1
|
Chen Y, Lai F, Xu H, He Y. Chinese herb pairs for cardiovascular and cerebrovascular diseases: Compatibility effects, pharmacological potential, clinical efficacy, and molecular mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119516. [PMID: 39978448 DOI: 10.1016/j.jep.2025.119516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/27/2024] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebrovascular and cardiovascular diseases are pathophysiologically interconnected. In the past, researchers have mainly focused on developing one herbal medicine treatment. Single herb often fails to address the multifactorial pathology of these diseases. The pathogenesis and progression of the disease are complex, making the therapeutic effect of a single herb potentially limiting. Traditional Chinese medicine emphasizes herb pairs, which enhance therapeutic efficacy through synergistic interactions. AIM OF THE REVIEW This review focused on the mechanisms and potential clinical applications of Chinese herb pairs such as Astragali Radix-Carthami Flos, Salviae Miltiorrhizae Radix-Puerariae Lobatae Radix, Salviae Miltiorrhizae Radix-Chuanxiong Rhizoma, Salviae Miltiorrhizae Radix-Notoginseng Radix, Salviae Miltiorrhizae Radix-Carthami Flos, Astragali Radix-Angelicae Sinensis Radix, Notoginseng Radix-Carthami Flos, and Astragali Radix-Salviae Miltiorrhizae Radix, as well as provided a scientific basis for clinical applications of Chinese herb pairs. MATERIALS AND METHODS A systematic search and collection of studies on Chinese herb pairs in cardiovascular and cerebrovascular diseases was carried out using electronic databases such as PubMed, CNKI, Wan Fang Database, Baidu Scholar, and Web of Science. The keywords searched included Chinese herb pairs, cardiovascular disease, cerebrovascular disease, Astragali Radix, Salviae Miltiorrhizae Radix, Angelicae Sinensis Radix, Carthami Flos, Notoginseng Radix, and so on. RESULTS Studies revealed that the Chinese herb pairs had more beneficial effects than single herb and demonstrated a variety of roles in cardiovascular and cerebrovascular diseases. Preclinical studies indicated that Chinese herb pairs are more effective than single herb in treating cardiovascular and cerebrovascular diseases by modulating disease-related pathways and molecular targets. Further research is needed to fully explore their potential. The review also outlined the potential clinical applications of these Chinese herb pairs, highlighting their safety and efficacy. CONCLUSIONS Chinese herb pairs showed good promise as an alternative therapy for cardiovascular and cerebrovascular diseases due to their multi-component and multi-target characteristics. Consequently, further research was necessary to fully explore the potential of Chinese herb pairs in treating cardiovascular and cerebrovascular diseases, based on the current data.
Collapse
Affiliation(s)
- Yajie Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Feifan Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, China.
| | - Huaping Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, China.
| |
Collapse
|
2
|
Zhang X, Chang X, Chai R, Zhang X, Li J, Guo Z, Qiu Z, Song Y, Shi S, Hu Y, Du B. Xin-Fu-Kang oral liquid mitigates chronic heart failure through NR4A1-Dependent regulation of endoplasmic reticulum-mitochondrial crosstalk in Cardiomyocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156467. [PMID: 40036990 DOI: 10.1016/j.phymed.2025.156467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Chronic heart failure (CHF) is the terminus of a variety of cardiovascular diseases. Xin-Fu-Kang oral liquid (XFK), a natural herbal compound, has been used in CHF treatment for decades. However, further investigation is required to elucidate the fundamental mechanisms. STUDY DESIGN AND METHODS Transverse aortic constriction (TAC) was performed in mouse models. The pharmacological efficacy of XFK was confirmed by assessing cardiac function and the observation of pathological alterations in myocardial tissue. Following this, single-cell sequencing (scRNA-seq) was implemented. With the identification of XFK metabolites in rat serum via UPLC-QE MS, molecular docking was utilized to conduct preliminary validation of putative therapeutic targets. Subsequently, the phenylephrine-induced model of cardiac pressure overload was established for conducting additional verification and rescue experiments by silencing NR4A1 in vitro. RESULTS XFK intervention significantly ameliorated cardiac function in the TAC-induced CHF model. Based on scRNA-seq, cardiomyocytes exhibited the most notable alterations following XFK intervention, with NR4A1 identified as a significantly differentially expressed gene after both TAC induction and XFK intervention. In vitro experiments demonstrated that XFK enhanced mitochondrial function, mitigated oxidative stress, and restored mitophagy in a NR4A1-dependent manner, consequently decreasing apoptosis in PE-induced H9C2. Furthermore, the upstream mechanism was associated with capacity of XFK to mitigate endoplasmic reticulum stress and regulate crosstalk between the two organelles. CONCLUSION XFK counteracts cardiac chronic pressure overload through regulating NR4A1-mediated functional interaction between endoplasmic reticulum and mitochondria in cardiomyocytes, further preserves mitochondria function and prevents apoptosis. This finding indicates a novel pharmacological therapy for CHF.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruoning Chai
