1
|
Valles-Morera A, Murillo T, Lizano-Bolaños J, Gutierrez-Roche S, Alvarado M, Alfaro-Alvarado J, Calvo-Salas GA, Prado-Hidalgo G, Ortega J, Corrales-Aguilar E. Exposure to non-endemic arboviruses (alphaviruses) in Costa Rica assessed from human samples collected in areas with contrasting levels of dengue endemicity. Front Public Health 2025; 13:1537019. [PMID: 40046122 PMCID: PMC11879952 DOI: 10.3389/fpubh.2025.1537019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Arboviruses represent a global public health challenge. The lack of diagnostic protocols and the presence of asymptomatic infections complicate confirmatory diagnostics. Alphaviruses, such as the equine encephalitis viruses, can cause severe outbreaks and are usually misdiagnosed as dengue. Thus, evidence for their circulation was assessed here. Plaque reduction neutralization test (PRNT) was used to compare sera collected during 2022-2023 from an area with high dengue endemicity (Hone Creek) with another with low endemicity (Great Metropolitan Area, GMA) to elucidate the putative alphavirus circulation and determine whether there were differences between the two areas. The screening results of PRNT50% against the Venezuelan equine encephalitis virus (VEEV) and the Eastern equine encephalitis virus showed that 20.5% of sera collected from Hone Creek were positive for VEEV, with 15.4% (n = 40) showing real neutralizing titers. In the GMA, only 0.8% tested positive for VEEV during the screening, with only 0.3% (n = 1) showing a true neutralizing titer. No sample was positive for the Eastern equine encephalitis virus or Mayaro (MAYV) and one serum sample from Hone Creek was chikungunya positive. This study underscores the global health challenge posed by arboviruses with their similar clinical presentation and antibody cross-reactivity, particularly in tropical regions where flaviviruses and alphaviruses prevail and co-circulate. The comparison of PRNT results between high and low dengue-endemic areas in Costa Rica shed light on the potential circulation of the VEEV and the fact that there is no circulation of Eastern equine encephalitis virus or Mayaro yet. These findings indicate a higher prevalence of VEEV in the high-endemic area, emphasizing the importance of targeted surveillance, control measures, and better diagnostics.
Collapse
Affiliation(s)
- Andrea Valles-Morera
- Virology-Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Tatiana Murillo
- Virology-Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Jose Lizano-Bolaños
- Virology-Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | | | - Margarita Alvarado
- Blood Bank and Clinic Laboratory, University of Costa Rica, San José, Costa Rica
| | | | | | - Grace Prado-Hidalgo
- Talamanca Healthcare Center, Costa Rican Social Security Fund, Limón, Costa Rica
| | - Johis Ortega
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, United States
| | - Eugenia Corrales-Aguilar
- Virology-Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
2
|
Magalhaes T, Hamer GL, de Carvalho-Leandro D, Ribeiro VML, Turell MJ. Uncertainties Surrounding Madariaga Virus, a Member of the Eastern Equine Encephalitis Virus Complex. Vector Borne Zoonotic Dis 2024; 24:633-640. [PMID: 38717063 DOI: 10.1089/vbz.2023.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Background: Madariaga virus (MADV), a member of the eastern equine encephalitis virus (EEEV) complex, circulates in Latin America and exhibits distinct evolutionary and ecological features compared to the North American EEEV. While published data have shed light on MADV ecology, several key aspects remain unknown. Methods: In this study, we compiled data on virus isolation, vector competence, and animal serology collected over six decades in Latin America to identify critical knowledge gaps on MADV transmission and ecology. Results: Specific vertebrate animals serving as amplifying hosts and the mosquito species acting as enzootic and epizootic vectors have not yet been identified. Other aspects that remain unclear are the virus current geographic distribution, the role of equines as hosts in epizootic cycles, and the full impact of MADV on human health in endemic regions. Conclusions: The numerous knowledge gaps surrounding MADV, its widespread distribution in Latin America, and its potential to cause severe disease in animals and humans emphasize the urgent need for increased research efforts, heightened awareness, and intensified surveillance towards this potential emerging threat.
