1
|
Bibi M, Baboo I, Majeed H, Kumar S, Lackner M. Molecular Docking of Key Compounds from Acacia Honey and Nigella sativa Oil and Experimental Validation for Colitis Treatment in Albino Mice. BIOLOGY 2024; 13:1035. [PMID: 39765702 PMCID: PMC11673436 DOI: 10.3390/biology13121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Colitis, an inflammatory condition of the colon that encompasses ulcerative colitis (UC) and Crohn's disease, presents significant challenges due to the limitations and side effects of current treatments. This study investigates the potential of natural products, specifically AH and NSO, as organic therapeutic agents for colitis. Molecular docking studies were conducted to identify the binding affinities and interaction mechanisms between the bioactive compounds in AH and NSO and proteins implicated in colitis, such as those involved in inflammation and oxidative stress pathways. An in vivo experiment was performed using an albino mouse model of colitis, with clinical symptoms, histopathological assessments, and biochemical analyses conducted to evaluate the therapeutic effects of the compounds both individually and in combination. Results from the molecular docking studies revealed promising binding interactions between fructose and Prostaglandin G/H synthase 2 (Ptgs2) and between fructose and cellular tumor antigen p53, with docking energy measured at -6.0 kcal/mol and -5.1 kcal/mol, respectively. Meanwhile, the presence of glucose molecule glucokinase chain A (-6.3 kcal/mol) and chain B (-5.8 kcal/mol) indicated potential efficacy in modulating inflammatory pathways. Experimental data demonstrated that treatment with AH and NSO significantly reduced inflammation, improved gut health, and ameliorated colitis symptoms. Histopathological evaluations confirmed reduced mucosal damage and immune cell infiltration, while biochemical analyses showed normalization of inflammatory markers and oxidative stress levels. This study provides compelling evidence for the potential of AH and NSO as natural, complementary treatments for colitis, suggesting their future role in integrative therapeutic strategies. However, further research into long-term safety, optimal dosing, and mechanisms of action is warranted to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Mehwish Bibi
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Irfan Baboo
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Hamid Majeed
- Department of Food Science and Technology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan;
| | - Santosh Kumar
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, 17 Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
2
|
Khodaie SA, Razavi R, Nikkhah H, Namiranian N, Kamalinejad M. Nigella sativa L. and its bioactive and nutraceutical components in the management of diabetic peripheral neuropathy. Inflammopharmacology 2024:10.1007/s10787-024-01528-6. [PMID: 39143432 DOI: 10.1007/s10787-024-01528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Diabetes-induced hyperglycemia leads to excessive production of oxygen free radicals, inflammatory cytokines, and oxidative stress, which initiates diabetic peripheral neuropathy (DPN). Currently, this condition affects 20% of adults with diabetes. Despite significant advances in the treatment of diabetes, the incidence of its complications, including DPN, is still high. Thus, there is a growing research interest in developing more effective and treatment approaches with less side effects for diabetes and its complications. Nigella sativa L. (NS) has received much research attention as an antioxidant, anti-yperglycemic factor, and anti-inflammatory agent. This natural compound demonstrates its antidiabetic neuropathy effect through various pathways, including the reduction of lipid peroxidation, the enhancement of catalase and superoxide dismutase enzyme activity, and the decrease in inflammatory cytokine levels. The present review focuses on the bioactive and nutraceutical components of black cumin (Nigella sativa L.) and their effects on DPN. In addition, we have also summarized the findings obtained from several experimental and clinical studies regarding the antidiabetic neuropathy effect of NS in animal models and human subjects.
Collapse
Affiliation(s)
- Seyed-Ali Khodaie
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roghaye Razavi
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Haniyeh Nikkhah
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Namiranian
- Community & Preventive Medicine, Yazd Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Kamalinejad
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Behdane Baran Salem Abi Company, Tehran, Iran.