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuesong Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaran Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezhen Guo
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Zhiling Qiu
- Department of Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuguo Song
- Beijing University of Chinese Medicine, Beijing, China
| | - Shuqing Shi
- Department of Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuanhui Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bai Du
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Zhu R, Yan S, Zhao R, Zhang R, Shao M, Yu H, Fu Y. Effectiveness of different traditional Chinese medicine injections in patients with diabetic lower extremity arterial disease: A Bayesian network meta-analysis. Complement Ther Clin Pract 2025; 59:101936. [PMID: 39805184 DOI: 10.1016/j.ctcp.2025.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND AND PURPOSE Numerous studies have demonstrated the effectiveness of Chinese medicine injections (CMIs) in treating diabetic lower extremity arterial disease (Dia-LEAD). However, with the variety of CMIs available, it has become challenging to determine the optimal choice for Dia-LEAD patients. This study aims to compare and rank the efficacy of CMIs for Dia-LEAD to provide references and evidence for clinicians in optimising drug selection. METHODS We conducted a comprehensive search for randomised controlled trials (RCTs) of CMIs for treating Dia-LEAD, which included the China National Knowledge Infrastructure (CNKI), Wanfang, China Weipu Science and Technology Journal Database (VIP), Chinese Biomedical Literature Database (CBM), PubMed, the Cochrane Library, Embase, and Web of Science, covering inception to 15 October 2023. We used the Cochrane Risk of Bias Tool 2.0 to assess bias risk, and RevMan 5.4.1, GeMTC, STATA 13.0, and R 4.2.1 for statistical analysis and visualization of the network meta-analysis. RESULTS We analysed 38 studies with 12 CMIs. Compared with other interventions, Shuxuening injection (SXN) + conventional treatment (CT) was superior in terms of the total effective rate (surface under the cumulative ranking (SUCRA) 86.2 %). Danshen injection (DS) + CT ranked first in improving the ankle-brachial index (ABI) (SUCRA 95.1 %) and dorsalis pedis artery blood flow (DPABF) (SUCRA 88.8 %). Danhong injection (DH) + CT showed the highest probability of effectiveness in improving the plasma viscosity (SUCRA 91.6 %). Chuanxiongqin injection (CXQ) + CT yielded favourable results in regulating fibrinogen levels (SUCRA 77.1 %). Furthermore, no significant differences in adverse reactions were detected between the treatment and control groups. CONCLUSION The study demonstrated that CMIs have potential as a complementary therapy for treating Dia-LEAD, and it supports the positive effects of combining CMIs with CT on a number of outcome indicators. Especially when it comes to improving the haemodynamics indices and the haemorheology indices, DS in combination with CT may be a more effective intervention. However, further confirmation in more rigorous, high-quality, and multicentre RCTs is needed to strengthen the validity and generalisability of the results.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; School of the First Clinical, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuxun Yan
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruixia Zhao
- Henan Provincial Center for Evidence-based Medicine of Traditional Chinese Medicine, Zhengzhou, China
| | - Rongrong Zhang
- School of the First Clinical, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingyi Shao
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Haibin Yu
- Department of Science and Technology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yu Fu
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
4
|
Shu L, Zhang S, Qian J, Liu S, Qiu H, Zhao Q, Deng Y, Li Y. Systematic Characterization of the Chemical Constituents of in Vitro and in Vivo of Astragali Radix-Salvia miltiorrhiza Herb Pair by Ultra-High-Performance-Liquid Chromatography-Orbitrap Mass Spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9977. [PMID: 39789959 DOI: 10.1002/rcm.9977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
RATIONALE Astragali radix-Salvia miltiorrhiza (AR-SM) is an herb pair with good therapeutic effects and is widely used. In this study, the in vitro and in vivo components of AR-SM were quickly classified and identified based on UHPLC-orbital mass spectrometry. This provided a basis for clarifying the bioactive substances after compatibility of AR and SM. METHODS Firstly, the related literature of AR and SM were searched through PubMed and CNKI databases, and the molecular formula, retention time, mass spectrum fragments, and other information of its chemical components were sorted out to establish a component database. Extract, blank plasma and drug-containing plasma were analyzed by UHPLC orbital mass spectrometry technology, and then the data were processed by Xcalibur software. Combined with databases and literature, the in vivo and in vitro components of AR-SM were comprehensively analyzed. RESULTS A total of 142 components were identified in the extract of AR-SM. The cleavage patterns of flavonoids, terpenoids, phenolic acids, organic acids, saponins, and phenylpropanoids were summarized. Meanwhile, 89 compounds were tentatively identified in rat plasma, including 73 prototypes and 16 metabolites. The main metabolic pathways included oxidation, reduction, methylation, glucuronidation, and sulfation.
