1
|
Cai Z, Xing Z, Xu M, Zhao Y, Ye L, Sun W, Tao R, Mi L, Yang B, Wang L, Zhao Y, Liu X, You L. Comparative assessment of silver nanoparticle and silver nitrate toxicities in Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107184. [PMID: 40311212 DOI: 10.1016/j.marenvres.2025.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/15/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Silver nanoparticles (AgNPs) and Ag+ ions are both detected in aquatic environments, posing potential risks to marine ecosystems. Mytilus galloprovincialis is an effective model for monitoring marine environments. In this study, AgNPs were synthesized using a chemical approach, and to distinguish the toxicological effects of AgNPs and AgNO3 in M. galloprovincialis, experiments were conducted using various treatments (control, AgNO3, AgNPs, and AgNPs + cysteine). Our findings revealed that the uptake rate of AgNPs and AgNO3 was different, they predominantly accumulated in the hepatopancreas and gills. qRT-PCR analysis showed varying degrees of alterations in immune genes of HSPA12A, TCTP, sHSP22, sHSP24.1, P63, Bcl-2, and Ras. Histopathological analysis demonstrated disrupted epithelial cell arrangements and connective tissue damage in the hepatopancreas, with the AgNPs exhibiting the most severe damage compared to AgNO3. In addition, AgNPs significantly induced oxidative stress in hemocytes compared to AgNO3, resulting in elevated apoptosis rates. These findings contribute to a deeper understanding of the AgNPs and AgNO3 interactions in marine environments and provide a theoretical basis for the evaluation of marine pollution and biomonitoring strategies.
Collapse
Affiliation(s)
- Zimin Cai
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Zihan Xing
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Mingzhe Xu
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Yuting Zhao
- Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, No. 216 Changjiang Road, Yantai, 264006, PR China
| | - Lin Ye
- Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, No. 216 Changjiang Road, Yantai, 264006, PR China; College of Marine Science, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Wei Sun
- Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, No. 216 Changjiang Road, Yantai, 264006, PR China
| | - Ruijia Tao
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Liuya Mi
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Bowen Yang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Lei Wang
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Yancui Zhao
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Xiaoli Liu
- School of Life Sciences, Ludong University, Yantai, 264025, PR China.
| | - Liping You
- Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, No. 216 Changjiang Road, Yantai, 264006, PR China.
| |
Collapse
|
2
|
Liu L, Yin H, Xu Y, Liu B, Ma Y, Feng J, Cao Z, Jung J, Li P, Li ZH. Environmental behavior and toxic effects of micro(nano)plastics and engineered nanoparticles on marine organisms under ocean acidification: A review. ENVIRONMENTAL RESEARCH 2024; 263:120267. [PMID: 39481783 DOI: 10.1016/j.envres.2024.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Ocean acidification (OA) driven by human activities and climate change presents new challenges to marine ecosystems. At the same time, the risks posed by micro(nano)plastics (MNPs) and engineered nanoparticles (ENPs) to marine ecosystems are receiving increasing attention. Although previous studies have uncovered the environmental behavior and the toxic effects of MNPs and ENPs under OA, there is a lack of comprehensive literature reviews in this field. Therefore, this paper reviews how OA affects the environmental behavior of MNPs and ENPs, and summarizes the effects and the potential mechanisms of their co-exposure on marine organisms. The review indicates that OA changes the marine chemical environment, thereby altering the behavior of MNPs and ENPs. These changes affect their bioavailability and lead to co-exposure effects. This impacts marine organisms' energy metabolism, growth and development, antioxidant systems, reproduction and immunity. The potential mechanisms involved the regulation of signaling pathways, abnormalities in energy metabolism, energy allocation, oxidative stress, decreased enzyme activity, and disruptions in immune and reproductive functions. Finally, based on the limitations of existing research, actual environment and hot issues, we have outlined future research needs and identified key priorities and directions for further investigation. This review deepens our understanding of the potential effects of MNPs and ENPs on marine organisms under OA, while also aiming to promote further research and development in related fields.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
3
|
Ershov VA, Ershov BG. Oxidative Dissolution and the Aggregation of Silver Nanoparticles in Drinking and Natural Waters: The Influence of the Medium on the Process Development. TOXICS 2024; 12:757. [PMID: 39453177 PMCID: PMC11510811 DOI: 10.3390/toxics12100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Currently, there are quite a few data on the ways silver nanoparticles get into the aquatic environment, on their subsequent dissolution in water, and on the release of toxic Ag+ ions. Differences in the experimental conditions hinder the determination of the basic regularities of this process. In this study, the stages of oxidative dissolution of AgNPs were studied, starting from the formation of silver hydrosol in deaerated solution, the reaction of silver with oxygen and with drinking and natural waters, the analysis of intermediate species of the oxidized colloidal particles, and the subsequent particle aggregation and precipitation, by optical spectroscopy, DLS, TEM, STEM, and EDX. In the presence of oxygen, silver nanoparticles undergo oxidative dissolution, which gives Ag+ ions and results in the subsequent aggregation of nanoparticles. The carbonate hydrosol loses stability when mixed with waters of various origin. This is due to the destruction of the electric double layer, which is caused by an increase in the solution's ionic strength and the neutralization of the charge of the metal core. The environmental hazard of the silver nanoparticle hydrosol would noticeably change and/or decrease when the nanoparticles get into natural waters because of their fast precipitation and because the major part of released Ag+ ions form poorly soluble salts with ions present in water.
