1
|
Lim JW, Seo JK, Jung SJ, Lee KY, Kang SY. An antiviral optimized extract from Sanguisorba officinalis L. roots using response surface methodology, and its efficacy in controlling viral hemorrhagic septicemia of olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109066. [PMID: 37689225 DOI: 10.1016/j.fsi.2023.109066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Viral hemorrhagic septicemia causes considerable economic losses for Korea's olive flounder (Paralichthys olivaceus) aquaculture farms; therefore, effective antiviral agents for controlling viral hemorrhagic septicemia virus (VHSV) infection are imperative. The present study implemented a Box-Behnken design and cytopathic reduction assay to derive an optimized extract of Sanguisorba officinalis L. roots (OE-SOR) with maximum antiviral activity against VHSV. OE-SOR prepared under optimized extraction conditions (55% ethanol concentration at 50 °C for 5 h) exhibited potent antiviral activity against VHSV, with a 50% effective 0.21 μg/mL concentration and a 340 selective index. OE-SOR also showed direct virucidal activity in the plaque reduction assay. Administering OE-SOR to olive flounder exhibited substantial efficacies against VHSV infection. Fish receiving 100 mg/kg body weight/day of OE-SOR as a preventive (40.0%; p < 0.05) or therapeutic (44.4%; p < 0.05) exhibited a higher relative survival than the untreated VHSV-infected control group (mortalities of 100% and 90%, respectively). In addition, fish fed with OE-SOR (100 mg/kg body weight/day) for two weeks conveyed a significantly higher inflammatory cytokine expression (nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], interleukin-1 beta [IL-1β], and tumor necrosis factor-alpha [TNF-α]) than the control group one to two days post-administration. Moreover, no hematological or histological changes were observed in olive flounder treated with OE-SOR over four weeks. Liquid chromatography-quadrupole-time of flight tandem mass spectrometry and -triple quadrupole tandem mass spectrometry analyses identified ziyuglycoside I as a prominent OE-SOR constituent and marker compound (content: 14.5%). This study verifies that OE-SOR is an effective alternative for controlling viral hemorrhagic septicemia in olive flounder farms as it exhibits efficient in vivo anti-VHSV activity and increases innate immune responses.
Collapse
Affiliation(s)
- Jae-Woong Lim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Joong-Kyeong Seo
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - So Young Kang
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|
2
|
Shahrajabian MH, Sun W. The Importance of Traditional Chinese Medicine in the Intervention and Treatment of HIV while Considering its Safety and Efficacy. Curr HIV Res 2023; 21:331-346. [PMID: 38047360 DOI: 10.2174/011570162x271199231128092621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023]
Abstract
Natural products have been considered a potential resource for the development of novel therapeutic agents, since time immemorial. It is an opportunity to discover cost-effective and safe drugs at the earliest, with the goal to hit specific targets in the HIV life cycle. Natural products with inhibitory activity against human immunodeficiency virus are terpenes, coumarins, flavonoids, curcumin, proteins, such as lectins, laccases, bromotyrosines, and ribosome-inactivating proteins. Terpenes inhibit virus fusion, lectins and flavonoids have an inhibitory impact on viral binding, curcumin and flavonoids inhibit viral DNA integration. The most important medicinal plants which have been used in traditional Chinese medicinal sciences with anti-HIV properties are Convallaria majalis, Digitalis lanata, Cassia fistula, Croton macrostachyus, Dodonaea angustifolia, Ganoderma lucidum, Trametes versicolor, Coriolus versicolor, Cordyceps sinensis, Gardenia jasminoides, Morus alba, Scutellaria baicalensis, Ophiopogon japonicus, Platycodon grandiflorus, Fritillaria thunbergii, Anemarrhena asphodeloides, Trichosanthes kirilowii, Citrus reticulata, Glycyrrhiza uralensis, Rheum officinale, Poria cocos, Rheum palmatum, Astragalus membranaceus, Morinda citrifolia, Potentilla kleiniana, Artemisia capillaris, Sargassum fusiforme, Piperis longi fructus, Stellera chamaejasme, Curcumae rhizoma, Dalbergia odorifera lignum, Arisaematis Rhizoma preparatum, and Phellodendron amurense. The information provided is gathered from randomized control experiments, review articles, and analytical studies and observations, which are obtained from different literature sources, such as Scopus, Google Scholar, PubMed, and Science Direct from July 2000 to August 2023. The aim of this review article is to survey and introduce important medicinal plants and herbs that have been used for the treatment of HIV, especially the medicinal plants that are common in traditional Chinese medicine, as research to date is limited, and more evidence is required to confirm TCM,s efficacy.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Liu Q, Kwan KY, Cao T, Yan B, Ganesan K, Jia L, Zhang F, Lim C, Wu Y, Feng Y, Chen Z, Liu L, Chen J. Broad-spectrum antiviral activity of Spatholobus suberectus Dunn against SARS-CoV-2, SARS-CoV-1, H5N1, and other enveloped viruses. Phytother Res 2022; 36:3232-3247. [PMID: 35943221 PMCID: PMC9537938 DOI: 10.1002/ptr.7452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
The current COVID-19 pandemic caused by SARS-Cov-2 is responsible for more than 6 million deaths globally. The development of broad-spectrum and cost-effective antivirals is urgently needed. Medicinal plants are renowned as a complementary approach in which antiviral natural products have been established as safe and effective drugs. Here, we report that the percolation extract of Spatholobus suberectus Dunn (SSP) is a broad-spectrum viral entry inhibitor against SARS-CoV-1/2 and other enveloped viruses. The viral inhibitory activities of the SSP were evaluated by using pseudotyped SARS-CoV-1 and 2, HIV-1ADA and HXB2 , and H5N1. SSP effectively inhibited viral entry and with EC50 values ranging from 3.6 to 5.1 μg/ml. Pre-treatment of pseudovirus or target cells with SSP showed consistent inhibitory activities with the respective EC50 value of 2.3 or 2.1 μg/ml. SSP blocked both SARS-CoV-2 spike glycoprotein and the host ACE2 receptor. In vivo studies indicated that there was no abnormal toxicity and behavior in long-term SSP treatment. Based on these findings, we concluded that SSP has the potential to be developed as a drug candidate for preventing and treating COVID-19 and other emerging enveloped viruses.