Collapse
Affiliation(s)
- Lexin Shu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shumin Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Qian
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sitong Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huixin Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiduo Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanru Deng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Yao Q, Zhang X, Wang L, Li J, Lv J, Chen J, Chen D. Therapeutic potential of p-coumaric acid in alleviating renal fibrosis through inhibition of M2 macrophage infiltration and cellular communication. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156507. [PMID: 39978279 DOI: 10.1016/j.phymed.2025.156507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND p-coumaric acid (p-CA), a hydroxycinnamic acid derivative, is recognized for its antioxidant and anti-inflammatory properties; however, its pharmacological effects on renal fibrosis remain insufficiently explored. PURPOSE This study aimed to evaluate the therapeutic potential of p-CA in renal fibrosis and elucidate its underlying mechanisms through extensive molecular and cellular analyses. METHODS Liquid chromatography-tandem mass spectrometry (LC-MS) was employed to analyze metabolic alterations associated with renal fibrosis induced by unilateral ureteral obstruction (UUO). Immune cell dynamics were assessed using cytometry by time of flight (CyTOF) and single-cell RNA sequencing (scRNA-seq). Further validation was performed using flow cytometry, Western blot (WB), quantitative real-time PCR (qRT-PCR), immunohistochemistry (IHC), and immunofluorescence (IF) to evaluate the renoprotective effects of p-CA at the cellular and molecular levels. RESULTS p-CA levels were significantly reduced in fibrotic renal tissues. Administration of exogenous p-CA restored renal function, alleviated tissue damage, and inhibited G2/M cell cycle arrest and epithelial-mesenchymal transition (EMT) in tubular epithelial cells (TECs). CyTOF and scRNA-seq analyses revealed that p-CA treatment decreased M2 macrophage proliferation, intercellular communication, and differentiation in fibrotic kidney tissues, resulting in reduced renal fibrosis. Additional experimental validations confirmed that p-CA specifically targeted M2 macrophages, suppressing their contribution to fibrotic progression. CONCLUSIONS p-CA exerts renoprotective effects by targeting M2 macrophages, disrupting their interaction with TECs, and attenuating fibrotic progression. These findings underscore the potential of p-CA as a novel therapeutic approach for renal fibrosis.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 PR China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, 310003, PR China; National Key Clinical Department of Kidney Diseases, Hangzhou, 310003, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, 310003, PR China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, PR China
| | - Xinyi Zhang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 PR China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, 310003, PR China; National Key Clinical Department of Kidney Diseases, Hangzhou, 310003, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, 310003, PR China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, PR China
| | - Lefeng Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 PR China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, 310003, PR China; National Key Clinical Department of Kidney Diseases, Hangzhou, 310003, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, 310003, PR China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, PR China
| | - Jingyi Li
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 PR China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, 310003, PR China; National Key Clinical Department of Kidney Diseases, Hangzhou, 310003, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, 310003, PR China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, PR China
| | - Junhao Lv
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 PR China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, 310003, PR China; National Key Clinical Department of Kidney Diseases, Hangzhou, 310003, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, 310003, PR China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, PR China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 PR China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, 310003, PR China; National Key Clinical Department of Kidney Diseases, Hangzhou, 310003, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, 310003, PR China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, PR China.
| | - Dajin Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 PR China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, 310003, PR China; National Key Clinical Department of Kidney Diseases, Hangzhou, 310003, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, 310003, PR China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, PR China.