Collapse
Affiliation(s)
- Tereza Magalhaes
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Danilo de Carvalho-Leandro
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Colégio de Aplicação, Universidade Federal de Pernambuco, Recife, Brazil
| | - Vladimir M L Ribeiro
- Department of Pathology and Forensic Medicine, Universidade Federal do Ceará, Fortaleza, Brazil
| | | |
Collapse
|
3
|
Romero-Vega LM, Piche-Ovares M, Soto-Garita C, Barantes Murillo DF, Chaverri LG, Alfaro-Alarcón A, Corrales-Aguilar E, Troyo A. Seasonal changes in the diversity, host preferences and infectivity of mosquitoes in two arbovirus-endemic regions of Costa Rica. Parasit Vectors 2023; 16:34. [PMID: 36703148 PMCID: PMC9881273 DOI: 10.1186/s13071-022-05579-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Mosquitoes are vectors of various arboviruses belonging to the genera Alphavirus and Flavivirus, and Costa Rica is endemic to several of them. The aim of this study was to describe and analyze the community structure of such vectors in Costa Rica. METHODS Sampling was performed in two different coastal locations of Costa Rica with evidence of arboviral activity during rainy and dry seasons. Encephalitis vector surveillance traps, CDC female gravid traps and ovitraps were used. Detection of several arboviruses by Pan-Alpha and Pan-Flavi PCR was attempted. Blood meals were also identified. The Normalized Difference Vegetation Index (NDVI) was estimated for each area during the rainy and dry seasons. The Chao2 values for abundance and Shannon index for species diversity were also estimated. RESULTS A total of 1802 adult mosquitoes belonging to 55 species were captured, among which Culex quinquefasciatus was the most caught species. The differences in NDVI were higher between seasons and between regions, yielding lower Chao-Sørensen similarity index values. Venezuelan equine encephalitis virus, West Nile virus and Madariaga virus were not detected at all, and dengue virus and Zika virus were detected in two separate Cx. quinquefasciatus specimens. The primary blood-meal sources were chickens (60%) and humans (27.5%). Both sampled areas were found to have different seasonal dynamics and population turnover, as reflected in the Chao2 species richness estimation values and Shannon diversity index. CONCLUSION Seasonal patterns in mosquito community dynamics in coastal areas of Costa Rica have strong differences despite a geographical proximity. The NDVI influences mosquito diversity at the regional scale more than at the local scale. However, year-long continuous sampling is required to better understand local dynamics.
Collapse
Affiliation(s)
- Luis M. Romero-Vega
- Universidad de Costa Rica, San José, Costa Rica
- Universidad Nacional, Heredia, Costa Rica
| | - Marta Piche-Ovares
- Universidad de Costa Rica, San José, Costa Rica
- Universidad Nacional, Heredia, Costa Rica
| | | | | | | | | | | | | |
Collapse
|
4
|
Application of a Human Blood Brain Barrier Organ-on-a-Chip Model to Evaluate Small Molecule Effectiveness against Venezuelan Equine Encephalitis Virus. Viruses 2022; 14:v14122799. [PMID: 36560802 PMCID: PMC9786295 DOI: 10.3390/v14122799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The blood brain barrier (BBB) is a multicellular microenvironment that plays an important role in regulating bidirectional transport to and from the central nervous system (CNS). Infections by many acutely infectious viruses such as alphaviruses and flaviviruses are known to impact the integrity of the endothelial lining of the BBB. Infection by Venezuelan Equine Encephalitis Virus (VEEV) through the aerosol route causes significant damage to the integrity of the BBB, which contributes to long-term neurological sequelae. An effective therapeutic intervention strategy should ideally not only control viral load in the host, but also prevent and/or reverse deleterious events at the BBB. Two dimensional monocultures, including trans-well models that use endothelial cells, do not recapitulate the intricate multicellular environment of the BBB. Complex in vitro organ-on-a-chip models (OOC) provide a great opportunity to introduce human-like experimental models to understand the mechanistic underpinnings of the disease state and evaluate the effectiveness of therapeutic candidates in a highly relevant manner. Here we demonstrate the utility of a neurovascular unit (NVU) in analyzing the dynamics of infection and proinflammatory response following VEEV infection and therapeutic effectiveness of omaveloxolone to preserve BBB integrity and decrease viral and inflammatory load.