Collapse
Affiliation(s)
- Qingqing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Ka-Yi Kwan
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tianyu Cao
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Immunology and Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bingpeng Yan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Jia
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Feng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Chunyu Lim
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhiwei Chen
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Liu
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| |
Collapse
|
4
|
Kesheh MM, Shavandi S, Haeri Moghaddam N, Ramezani M, Ramezani F. Effect of herbal compounds on coronavirus; a systematic review and meta-analysis. Virol J 2022; 19:87. [PMID: 35597998 PMCID: PMC9123756 DOI: 10.1186/s12985-022-01808-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The new coronavirus (COVID-19) has been transmitted exponentially. Numerous studies have been performed in recent years that have shown the inhibitory effect of plant extracts or plant-derived compounds on the coronavirus family. In this study, we want to use systematic review and meta-analysis to answer the question, which herbal compound has been more effective? MAIN BODY The present study is based on the guidelines for conducting meta-analyzes. An extensive search was conducted in the electronic database, and based on the inclusion and exclusion criteria, articles were selected and data screening was done. Quality control of articles was performed. Data analysis was carried out in STATA software. CONCLUSION Due to the variety of study methods, definitive conclusions are not possible. However, in this study, we attempted to gather all the available evidence on the effect of plant compounds on SARS-COV-2 to be used for the development and use of promising antiviral agents against this virus and other coronaviruses. Trypthantrin, Sambucus extract, S. cusia extract, Boceprevir and Indigole B, dioica agglutinin urtica had a good effect on reducing the virus titer. Also among the compounds that had the greatest effect on virus inhibition, Saikosaponins B2, SaikosaponinsD, SaikosaponinsA and Phillyrin, had an acceptable selectivity index greater than 10. Andrographolide showed the highest selectivity index on SARS-COV-2. Our study confirmed insufficient data to support alkaloid compounds against SARS-COV-2, and the small number of studies that used alkaloid compounds was a limitation. It is recommended to investigate the effect of more alkaloid compounds against Corona virus.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Shavandi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Niloofar Haeri Moghaddam
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Structure and antiviral activity of a pectic polysaccharide from the root of Sanguisorba officinalis against enterovirus 71 in vitro/vivo. Carbohydr Polym 2022; 281:119057. [DOI: 10.1016/j.carbpol.2021.119057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/22/2022]
|
6
|
Zhou P, Li J, Chen Q, Wang L, Yang J, Wu A, Jiang N, Liu Y, Chen J, Zou W, Zeng J, Wu J. A Comprehensive Review of Genus Sanguisorba: Traditional Uses, Chemical Constituents and Medical Applications. Front Pharmacol 2021; 12:750165. [PMID: 34616302 PMCID: PMC8488092 DOI: 10.3389/fphar.2021.750165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Genus Sanguisorba (family: Rosaceae) comprises nearly 148 species, distributed widely across the temperate and subtropical regions of the Northern Hemisphere. Sanguisorba officinalis L. (S. officinalis) has been used as a hemostatic and scald treating medicine in China for a long time. Numerous studies have demonstrated that plant extracts or monomers from S. officinalis exhibit several pharmacological effects, such as anti-cancer, anti-virus, anti-inflammation, anti-bacteria, neuroprotective and hepatoprotective effects. The other species of genus Sanguisorba are also being studied by researchers worldwide. Sanguisorba minor Scop. (S. minor), as an edible wild plant, is a common ingredient of the Mediterranean diet, and its young shoots and leaves are often mixed with traditional vegetables and consumed as salad. Reports on genus Sanguisorba available in the current literature were collected from Google Scholar, Web of Science, Springer, and PubMed. The Plant List (http://www.theplantlist.org./tpl1.1/search?q=Sanguisorba), International Plant Name Index (https://www.ipni.org/?q=Sanguisorba) and Kew Botanical Garden (http://powo.science.kew.org/) were used for obtaining the scientific names and information on the subspecies and cultivars. In recent years, several in vivo and in vitro experiments have been conducted to reveal the active components and effective monomers of S. officinalis and S. minor. To date, more than 270 compounds have been isolated and identified so far from the species belonging to genus Sanguisorba. Numerous reports on the chemical constituents, pharmacologic effects, and toxicity of genus Sanguisorba are available in the literature. This