| |
Collapse
|
6
|
Zhang J, Li Y, Chang M, Lei Y, Xu H, Zhang Y, Xu J, Zhang J, Tang S. Naoxintong capsule attenuates heart damage after ischemic stroke via Nuclear factor-κB / Pyrin domain-containing protein 3 / Caspase-1 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119240. [PMID: 39733802 DOI: 10.1016/j.jep.2024.119240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke (IS) is a major cause of mortality. Inflammation exerts an essential part of brain-heart communication after IS. Naoxintong capsule (NXT), derived from the classical Traditional Chinese Medicine (TCM) formulation Bu-Yang-Huan-Wu-Tang, are extensively employed in China to manage IS, myocardial infarction (MI), and atherosclerosis. Previous clinical studies have demonstrated the protective effects of NXT in anti-atherosclerosis, cerebral infarction, angina, and acute coronary syndrome. However, the potential therapeutic mechanism of NXT for IS remains unknown. AIM OF THE STUDY This study aims to investigate a potential mechanism for enhancing brain-heart interaction following an ischemic stroke. MATERIALS AND METHODS C57BL/6J mice underwent permanent middle cerebral artery occlusion (MCAO) for durations of 6, 12, and 24 h. The effects of NXT on the brain were observed via TTC, Nissl and TUNEL staining, immunofluorescence staining, and Zea-Longa scores. Simultaneously, the effects of NXT on the heart were evaluated via H&E staining and echocardiography. Inflammatory factors in heart and serum were determined via ELISA or luminex liquid suspension chip detection. Network pharmacology predicted the targets and signaling pathways of NXT. The binding affinity between potential targets and active compounds of NXT was assessed through molecular docking. The expression levels of IκBα, IKKβ, NF-κB, NLRP3, and caspase-1 were evaluated via Western blotting. RESULTS The Zea-Longa scores, infarct rate, and the rate of apoptosis in the brain at 6, 12, and 24 h of MCAO mice were markedly decreased by NXT. Additionally, they clearly enhanced the NeuN positive rate and prevented microglia from activating at 24 h. NXT significantly reduced the level of myocardial injury biomarkers (Lactate dehydrogenase (LDH) and Creatine kinase isoenzyme MB (CK-MB) at 24 h, N-terminal pro-brain natriuretic peptide (NT-pro BNP) at 6, 12, and 24 h), improved ejection fraction, fractional shortening, stroke volume, and cardiac output at 24 h. The levels of MIP-1α in cardiac tissue and IL-1β in serum were both markedly lowered by NXT. Furthermore, the NF-κB/NLRP3/caspase-1 signaling pathways may be potential mechanisms of NXT. Molecular docking indicated that IKKβ, IκBα, NF-κB, NLRP3, and caspase-1 may serve as potential targets for the action of representative active ingredients in NXT. NXT could reduce the expression levels of IKKβ, NF-κB, NLRP3, and caspase-1 in brain and heart tissues while increasing the expression of IκBα. CONCLUSIONS Our study illustrates that NXT efficiently attenuated inflammation in the brain and heart by blocking the NF-κB/NLRP3/caspase-1 signaling pathway. These findings provide appealing insights into the multi-organ perspective on human health via identifying shared inflammatory impacts and heart-brain linkages.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yu Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Mengli Chang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yuxin Lei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China; State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| |
Collapse
|
7
|
Liu J, Lei Z, Wang Z, Wang H, Sun J, Guo D, Luan F, Zou J, Shi Y. Ethnobotanical usages, phytochemistry, pharmacology, and quality control of chuanxiong rhizoma: A review. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118902. [PMID: 39395765 DOI: 10.1016/j.jep.2024.118902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Chuanxiong Rhizoma (CX) is the dried root rhizomes of the plant Ligusticum chuanxiong Hort. of the family Umbelliferae. CX is listed as a superior herb in the book "Shennong Bencao Jing". It has a pungent and warm nature and belongs to the liver, gallbladder, and pericardium meridians. CX is documented in the Chinese Pharmacopoeia from 1963 to 2020 editions. CX as a well-known traditional Chinese medicine for promoting blood circulation, regulating qi, dispelling wind, and relieving pain, has been proven to contain a variety of bioactive compounds with diverse pharmacological activities and medicinal value. AIM OF THE STUDY The current review aims to provide a comprehensive analysis of the botany, traditional uses, phytochemistry, pharmacology, toxicity, quality control and pharmacokinetics of CX. MATERIALS AND METHODS The relevant information of CX was obtained from several databases including Web of Science, PubMed, ACS Publications, Google Scholar, Baidu Scholar, CNKI, Ph.D, MSc dissertations, as well as The Catalogue of Life, Flora of China database, and The Global Biodiversity Information Facility. RESULTS CX is widely used in traditional medicine for treating various diseases related to the cardiovascular system, liver and kidney system, nervous system, respiratory system, and more. Over 400 compounds have been identified in CX, including phthalides, alkaloids, organic acids and its esters, polyphenols, terpenes and their derivatives, polysaccharides, hydrocarbons and their derivatives, coumarins, lignans and others. The plant extracts, compounds and Chinese patent medicines possess various pharmacological activities, including cardiovascular system protection, nervous system protection, cerebrovascular system protection, anti-inflammatory, liver and lung protection, anti-diabetes, anti-osteoporosis, anti-bacterial, anti-aging, anti-oxidant, immune regulation, prevention of DNA damage, prevention of postoperative peritoneal adhesion. CONCLUSION Considering its traditional and modern applications, phytochemical composition, and pharmacological properties, CX can be regarded as a traditional Chinese medicine resource for treating various diseases related to the cardiovascular, hepatorenal, nervous, and respiratory systems. Current research mainly focuses on cell and animal experiments, where some active ingredients exhibit diverse pharmacological activities. However, further studies are needed to fully understand its specific mechanisms of action. In addition, there are multiple active ingredients in CX, but current research mainly focuses on the pharmacological effects of individual components, with little research on the interactions and synergistic effects between different components. It is recommended to strengthen the research on the interactions of CX compounds and their components to reveal the overall pharmacological mechanisms. This will contribute to quality control, new drug development, commercialization, and promote its continuous development in the field of medicine.
