti-fatigue. In this paper, we review the extraction, isolation, purification, structural characterization, bioactivities, as well as structure-activity relationship of polysaccharides from the genus Schisandra. In conclusion, we hope that this review could provide reference for the subsequent research on structural, bioactivities, development and application of the genus Schisandra polysaccharides.
Collapse
Affiliation(s)
- Shujun Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Fang Qin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Ying Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Yu Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Shuyun Xiao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Wei Li
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Pensak Jantrawut
- Faculty of Pharmacy, Ching Mai University, Ching Mai, 50200, Thailand
| | - Jingyu Ji
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China.
| |
Collapse
|
28
|
Liu Y, Wu J, Hao H. Antitumor immunostimulatory activity of the traditional Chinese medicine polysaccharide on hepatocellular carcinoma. Front Immunol 2024; 15:1369110. [PMID: 38455058 PMCID: PMC10917928 DOI: 10.3389/fimmu.2024.1369110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignancy, often associated with compromised immune function in affected patients. This can be attributed to the secretion of specific factors by liver cancer cells, which hinder the immune response and lead to a state of immune suppression. Polysaccharides derived from traditional Chinese medicine (TCM) are valuable constituents known for their immunomodulatory properties. This review aims to look into the immunomodulatory effects of TCM polysaccharides on HCC. The immunomodulatory effects of TCM polysaccharides are primarily manifested through the activation of effector T lymphocytes, dendritic cells, NK cells, and macrophages against hepatocellular carcinoma (HCC) both in vivo and in vitro settings. Furthermore, TCM polysaccharides have demonstrated remarkable adjuvant antitumor immunomodulatory effects on HCC in clinical settings. Therefore, the utilization of TCM polysaccharides holds promising potential for the development of novel therapeutic agents or adjuvants with advantageous immunomodulatory properties for HCC.
Collapse
Affiliation(s)
- Yang Liu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jiawen Wu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Huiqin Hao
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
29
|
Shang Q, Yu X, Sun Q, Li H, Sun C, Liu L. Polysaccharides regulate Th1/Th2 balance: A new strategy for tumor immunotherapy. Biomed Pharmacother 2024; 170:115976. [PMID: 38043444 DOI: 10.1016/j.biopha.2023.115976] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023] Open
Abstract
T helper (Th) cells have received extensive attention owing to their indispensable roles in anti-tumor immune responses. Th1 and Th2 cells are two key subsets of Th cells that exist in relative equilibrium through the secretion of cytokines that suppress their respective immune response. When the type of cytokine in the tumor microenvironment is altered, this equilibrium may be disrupted, leading to a shift from Th1 to Th2 immune response. Th1/Th2 imbalance is one of the decisive factors in the development of malignant tumors. Therefore, focusing on the balance of Th1/Th2 anti-tumor immune responses may enable future breakthroughs in cancer immunotherapy. Polysaccharides can regulate the imbalance between Th1 and Th2 cells and their characteristic cytokine profiles, thereby improving the tumor immune microenvironment. To our knowledge, this study is the most comprehensive assessment of the regulation of the tumor Th1/Th2 balance by polysaccharides. Herein, we systematically summarized the intrinsic molecular mechanisms of polysaccharides in the regulation of Th1 and Th2 cells to provide a new perspective and potential target drugs for improved anti-tumor immunity and delayed tumor progression.
Collapse
Affiliation(s)
- Qihang Shang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Qi Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
30
|
Liang L, Yue Y, Zhong L, Liang Y, Shi R, Luo R, Zhao M, Cao X, Yang M, Du J, Shen X, Wang Y, Shu Z. Anti-aging activities of Rehmannia glutinosa Libosch. crude polysaccharide in Caenorhabditis elegans based on gut microbiota and metabonomic analysis. Int J Biol Macromol 2023; 253:127647. [PMID: 37884235 DOI: 10.1016/j.ijbiomac.2023.127647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Aging is a degenerative progress, accompanied by oxidative damage, metabolic disorders and intestinal flora imbalance. Natural macromolecular polysaccharides have shown excellent anti-aging and antioxidant properties, while maintaining metabolic and intestinal homeostasis. The molecular weight, monosaccharide composition, infrared spectrum and other chemical structure information of four Rehmannia glutinosa polysaccharides (RG50, RG70, RG90, RGB) were determined, and their free radical scavenging ability was assessed. Molecular weight and monosaccharide composition analysis exhibited that RG50 (2-72 kDa), RG70 (3.2-37 kDa), RG70 (3-42 kDa), and RGB (3.1-180 kDa) were heteropolysaccharide with significant different monosaccharide species and molar ratios. We found that RG70 had the best antioxidant activity in vitro and RG70 could enhance the antioxidant enzyme system of Caenorhabditis elegans, diminished lipofuscin and reactive oxygen species levels, up-regulate the expression of daf-16, skn-1 and their downstream genes, and down-regulate the expression of age-1. Metabolomics results showed that RG70 mainly influenced glycine, serine and threonine metabolism and citric acid cycle. 16S rRNA sequencing showed that RG70 significantly up-regulated the abundance of Lachnospiraceae_NK4B4_group, which were positively correlated with amino acid metabolism and energy cycling. These results suggest that RG70 may delay aging by enhancing antioxidant effects, affecting probiotics and regulating key metabolic pathways.