Collapse
Affiliation(s)
- Vadim A. Ershov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninsky Pr. 31-4, 119071 Moscow, Russia;
| | | |
Collapse
|
4
|
Zeng D, Yang C, Huang Z, Liu Y, Liu S, Zhang Z, Huang W, Dang Z, Chen C. Heteroaggregation kinetics of nanoplastics and soot nanoparticles in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134564. [PMID: 38743982 DOI: 10.1016/j.jhazmat.2024.134564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Heteroaggregation between polystyrene nanoplastics (PSNPs) and soot nanoparticles (STNPs) in aquatic environments may affect their fate and transport. This study investigated the effects of particle concentration ratio, electrolytes, pH, and humic acid on their heteroaggregation kinetics. The critical coagulation concentration (CCC) ranked CCCPSNPs > CCCPSNPs-STNPs > CCCSTNPs, indicating that heteroaggregation rates fell between homoaggregation rates. In NaCl solution, as the PSNPs/STNPs ratio decreased from 9/1 to 3/7, heteroaggregation rate decreased and CCCPSNPs-STNPs increased from 200 to 220 mM due to enhanced electrostatic repulsion. Outlier was observed at PSNPs/STNPs= 1/9, where CCCPSNPs-STNPs= 170 mM and homoaggregation of STNPs dominated. However, in CaCl2 solution where calcium bridged with STNPs, heteroaggregation rate increased and CCCPSNPs-STNPs decreased from 26 to 5 mM as the PSNPs/STNPs ratio decreasing from 9/1 to 1/9. In composite water samples, heteroaggregation occurred only at estuarine and marine salinities. Acidic condition promoted heteroaggregation via charge screening. Humic acid retarded or promoted heteroaggregation in NaCl or CaCl2 solutions by steric hindrance or calcium bridging, respectively. Other than van der Waals attraction and electrostatic repulsion, heteroaggregation was affected by steric hindrance, hydrophobic interactions, π - π interactions, and calcium bridging. The results highlight the role of black carbon on colloidal stability of PSNPs in aquatic environments.
Collapse
Affiliation(s)
- Dehua Zeng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chen Yang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ziqing Huang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yanjun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Sijia Liu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhiyu Zhang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Herruzo-Ruiz AM, Trombini C, Moreno-Garrido I, Blasco J, Alhama J, Michán C. Ions and nanoparticles of Ag and/or Cd metals in a model aquatic microcosm: Effects on the abundance, diversity and functionality of the sediment bacteriome. MARINE POLLUTION BULLETIN 2024; 204:116525. [PMID: 38852299 DOI: 10.1016/j.marpolbul.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Metals can be adsorbed on particulate matter, settle in sediments and cause alterations in aquatic environments. This study assesses the effect of Ag and/or Cd, both in ionic and nanoparticle (NP) forms, on the microbiome of sediments. For that purpose, aquatic controlled-microcosm experiments were exposed to an environmentally relevant and at tenfold higher doses of each form of the metals. Changes in the bacteriome were inferred by 16S rDNA sequencing. Ionic Ag caused a significant decrease of several bacterial families, whereas the effect was opposite when mixed with Cd, e.g., Desulfuromonadaceae family; in both cases, the bacteriome functionalities were greatly affected, particularly the nitrogen and sulfur metabolism. Compared to ionic forms, metallic NPs produced hardly any change in the abundance of microbial families, although the α-biodiversity of the bacteriome was reduced, and the functionality altered, when exposed to the NPs´ mixture. Our goal is to understand how metals, in different forms and combinations, released into the environment may endanger the health of aquatic ecosystems. This work may help to understand how aquatic metal pollution alters the structure and functionality of the microbiome and biogeochemical cycles, and how these changes can be addressed.
Collapse
Affiliation(s)
- Ana M Herruzo-Ruiz
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Chiara Trombini
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - Ignacio Moreno-Garrido
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - Julián Blasco
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain.
| |
Collapse
|
6
|
Yang X, Wang Z, Xu J, Zhang C, Gao P, Zhu L. Effects of dissolved organic matter on the environmental behavior and toxicity of metal nanomaterials: A review. CHEMOSPHERE 2024; 358:142208. [PMID: 38704042 DOI: 10.1016/j.chemosphere.2024.142208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Metal nanomaterials (MNMs) have been released into the environment during their usage in various products, and their environmental behaviors directly impact their toxicity. Numerous environmental factors potentially affect the behaviors and toxicity of MNMs with dissolved organic matter (DOM) playing the most essential role. Abundant facts showing contradictory results about the effects of DOM on MNMs, herein the occurrence of DOM on the environmental process change of MNMs such as dissolution, dispersion, aggregation, and surface transformation were summarized. We also reviewed the effects of MNMs on organisms and their mechanisms in the environment such as acute toxicity, oxidative stress, oxidative damage, growth inhibition, photosynthesis, reproductive toxicity, and malformation. The presence of DOM had the potential to reduce or enhance the toxicity of MNMs by altering the reactive oxygen species (ROS) generation, dissolution, stability, and electrostatic repulsion of MNMs. Furthermore, we summarized the factors that affected different toxicity including specific organisms, DOM concentration, DOM types, light conditions, detection time, and production methods of MNMs. However, the more detailed mechanism of interaction between DOM and MNMs needs further investigation.
Collapse
Affiliation(s)
- Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhangjia Wang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
7
|
Zhang L, Cui Y, Xu J, Qian J, Yang X, Chen X, Zhang C, Gao P. Ecotoxicity and trophic transfer of metallic nanomaterials in aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171660. [PMID: 38490428 DOI: 10.1016/j.scitotenv.2024.171660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Metallic nanomaterials (MNMs) possess unique properties that have led to their widespread application in fields such as electronics and medicine. However, concerns about their interactions with environmental factors and potential toxicity to aquatic life have emerged. There is growing evidence suggesting MNMs can have detrimental effects on aquatic ecosystems, and are potential for bioaccumulation and biomagnification in the food chain, posing risks to higher trophic levels and potentially humans. While many studies have focused on the general ecotoxicity of MNMs, fewer have delved into their trophic transfer within aquatic food chains. This review highlights the ecotoxicological effects of MNMs on aquatic systems via waterborne exposure or dietary exposure, emphasizing their accumulation and transformation across the food web. Biomagnification factor (BMF), the ratio of the contaminant concentration in predator to that in prey, was used to evaluate the biomagnification due to the complex nature of aquatic food chains. However, most current studies have BMF values of less than 1 indicating no biomagnification. Factors influencing MNM toxicity in aquatic environments include nanomaterial properties, ion variations, light, dissolved oxygen, and pH. The multifaceted interactions of these variables with MNM toxicity remain to be fully elucidated. We conclude with recommendations for future research directions to mitigate the adverse effects of MNMs in aquatic ecosystems and advocate for a cautious approach to the production and application of MNMs.