Collapse
|
5
|
Passive epidemiological surveillance in wildlife in Costa Rica identifies pathogens of zoonotic and conservation importance. PLoS One 2022; 17:e0262063. [PMID: 36155648 PMCID: PMC9512195 DOI: 10.1371/journal.pone.0262063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/11/2022] [Indexed: 12/27/2022] Open
Abstract
Epidemiological surveillance systems for pathogens in wild species have been proposed as a preventive measure for epidemic events. These systems can minimize the detrimental effects of an outbreak, but most importantly, passive surveillance systems are the best adapted to countries with limited resources. Therefore, this research aimed to evaluate the technical and infrastructural feasibility of establishing this type of scheme in Costa Rica by implementing a pilot program targeting the detection of pathogens of zoonotic and conservation importance in wildlife. Between 2018 and 2020, 85 carcasses of free-ranging vertebrates were admitted for post-mortem and microbiology analysis. However, we encountered obstacles mainly related to the initial identification of cases and limited local logistics capacity. Nevertheless, this epidemiological surveillance scheme allowed us to estimate the general state of health of the country’s wildlife by establishing the causes of death according to pathological findings. For instance, 60% (51/85) of the deaths were not directly associated with an infectious agent. Though in 37.6% (32/85) of these cases an infectious agent associated or not with disease was detected. In 27.1% (23/85) of the cases, death was directly related to infectious agents. Furthermore, 12.9% (11/85), the cause of death was not determined. Likewise, this wildlife health monitoring program allowed the detection of relevant pathogens such as Canine Distemper Virus, Klebsiella pneumoniae, Angiostrongylus spp., Baylisascaris spp., among others. Our research demonstrated that this passive surveillance scheme is cost-effective and feasible in countries with limited resources. This passive surveillance can be adapted to the infrastructure dedicated to monitoring diseases in productive animals according to the scope and objectives of monitoring wildlife specific to each region. The information generated from the experience of the initial establishment of a WHMP is critical to meeting the challenges involved in developing this type of scheme in regions with limited resources and established as hotspots for emerging infectious diseases.
Collapse
|
6
|
León B, González G, Nicoli A, Rojas A, Pizio AD, Ramirez-Carvajal L, Jimenez C. Phylogenetic and Mutation Analysis of the Venezuelan Equine Encephalitis Virus Sequence Isolated in Costa Rica from a Mare with Encephalitis. Vet Sci 2022; 9:258. [PMID: 35737310 PMCID: PMC9229380 DOI: 10.3390/vetsci9060258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Venezuelan Equine Encephalitis virus (VEEV) is an arboviral pathogen in tropical America that causes lethal encephalitis in horses and humans. VEEV is classified into six subtypes (I to VI). Subtype I viruses are divided into epizootic (IAB and IC) and endemic strains (ID and IE) that can produce outbreaks or sporadic diseases, respectively. The objective of this study was to reconstruct the phylogeny and the molecular clock of sequences of VEEV subtype I complex and identify mutations within sequences belonging to epizootic or enzootic subtypes focusing on a sequence isolated from a mare in Costa Rica. Bayesian phylogeny of the VEEV subtype I complex tree with 110 VEEV complete genomes was analyzed. Evidence of positive selection was evaluated with Datamonkey server algorithms. The putative effects of mutations on the 3D protein structure in the Costa Rica sequence were evaluated. The phylogenetic analysis showed that Subtype IE-VEEV diverged earlier than other subtypes, Costa Rican VEEV-IE ancestors came from Nicaragua in 1963 and Guatemala in 1907. Among the observed non-synonymous mutations, only 17 amino acids changed lateral chain groups. Fourteen mutations located in the NSP3, E1, and E2 genes are unique in this sequence, highlighting the importance of E1-E2 genes in VEEV evolution.