- AB Pharma inc267 Esplanade West, North Vancouver, BC, Canada.
| |
Collapse
|
3
|
Rounagh M, Musazadeh V, Hosseininejad-Mohebati A, Falahatzadeh M, Kavyani Z, Rostami RB, Vajdi M. Effects of Nigella sativa supplementation on lipid profiles in adults: An updated systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2024; 61:168-180. [PMID: 38777430 DOI: 10.1016/j.clnesp.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND AIM Several experiments have suggested that Nigella sativa (N. sativa) supplementation may have a beneficial effect on the lipid profile. However, the results from these trials have been inconclusive. Therefore, this study aimed to explore the impact of N. sativa supplementation on the lipid profile of adult participants. METHODS We searched Scopus, Web of Science, PubMed, Cochrane, and Web of Science databases until December 2022. Random effects models were used, and pooled data were determined as standardized mean differences with a 95% confidence interval. RESULTS The findings of 34 studies with 2278 participants revealed that N. sativa supplementation significantly reduced total cholesterol (TC) (SMD: -1.78; 95% CI: -2.20, -1.37, p < 0.001), triglycerides (TG) (SMD: -1.2725; 95% CI: -1.67, -0.83, p < 0.001), and low-density lipoprotein cholesterol (LDL-C) (SMD: -2.45; 95% CI: -3.06, -1.85; p < 0.001) compared to control groups. However, a significant increase was found in high-density lipoprotein cholesterol (HDL-C) (SMD: 0.79; 95% CI: 0.38, 1.20, p < 0.001). CONCLUSION N. sativa has improved effects on TG, LDL-C, TC, and HDL-C levels. Overall, N. sativa may be suggested as an adjuvant anti-hyperlipidemic agent.
Collapse
Affiliation(s)
- Mahsa Rounagh
- Islamic Azad University Science and Research Branch of Medical Science, Tehran, Iran
| | - Vali Musazadeh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Zeynab Kavyani
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Industries, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Bijan Rostami
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Vajdi
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Rahmy HAF, El-Tanany RRA, Ghoneem WMA. Nutrient utilization, growth performance, and antioxidative status of Barki lambs fed diets supplemented with black (Nigella sativa) and rocket (Eruca sativa) seeds. Trop Anim Health Prod 2024; 56:156. [PMID: 38727858 PMCID: PMC11087338 DOI: 10.1007/s11250-024-04005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
The current study aimed to determine the polyphenol compounds in Nigella sativa (NS) and Eruca sativa (ES) seeds, and evaluate the impact of their addition either as a sole additive or in combination on the growth performance, digestibility, some rumen and blood parameters and antioxidative status of Barki lambs. Forty-eight male lambs (27.18 ± 0.22 kg, 5-6 months), were divided into 4 balanced groups. The experimental diets were randomly distributed to the control group (CON); fed alfalfa hay plus concentrate feed mixture at a ratio of 30:70% without additives, while, NSD, ESD, and NESD groups: fed CON diet plus 2% NS, 2% ES or 1% NS + 1% ES, respectively as a ratio from total mixed ration (TMR). Results indicated that rutin and catechin were the most phenolic compounds observed either in NS or ES seeds. The NS and ES-supplemented groups recorded the highest (P < 0.05) values for dry matter digestibility, nutritive values, average daily gain, and the best feed conversion ratio. However, growth performance, nutritive value, and all nutrient digestibility except for dry matter were not significantly altered with the NESD group. Concentrations of ruminal NH3-N and TVFA were significantly (P < 0.05) reduced with the NESD group, with no significant differences in pH values among different groups. Values of blood parameters showed significant increases in WBCs, PCV, and T-AOC, and decreases in cholesterol, triglycerides, and MDA with the addition of NS and ES seeds or both. Therefore, the addition of NS and ES seeds is recommended to improve lambs' health and antioxidant status.