review provides a comprehensive understanding of the current traditional applications of plants, which are supported by a large number of scientific experiments. Owing to these promising properties, this species is used in the treatment of various diseases, including influenza virus infection, inflammation, Alzheimer's disease, type 2 diabetes and leukopenia caused by bone marrow suppression. Moreover, the rich contents and biological effects of S. officinalis and S. minor facilitate these applications in dietary supplements and cosmetics. Therefore, the purpose of this review is to summarize the recent advances in the traditional uses, chemical constituents, pharmacological effects and clinical applications of genus Sanguisorba. The present comprehensive review may provide new insights for the future research on genus Sanguisorba.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyan Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Qi Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Yuanzhi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Wenjun Zou
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Zhong Y, Li XY, Zhou F, Cai YJ, Sun R, Liu RP. Ziyuglycoside II inhibits the growth of digestive system cancer cells through multiple mechanisms. Chin J Nat Med 2021; 19:351-363. [PMID: 33941340 DOI: 10.1016/s1875-5364(21)60033-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/24/2022]
Abstract
Digestive system cancers, including liver, gastric, colon, esophageal and pancreatic cancers, are the leading cause of cancers with high morbidity and mortality, and the question of their clinical treatment is still open. Previous studies have indicated that Ziyuglycoside II (ZYG II), the major bioactive ingredient extract from Sanguisorba officinalis L., significantly inhibits the growth of various cancer cells. However, the selective anti-tumor effects of ZYG II against digestive system cancers are not systemically investigated. In this study, we reported the anti-cancer effect of ZYG II on esophageal cancer cells (OE21), cholangiocarcinoma cells (HuCCT1), gastric cancer cells (BGC-823), liver cancer cells (HepG2), human colonic cancer cells (HCT116), and pancreatic cancer cells (PANC-1). We also found that ZYG II induced cell cycle arrest, oxidative stress and mitochondrial apoptosis. Network pharmacology analysis suggested that UBC, EGFR and IKBKG are predicted targets of ZYG II. EGFR signaling was suggested as the critical pathway underlying the anti-cancer effects of ZYG II and both docking simulation and western blot analysis demonstrated that ZYG II was a potential EGFR inhibitor. Furthermore, our results showed synergistic inhibitory effects of ZYG II and chemotherapy 5-FU on the growth of cancer cells. In summary, ZYG II are effective anti-tumor agents against digestive cancers. Further systemic evaluation of the anti-cancer activities in vitro and in vivo and characterization of underlying mechanism will promote the development of novel supplementary therapeutic strategies based on ZYG II for the treatment of digestive system cancers.
Collapse
Affiliation(s)
- Ying Zhong
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Xiao-Yu Li
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Fei Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ya-Jie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rong Sun
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| | - Run-Ping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
8
|
Ti H, Zhuang Z, Yu Q, Wang S. Progress of Plant Medicine Derived Extracts and Alkaloids on Modulating Viral Infections and Inflammation. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1385-1408. [PMID: 33833499 PMCID: PMC8020337 DOI: 10.2147/dddt.s299120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022]
Abstract
Viral infectious diseases are serious threats to human health in both developing and developed countries. Although there is the continued development of new drugs from synthetic sources as antiviral agents, medicinal plants continue to provide the basic raw materials for some of the most important antiviral drugs. Alkaloids are a class of pharmacologically active plant compounds that are usually alkaline in nature. In this review, we tried to summarize recent progress in herb-based antiviral research, the advantages of using active plant compounds as antiviral agents, and the inflammatory responses initiated by alkaloids, based on the literature from 2009 to 2019, for the treatment of conditions, including influenza, human immunodeficiency virus, herpes simplex virus, hepatitis, and coxsackievirus infections. Articles are retrieved from PubMed, Google Scholar, and Web of Science using relevant keywords. In particular, the alkaloids from medicinal plants responsible for the molecular mechanisms of anti-inflammatory actions are identified and discussed. This review can provide a theoretical basis and approaches for using various alkaloids as antiviral treatments. More research is needed to develop alkaloidal compounds as antiviral therapeutic agents and potential regulators of the anti-inflammatory response.