Collapse
Affiliation(s)
- Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yimin Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyang Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yefang Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruixiang Shi
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongfeng Luo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieyong Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuejuan Shen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Renu K, Mukherjee AG, Gopalakrishnan AV, Wanjari UR, Kannampuzha S, Murali R, Veeraraghavan VP, Vinayagam S, Paz-Montelongo S, George A, Vellingiri B, Madhyastha H. Protective effects of macromolecular polyphenols, metals (zinc, selenium, and copper) - Polyphenol complexes, and different organs with an emphasis on arsenic poisoning: A review. Int J Biol Macromol 2023; 253:126715. [PMID: 37673136 DOI: 10.1016/j.ijbiomac.2023.126715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
For the potential health benefits and nutritional value, polyphenols are one of the secondary metabolites of plants that have received extensive research. It has anti-inflammatory and cytotoxicity-reducing properties in addition to a high antioxidant content. Macromolecular polyphenols and polysaccharides are biologically active natural polymers with antioxidant and anti-inflammatory potential. Arsenic is an ecologically toxic metalloid. Arsenic in drinking water is the most common way people come into contact with this metalloid. While arsenic is known to cause cancer, it is also used to treat acute promyelocytic leukemia (APL). The treatment's effectiveness is hampered by the adverse effects it can cause on the body. Oxidative stress, inflammation, and the inability to regulate cell death cause the most adverse effects. Polyphenols and other macromolecules like polysaccharides act as neuroprotectants by mitigating free radical damage, inhibiting nitric oxide (NO) production, lowering A42 fibril formation, boosting antioxidant levels, and controlling apoptosis and inflammation. To prevent the harmful effects of toxins, polyphenols and pectin lower oxidative stress, boost antioxidant levels, improve mitochondrial function, control apoptosis, and suppress inflammation. Therefore, it prevents damage to the heart, liver, kidneys, and reproductive system. This review aims to identify the effects of the polyphenols in conjugation with polysaccharides as an ameliorative strategy for arsenic-induced toxicity in various organs.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri 635205, Tamil Nadu, India.
| | - Soraya Paz-Montelongo
- Area de Toxicologia, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain; Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India.
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India.
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889 1692, Japan.
| |
Collapse
|
32
|
Jia J, Chen J, Wang G, Li M, Zheng Q, Li D. Progress of research into the pharmacological effect and clinical application of the traditional Chinese medicine Rehmanniae Radix. Biomed Pharmacother 2023; 168:115809. [PMID: 37907043 DOI: 10.1016/j.biopha.2023.115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023] Open
Abstract
The traditional Chinese medicine (TCM) Rehmanniae Radix (RR) refers to the fresh or dried root tuber of the plant Rehmannia glutinosa Libosch of the family Scrophulariaceae. As a traditional Chinese herbal medicine (CHM), it possesses multiple effects, including analgesia, sedation, anti-inflammation, antioxidation, anti-tumor, immunomodulation, cardiovascular and cerebrovascular regulation, and nerve damage repair, and it has been widely used in clinical practice. In recent years, scientists have extensively studied the active components and pharmacological effects of RR. Active ingredients mainly include iridoid glycosides (such as catalpol and aucuboside), phenylpropanoid glycosides (such as acteoside), other saccharides, and unsaturated fatty acids. In addition, the Chinese patent medicine (CPM) and Chinese decoction related to RR have also become major research subjects for TCM practitioners; one example is the Bolus of Six Drugs, which includes Rehmannia, Lily Bulb and Rehmannia Decoction, and Siwu Decoction. This article reviews recent literature on RR; summarizes the studies on its chemical constituents, pharmacological effects, and clinical applications; and analyzes the progress and limitations of current investigations to provide reference for further exploration and development of RR.