Collapse
|
5
|
Momeni Safarabadi A, Gholami M, Kordestani-Moghadam P, Ghaderi R, Birjandi M. The effect of rosemary hydroalcoholic extract on cognitive function and activities of daily living of patients with chronic obstructive pulmonary disease (COPD): A clinical trial. Explore (NY) 2024; 20:362-370. [PMID: 37758539 DOI: 10.1016/j.explore.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND In patients living with chronic obstructive pulmonary disease (COPD), cognitive impairment and reduced activities of daily living (ADLs) are associated with poor clinical outcomes. AIM The aim of the present study was to determine the effect of rosemary hydroalcoholic extract on cognitive function and ADLs in patients with COPD. METHODS A total of 77 COPD patients aged 40-80 years were assigned to two intervention and control groups by random stratified block method in the current tripleblind clinical trial. The intervention group received 500 mg rosemary capsules and the control group received oral capsules containing corn powder twice a day, one to two hours before breakfast and dinner, for two months. The Montreal Cognitive Assessment-Basic (MoCA-B), London Chest Activity of Daily Living scale (LCADL) and Lawton Instrumental Activities of Daily Living (IADL) were used to measure cognitive function and the measure of basic and instrumental daily life activities, before and after the intervention, respectively. RESULTS The mean total score of cognitive function (P = 0.022) and the two subscales of abstraction (P = 0.003) and naming (P = 0.034) significantly increased after the intervention in the intervention group. There was no significant difference between the intervention and control groups in terms of changes in the mean scores of IADL and LCADL (P < 0.05). The final statistical model showed that the changes in the total mean score of cognitive function (P = 0.014) and IADL (P = 0.047) in intervention group patients are significantly higher than in the control group after adjusting the effect of obstructive sleep apnea (OSA). CONCLUSION The rosemary hydroalcoholic extract can be effective in improving cognitive function and IADL in patients with COPD, but not LCADL. CLINICAL TRIALS REGISTRATION NUMBER IRCT20150919024080N16.
Collapse
Affiliation(s)
| | - Mohammad Gholami
- Social Determinants of Health Research Center, School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, 6814993165, Iran.
| | - Parastou Kordestani-Moghadam
- Razi Herbal Medicines Research Center, School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Reza Ghaderi
- Department of Pulmonology, Science and Research Branch, Iran Medical Sciences University, Tehran, Iran.
| | - Mehdi Birjandi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
6
|
Shakeri F, Kiani S, Rahimi G, Boskabady MH. Anti-inflammatory, antioxidant, and immunomodulatory effects of Berberis vulgaris and its constituent berberine, experimental and clinical, a review. Phytother Res 2024; 38:1882-1902. [PMID: 38358731 DOI: 10.1002/ptr.8077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 02/16/2024]
Abstract
Berberis vulgaris (B. vulgaris or barberry) is a medicinal plant that has been used for various purposes in traditional medicine. Berberine is one of the main alkaloids isolated from B. vulgaris and other plants. Both B. vulgaris and berberine have shown anti-inflammatory, antioxidant, and immunomodulatory effects in different experimental models and clinical trials. This review aims to summarize the current evidence on the mechanisms and applications of B. vulgaris and berberine in modulating inflammation, oxidative stress, and immune responses. The literature search was performed using PubMed, Scopus, and Google Scholar databases until August 2023. The results indicated that B. vulgaris and berberine could inhibit the production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin 6 (IL-6), and interleukin-17 (IL-17), and enhance the expression of anti-inflammatory cytokines, such as interleukin 10 (IL-10) and transforming growth factor-β (TGF-β), in various cell types and tissues. B. vulgaris and berberine can also scavenge free radicals, increase antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and reduce lipid peroxidation and DNA damage. B. vulgaris and berberine have been reported to exert beneficial effects in several inflammatory, oxidative, and immune-related diseases, such as diabetes, obesity, cardiovascular diseases, neurodegenerative diseases, autoimmune diseases, allergic diseases, and infections. However, more studies are needed to elucidate the optimal doses, safety profiles, and potential interactions of B. vulgaris and berberine with other drugs or natural compounds.
Collapse
Affiliation(s)
- Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Kiani
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Golnoosh Rahimi
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Nagy AM, Abdelhameed MF, Elkarim ASA, Sarker TC, Abd-ElGawad AM, Elshamy AI, Hammam AM. Enhancement of Female Rat Fertility via Ethanolic Extract from Nigella sativa L. (Black Cumin) Seeds Assessed via HPLC-ESI-MS/MS and Molecular Docking. Molecules 2024; 29:735. [PMID: 38338478 PMCID: PMC10856701 DOI: 10.3390/molecules29030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The characteristic chemical composition of Nigella seeds is directly linked to their beneficial properties. This study aimed to investigate the phytochemical composition of Nigella sativa seeds using a 100% ethanolic extract using HPLC-ESI-MS/MS. Additionally, it explored the potential biological effects of the extract on female rat reproduction. Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH), Estrogen (E2), and Progesterone (P4) hormone levels were also assessed, along with the morphological and histological effects of the extract on ovarian, oviductal, and uterine tissues. Molecular docking was performed to understand the extract's activity and its role in regulating female reproduction by assessing its binding affinity to hormonal receptors. Twenty metabolites, including alkaloids, saponins, terpenes, flavonoids, phenolic acids, and fatty acids, were found in the ethanolic extract of N. sativa seeds through the HPLC-ESI-MS/MS study. The N. sativa seed extract exhibited strong estrogenic and LH-like activities (p < 0.05) with weak FSH-like activity. Furthermore, it increased the serum levels of LH (p < 0.05), P4 hormones (p < 0.001), and E2 (p < 0.0001). Molecular docking results displayed a strong interaction with Erβ, LH, GnRH, and P4 receptors, respectively. Based on these findings, N. sativa seeds demonstrated hormone-like activities, suggesting their potential as a treatment for improving female fertility.