Collapse
Affiliation(s)
- Huihui Ti
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zixi Zhuang
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.,Guangdong Institute of Analysis (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Qian Yu
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
9
|
Coronaviruses and Nature's Pharmacy for the Relief of Coronavirus Disease 2019. ACTA ACUST UNITED AC 2020; 30:603-621. [PMID: 33041391 PMCID: PMC7537782 DOI: 10.1007/s43450-020-00104-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
Current challenges to the treatment of coronavirus disease 2019 should open new prospects in the search for novel drugs from medicinal plants and other natural products. This paper provides details of natural agents that inhibit human coronavirus entry into cells, general replication, and specific chymotrypsin-like protease (3CLpro)-mediated replication. Medicinal plants, fungi, and marine organisms as remedies for human coronaviruses in China, Lebanon, Malaysia, Singapore, and South Africa are described. Common species include Alnus japonica (Thunb.) Steud., Artemisia annua L., Artemisia apiacea Hance, Astragalus membranaceus (Fisch.) Bunge, Cinnamomum cassia (L.) J.Presl, edible brown algae Ecklonia cava Kjellman, Euphorbia neriifolia L., Glycyrrhiza glabra L., Lonicera japonica Thunb., Pelargonium sidoides DC., Polygonum cuspidatum Siebold & Zucc., Sanguisorba officinalis L., Scutellaria baicalensis Georgi, Toona sinensis (Juss.) M.Roem., and Torreya nucifera (L.) Siebold & Zucc. At least fifty natural compounds, including alkaloids, flavonoids, glycosides, anthraquinones, lignins, and tannins, which inhibit various strains of human coronaviruses, are presented. Given the scarcity of efficacious and safe vaccines or drugs for coronavirus disease 2019, natural products are low-hanging fruits that should be harnessed as the new global frontier against severe acute respiratory syndrome coronavirus 2.
Collapse
|
10
|
Lachowicz S, Oszmiański J, Rapak A, Ochmian I. Profile and Content of Phenolic Compounds in Leaves, Flowers, Roots, and Stalks of Sanguisorba officinalis L. Determined with the LC-DAD-ESI-QTOF-MS/MS Analysis and Their In Vitro Antioxidant, Antidiabetic, Antiproliferative Potency. Pharmaceuticals (Basel) 2020; 13:E191. [PMID: 32806688 PMCID: PMC7464974 DOI: 10.3390/ph13080191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to accurately determine the profile of polyphenols using the highly sensitive LC-DAD-ESI-QTOF-MS/MS technique and to determine in vitro antioxidant activity, the ability of inhibition of α-amylase, α-glucoamylase, and pancreatic lipase activity, and antiproliferative activity in leaves, flowers, roots, and stalks of medical plant Sanguisorba officinalis L. The results of the analysis of the morphological parts indicated the presence of 130 polyphenols, including 62 that were detected in S. officinalis L. for the first time. The prevailing group was tannins, with contents ranging from 66.4% of total polyphenols in the flowers to 43.3% in the stalks. The highest content of polyphenols was identified in the flowers and reached 14,444.97 mg/100 g d.b., while the lowest was noted in the stalks and reached 4606.33 mg/100 g d.b. In turn, the highest values of the antiradical and reducing capacities were determined in the leaves and reached 6.63 and 0.30 mmol TE/g d.b, respectively. In turn, a high ability to inhibit activities of α-amylase and α-glucoamylase was noted in the flowers, while a high ability to inhibit the activity of pancreatic lipase was demonstrated in the leaves of S. officinalis L. In addition, the leaves and the flowers showed the most effective antiproliferative properties in pancreatic ductal adenocarcinoma, colorectal adenocarcinoma, bladder cancer, and T-cell leukemia cells, whereas the weakest activity was noted in the stalks. Thus, the best dietetic material to be used when composing functional foods were the leaves and the flowers of S. officinalis L., while the roots and the stalks were equally valuable plant materials.
Collapse
Affiliation(s)
- Sabina Lachowicz
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Science, 51-630 Wrocław, Poland
| | - Jan Oszmiański
- Department of Fruit, Vegetables and Nutraceutical Technology, Wrocław University of Environmental and Life Science, 51-630 Wroclaw, Poland;
| | - Andrzej Rapak
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| | - Ireneusz Ochmian
- Department of Horticulture, West Pomeranian University of Technology in Szczecin, 71-434 Szczecin, Poland;
| |
Collapse
|
11
|
Bunse M, Lorenz P, Stintzing FC, Kammerer DR. Characterization of Secondary Metabolites in Flowers of Sanguisorba officinalis L. by HPLC-DAD-MS n and GC/MS. Chem Biodivers 2020; 17:e1900724. [PMID: 32096590 DOI: 10.1002/cbdv.201900724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
The investigations reported here focus on an in-depth characterization of the secondary metabolite profile of Sanguisorba officinalis flowers. For this purpose, fresh flowers were extracted with MeOH/H2 O and EtOH/H2 O and the resulting crude extracts fractionated using CH2 Cl2 , AcOEt, and BuOH. Individual compounds were characterized by high performance liquid chromatography and gas chromatography coupled with mass spectrometric detection (HPLC-DAD-MSn and GC/MS). MeOH/H2 O extraction and LC/MSn investigations revealed the occurrence of flavonoid glycosides (quercetin, kaempferol), ellagitannin glycosides and four anthocyanins. Among the latter, two components, i. e., cyanidin-malonyl-glucose and cyanidin-galloyl-hexose, have not been reported for S. officinalis so far. Furthermore, phenylethylamine was characterized for the first time in Sanguisorba by pH value dependent extraction with CH2 Cl2 . In addition, AcOEt and BuOH extracts were analyzed by GC/MS both prior to and after acid hydrolysis of secondary metabolites. For this purpose, the extracts were treated with 1 n HCl solution (105 °C, 1 h) and derivatized with BSTFA. Analyses revealed the occurrence of several classes of phenolic compounds, such as gallic acid, hydroxybenzoic acid, hydroxycinnamic acid and ellagic acid derivatives. Additionally, the most prominent ursane-type triterpenoid (ziyu-glycoside I) from Sanguisorba and its corresponding aglycone isomers were detected and assigned based on their characteristic fragmentation patterns.