Collapse
Affiliation(s)
- Bernal León
- LSE Laboratory, Veterinary Service National Laboratory, Animal Health National Service, Ministry of Agriculture and Cattle, Heredia 40104, Costa Rica
- Virology, Universidad Técnica Nacional (UTN), Atenas 20505, Costa Rica
| | - Gabriel González
- National Virus Reference Laboratory, College Dublin, D04 V1W8 Belfield, Ireland;
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany; (A.N.); (A.D.P.)
| | - Alicia Rojas
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José 11501, Costa Rica;
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany; (A.N.); (A.D.P.)
| | - Lisbeth Ramirez-Carvajal
- Veterinary Medicine Infection and Immunity, Virology, University of Utrecht, 3584 CS Utrecht, The Netherlands;
| | - Carlos Jimenez
- Laboratory of Virology, Tropical Diseases Research Program (PIET), School of Veterinary Medicine, Universidad Nacional, Heredia 40101, Costa Rica;
| |
Collapse
|
7
|
Guimarães MDCN, Freitas MNO, Sousa AWD, Cunha MACRD, Almada GL, Romano APM, Santos MGDP, Rodrigues GAP, Martins LC, Chiang JO, Casseb LMN. Serological Evidence of Arboviruses in Horses During West Nile Fever Monitoring Surveillance in Southeastern Brazil. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.881710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many human arboviruses are also pathogenic for horses, and some of these have emerged recently. A descriptive cross-sectional observational study was conducted to assess the prevalence of West Nile virus (WNV) and other arboviruses among 77 horses on the rural properties of the Espirito Santo state, Brazil. Serum samples were screened for arbovirus-reactive antibodies using the hemagglutination inhibition technique and subsequently a plaque reduction neutralization test for the confirmation of exposure from sera was used to detect heterotypic immune reactions. Overall, the total antibodies against at least one arbovirus of Alphavirus, Flavivirus, and Orthobunyavirus genera were detected in 39 (50.6%) animals. The antibodies to Phlebovirus were not detected in any sample. When the 24 WNV hemagglutination inhibition (HI)-positive samples were tested by the plaque-reduction neutralization test 90%, 9 (32.1%) were positive for WNV antibodies and 14 (50%) for Saint Louis encephalitis virus. Our findings indicate that the region provides ideal conditions for the emergence of arboviruses, reinforcing the need for further surveillance of mosquito-transmitted diseases in domestic animals.
Collapse
|
8
|
Serological Positivity against Selected Flaviviruses and Alphaviruses in Free-Ranging Bats and Birds from Costa Rica Evidence Exposure to Arboviruses Seldom Reported Locally in Humans. Viruses 2022; 14:v14010093. [PMID: 35062297 PMCID: PMC8780000 DOI: 10.3390/v14010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022] Open
Abstract
Arboviruses have two ecological transmission cycles: sylvatic and urban. For some, the sylvatic cycle has not been thoroughly described in America. To study the role of wildlife in a putative sylvatic cycle, we sampled free-ranging bats and birds in two arbovirus endemic locations and analyzed them using molecular, serological, and histological methods. No current infection was detected, and no significant arbovirus-associated histological changes were observed. Neutralizing antibodies were detected against selected arboviruses. In bats, positivity in 34.95% for DENV-1, 16.26% for DENV-2, 5.69% for DENV-3, 4.87% for DENV-4, 2.43% for WNV, 4.87% for SLEV, 0.81% for YFV, 7.31% for EEEV, and 0.81% for VEEV was found. Antibodies against ZIKV were not detected. In birds, PRNT results were positive against WNV in 0.80%, SLEV in 5.64%, EEEV in 8.4%, and VEEV in 5.63%. An additional retrospective PRNT analysis was performed using bat samples from three additional DENV endemic sites resulting in a 3.27% prevalence for WNV and 1.63% for SLEV. Interestingly, one sample resulted unequivocally WNV positive confirmed by serum titration. These results suggest that free-ranging bats and birds are exposed to not currently reported hyperendemic-human infecting Flavivirus and Alphavirus; however, their role as reservoirs or hosts is still undetermined.