Collapse
Affiliation(s)
- Ahmed M. Nagy
- Department of Animal Reproduction & AI, Veterinary Research Institute, National Research Center, Cairo 12622, Egypt;
| | | | - Asmaa S. Abd Elkarim
- Chemistry of Tanning Materials and Leather Technology Department, National Research Center, Cairo 12622, Egypt;
| | | | - Ahmed M. Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Center, Cairo 12622, Egypt
| | - Abdelmohsen M. Hammam
- Department of Animal Reproduction & AI, Veterinary Research Institute, National Research Center, Cairo 12622, Egypt;
| |
Collapse
|
8
|
Khatoon M, Kushwaha P, Usmani S, Madan K. Dermaceutical Utilization of Nigella sativa Seeds: Applications and Opportunities. Drug Res (Stuttg) 2024; 74:5-17. [PMID: 38016656 DOI: 10.1055/a-2196-1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Skin diseases have recently become a major concern among people of all ages due to their highly visible symptoms and persistent and difficult treatment, which significantly impact their quality of life. Nigella sativa seeds, also known as "black seeds" or "kalonji," are one of the most commonly used herbal medicines due to their wide range of biological and pharmacological activities. It contains a wide range of bioactive constituents found in both fixed and essential oils. It has been used for hundreds of years as an alternative ethnomedicine to treat a wide range of skin conditions. N. sativa's dermatological applications in skin diseases are attributed to its potent antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties, making it an intriguing skincare candidate. Several studies unravelled positive results associated with N. sativa on skin diseases. As N. sativa is the most studied medicinal plant, several preclinical and clinical studies have been conducted to establish its use in the treatment of various skin diseases. Thymoquinone has anti-inflammatory, antioxidant, and antibacterial properties, which mainly contributed to the treatment of skin diseases. In this context, the present review explores all the available studies on the association of N. sativa and its effect on treating skin diseases in light of recent studies and patents supporting its therapeutic applications.
Collapse
Affiliation(s)
| | | | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Kumud Madan
- Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
9
|
Hisham Shady N, Zhang J, Khalid Sobhy S, Hisham M, Glaeser SP, Alsenani F, Kämpfer P, El-Katatny MH, Abdelmohsen UR. Metabolomic profiling and cytotoxic potential of three endophytic fungi of the genera Aspergillus, Penicillium and Fusarium isolated from Nigella sativa seeds assisted with docking studies. Nat Prod Res 2023; 37:2905-2910. [PMID: 36305731 DOI: 10.1080/14786419.2022.2136660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
Abstract
The main aim of our study is to investigate the anticancer potential of our cultivated entophytic fungal strains from Nigella sativa seeds. The strains were identified by sequencing of the partial 18S rRNA gene and the internal transcribed spacer (ITS) region as Aspergillus sp. (SA4), Penicillium sp. (SA5), and Fusarium sp. (SA6). We carried out metabolic profiling for three fungal strains to investigate their metabolites diversity. Profiling of the different extracts revealed their richness in diverse metabolites and consequently fourteen compounds (1-14) were annotated. In addition, the obtained extracts were examined against three cell lines HepG2, MCF-7 and Caco-2 showed activity with IC50 values in the range of 1.95-39.7 μg/mL. Finally, molecular docking study was performed showing questinol as the lowest glide binding score value (-5.925 kcal/mol) among all identified compounds. Our results showed Nigella sativa-associated endophytes as a promising source for further studies to look for anticancer secondary metabolites.