Collapse
Affiliation(s)
- Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yifei Cui
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jingran Qian
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoni Chen
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
8
|
Kim DY, Patel SKS, Rasool K, Lone N, Bhatia SK, Seth CS, Ghodake GS. Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168318. [PMID: 37956842 DOI: 10.1016/j.scitotenv.2023.168318] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Plant pathogens, including bacteria, fungi, and viruses, pose significant challenges to the farming community due to their extensive diversity, the rapidly evolving phenomenon of multi-drug resistance (MDR), and the limited availability of effective control measures. Amid mounting global pressure, particularly from the World Health Organization, to limit the use of antibiotics in agriculture and livestock management, there is increasing consideration of engineered nanomaterials (ENMs) as promising alternatives for antimicrobial applications. Studies focusing on the application of ENMs in the fight against MDR pathogens are receiving increasing attention, driven by significant losses in agriculture and critical knowledge gaps in this crucial field. In this review, we explore the potential contributions of silver nanoparticles (AgNPs) and their nanocomposites in combating plant diseases, within the emerging interdisciplinary arena of nano-phytopathology. AgNPs and their nanocomposites are increasingly acknowledged as promising countermeasures against plant pathogens, owing to their unique physicochemical characteristics and inherent antimicrobial properties. This review explores recent advancements in engineered nanocomposites, highlights their diverse mechanisms for pathogen control, and draws attention to their potential in antibacterial, antifungal, and antiviral applications. In the discussion, we briefly address three crucial dimensions of combating plant pathogens: green synthesis approaches, toxicity-environmental concerns, and factors influencing antimicrobial efficacy. Finally, we outline recent advancements, existing challenges, and prospects in scholarly research to facilitate the integration of nanotechnology across interdisciplinary fields for more effective treatment and prevention of plant diseases.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | | | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nasreena Lone
- School of Allied Healthcare and Sciences, JAIN Deemed University, Whitefield, Bangalore 560066, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
9
|
Yang Y, Wang K, Liu X, Xu C, You Q, Zhang Y, Zhu L. Environmental behavior of silver nanomaterials in aquatic environments: An updated review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167861. [PMID: 37852494 DOI: 10.1016/j.scitotenv.2023.167861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
The increasing applications of silver nanomaterials (nano-Ag) and their inevitable release posed great potential risks to aquatic organisms and ecosystems. Considerable attention has been attracted on their behaviors and transformations, which were critically important for their subsequent biological toxicities and ecological effects. Therefore, the summary of the recent efforts on the environmental behavior of nano-Ag would be beneficial for understanding the environmental fate and accurate risk assessment. This review summarized the studies on various physical, chemical and biological transformations of nano-Ag, meanwhile, the influencing factors (including the intrinsic properties and environmental conditions) and related mechanisms were highlighted. Surface structure and facets of nano-Ag, abiotic conditions and natural freeze-thaw cycle processes could affect the transformations of nano-Ag under different environmental scenarios (including freshwater, seawater and wastewater). The interactions with co-present components, such as chemicals and other particles, impacted the multiple processes of nano-Ag. Besides, the contradictory effects and mechanisms by several environmental factors were summarized. Lastly, the key knowledge gaps and some aspects that deserve further investigation were also addressed. Therefore, the current review aimed to provide an overall analysis of transformation processes of nano-Ag, which will provide more available information and pave the way for the future research areas.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinwei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunyi Xu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi You
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Li G, Liu X, Wang H, Liang S, Xia B, Sun K, Li X, Dai Y, Yue T, Zhao J, Wang Z, Xing B. Detection, distribution and environmental risk of metal-based nanoparticles in a coastal bay. WATER RESEARCH 2023; 242:120242. [PMID: 37390658 DOI: 10.1016/j.watres.2023.120242] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Metal-based nanoparticles (NPs) attract increasing concerns because of their adverse effects on aquatic ecosystems. However, their environmental concentrations and size distributions are largely unknown, especially in marine environments. In this work, environmental concentrations and risks of metal-based NPs were examined in Laizhou Bay (China) using single-particle inductively coupled plasma-mass spectrometry (sp-ICP-MS). First, separation and detection approaches of metal-based NPs were optimized for seawater and sediment samples with high recoveries of 96.7% and 76.3%, respectively. Spatial distribution results showed that Ti-based NPs had the highest average concentrations for all the 24 stations (seawater, 1.78 × 108 particles/L; sediments, 7.75 × 1012 particles/kg), followed by Zn-, Ag-, Cu-, and Au-based NPs. For all the NPs in seawater, the highest abundance occurred around the Yellow River Estuary, resulting from a huge input from Yellow River. In addition, the sizes of metal-based NPs were generally smaller in sediments than those in seawater (22, 20, 17, and 16 of 22 stations for Ag-, Cu-, Ti-, and Zn-based NPs, respectively). Based on the toxicological data of engineered NPs, predicted no-effect concentrations (PNECs) to marine species were calculated as Ag at 72.8 ng/L < ZnO at 2.66 µg/L < CuO at 7.83 µg/L < TiO2 at 72.0 µg/L, and the actual PNECs of the detected metal-based NPs may be higher due to the possible presence of natural NPs. Station 2 (around the Yellow River Estuary) was assessed as "high risk" for Ag- and Ti-based NPs with risk characterization ratio (RCR) values of 1.73 and 1.66, respectively. In addition, RCRtotal values for all the four metal-based NPs were calculated to fully assess the co-exposure environmental risk, with 1, 20, and 1 of 22 stations as "high risk", "medium risk", and "low risk", respectively. This study helps to better understand the risks of metal-based NPs in marine environments.