Collapse
Affiliation(s)
- Jing Liu
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Ziwen Lei
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Zhichao Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - He Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| |
Collapse
|
8
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [PMID: 38663779 DOI: 10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dan-shen Yin (DSY), a traditional prescription, has been demonstrated to be effective in decreasing hyperlipidemia and preventing atherosclerosis (AS), but its mechanism remains unknown. We hypothesized that DSY activates farnesoid X receptor (FXR) to promote bile acid metabolism and excretion, thereby alleviating AS. AIM OF THE STUDY This study was designed to explore whether DSY reduces liver lipid accumulation and prevents AS by activating FXR and increasing cholesterol metabolism and bile acid excretion. MATERIALS AND METHODS The comprehensive chemical characterization of DSY was analyzed by UHPLC-MS/MS. The AS models of ApoE-/- mice and SD rats was established by high-fat diet and high-fat diet combined with intraperitoneal injection of vitamin D3, respectively. The aortic plaque and pathological changes were used to evaluate AS. Lipid levels, H&E staining and oil red O staining were used to evaluate liver lipid accumulation. The cholesterol metabolism and bile acid excretion were evaluated by enzyme-linked immunosorbent assay, UPLC-QQQ/MS. In vitro, the lipid and FXR/bile salt export pump (BSEP) levels were evaluated by oil red O staining, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. RESULTS A total of 36 ingredients in DSY were identified by UPLC-MS/MS analysis. In vivo, high-dose DSY significantly inhibited aortic intimal thickening, improved arrangement disorder, tortuosity, and rupture of elastic fibers, decreased lipid levels, and reduced the number of fat vacuoles and lipid droplets in liver tissue in SD rats and ApoE-/- mice. Further studies found that high-dose DSY significantly reduced liver lipid and total bile acids levels, increased liver ursodeoxycholic acid (UDCA) and other non-conjugated bile acids levels, increased fecal total cholesterol (TC) levels, and augmented FXR, BSEP, cholesterol 7-alpha hydroxylase (CYP7A1), ATP binding cassette subfamily G5/G8 (ABCG5/8) expression levels, while decreasing ASBT expression levels. In vitro studies showed that DSY significantly reduced TC and TG levels, as well as lipid droplets, while also increasing the expression of ABCG5/8, FXR, and BSEP in both HepG2 and Nr1h4 knockdown HepG2 cells. CONCLUSION This study demonstrated that DSY promotes bile acid metabolism and excretion to prevent AS by activating FXR. For the prevent of AS and drug discovery provided experimental basis.
Collapse
Affiliation(s)
- Yingkun Sheng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guibing Meng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Min Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaopeng Chen
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lifeng Han
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qilong Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Miaomiao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
9
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [DOI: https:/doi.org/10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
|
10
|
Boo YC. Therapeutic Potential and Mechanisms of Rosmarinic Acid and the Extracts of Lamiaceae Plants for the Treatment of Fibrosis of Various Organs. Antioxidants (Basel) 2024; 13:146. [PMID: 38397744 PMCID: PMC10886237 DOI: 10.3390/antiox13020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Fibrosis, which causes structural hardening and functional degeneration in various organs, is characterized by the excessive production and accumulation of connective tissue containing collagen, alpha-smooth muscle actin (α-SMA), etc. In traditional medicine, extracts of medicinal plants or herbal prescriptions have been used to treat various fibrotic diseases. The purpose of this narrative review is to discuss the antifibrotic effects of rosmarinic acid (RA) and plant extracts that contain RA, as observed in various experimental models. RA, as well as the extracts of Glechoma hederacea, Melissa officinalis, Elsholtzia ciliata, Lycopus lucidus, Ocimum basilicum, Prunella vulgaris, Salvia rosmarinus (Rosmarinus officinalis), Salvia miltiorrhiza, and Perilla frutescens, have been shown to attenuate fibrosis of the liver, kidneys, heart, lungs, and abdomen in experimental animal models. Their antifibrotic effects were associated with the attenuation of oxidative stress, inflammation, cell activation, epithelial-mesenchymal transition, and fibrogenic gene expression. RA treatment activated