Collapse
Affiliation(s)
- Marek Bunse
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany.,Department of Plant Systems Biology, Hohenheim University, Garbenstraße 30, DE-70599, Stuttgart, Germany
| | - Peter Lorenz
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| | - Florian C Stintzing
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| | - Dietmar R Kammerer
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| |
Collapse
|
12
|
Phytogenic Nanoparticles to Combat Multi Drug Resistant Pathogens and Photocatalytic Degradation of Dyes. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00727-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Jayasundar R, Ghatak S, Makhdoomi MA, Luthra K, Singh A, Velpandian T. Challenges in integrating component level technology and system level information from Ayurveda: Insights from NMR phytometabolomics and anti-HIV potential of select Ayurvedic medicinal plants. J Ayurveda Integr Med 2019; 10:94-101. [PMID: 29306573 PMCID: PMC6598850 DOI: 10.1016/j.jaim.2017.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/16/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Information from Ayurveda meeting the analytical challenges of modern technology is an area of immense relevance. Apart from the cerebral task of bringing together two different viewpoints, the question at the pragmatic level remains 'who benefits whom'. OBJECTIVE The aim is to highlight the challenges in integration of information (Ayurvedic) and technology using test examples of Nuclear Magnetic Resonance (NMR) metabolomics and anti-HIV-1 potential of select Ayurvedic medicinal plants. The other value added objective is implications and relevance of such work for Ayurveda. MATERIALS AND METHODS Six medicinal plants (Azadirachta indica, Tinospora cordifolia, Swertia chirata, Terminalia bellerica, Zingiber officinale and Symplocos racemosa) were studied using high resolution proton NMR spectroscopy based metabolomics and also evaluated for anti-HIV-1 activity on three pseudoviruses (ZM53 M.PB12, ZM109F.PB4, RHPA 4259.7). RESULTS Of the six plants, T. bellerica and Z. officinale showed minimum cell cytotoxicity and maximum anti-HIV-1 potential. T. bellerica was effective against all the three HIV-1 pseudoviruses. Untargeted NMR profiling and multivariate analyses demonstrated that the six plants, all of which had different Ayurvedic pharmacological properties, showed maximum differences in the aromatic region of the spectra. CONCLUSION The work adds onto the list of potential plants for anti-HIV-1 drug molecules. At the same time, it has drawn attention to the different perspectives of Ayurveda and Western medicine underscoring the inherent limitations of conceptual bilinguism between the two systems, especially in the context of medicinal plants. The study has also highlighted the potential of NMR metabolomics in study of plant extracts as used in Ayurveda.
Collapse
Affiliation(s)
- Rama Jayasundar
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India.
| | - Somenath Ghatak
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | | | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Aruna Singh
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology and Pharmacy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Kim S, Oh S, Noh HB, Ji S, Lee SH, Koo JM, Choi CW, Jhun HP. In Vitro Antioxidant and Anti- Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L . Roots. Molecules 2018; 23:E3001. [PMID: 30453560 PMCID: PMC6278274 DOI: 10.3390/molecules23113001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 11/17/2022] Open
Abstract
Identification of medicinal plants and naturally derived compounds as new natural antioxidant and antibacterial sources for topical acne treatment has long been important. To determine anti-Propionibacterium acnes activity and in vitro antioxidant activities, Sanguisorba officinalis L. root (SOR) was extracted with cold water (CWE), hot water (HWE), and methanol (ME), and each extract was fractionated successively with hexane, ethyl acetate (EA), and butanol to determine whether the activities could be attributed to the total phenolic, flavonoid, terpenoid, and condensed tannin contents. Pearson's correlation coefficients were analyzed between the respective variables. The SOR CWE, HWE, ME, and their respective EA fractions showed anti-P. acnes activity based on the paper disc diffusion method on agar plates, minimum inhibitory concentration (MIC), and minimal bactericidal concentration (MBC). The MIC against P. acnes had a moderate (+) correlation with the total phenolic content, but not with the other measures. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity (SC) had a strong (⁻) correlation with the total phenolic content and a moderate (⁻) correlation with the total flavonoid content. The total antioxidant capacity had a strong (+) correlation with the condensed tannin content. Linoleic acid peroxidation inhibition had a strong (⁻) correlation with the total phenolic content. To elucidate the major active phytochemicals in the CWE-EA, HWE-EA, and ME-EA fractions, high performance liquid chromatography-ultraviolet (HPLC-UV) and ultra high performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) were performed. The HPLC-UV analysis showed the presence of nine compounds in common (arjunic acid and/or euscaphic acid, gallic acid, kaempferol, caffeic acid, ferulic acid, tannic acid, and coumarin, quercetin). The UHPLC-QTOF-MS analysis showed the presence of nine compounds in common (gallic acid; caffeic acid; umbelliferone; arjunic acid, euscaphic acid, and/or tormentic acid; pomolic acid; rosamultic acid; and benzoic acid). When standards of the identified phytochemicals were tested against the same bacterium, quercetin, coumarin, and euscaphic acid showed antibacterial activity against P. acnes.