Collapse
Affiliation(s)
- Guoxin Li
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Xia Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Hao Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Shengkang Liang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao 266100, PR China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Ke Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Xinyu Li
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
11
|
Algethami JS, Amna T, S Alqarni L, Alshahrani AA, Alhamami MAM, Seliem AF, Al-Dhuwayin BHA, Hassan MS. Production of Ceramics/Metal Oxide Nanofibers via Electrospinning: New Insights into the Photocatalytic and Bactericidal Mechanisms. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5148. [PMID: 37512422 PMCID: PMC10386518 DOI: 10.3390/ma16145148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Environmental pollution is steadily rising and is having a negative influence on all living things, especially human beings. The advancement of nanoscience in recent decades has provided potential to address this issue. Functional metal oxide nanoparticles/nanofibers have been having a pull-on effect in the biological and environmental domains of nanobiotechnology. Current work, for the first time, is focusing on the electrospinning production of Zr0.5Sn0.5TiO3/SnO2 ceramic nanofibers that may be utilized to battle lethal infections swiftly and inexpensively. By using characterizations like XRD, FT-IR, FESEM, TEM, PL, and UV-Vis-DRS, the composition, structure, morphology, and optical absorption of samples were determined. The minimum inhibitory concentration (MIC) approach was used to investigate the antibacterial activity. Notably, this research indicated that nanofibers exert antibacterial action against both Gram-positive and Gram-negative bacteria with a MIC of 25 µg/mL. Furthermore, negatively charged E. coli was drawn to positively charged metal ions of Zr0.5Sn0.5TiO3/SnO2, which showed a robust inhibitory effect against E. coli. It was interesting to discover that, compared to pure TiO2, Zr0.5Sn0.5TiO3/SnO2 nanofibers revealed increased photocatalytic activity and exceptional cyclability to the photodegradation of Rhodamine B. The composite completely degrades dye in 30 min with 100% efficacy and excellent (97%) reusability. The synergetic effects of Zr0.5Sn0.5TiO3 and SnO2 may be responsible for increased photocatalytic and bactericidal activity.
Collapse
Affiliation(s)
- Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
| | - Touseef Amna
- Department of Biology, College of Science, Al-Baha University, Albaha 65799, Saudi Arabia
| | - Laila S Alqarni
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Aisha A Alshahrani
- Department of Chemistry, College of Science, Al-Baha University, Albaha 65799, Saudi Arabia
| | - Mohsen A M Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Amal F Seliem
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Badria H A Al-Dhuwayin
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - M Shamshi Hassan
- Department of Chemistry, College of Science, Al-Baha University, Albaha 65799, Saudi Arabia
| |
Collapse
|
12
|
Skvortsov AN, Ilyechova EY, Puchkova LV. Chemical background of silver nanoparticles interfering with mammalian copper metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131093. [PMID: 36905906 DOI: 10.1016/j.jhazmat.2023.131093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The rapidly increasing application of silver nanoparticles (AgNPs) boosts their release into the environment, which raises a reasonable alarm for ecologists and health specialists. This is manifested as increased research devoted to the influence of AgNPs on physiological and cellular processes in various model systems, including mammals. The topic of the present paper is the ability of silver to interfere with copper metabolism, the potential health effects of this interference, and the danger of low silver concentrations to humans. The chemical properties of ionic and nanoparticle silver, supporting the possibility of silver release by AgNPs in extracellular and intracellular compartments of mammals, are discussed. The possibility of justified use of silver for the treatment of some severe diseases, including tumors and viral infections, based on the specific molecular mechanisms of the decrease in copper status by silver ions released from AgNPs is also discussed.
Collapse
Affiliation(s)
- Alexey N Skvortsov
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Ekaterina Yu Ilyechova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia.
| | - Ludmila V Puchkova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia
| |
Collapse
|
13
|
Ferreira V, Figueiredo J, Martins R, Sushkova A, Maia F, Calado R, Tedim J, Loureiro S. Characterization and Behaviour of Silica Engineered Nanocontainers in Low and High Ionic Strength Media. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111738. [PMID: 37299641 DOI: 10.3390/nano13111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Mesoporous silica engineered nanomaterials are of interest to the industry due to their drug-carrier ability. Advances in coating technology include using mesoporous silica nanocontainers (SiNC) loaded with organic molecules as additives in protective coatings. The SiNC loaded with the biocide 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT), i.e., SiNC-DCOIT, is proposed as an additive for antifouling marine paints. As the instability of nanomaterials in ionic-rich media has been reported and related to shifting key properties and its environmental fate, this study aims at understanding the behaviour of SiNC and SiNC-DCOIT in aqueous media with distinct ionic strengths. Both nanomaterials were dispersed in (i) low- (ultrapure water-UP) and (ii) high- ionic strength media-artificial seawater (ASW) and f/2 medium enriched in ASW (f/2 medium). The morphology, size and zeta potential (ζP) of both engineering nanomaterials were evaluated at different timepoints and concentrations. Results showed that both nanomaterials were unstable in aqueous suspensions, with the initial ζP values in UP below -30 mV and the particle size varying from 148 to 235 nm and 153 to 173 nm for SiNC and SiNC-DCOIT, respectively. In UP, aggregation occurs over time, regardless of the concentration. Additionally, the formation of larger complexes was associated with modifications in the ζP values towards the threshold of stable nanoparticles. In ASW, SiNC and SiNC-DCOIT formed aggregates (<300 nm) independently of the time or concentration, while larger and heterogeneous nanostructures (>300 nm) were detected in the f/2 medium. The pattern of aggregation detected may increase engineering nanomaterial sedimentation rates and enhance the risks towards dwelling organisms.