peroxisomal proliferator-activated receptor gamma (PPARγ), 5' AMP-activated protein kinase (AMPK), and nuclear factor erythroid 2-related factor 2 (NRF2) while suppressing the transforming growth factor beta (TGF-β) and Wnt signaling pathways. Interestingly, most plants that are reported to contain RA and exhibit antifibrotic activity belong to the family Lamiaceae. This suggests that RA is an active ingredient for the antifibrotic effect of Lamiaceae plants and that these plants are a useful source of RA. In conclusion, accumulating scientific evidence supports the effectiveness of RA and Lamiaceae plant extracts in alleviating fibrosis and maintaining the structural architecture and normal functions of various organs under pathological conditions.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
11
|
Pang HQ, Guo JX, Yang Y, Xu L, Wang J, Yang F, Xu ZB, Huang YF, Shi W, Lu X, Ibrahim MEH, Hu WC, Yan BC, Liu L. Elucidating the chemical interaction effects of herb pair Danshen-Chuanxiong and its anti-ischemic stroke activities evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117058. [PMID: 37597675 DOI: 10.1016/j.jep.2023.117058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge (Danshen) and Ligusticum chuanxiong Hort. (Chuanxiong) is the core herb pair in traditional Chinese medicines (TCMs) formulae for treating ischemic stroke. However, the synergistic effect of Danshen-Chuanxiong against anti-ischemic stroke and its compatibility mechanism remains unclear. AIM OF THE STUDY This study aimed to uncover the compatibility mechanism of Danshen-Chuanxiong against ischemic stroke through chemical profiling, pharmacodynamics evaluation, network pharmacology and experimental validation. MATERIALS AND METHODS Ultra-high performance liquid chromatography (UHPLC) combined with quadrupole time-of-flight tandem mass spectrometry (QTOF-MS) and UHPLC connected with tandem triple quadrupole mass spectrometry (QQQ-MS) were utilized to conduct the chemical interaction analysis. Then the synergistic effects of Danshen-Chuanxiong against ischemic stroke were comprehensively evaluated by the middle cerebral artery occlusion reperfusion (MCAO/R) mice model, zebrafish ischemic stroke model and glutamic acid-induced PC12 cells injury model. Afterwards, network pharmacology and molecular docking were applied to dissect the significant active compounds and potential mechanisms. Finally, the key target proteins were experimentally validated by Western blot. RESULTS 83 compounds were characterized in Danshen-Chuanxiong by UHPLC-QTOF-MS analysis, and 4 compounds were tentatively identified for the first time. The quantification results (24 accurately identified compounds) in 13 proportions of Danshen-Chuanxiong revealed that Danshen significantly increased the dissolution of most phthalides (from Chuanxiong), while Chuanxiong facilitated the dissolution of most phenolic acids (from Danshen) in solution. The anti-ischemic stroke effects of Danshen-Chuanxiong were significantly better than Danshen or Chuanxiong in attenuating infarct size, reducing brain edema and neurological scores in MCAO/R mice. Also, compared with single herbs, this herb pair exerted better effects of suppressing the incidence of cerebral thrombosis in zebrafish, and increasing the cell viability of glutamic acid-induced PC12 cells. In network pharmacology, 7 effective compounds (rosmarinic acid, chlorogenic acid, salvianolic acid B, (Z)-ligustilide, ferulic acid, caffeic acid, tanshinone IIA) and 5 hub targets (AKT, TNF-α, IL-1β, CASP3 and BCL2) as well as 4 key pathways were predicted. Western blot results showed that Danshen-Chuanxiong exert therapeutic effects mainly through decreasing the protein expressions of TNF-α, IL-1β and Cleaved-CASP3, elevating the levels of p-AKT and BCL2. CONCLUSIONS This work provided an integration strategy for uncovering the synergistic effects and compatibility mechanism of Danshen-Chuanxiong herb pair for treating ischemic stroke, and laid foundation for the further development and utilization of this herb pair.
Collapse
Affiliation(s)
- Han-Qing Pang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guiling, 541000, China.
| | - Jia-Xiu Guo
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Yang Yang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Guangling College, Yangzhou University, Yangzhou, 225000, China.
| | - Li Xu
- Yangzhou Food and Drug Inspection and Testing Center, Yangzhou, 225000, China.
| | - Jian Wang
- Yangzhou Food and Drug Inspection and Testing Center, Yangzhou, 225000, China.
| | - Fan Yang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Zhuo-Bing Xu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Yu-Fan Huang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guiling, 541000, China.