Collapse
Affiliation(s)
- Seongdae Kim
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Sung Oh
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Han Byul Noh
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Seongmi Ji
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Song Hee Lee
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Jung Mo Koo
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Chang Won Choi
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | | |
Collapse
|
15
|
Yang E, Gardner MR, Zhou AS, Farzan M, Arvin AM, Oliver SL. HIV-1 inhibitory properties of eCD4-Igmim2 determined using an Env-mediated membrane fusion assay. PLoS One 2018; 13:e0206365. [PMID: 30359435 PMCID: PMC6201953 DOI: 10.1371/journal.pone.0206365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022] Open
Abstract
Human Immunodeficiency Virus-1 (HIV-1) entry is dependent on the envelope glycoprotein (Env) that is present on the virion and facilitates fusion between the envelope and the cellular membrane. The protein consists of two subunits, gp120 and gp41, with the former required for binding the CD4 receptor and either the CXCR4 or CCR5 coreceptor, and the latter for mediating fusion. The requirement of fusion for infection has made Env an attractive target for HIV therapy development and led to the FDA approval of enfuvirtide, a fusion inhibitor. Continued development of entry inhibitors is warranted because enfuvirtide resistant HIV-1 strains have emerged. In this study, a novel HIV-1 fusion assay was validated using neutralizing antibodies and then used to investigate the mechanism of action of eCD4-Igmim2, an HIV-1 inhibitor proposed to cooperatively bind the CD4 binding site and the sulfotyrosine-binding pocket of gp120. Greater reduction in fusion levels was observed with eCD4-Igmim2 in the fusion assay than all of the gp120 antibodies evaluated. Lab adapted isolates, HIV-1HXB2 and HIV-1YU2, were sensitive to eCD4-Igmim2 in the fusion assay, while primary isolates, HIV-1BG505 and HIV-1ZM651 were resistant. These results correlated with greater IC50 values for primary isolates compared to the lab adapted isolates observed in a virus neutralization assay. Analysis of gp120 models identified differences in the V1 and V2 domains that are associated with eCD4-Igmim2 sensitivity. This study highlights the use of a fusion assay to identify key areas for improving the potency of eCD4-Igmim2.
Collapse
Affiliation(s)
- Edward Yang
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Matthew R. Gardner
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Amber S. Zhou
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Michael Farzan
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Ann M. Arvin
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stefan L. Oliver
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
16
|
Salehi B, Kumar NVA, Şener B, Sharifi-Rad M, Kılıç M, Mahady GB, Vlaisavljevic S, Iriti M, Kobarfard F, Setzer WN, Ayatollahi SA, Ata A, Sharifi-Rad J. Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus. Int J Mol Sci 2018; 19:E1459. [PMID: 29757986 PMCID: PMC5983620 DOI: 10.3390/ijms19051459] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
Since the beginning of the epidemic, human immunodeficiency virus (HIV) has infected around 70 million people worldwide, most of whom reside is sub-Saharan Africa. There have been very promising developments in the treatment of HIV with anti-retroviral drug cocktails. However, drug resistance to anti-HIV drugs is emerging, and many people infected with HIV have adverse reactions or do not have ready access to currently available HIV chemotherapies. Thus, there is a need to discover new anti-HIV agents to supplement our current arsenal of anti-HIV drugs and to provide therapeutic options for populations with limited resources or access to currently efficacious chemotherapies. Plant-derived natural products continue to serve as a reservoir for the discovery of new medicines, including anti-HIV agents. This review presents a survey of plants that have shown anti-HIV activity, both in vitro and in vivo.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, 88777539 Tehran, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, 22439789 Tehran, Iran.
| | - Nanjangud V Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576104, India.
| | - Bilge Şener
- Department of Pharmacognosy, Gazi University, Faculty of Pharmacy, 06330 Ankara, Turkey.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, 61663-335 Zabol, Iran.
| | - Mehtap Kılıç
- Department of Pharmacognosy, Gazi University, Faculty of Pharmacy, 06330 Ankara, Turkey.
| | - Gail B Mahady
- PAHO/WHO Collaborating Centre for Traditional Medicine, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612, USA.
| | - Sanja Vlaisavljevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy.
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran.
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran.
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada.