Collapse
Affiliation(s)
- Jinhao Jia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Jianfei Chen
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Minjing Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003 Xinjiang, PR China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003 Xinjiang, PR China.
| |
Collapse
|
33
|
Chen H, Liu X, Xie M, Zhong X, Yan C, Xian M, Wang S. Two polysaccharides from Rehmannia glutinosa: isolation, structural characterization, and hypoglycemic activities. RSC Adv 2023; 13:30190-30201. [PMID: 37842674 PMCID: PMC10573874 DOI: 10.1039/d3ra05677e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
Rehmannia glutinosa (RG) as a Chinese herbal medicine can be used both in medicine and food. As the main component of RG, the polysaccharides have a hypoglycemic effect, however, the hypoglycemic activity of RG homopolysaccharides remains unknown. We isolated and purified two polysaccharides, RGP70-1-1 and RGP70-1-2 (4.9 kDa and 2.8 kDa) from RG. The structural characteristics, including monosaccharide composition, linkage, and configuration were analyzed by FT-IR, HPLC, GC-MS, NMR spectroscopy, Congo test, and SEM. RGP70-1-1 and RGP70-1-2 consist of four monosaccharides (glucose, mannose, arabinose, and galactose). RGP70-1-1 contains 14 connection modes, with the linkages including l-Araf-(1→, →3)-l-Araf-(1→, →5)-l-Araf-(1→, →3,5)-l-Araf-(1→, →2,5)-l-Araf-(1→, d-Manp-(1→, →2)-d-Manp-(1→, →4)-d-Manp-(1→, d-Galp-(1→, →4)-d-Galp-(1→, →4,6)-d-Galp-(1→, →6)-d-Glcp-(1→, →4,6)-d-Glcp-(1→, →3,6)-d-Glcp-(1→. The linkages of RGP70-1-2 is including →5)-l-Araf-(1→, →3,5)-l-Araf-(1→, →4)-d-Manp-(1→, →3,6)-d-Manp-(1→, d-Galp-(1→, →6)-d-Galp-(1→, d-Glcp-(1→, →6)-d-Glcp-(1→, →4,6)-d-Glcp-(1→. Furthermore, RGP70-1-1 and RGP70-1-2 can inhibit α-glucosidase and α-amylase. RGP70-1-1 stimulated GLP-1 secretion in STC-1 cells and was related to the up-regulation of PI3K and p-AKT protein expression. The findings revealed a natural product with potential hypoglycemic activity, which may be used as a GLP-1 secretagogue and a beneficial functional food ingredient for T2D.
Collapse
Affiliation(s)
- Huien Chen
- Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University Guangzhou 510006 China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Xinyu Liu
- Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University Guangzhou 510006 China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Meixia Xie
- Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University Guangzhou 510006 China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Xiaoting Zhong
- Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University Guangzhou 510006 China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Chunyan Yan
- Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Minghua Xian
- Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University Guangzhou 510006 China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Shumei Wang
- Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University Guangzhou 510006 China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University Guangzhou 510006 China
| |
Collapse
|
34
|
Huang Y, Lin Q, Tan X, Jia L, Li H, Zhu Z, Fu C, Wang L, Liu L, Mao M, Yi Z, Ma D, Li X. Rehmannia alcohol extract inhibits neuropeptide secretion and alleviates osteoarthritis pain through cartilage protection. Heliyon 2023; 9:e19322. [PMID: 37674829 PMCID: PMC10477487 DOI: 10.1016/j.heliyon.2023.e19322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by chronic pain, and the perception of pain is closely associated with brain function and neuropeptide regulation. Rehmannia is common plant herb with anti-inflammatory and analgesic properties that is used to treat OA. However, it is unclear whether Rehmannia alleviates OA-related pain via regulation of neuropeptides and brain function. We examined the pain relief regulatory pathway in OA after treatment with Rehmannia by verifying the therapeutic effect of Rehmannia alcohol extract in vivo and vitro and exploring of the potential mechanism underlying the analgesic effect of Rahmanian using functional magnetic resonance imaging and measuring neuropeptide secretion. Our results showed that Rehmannia alcohol extract and the related active ingredient, Rehmannioside D, can delay cartilage degradation and alleviate inflammation in OA rats. The Rehmannia alcohol extract can also relieve OA pain, reduce the secretion of calcitonin gene-related peptide (CGRP) and substance P (SP), and reverse the pathological changes in the cerebral cortex and hippocampus. Our research results demonstrate that Rehmannia alleviates OA pain by protecting cartilage, preventing the stimulation of inflammatory factors on neuropeptide secretion, and influencing the relevant functional areas of the brain.
Collapse
Affiliation(s)
- Yanfeng Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Qing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Xue Tan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Liangliang Jia
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Hui Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Pharmacy Science, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Zaishi Zhu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Changlong Fu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Lili Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Linlong Liu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Min Mao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Zhouping Yi
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Dezun Ma
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Xihai Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| |
Collapse
|
35
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|