Collapse
|
9
|
Ortiz DI, Piche-Ovares M, Romero-Vega LM, Wagman J, Troyo A. The Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America. INSECTS 2021; 13:20. [PMID: 35055864 PMCID: PMC8781098 DOI: 10.3390/insects13010020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Central America is a unique geographical region that connects North and South America, enclosed by the Caribbean Sea to the East, and the Pacific Ocean to the West. This region, encompassing Belize, Costa Rica, Guatemala, El Salvador, Honduras, Panama, and Nicaragua, is highly vulnerable to the emergence or resurgence of mosquito-borne and tick-borne diseases due to a combination of key ecological and socioeconomic determinants acting together, often in a synergistic fashion. Of particular interest are the effects of land use changes, such as deforestation-driven urbanization and forest degradation, on the incidence and prevalence of these diseases, which are not well understood. In recent years, parts of Central America have experienced social and economic improvements; however, the region still faces major challenges in developing effective strategies and significant investments in public health infrastructure to prevent and control these diseases. In this article, we review the current knowledge and potential impacts of deforestation, urbanization, and other land use changes on mosquito-borne and tick-borne disease transmission in Central America and how these anthropogenic drivers could affect the risk for disease emergence and resurgence in the region. These issues are addressed in the context of other interconnected environmental and social challenges.
Collapse
Affiliation(s)
- Diana I. Ortiz
- Biology Program, Westminster College, New Wilmington, PA 16172, USA
| | - Marta Piche-Ovares
- Laboratorio de Virología, Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
- Departamento de Virología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| | - Luis M. Romero-Vega
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
- Laboratorio de Investigación en Vectores (LIVe), Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
| | - Joseph Wagman
- Malaria and Neglected Tropical Diseases Program, Center for Malaria Control and Elimination, PATH, Washington, DC 20001, USA;
| | - Adriana Troyo
- Laboratorio de Investigación en Vectores (LIVe), Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
10
|
An Environmental Niche Model to Estimate the Potential Presence of Venezuelan Equine Encephalitis Virus in Costa Rica. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010227. [PMID: 33396763 PMCID: PMC7795298 DOI: 10.3390/ijerph18010227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 11/16/2022]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an arbovirus transmitted by arthropods, widely distributed in the Americas that, depending on the subtype, can produce outbreaks or yearly cases of encephalitis in horses and humans. The symptoms are similar to those caused by dengue virus and in the worst-case scenario, involve encephalitis, and death. MaxEnt is software that uses climatological, geographical, and occurrence data of a particular species to create a model to estimate possible niches that could have these favorable conditions. We used MaxEnt with a total of 188 registers of VEEV presence, and 20 variables, (19 bioclimatological plus altitude) to determine the niches promising for the presence of VEEV. The area under the ROC curve (AUC) value for the model with all variables was 0.80 for the training data and 0.72 for the test. The variables with the highest contribution to the model were Bio11 (mean temperature of the coldest quarter) 32.5%, Bio17 (precipitation of the driest quarter) 16.9%, Bio2 (annual mean temperature) 15.1%, altitude (m.a.s.l) 6.6%, and Bio18 (precipitation of the warmest quarter) 6.2%. The product of this research will be useful under the one health scheme to animal and human health authorities to forecast areas with high propensity for VEEV cases in the future.
Collapse
|