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada.
| |
Collapse
|
17
|
Jang E, Inn KS, Jang YP, Lee KT, Lee JH. Phytotherapeutic Activities of Sanguisorba officinalis and its Chemical Constituents: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:299-318. [PMID: 29433389 DOI: 10.1142/s0192415x18500155] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sanguisorba officinalis Linne (S. officinalis, Rosaceae) has been used as a medicinal plant for the treatment of burns, hematemesis, melena, intestinal infections, and dermatitis for a long time in China, Korea, and Japan. The therapeutic efficacy of this herb is intimately associated with its anti-oxidant, anti-inflammatory, antiviral, antifungal, hemostatic, and anticancer activities. Its root contains triterpenoid saponins (zigyuglycoside I: C[Formula: see text]H[Formula: see text]O[Formula: see text] and ziyuglycoside II: C[Formula: see text]H[Formula: see text]O8) and tannins (sanguiin H-6: C[Formula: see text]H[Formula: see text]O[Formula: see text]). It has been recently revealed that these active constituents of S. officinalis possess antiwrinkle properties without cytotoxicity. They also have anticancer effects by inducing apoptosis and cell cycle arrest. Moreover, they can inhibit proliferative tumorigenesis. The underlying mechanism involved in the pharmacological actions of these active constituents is mainly related to p38 MAPK signaling. Although various studies have reported its therapeutic activities and major chemical components, review articles that extensively organize various properties of S. officinalis and its major constituents are still scarce. Taken together, the objective of this paper is to provide overall pharmacological and phytochemical profiles of S. officinalis and its constituents (including ziyuglycoside I, ziyuglycoside II, and sanguiin H-6), and their potential roles in clinical applications for the treatment of inflammatory diseases, bleeding disorders, and cancer.
Collapse
Affiliation(s)
- Eungyeong Jang
- * College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,∥ Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - Kyung-Soo Inn
- † Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young Pyo Jang
- ‡ Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,§ Department of Oriental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Tae Lee
- ‡ Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,¶ Department of Pharmaceutical Biochemistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jang-Hoon Lee
- * College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
18
|
Chen X, Li B, Gao Y, Ji J, Wu Z, Chen S. Saponins from Sanguisorba officinalis Improve Hematopoiesis by Promoting Survival through FAK and Erk1/2 Activation and Modulating Cytokine Production in Bone Marrow. Front Pharmacol 2017; 8:130. [PMID: 28360858 PMCID: PMC5353277 DOI: 10.3389/fphar.2017.00130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/01/2017] [Indexed: 12/31/2022] Open
Abstract
Radix Sanguisorbae, the root of Sanguisorba officinalis L. is used as traditional Chinese medicine. In recent decades, it has been reported to be clinically effective against myelosuppression induced by chemotherapy and/ or radiotherapy. However, the underlining mechanism has not been well studied. In this work, we evaluated the hematopoietic effect of total saponins from S. officinalis L. on myelosuppressive mice induced by cyclophosphamide and by60Co-γ-irradiation and confirmed the therapeutic effect. Then, we found total saponins and their characteristic constituents Ziyuglycoside I and Ziyuglycoside II can inhibit apoptosis of TF-1 cells caused by cytokine deprivation, and promote survival of mouse bone marrow nuclear cells through focal adhesion kinase (FAK) and extracellular signal-regulated kinase 1/2 (Erk1/2) activation in vitro. In addition, they can down-regulate macrophage inflammatory protein 2 (MIP-2), platelet factor 4 (PF4) and P-selectin secretion, which are reported to be suppressive to hematopoiesis, both in vitro and in vivo. These results suggest that promotion of survival through FAK and Erk1/2 activation and inhibition of suppressive cytokines in the bone marrow is likely to be the pharmacological mechanism underlying the hematopoietic effect of saponins from S. officinalis L.
Collapse
Affiliation(s)
- Xin Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences (CAS)Sichuan, China; Graduate School, University of Chinese Academy of Sciences (CAS)Beijing, China
| | - Bogang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences (CAS)Sichuan, China; Di Ao Pharmaceutical GroupSichuan, China
| | - Yue Gao
- Institute of Radiation Medicine, Academy of Military Medical Sciences Beijing, China
| | - Jianxin Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences (CAS) Sichuan, China
| | - Zhongliu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences (CAS) Sichuan, China
| | - Shuang Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences (CAS) Sichuan, China
| |
Collapse
|
19
|
Son DJ, Hwang SY, Kim MH, Park UK, Kim BS. Anti-Diabetic and Hepato-Renal Protective Effects of Ziyuglycoside II Methyl Ester in Type 2 Diabetic Mice. Nutrients 2015. [PMID: 26198246 PMCID: PMC4517009 DOI: 10.3390/nu7075232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes is a metabolic disorder caused by abnormal carbohydrate metabolism, and closely associated with abnormal lipid metabolism and hepato-renal dysfunction. This study investigated the anti-diabetic and hepato-renal protective properties of ziyuglycoside I (ZG01) derivative on type 2 diabetes. ZG01 was isolated from roots of Sanguisorba officinalis and chemically modified by deglycosylation and esterification to obtained ziyuglycoside II methyl ester (ZG02-ME). Here, we showed that ZG02-ME has stronger anti-diabetic activity than the original compound (ZG01) through decreasing blood glucose, glycated hemoglobin (HbA1c), and insulin levels in a mouse model of type 2 diabetes (db/db mice). We further found that ZG02-ME treatment effectively ameliorated serum insulin, leptin and C-peptide levels, which are key metabolic hormones, in db/db mice. In addition, we showed that elevated basal blood lipid levels were decreased by ZG02-ME treatment in db/db mice. Furthermore, treatment of ZG02-ME significantly decreased serum AST, ALT, BUN, creatinine, and liver lipid peroxidation in db/db mice. These results demonstrated that compared to ZG01, chemically modified ZG02-ME possess improved anti-diabetic properties, and has hepato-renal protective activities in type 2 diabetes.