Collapse
Affiliation(s)
- Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sara Khalid Sobhy
- Department of Botany and Microbiology, Faculty of Science, Minia University, El-Minia, Egypt
- Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mohamed Hisham
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus-Liebig University Gießen, Gießen, Germany
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus-Liebig University Gießen, Gießen, Germany
| | - Mo'men H El-Katatny
- Department of Botany and Microbiology, Faculty of Science, Minia University, El-Minia, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
10
|
Ciesielska-Figlon K, Wojciechowicz K, Wardowska A, Lisowska KA. The Immunomodulatory Effect of Nigella sativa. Antioxidants (Basel) 2023; 12:1340. [PMID: 37507880 PMCID: PMC10376245 DOI: 10.3390/antiox12071340] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND For thousands of years till nowadays, Nigella sativa (NS) has served as a common spice and food preservative. Its seed extracts, seed oil, and essential oil in traditional medicine have been used to remedy many ailments such as headaches, fever, gastric complaints, and even rheumatism. In addition, the antibacterial, virucidal, fungicidal, and antiparasitic properties of NS are well known. However, studies on the possible immunomodulatory effects of black cumin are relatively scarce. This article discusses in vitro and in vivo research supporting the immunomodulatory role of NS. METHODS The review is based on articles, books, and conference papers printed until September 2022, found in the Web of Science, PubMed, Wiley Online Library, and Google Scholar databases. RESULTS Experimental findings were reported concerning the ability of NS to modulate inflammation and immune responses or cytotoxic activity. CONCLUSIONS All results suggest that NS can potentially be employed in developing effective therapeutic agents for regulating immune reactions.
Collapse
Affiliation(s)
- Klaudia Ciesielska-Figlon
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Karolina Wojciechowicz
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Anna Wardowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | | |
Collapse
|
11
|
Zareen S, Adnan M, Khan SN, Alotaibi A. Anti-plasmodial potential of selected medicinal plants and a compound Atropine isolated from Eucalyptus obliqua. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Abstract
The present research study was aimed to investigate the efficiency of selected medicinal plants against Plasmodium vivax. Crude methanolic extracts from the seeds of leaves of Datura stramonium, Parthenium hysterophorus, Calotropis procera, and Dodonaea viscosa were prepared. In addition, Atropine was also isolated from alkaloid components of Eucalyptus obliqua to evaluate their in vitro anti-plasmodial effects. It was observed that proguanil (positive control) and Atropine displayed strong anti-plasmodial activity (94.04 and 68.02%, respectively) against P. vivax at 0.1 mg/mL concentration while the leaf extracts of other medicinal plants did not exhibit any notable anti-plasmodial activity. It was concluded that alkaloids of E. obliqua plant’s extracts were rich in anti-plasmodial compound Atropine, which exhibit a remarkable anti-plasmodial activity against P. vivax. Anti-plasmodial action of medicinal plants are attributed to these phytochemicals. In vitro studies using medicinal plant’s extracts and standardized methods will help to make more powerful and cost-effective anti-plasmodial compounds.
Collapse
Affiliation(s)
- Shehzad Zareen
- Department of Zoology, Kohat University of Science and Technology , Kohat , 26000 Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Adnan
- Department of Botany, Kohat University of Science and Technology , Kohat , 26000 Khyber Pakhtunkhwa , Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology , Kohat , 26000 Khyber Pakhtunkhwa , Pakistan
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| |
Collapse
|
12
|
In silico and In vitro Analysis of Nigella sativa Bioactives Against Chorismate Synthase of Listeria monocytogenes: a Target Protein for Biofilm Inhibition. Appl Biochem Biotechnol 2023; 195:519-533. [PMID: 36098931 DOI: 10.1007/s12010-022-04157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Listeria monocytogenes have the ability to form biofilms, which aid in the contamination of food and the evasion of antimicrobials. Consumption of L. monocytogenes laden food can promote mild to severe infection in humans and cause serious health issues. Therefore, biofilm development by L. monocytogenes is considered to be a major concern for both healthcare and food safety. This study attempted to target chorismate synthase, an essential protein predicted to be involved in the biofilm pathway. Nigella sativa is renowned for its applications in folk medicine; hence, bioactive ingredients reported were used for molecular docking studies. In the absence of a three-dimensional structure of chorismate synthase from L. monocytogenes, a homology model was generated using the Modeller program. A model with the highest DOPE score was chosen and validated. The reliable model was subjected to docking studies with 30 ligands from N. sativa. From this approach, α-longipinene was unveiled as the best hit. Further in vitro studies demonstrated the antibiofilm potential of α-longipinene against L. monocytogenes. Overall, the study reveals lead molecules from N. sativa as promising antibiofilm agents against L. monocytogenes. Hence, extended investigation with lead molecules will provide sustainable strategies to prevent biofilm-mediated problems due to L. monocytogenes.