Collapse
Affiliation(s)
- Violeta Ferreira
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Figueiredo
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Roberto Martins
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alesia Sushkova
- CICECO-Aveiro Institute of Materials & Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Frederico Maia
- Smallmatek-Small Materials and Technologies, Lda., Rua Canhas, 3810-075 Aveiro, Portugal
| | - Ricardo Calado
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Tedim
- CICECO-Aveiro Institute of Materials & Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana Loureiro
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Silva PV, Silva ARR, Clark NJ, Vassallo J, Baccaro M, Medvešček N, Grgić M, Ferreira A, Busquets-Fité M, Jurkschat K, Papadiamantis AG, Puntes V, Lynch I, Svendsen C, van den Brink NW, Handy RD, van Gestel CAM, Loureiro S. Toxicokinetics and bioaccumulation of silver sulfide nanoparticles in benthic invertebrates in an indoor stream mesocosm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162160. [PMID: 36775152 DOI: 10.1016/j.scitotenv.2023.162160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Mesocosms allow the simulation of environmentally relevant conditions and can be used to establish more realistic scenarios of organism exposure to nanoparticles. An indoor mesocosm experiment simulating an aquatic stream ecosystem was conducted to assess the toxicokinetics and bioaccumulation of silver sulfide nanoparticles (Ag2S NPs) and AgNO3 in the freshwater invertebrates Girardia tigrina, Physa acuta and Chironomus riparius, and determine if previous single-species tests can predict bioaccumulation in the mesocosm. Water was daily spiked at 10 μg Ag L-1. Ag concentrations in water and sediment reached values of 13.4 μg Ag L-1 and 0.30 μg Ag g-1 in the Ag2S NP exposure, and 12.8 μg Ag L-1 and 0.20 μg Ag g-1 in the AgNO3. Silver was bioaccumulated by the species from both treatments, but with approximately 1.5, 3 and 11 times higher body Ag concentrations in AgNO3 compared to Ag2S NP exposures in snails, chironomids and planarians, respectively. In the Ag2S NP exposures, the observed uptake was probably of the particulate form. This demonstrates that this more environmentally relevant Ag nanoform may be bioavailable for uptake by benthic organisms. Interspecies interactions likely occurred, namely predation (planarians fed on chironomids and snails), which somehow influenced Ag uptake/bioaccumulation, possibly by altering organisms´ foraging behaviour. Higher Ag uptake rate constants were determined for AgNO3 (0.64, 80.4 and 1.12 Lwater g-1organism day-1) than for Ag2S NPs (0.05, 2.65 and 0.32 Lwater g-1organism day-1) for planarians, snails and chironomids, respectively. Biomagnification under environmentally realistic exposure seemed to be low, although it was likely to occur in the food chain P. acuta to G. tigrina exposed to AgNO3. Single-species tests generally could not reliably predict Ag bioaccumulation in the more complex mesocosm scenario. This study provides methodologies/data to better understand exposure, toxicokinetics and bioaccumulation of Ag in complex systems, reinforcing the need to use mesocosm studies to improve the risk assessment of environmental contaminants, specifically NPs, in aquatic environments.
Collapse
Affiliation(s)
- Patrícia V Silva
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana Rita R Silva
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Joanne Vassallo
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Marta Baccaro
- Department of Toxicology, Wageningen University, Wageningen, the Netherlands
| | - Neja Medvešček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Magdalena Grgić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Abel Ferreira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | - Kerstin Jurkschat
- Department of Materials, Oxford University Begbroke Science Park, Begbroke, UK
| | - Anastasios G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK; NovaMechanics Ltd., 1065 Nicosia, Cyprus
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Claus Svendsen
- Centre of Ecology and Hydrology (CEH-NERC), Wallingford, UK
| | | | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Susana Loureiro
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
He J, Li J, Gao Y, He X, Hao G. Nano-based smart formulations: A potential solution to the hazardous effects of pesticide on the environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131599. [PMID: 37210783 DOI: 10.1016/j.jhazmat.2023.131599] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 05/23/2023]
Abstract
Inefficient usage, overdose, and post-application losses of conventional pesticides have resulted in severe ecological and environmental issues, such as pesticide resistance, environmental contamination, and soil degradation. Advances in nano-based smart formulations are promising novel methods to decrease the hazardous impacts of pesticide on the environment. In light of the lack of a systematic and critical summary of these aspects, this work has been structured to critically assess the roles and specific mechanisms of smart nanoformulations (NFs) in mitigating the adverse impacts of pesticide on the environment, along with an evaluation of their final environmental fate, safety, and application prospects. Our study provides a novel perspective for a better understanding of the potential functions of smart NFs in reducing environmental pollution. Additionally, this study offers meaningful information for the safe and effective use of these nanoproducts in field applications in the near future.
Collapse
Affiliation(s)
- Jie He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Jianhong Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Xiongkui He
- College of Science, China Agricultural University, Beijing 100193, PR China; College of Agricultural Unmanned System, China Agricultural University, Beijing 100193, PR China.
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
16
|
Wei M, Xiang Q, Wang P, Chen L, Ren M. Ambivalent effects of dissolved organic matter on silver nanoparticles/silver ions transformation: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130533. [PMID: 37055958 DOI: 10.1016/j.jhazmat.2022.130533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 06/19/2023]
Abstract
The numerous applications of silver nanoparticles (AgNPs) lead to their spread in aquatic systems and the release of silver ions (Ag+), which brings potential risks to environment and human health. Owing to the different toxicity, the mutual transformations between AgNPs and Ag+ has been a hot topic of research. Dissolved organic matter (DOM) is ubiquitous on the earth and almost participates in all the reactions in the nature. The previous studies have reported the roles of DOM played in the transformation between AgNPs and Ag+. However, different experiment conditions commonly caused contradictory results, leading to the difficulty to predict the fate of AgNPs in specific reactions. Here we summarized mechanisms of DOM-mediated AgNPs oxidation and Ag+ reduction, and analyzed the effects of environmental parameters. Moreover, the knowledge gaps, challenges, and new opportunities for research in this field are discussed. This review will promote the understanding of the fate and risk assessments of AgNPs in natural water systems.
Collapse
Affiliation(s)
- Minxiang Wei
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Qianqian Xiang
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, PR China
| | - Peng Wang
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China
| | - Liqiang Chen
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China.
| | - Meijie Ren
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
17
|
Abramenko N, Semenova M, Khina A, Zherebin P, Krutyakov Y, Krysanov E, Kustov L. The Toxicity of Coated Silver Nanoparticles and Their Stabilizers towards Paracentrotus lividus Sea Urchin Embryos. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4003. [PMID: 36432289 PMCID: PMC9695290 DOI: 10.3390/nano12224003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Surface modification of nanoparticles with different stabilizers is one of the most widely used methods to improve their stability and applicability. Silver nanoparticle (AgNPs) dispersions with biologically active stabilizers have great potential as plant protection products with synergetic antimicrobial properties and sufficient stability in terms of field application. The obtained AgNPs dispersions have the ability to enhance growth, increase yield and give better protection to various crops. At the same time, it is important to determine the fate, stability, and ecotoxicity of the applied nanosized products. The toxic effects of AgNPs dispersions and their constituents, organic stabilizers and additives, were evaluated using a phenotypic sea urchin embryo assay. Certain AgNPs dispersions with organic stabilizers demonstrated sufficient stability, even in seawater. The toxicity of the AgNPs decreased with the increasing tendency to agglomerate in seawater. Furthermore, the applied stabilizers were hazardous towards sea urchin embryos. They caused pronounced embryo abnormalities at 0.25-2.6 mg/L concentrations. AgNPs exhibited a lethal effect at concentrations that were equal to the MLC or exceeded the MEC of their stabilizers. Silver ions were more toxic towards sea urchin embryos than AgNPs.