Collapse
Affiliation(s)
- Dong Ju Son
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 361-951, Korea.
| | - Seock Yeon Hwang
- Department of Biomedical Laboratory Science, College of Natural Science, Daejeon University, Daejeon 300-716, Korea.
| | - Myung-Hyun Kim
- Department of Physiology, College of Korean Medicine, Daejeon University, Daejeon 300-716, Korea.
| | - Un Kyu Park
- Department of Biomedical Laboratory Science, College of Natural Science, Daejeon University, Daejeon 300-716, Korea.
| | - Byoung Soo Kim
- Department of Physiology, College of Korean Medicine, Daejeon University, Daejeon 300-716, Korea.
| |
Collapse
|
20
|
Cytotoxic triterpene glycosides from the roots of Sanguisorba officinalis. Arch Pharm Res 2014; 38:984-90. [PMID: 25193625 DOI: 10.1007/s12272-014-0477-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
Phytochemical investigation of the ethanol extract of the roots of Sanguisorba officinalis resulted in the isolation of three new triterpene glycosides, 3β-[(α-L-arabinopyranosyl)oxy]-19α,23-dihydroxyolean-12-en-28-oic acid 28-[6-O-acetyl-β-D-glucopyranosyl] ester (1), 2α,3β,19α,23-tetrahydroxyurs-12-en-28-oic acid 28-[6-O-acetyl-β-D-glucopyranosyl] ester (2), and 3β-[(α-L-arabinopyranosyl)oxy]-19α-hydroxyurs-12,20(30)-dien-28-oic acid 28-[6-O-acetyl-β-D-glucopyranosyl] ester (3). All the triterpene glycosides exhibited the significant cytotoxic potential with low IC50 values (IC50 < 5.0 μM) against six tumor cell lines (MCF-7, HeLa, HepG2, SGC-7901, NCI-H460, and BGC-823).
Collapse
|
21
|
Wei JB, Li X, Song H, Liang YH, Pan YZ, Ruan JX, Qin X, Chen YX, Nong CL, Su ZH. Characterization and determination of antioxidant components in the leaves of Camellia chrysantha (Hu) Tuyama based on composition-activity relationship approach. J Food Drug Anal 2014; 23:40-48. [PMID: 28911444 PMCID: PMC9351755 DOI: 10.1016/j.jfda.2014.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 01/01/2023] Open
Abstract
Camellia chrysantha (Hu) Tuyama (CCT), an ornamental plant possessing antioxidant activity, has been infused as tea and drank for its health benefits. The antioxidant components in CCT, however, had not been clearly characterized. To quickly identify the antioxidant constituents of CCT, a composition–activity relationship strategy based on ultra high-pressure liquid chromatography coupled with linear ion trap hybrid orbitrap mass spectrometry and orthogonal partial least-squares method has been applied. As a result, 16 variables were found to make significant contributions to the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Six of them were identified as catechin (1), epicatechin (5), vitexin (8), isovitexin (10), quercetin-7-O-β-D-glucopyranoside (12) and kaempferol (16). The strength of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity was found to be 12 > 1 > 5 > 16 > 8 > 10 by validation test. Meanwhile, a liquid chromatography-electrospray ionization-mass spectrometry method was established for quantitative determination of six marker compounds in CCT samples from different preparations. The validation of the method, including linearity, sensitivity (limitation of detection and limitation of quantification), repeatability, precision, stability, and recoveries, was carried out and demonstrated to meet the requirements of quantitative analysis. This is the first report on the comprehensive characterization and determination of chemical constituents in CCT by ultra high-pressure liquid chromatography coupled with linear ion trap hybrid orbitrap mass spectrometry. The results indicate that the composition–activity relationship approach may be a useful method for the discovery of active constituents in natural plants and the quality control of medicinal herbs.
Collapse
Affiliation(s)
- Jin-Bin Wei
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, China
| | - Xiong Li
- Second Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Hui Song
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, China
| | - Yong-Hong Liang
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, China.
| | - Yu-Zheng Pan
- Department of Traditional Chinese Medicine, Guangxi First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jun-Xiang Ruan
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, China
| | - Xia Qin
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, China
| | - Yong-Xin Chen
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, China
| | - Cai-Li Nong
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, China
| | - Zhi-Heng Su
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|