Collapse
|
13
|
Oriola AO, Oyedeji AO. Plant-Derived Natural Products as Lead Agents against Common Respiratory Diseases. Molecules 2022; 27:3054. [PMID: 35630531 PMCID: PMC9144277 DOI: 10.3390/molecules27103054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 12/16/2022] Open
Abstract
Never has the world been more challenged by respiratory diseases (RDs) than it has witnessed in the last few decades. This is evident in the plethora of acute and chronic respiratory conditions, ranging from asthma and chronic obstructive pulmonary disease (COPD) to multidrug-resistant tuberculosis, pneumonia, influenza, and more recently, the novel coronavirus (COVID-19) disease. Unfortunately, the emergence of drug-resistant strains of pathogens, drug toxicity and side effects are drawbacks to effective chemotherapeutic management of RDs; hence, our focus on natural sources because of their unique chemical diversities and novel therapeutic applications. This review provides a summary on some common RDs, their management strategies, and the prospect of plant-derived natural products in the search for new drugs against common respiratory diseases.
Collapse
Affiliation(s)
- Ayodeji Oluwabunmi Oriola
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, P/Bag X1, Mthatha 5117, South Africa;
| | | |
Collapse
|
14
|
Aminian AR, Mohebbati R, Boskabady MH. The Effect of Ocimum basilicum L. and Its Main Ingredients on Respiratory Disorders: An Experimental, Preclinical, and Clinical Review. Front Pharmacol 2022; 12:805391. [PMID: 35046828 PMCID: PMC8762307 DOI: 10.3389/fphar.2021.805391] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Ocimum basilicum L. (O. basilicum) and its constituents show anti-inflammatory, immunomodulatory, and antioxidant effects. The plant has been mainly utilized in traditional medicine for the treatment of respiratory disorders. In the present article, effects of O. basilicum and its main constituents on respiratory disorders, assessed by experimental and clinical studies, were reviewed. Relevant studies were searched in PubMed, Science Direct, Medline, and Embase databases using relevant keywords including "Ocimum basilicum," "basilicums," "linalool," "respiratory disease," "asthma," "obstructive pulmonary disease," "bronchodilatory," "bronchitis," "lung cancer," and "pulmonary fibrosis," and other related keywords.The reviewed articles showed both relieving and preventing effects of the plant and its ingredients on obstructive pulmonary diseases such as chronic obstructive pulmonary disease (COPD), asthma, and other respiratory disorders such as bronchitis, aspergillosis tuberculosis, and lung cancer. The results of the reviewed articles suggest the therapeutic potential of O. basilicum and its constituent, linalool, on respiratory disorders.
Collapse
Affiliation(s)
- Ahmad Reza Aminian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Abstract
Due to the lack of prophylactic vaccines and effective treatment strategies against numerous public health conditions, viral infections remain a serious threat to global public health and socioeconomic development. The current ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, against which there is no prophylactic vaccine or licensed antiviral agents, underscores the need to continuously identify novel/effective treatment strategies against these infectious agents. Plants and plant-derived compounds have immensely contributed to the fight against numerous health conditions by providing bioactives that possess potent antimicrobial attributes, including antiviral activities. One such plant that has gathered much interest, due to its multiple medicinal properties, is the Nigella sativa plant, a flowering plant belonging to the family Ranunculacea, which is native to various regions of the world. In this chapter, we discuss the antiviral activities of N. sativa against critical viral pathogens, focusing more on the SARS-CoV-2 virus, the etiologic agent of the current unparalleled coronavirus disease (COVID-19) pandemic.