Collapse
Affiliation(s)
- Natalia Abramenko
- N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, Moscow 119991, Russia
- A.N. Severtsov Institute of Problems of Ecology and Evolution RAS, 33 Leninsky Prospect, Moscow 119071, Russia
| | - Marina Semenova
- N.K. Koltzov Institute of Developmental Biology RAS, 26 Vavilov Street, Moscow 119334, Russia
| | - Alexander Khina
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| | - Pavel Zherebin
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| | - Yurii Krutyakov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
- National Research Center “Kurchatov Institute”, 1 Kurchatov Square, Moscow 123182, Russia
| | - Evgeny Krysanov
- A.N. Severtsov Institute of Problems of Ecology and Evolution RAS, 33 Leninsky Prospect, Moscow 119071, Russia
| | - Leonid Kustov
- N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|
18
|
Bellingeri A, Scattoni M, Venditti I, Battocchio C, Protano G, Corsi I. Ecologically based methods for promoting safer nanosilver for environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129523. [PMID: 35820334 DOI: 10.1016/j.jhazmat.2022.129523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Nanosilver, widely employed in consumer products as biocide, has been recently proposed as sensor, adsorbent and photocatalyst for water pollution monitoring and remediation. Since nanosilver ecotoxicity still pose limitations to its environmental application, a more ecological exposure testing strategy should be coupled to the development of safer formulations. Here, we tested the environmental safety of novel bifunctionalized nanosilver capped with citrate and L-cysteine (AgNPcitLcys) as sensor/sorbent of Hg2+ in terms of behaviour and ecotoxicity on microalgae (1-1000 µg/L) and microcrustaceans (0.001-100 mg/L), from the freshwater and marine environment, in acute and chronic scenarios. Acute toxicity resulted poorly descriptive of nanosilver safety while chronic exposure revealed stronger effects up to lethality. Low dissolution of silver ions from AgNPcitLcys was observed, however a nano-related ecotoxicity is hypothesized. Double coating of AgNPcitLcys succeeded in mitigating ecotoxicity to tested organisms, hence encouraging further research on safer nanosilver formulations. Environmentally safe applications of nanosilver should focus on ecologically relevant exposure scenarios rather than relying only on acute exposure data.
Collapse
Affiliation(s)
- Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Mattia Scattoni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Giuseppe Protano
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| |
Collapse
|
19
|
Lei P, Zou N, Liu Y, Cai W, Wu M, Tang W, Zhong H. Understanding the risks of mercury sulfide nanoparticles in the environment: Formation, presence, and environmental behaviors. J Environ Sci (China) 2022; 119:78-92. [PMID: 35934468 DOI: 10.1016/j.jes.2022.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) could be microbially methylated to the bioaccumulative neurotoxin methylmercury (MeHg), raising health concerns. Understanding the methylation of various Hg species is thus critical in predicting the MeHg risk. Among the known Hg species, mercury sulfide (HgS) is the largest Hg reservoir in the lithosphere and has long been considered to be highly inert. However, with advances in the analytical methods of nanoparticles, HgS nanoparticles (HgS NPs) have recently been detected in various environmental matrices or organisms. Furthermore, pioneering laboratory studies have reported the high bioavailability of HgS NPs. The formation, presence, and transformation (e.g., methylation) of HgS NPs are intricately related to several environmental factors, especially dissolved organic matter (DOM). The complexity of the behavior of HgS NPs and the heterogeneity of DOM prevent us from comprehensively understanding and predicting the risk of HgS NPs. To reveal the role of HgS NPs in Hg biogeochemical cycling, research needs should focus on the following aspects: the formation pathways, the presence, and the environmental behaviors of HgS NPs impacted by the dominant influential factor of DOM. We thus summarized the latest progress in these aspects and proposed future research priorities, e.g., developing the detection techniques of HgS NPs and probing HgS NPs in various matrices, further exploring the interactions between DOM and HgS NPs. Besides, as most of the previous studies were conducted in laboratories, our current knowledge should be further refreshed through field observations, which would help to gain better insights into predicting the Hg risks in natural environment.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Nan Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yujiao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Weiping Cai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenli Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough Ontario, K9L 0G2, Canada.
| |
Collapse
|
20
|
Bokhary KA, Maqsood F, Amina M, Aldarwesh A, Mofty HK, Al-yousef HM. Grapefruit Extract-Mediated Fabrication of Photosensitive Aluminum Oxide Nanoparticle and Their Antioxidant and Anti-Inflammatory Potential. NANOMATERIALS 2022; 12:nano12111885. [PMID: 35683744 PMCID: PMC9182307 DOI: 10.3390/nano12111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
Aluminum oxide nanoparticles (Al2O3 NPs) were synthesized using a simple, eco-friendly green synthesis approach in an alkaline medium from the extract of grapefruit peel waste. The pre-synthesized, nano-crystalline Al2O3 NPs were characterized by using spectroscopic (UV-vis, FTIR, XRD, and EDX) and microscopic (SEM and TEM) techniques. The formed Al2O3 NPs exhibited a pronounced absorption peak at 278 nm in the UV-vis spectrum. The average particle size of the as-prepared Al2O3 NPs was evaluated to be 57.34 nm, and the atomic percentages of O and Al were found to be 54.58 and 45.54, respectively. The fabricated Al2O3 NPs were evaluated for antioxidant, anti-inflammatory, and immunomodulatory properties. The Al2O3 NPs showed strong antioxidant potential towards all the four tested assays. The anti-inflammatory and immunomodulatory potential of Al2O3 NPs was investigated by measuring the production of nitric oxide and superoxide anion (O2•-), as well as proinflammatory cytokines tumour necrosis factor (TNF-α, IL-6) and inhibition of nuclear factor kappa B (NF- κB). The results revealed that Al2O3 NPs inhibited the production of O2•- (99.4%) at 100 μg mL-1 concentrations and intracellular NO•- (55%), proinflammatory cytokines IL-6 (83.3%), and TNF-α (87.9%) at 50 μg mL-1 concentrations, respectively. Additionally, the Al2O3 NPs inhibited 41.8% of nuclear factor kappa B at 20 μg mL-1 concentrations. Overall, the outcomes of current research studies indicated that Al2O3 NPs possess anti-inflammatory and immunomodulatory properties and could be used to treat chronic and acute anti-inflammatory conditions.