| | - Xin Lu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Muhi Eldeen Hussien Ibrahim
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Wei-Chen Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Bing-Chun Yan
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Liang Liu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Li J, Ge R, Wang F, Gu J, Zuo M, Tang T, Ge X, Niu Y, Wang L, Huang J, Chen J. Pharmacokinetic evaluation of 24 representative components of Ling-Gui-Zhu-Gan decoction in acute myocardial infarction model rats via a validated ultrahigh-performance liquid chromatography-tandem mass spectrometry method. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9620. [PMID: 37698150 DOI: 10.1002/rcm.9620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/10/2023] [Accepted: 07/29/2023] [Indexed: 09/13/2023]
Abstract
RATIONALE Ling-Gui-Zhu-Gan decoction (LGZGD), one of the 100 herbal classic formulas, is clinically used to treat chronic heart failure with remarkable curative effect. However, LGZGD pharmacokinetic parameters in pathological model rats are poorly understood, in particular for special components. As physicochemical properties are specific to each representative component, no standard sample preparation is available for absolute quantification of representative components of LGZGD in rat plasma. METHODS A specific, sensitive and high-throughput ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC/MS/MS) method capturing 24 representative components was developed and applied to evaluate the pharmacokinetic parameters of LGZGD in acute myocardial infarction (AMI) rat plasma after intragastric administration (2.4, 4.8 and 9.6 g/kg). Precipitation and extraction were selected and optimized for plasma preparation, and isopropanol precipitation could offer higher recovery and broader coverage. RESULTS It was expected that AMI could cause less absorption and slower elimination of most of active components of LGZGD. Most of newly reported special components absorbed quickly and eliminated slowly. The average elimination half-life of the 24 representative components was 10.09 h, which is consistent with the dosage of LGZGD (twice daily). CONCLUSIONS The specificity, linearity, precision and accuracy, recovery, matrix effect and stability were validated according to Food and Drug Administration guidance. The validation results demonstrated that the method could be applied to evaluate the pharmacokinetic parameters of LGZGD in AMI rats. The pharmacokinetic parameters showed substantial improvement in quality research of LGZGD, thereby laying the groundwork for preclinical and clinical trials in chronic heart failure clinical efficacy.
Collapse
Affiliation(s)
- Jing Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Ruirui Ge
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Feng Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jinfan Gu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Mengyu Zuo
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Tongjuan Tang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Xinru Ge
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Yingchao Niu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Liang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jinling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jian Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
13
|
Liu HB, Yang M, Li W, Luo T, Wu Y, Huang XY, Zhang YL, Liu T, Luo Y. Dispelling Dampness, Relieving Turbidity and Dredging Collaterals Decoction, Attenuates Potassium Oxonate-Induced Hyperuricemia in Rat Models. Drug Des Devel Ther 2023; 17:2287-2301. [PMID: 37551408 PMCID: PMC10404409 DOI: 10.2147/dddt.s419130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Purpose Dispelling dampness, relieving turbidity and dredging collaterals decoction (DED), is a traditional Chinese medicine used in the treatment of hyperuricemia. We aimed to explore the effect and mechanism of DED in the treatment of hyperuricemia. Methods The effects of DED (9.48, 4.74, and 2.37 g/kg/d) on potassium oxonate (750 mg/kg/d)-induced hyperuricemia in rats were evaluated by serum uric acid (UA), creatinine (CRE), blood urea nitrogen (BUN), and renal pathological changes. Network pharmacology was used to identify the effective components and targets of DED, and the key targets and signaling pathways for its effects on hyperuricemia were screened. Molecular docking was used to predict the action of DED. H&E, immunohistochemistry, WB, and PCR were used to validate the network pharmacology results. Results DED can effectively alleviate hyperuricemia, inhibit UA, CRE, BUN, and xanthine oxidase (XOD) activity, and reduce renal inflammatory cell infiltration and glomerular atrophy. The experiment identified 27 potential targets of DED for hyperuricemia, involving 9 components: wogonin, stigmasterol 3-O-beta-D-glucopyranoside, 3β-acetoxyatractylone, beta-sitosterol, stigmasterol, diosgenin, naringenin, astilbin, and quercetin. DED can relieve hyperuricemia mainly by inhibiting RAGE, HMGB1, IL17R, and phospho-TAK1, and by regulating the AGE-RAGE and IL-17 signaling pathways. Conclusion DED can alleviate hyperuricemia by inhibiting XOD activity and suppressing renal cell apoptosis and inflammation via the AGE-RAGE signaling pathway and IL-17 signaling pathway. This study provides a theoretical basis for the clinical application of DED.