Collapse
Affiliation(s)
- Kholoud A. Bokhary
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Farah Maqsood
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Musarat Amina
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence:
| | - Amal Aldarwesh
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Hanan K. Mofty
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Hanan M. Al-yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
21
|
Mbanga O, Cukrowska E, Gulumian M. Dissolution kinetics of silver nanoparticles: Behaviour in simulated biological fluids and synthetic environmental media. Toxicol Rep 2022; 9:788-796. [DOI: 10.1016/j.toxrep.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022] Open
|
22
|
Corsi I, Desimone MF, Cazenave J. Building the Bridge From Aquatic Nanotoxicology to Safety by Design Silver Nanoparticles. Front Bioeng Biotechnol 2022; 10:836742. [PMID: 35350188 PMCID: PMC8957934 DOI: 10.3389/fbioe.2022.836742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 01/13/2023] Open
Abstract
Nanotechnologies have rapidly grown, and they are considered the new industrial revolution. However, the augmented production and wide applications of engineered nanomaterials (ENMs) and nanoparticles (NPs) inevitably lead to environmental exposure with consequences on human and environmental health. Engineered nanomaterial and nanoparticle (ENM/P) effects on humans and the environment are complex and largely depend on the interplay between their peculiar properties such as size, shape, coating, surface charge, and degree of agglomeration or aggregation and those of the receiving media/body. These rebounds on ENM/P safety and newly developed concepts such as the safety by design are gaining importance in the field of sustainable nanotechnologies. This article aims to review the critical characteristics of the ENM/Ps that need to be addressed in the safe by design process to develop ENM/Ps with the ablility to reduce/minimize any potential toxicological risks for living beings associated with their exposure. Specifically, we focused on silver nanoparticles (AgNPs) due to an increasing number of nanoproducts containing AgNPs, as well as an increasing knowledge about these nanomaterials (NMs) and their effects. We review the ecotoxicological effects documented on freshwater and marine species that demonstrate the importance of the relationship between the ENM/P design and their biological outcomes in terms of environmental safety.
Collapse
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jimena Cazenave
- Laboratorio de Ictiología, Instituto Nacional de Limnología (INALI), CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
- *Correspondence: Jimena Cazenave,
| |
Collapse
|
23
|
Ma LY, Li QY, Yu X, Jiang M, Xu L. Recent developments in the removal of metal-based engineered nanoparticles from the aquatic environments by adsorption. CHEMOSPHERE 2022; 291:133089. [PMID: 34856236 DOI: 10.1016/j.chemosphere.2021.133089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, metal-based engineered nanoparticles (m-ENPs) are ubiquitous in aquatic environments for their wide applications in all walks of life. m-ENPs have been demonstrated to exert ecotoxicity, cytotoxicity and genotoxicity towards organisms and even humans. Therefore, the removal of m-ENPs from water has recently become a hot global concerned issue. Adsorption is widely investigated for this purpose, owing to its advantages of low cost, easy operation, high removal efficiency and potential recycling use of both the adsorbents and adsorbates. As the adsorption and related technologies were hardly comprehensively overviewed for the removal of m-ENPs, herein, the present review particularly focuses on this topic. The fundamentals to the technology, including adsorption isotherm, adsorption dynamics, the adsorption process with the special emphasis on the relationship between surface area and porosity of the adsorbent and the adsorption capacity, etc., are fully discussed. As the kernel of the adsorption method, adsorbents with diversified chemical and physical properties in different types are comprehensively elaborated. The primary factors affecting the adsorption, and adsorption mechanisms are well summarized. Particularly, the regeneration of the adsorbents and the reuse of adsorbed m-ENPs are highlighted for the sustainability. Finally, challenges and prospects in this field are outlined. Overall, this review aims to provide valuable references for the development of new adsorbents with more efficient and practical applications to remove m-ENPs and direct the future study.
Collapse
Affiliation(s)
- Li-Yun Ma
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qin-Ying Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
24
|
Dissolution of Silver Nanoparticles in Stratified Estuarine Mesocosms and Silver Accumulation in a Simple Planktonic Freshwater Trophic Chain. ENVIRONMENTS 2022. [DOI: 10.3390/environments9020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The increasing presence of nanomaterials in consumer products has led the scientific community to study the environmental fate of these contaminants of emerging concern. Silver nanoparticles, used mainly for their antibacterial properties, are among the most common nanomaterials. Understanding their transformations and interactions with living organisms, especially under environmentally relevant conditions that can modify metal bioavailability, is a crucial step in the study of their impacts on aquatic ecosystems. In the present study, citrate-coated silver nanoparticles (20 nm; 10 µg/L) were added to the surface freshwater layer of mesocosms simulating a stratified estuary. The investigation by dialysis of the nanoparticle dissolution showed that a large amount of total silver was found in the freshwater layer (and a very low amount in the seawater layer) and that 5–15% was in the form of dissolved silver. These results indicate that the halocline, separating fresh water from seawater, acted as a strong density barrier limiting the sedimentation of the nanoparticles. A simple trophic chain, composed of the freshwater alga Chlamydomonas reinhardtii and the invertebrate Daphnia magna, was used to determine silver bioavailability. This study suggests that citrate-coated silver nanoparticles do not significantly contribute to Ag accumulation by algae but may do so for invertebrates.
Collapse
|
25
|
Li P, Liu J, Zhang H. Insights into the interaction of microplastic with silver nanoparticles in natural surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150315. [PMID: 34537696 DOI: 10.1016/j.scitotenv.2021.150315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The combined pollution induced by microplastics (MPs) and other pollutants, such as nanomaterials, has received increasing attention. The interaction between MPs and silver nanoparticles (AgNPs) may affect both their behaviors in natural environments, however, knowledge on these effects remains limited. In this study, AgNPs and three common MPs, polypropylene (PP), polyethylene (PE), and polystyrene (PS), were co-exposed to natural freshwater and brackish water to investigate the interaction between MPs and AgNPs in natural surface water. The results showed that the environmental behaviour of AgNPs in natural freshwater and brackish water is first of all affected by water chemistry and only in second instance affected by MPs. In natural freshwater, AgNPs remained stable largely dominated by dissolved organic matter (DOM), parts of which were subsequently captured by three MPs in the form of single particles without significant difference. In contrast, both ionic strength and DOM contributed to the aggregation of AgNPs in natural brackish water. PE and PP captured a small amount of AgNPs in the form of aggregates in natural brackish water, while the majority of AgNP aggregates were trapped by PS in natural brackish water. Therefore, both water chemistry and MPs types were found to play crucial roles in the interaction between MPs and AgNPs. These observations also revealed that MPs could serve as carriers for AgNP transport and advance the current understanding of combined pollution between MPs and engineered nanomaterials in natural aquatic environments.
Collapse
Affiliation(s)
- Penghui Li
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jingfu Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongwu Zhang
- School of Chemistry and Material Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
26
|
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| |
Collapse
|
27
|
Millour M, Gagné JP, Doiron K, Marcotte I, Arnold AA, Pelletier É. Effects of concentration and chemical composition of natural organic matter on the aggregative behavior of silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Eco-Interactions of Engineered Nanomaterials in the Marine Environment: Towards an Eco-Design Framework. NANOMATERIALS 2021; 11:nano11081903. [PMID: 34443734 PMCID: PMC8398366 DOI: 10.3390/nano11081903] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
Marine nano-ecotoxicology has emerged with the purpose to assess the environmental risks associated with engineered nanomaterials (ENMs) among contaminants of emerging concerns entering the marine environment. ENMs’ massive production and integration in everyday life applications, associated with their peculiar physical chemical features, including high biological reactivity, have imposed a pressing need to shed light on risk for humans and the environment. Environmental safety assessment, known as ecosafety, has thus become mandatory with the perspective to develop a more holistic exposure scenario and understand biological effects. Here, we review the current knowledge on behavior and impact of ENMs which end up in the marine environment. A focus on titanium dioxide (n-TiO2) and silver nanoparticles (AgNPs), among metal-based ENMs massively used in commercial products, and polymeric NPs as polystyrene (PS), largely adopted as proxy for nanoplastics, is made. ENMs eco-interactions with chemical molecules including (bio)natural ones and anthropogenic pollutants, forming eco- and bio-coronas and link with their uptake and toxicity in marine organisms are discussed. An ecologically based design strategy (eco-design) is proposed to support the development of new ENMs, including those for environmental applications (e.g., nanoremediation), by balancing their effectiveness with no associated risk for marine organisms and humans.
Collapse
|
29
|
Aguilar-Pérez KM, Avilés-Castrillo JI, Ruiz-Pulido G, Medina DI, Parra-Saldivar R, Iqbal HMN. Nanoadsorbents in focus for the remediation of environmentally-related contaminants with rising toxicity concerns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146465. [PMID: 34030232 DOI: 10.1016/j.scitotenv.2021.146465] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 02/05/2023]
Abstract
Modern lifestyle demands high-end commodities, for instance, cosmetics, detergents, shampoos, household cleaning, sanitary items, medicines, and so forth. In recent years, these products' consumption has increased considerably, being antibiotics and some other pharmaceutical and personal care products (PPCPs). Several antibiotics and PPCPs represent a wide range of emerging contaminants with a straight ingress into aquatic systems, given their high persistence in seawater, effluent treatment plants, and even drinking water. Under these considerations, the necessity of developing new and affordable technologies for the treatment and sustainable mitigation of pollutants is highly requisite for a safer and cleaner environment. One possible mitigation solution is an effective deployment of nanotechnological cues as promising matrices that can contribute by attending issues and improving the current strategies to detect, prevent, and mitigate hazardous pollutants in water. Focused on nanoparticles' distinctive physical and chemical properties, such as high surface area, small size, and shape, metallic nanoparticles (MNPs) have been investigated for water remediation. MNPs gained increasing interest among research groups due to their superior efficiency, stability, and high catalyst activity compared with conventional systems. This review summarizes the occurrence of antibiotics and PPCPs and the application of MNPs as pollutant mitigators in the aquatic environment. The work also focuses on transportation fate, toxicity, and current regulations for environmental safety.
Collapse
Affiliation(s)
- K M Aguilar-Pérez
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico 52926, Mexico.
| | - J I Avilés-Castrillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico 52926, Mexico
| | - Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico 52926, Mexico.
| | - Dora I Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico 52926, Mexico.
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
30
|
Zhao J, Li Y, Wang X, Xia X, Shang E, Ali J. Ionic-strength-dependent effect of suspended sediment on the aggregation, dissolution and settling of silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116926. [PMID: 33751945 DOI: 10.1016/j.envpol.2021.116926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Suspended sediment (SS) is ubiquitous in natural waters and plays a key role in the fate of engineered nanomaterials. In this study, the effect of SS on the aggregation, settling, and dissolution of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) was investigated under environmentally relevant conditions. The heteroaggregation of AgNPs with SS was not observed at low ionic strength (≤0.01 M) due to high electrostatic repulsion and steric forces. At higher NaCl concentrations (0.1 and 0.3 M), PVP-AgNPs were found to attach onto the SS surface, and the formation of AgNP-SS heteroaggregates strongly promoted settling of PVP-AgNPs due to the overwhelming gravity force. PVP-AgNP dissolution was reduced after the addition of sediment to ultrapure water because the presence of sediment-associated dissolved organic matter (SS-DOM). The formation of an AgCl layer on PVP-AgNP surface in 0.01 M NaCl solution resulted in the minor effect of SS on AgNP dissolution. After addition of SS, the dissolved silver concentrations of PVP-AgNP increased in 0.1 and 0.3 M NaCl solution. The interactions of SS-DOM with AgNPs under different NaCl concentrations interfered the dissolution of AgNPs in sediment-laden water. This study provides new insight into the fate of AgNPs in sediment-laden water under various environmental conditions.
Collapse
Affiliation(s)
- Jian Zhao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Xinjie Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Enxiang Shang
- College of Science and Technology, Hebei Agricultural University, Huanghua, Hebei, 061100, China
| | - Jawad Ali
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
31
|
Millour M, Gagné JP, Doiron K, Lemarchand K, Pelletier É. Silver nanoparticles aggregative behavior at low concentrations in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|