Collapse
Affiliation(s)
- Hai-bo Liu
- Department of Biomedical Engineer, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Min Yang
- Department of Traditional Chinese Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Wan Li
- Department of Traditional Chinese Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Ting Luo
- Department of Traditional Chinese Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Yang Wu
- Department of Traditional Chinese Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Xiang-yu Huang
- Department of Traditional Chinese Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Yao-lei Zhang
- Basic Medical Laboratory, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Tao Liu
- Department of Traditional Chinese Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Yong Luo
- Department of Traditional Chinese Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
14
|
Fan S, Xiao G, Ni J, Zhao Y, Du H, Liang Y, Lv M, He S, Fan G, Zhu Y. Guanxinning injection ameliorates cardiac remodeling in HF mouse and 3D heart spheroid models via p38/FOS/MMP1-mediated inhibition of myocardial hypertrophy and fibrosis. Biomed Pharmacother 2023; 162:114642. [PMID: 37027988 DOI: 10.1016/j.biopha.2023.114642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Heart failure (HF) is a cardiovascular disease with high morbidity and mortality. Guanxinning injection (GXNI) is clinically used for the treatment of coronary heart disease, but its therapeutic efficacy and potential mechanism for HF are poorly understood. This study aimed to evaluate the therapeutic potential of GXNI on HF, with a special focus on its role in myocardial remodeling. METHODS 3D cardiac organoids and transverse aortic constriction (TAC) mouse models were established and utilized. Heart function and pathology were evaluated by echocardiography, hemodynamic examination, tail-cuff blood pressure and histopathology. Key targets and pathways regulated by GXNI in HF mouse heart were revealed via RNA-seq and network pharmacology analysis, and were verified by RT-PCR, Western blot, immunohistochemistry and immunofluorescence. RESULTS GXNI significantly inhibited cardiac hypertrophy and cells death. It protected mitochondrial function in cardiac hypertrophic organoids and markedly improved cardiac function in HF mice. Analysis of GXNI-regulated genes in HF mouse hearts revealed that IL-17A signaling in fibroblasts and the corresponding p38/c-Fos/Mmp1 pathway prominently mediated cardiac. Altered expressions of c-Fos, p38 and Mmp1 by GXNI in heart tissues and in cardiac organoids were validated by RT-PCR, WB, IHC, and IF. H&E and Masson staining confirmed that GXNI substantially ameliorated myocardial hypertrophy and fibrosis in HF mice and in 3D organoids. CONCLUSION GXNI inhibited cardiac fibrosis and hypertrophy mainly via down-regulating p38/c-Fos/Mmp1 pathway, thereby ameliorating cardiac remodeling in HF mice. Findings in this study provide a new strategy for the clinical application of GXNI in the treatment of heart failure.
Collapse
Affiliation(s)
- Siwen Fan
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Jingyu Ni
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yuhan Zhao
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Hongying Du
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Yingran Liang
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Ming Lv
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Guanwei Fan
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China.
| |
Collapse
|
15
|
Huang Y, Zhang K, Wang X, Guo K, Li X, Chen F, Du R, Li S, Li L, Yang Z, Zhuo D, Wang B, Wang W, Hu Y, Jiang M, Fan G. Multi-omics approach for identification of molecular alterations of QiShenYiQi dripping pills in heart failure with preserved ejection fraction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116673. [PMID: 37268257 DOI: 10.1016/j.jep.2023.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine theory believes that qi deficiency and blood stasis are the key pathogenesis of heart failure with preserved ejection fraction (HFpEF). As a representative prescription for replenishing qi and activating blood, QiShenYiQi dripping pills (QSYQ) has been used for treating heart diseases. However, the pharmacological mechanism of QSYQ in improving HFpEF is not well understood. AIM OF THE STUDY The objective of the study is to investigate the cardioprotective effect and mechanism of QSYQ in HFpEF using the phenotypic dataset of HFpEF. MATERIALS AND METHODS HFpEF mouse models established by feeding mice combined high-fat diet and Nω-nitro-L-arginine methyl ester drinking water were treated with QSYQ. To reveal causal genes, we performed a multi-omics study, including integrative analysis of transcriptomics, proteomics, and metabolomics data. Moreover, adeno-associated virus (AAV)-based PKG inhibition confirmed that QSYQ mediated myocardial remodeling through PKG. RESULTS Computational systems pharmacological analysis based on human transcriptome data for HFpEF showed that QSYQ could potentially treat HFpEF through multiple signaling pathways. Subsequently, integrative analysis of transcriptome and proteome showed alterations in gene expression in HFpEF. QSYQ regulated genes involved in inflammation, energy metabolism, myocardial hypertrophy, myocardial fibrosis, and cGMP-PKG signaling pathway, confirming its function in the pathogenesis of HFpEF. Metabolomics analysis revealed fatty acid metabolism as the main mechanism by which QSYQ regulates HFpEF myocardial energy metabolism. Importantly, we found that the myocardial protective effect of QSYQ on HFpEF mice was attenuated after RNA interference-mediated knock-down of myocardial PKG. CONCLUSION This study provides mechanistic insights into the pathogenesis of HFpEF and molecular mechanisms of QSYQ in HFpEF. We also identified the regulatory role of PKG in myocardial stiffness, making it an ideal therapeutic target for myocardial remodeling.
Collapse
Affiliation(s)
- Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Kai Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Xiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kaimin Guo
- Cloudphar Pharmaceuticals Co., Ltd, Shenzhen, 518000, China
| | - Xiaoqiang Li
- Cloudphar Pharmaceuticals Co., Ltd, Shenzhen, 518000, China
| | - Feng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ruijiao Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sheng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Danping Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bingkai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenjia Wang
- Cloudphar Pharmaceuticals Co., Ltd, Shenzhen, 518000, China
| | - Yunhui Hu
- Cloudphar Pharmaceuticals Co., Ltd, Shenzhen, 518000, China.
| | - Miaomiao Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China.
| |
Collapse
|