Collapse
|
16
|
Afroz S, Fairuz S, Joty JA, Uddin MN, Rahman MA. Virtual screening of functional foods and dissecting their roles in modulating gene functions to support post COVID-19 complications. J Food Biochem 2021; 45:e13961. [PMID: 34676581 PMCID: PMC8646449 DOI: 10.1111/jfbc.13961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022]
Abstract
COVID-19 has become the focal point since 2019 after the outbreak of coronavirus disease. Many drugs are being tested and used to treat coronavirus infections; different kinds of vaccines are also introduced as preventive measure. Alternative therapeutics are as well incorporated into the health guidelines of some countries. This research aimed to look into the underlying mechanisms of functional foods and how they may improve the long-term post COVID-19 cardiovascular, diabetic, and respiratory complications through their bioactive compounds. The potentiality of nine functional foods for post COVID-19 complications was investigated through computational approaches. A total of 266 bioactive compounds of these foods were searched via extensive literature reviewing. Three highly associated targets namely troponin I interacting kinase (TNNI3K), dipeptidyl peptidase 4 (DPP-4), and transforming growth factor beta 1 (TGF-β1) were selected for cardiovascular, diabetes, and respiratory disorders, respectively, after COVID-19 infections. Best docked compounds were further analyzed by network pharmacological tools to explore their interactions with complication-related genes (MAPK1 and HSP90AA1 for cardiovascular, PPARG and TNF-alpha for diabetes, and AKT-1 for respiratory disorders). Seventy-one suggested compounds out of one-hundred and thirty-nine (139) docked compounds in network pharmacology recommended 169 Gene Ontology (GO) items and 99 Kyoto Encyclopedia of Genes and Genomes signaling pathways preferably AKT signaling pathway, MAPK signaling pathway, ACE2 receptor signaling pathway, insulin signaling pathway, and PPAR signaling pathway. Among the chosen functional foods, black cumin, fenugreek, garlic, ginger, turmeric, bitter melon, and Indian pennywort were found to modulate the actions. Results demonstrate that aforesaid functional foods have attenuating roles to manage post COVID-19 complications. PRACTICAL APPLICATIONS: Functional foods have been approaching a greater interest due to their medicinal uses other than gastronomic pleasure. Nine functional food resources have been used in this research for their traditional and ethnopharmacological uses, but their directive-role in modulating the genes involved in the management of post COVID-19 complications is inadequately studied and reported. Therefore, the foods types used in this research may be prioritized to be used as functional foods for ameliorating the major post COVID-19 complications through appropriate science.
Collapse
Affiliation(s)
- Sharmin Afroz
- Department of Theoretical and Computational ChemistryUniversity of DhakaDhakaBangladesh
| | | | - Jahanara Alam Joty
- Department of Biochemistry and BiotechnologyUniversity of Science and TechnologyChittagongBangladesh
| | - Md. Nazim Uddin
- Institute of Food Science and TechnologyBangladesh Council of Scientific and Industrial ResearchDhakaBangladesh
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| |
Collapse
|
17
|
Rafiqul Islam A, Ferdousi J, Shahinozzaman M. Previously published ethno-pharmacological reports reveal the potentiality of plants and plant-derived products used as traditional home remedies by Bangladeshi COVID-19 patients to combat SARS-CoV-2. Saudi J Biol Sci 2021; 28:6653-6673. [PMID: 34305428 PMCID: PMC8285211 DOI: 10.1016/j.sjbs.2021.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 01/08/2023] Open
Abstract
Several plants have traditionally been used since antiquity to treat various gastroenteritis and respiratory symptoms similar to COVID-19 outcomes. The common symptoms of COVID-19 include fever or chills, cold, cough, flu, headache, diarrhoea, tiredness/fatigue, sore throat, loss of taste or smell, asthma, shortness of breath, or difficulty breathing, etc. This study aims to find out the plants and plant-derived products which are being used by the COVID-19 infected patients in Bangladesh and how those plants are being used for the management of COVID-19 symptoms. In this study, online and partially in-person survey interviews were carried out among Bangladeshi respondents. We selected Bangladeshi COVID-19 patients who were detected Coronavirus positive (+) by RT-PCR nucleic acid test and later recovered. Furthermore, identified plant species from the surveys were thoroughly investigated for safety and efficacy based on the previous ethnomedicinal usage reports. Based on the published data, they were also reviewed for their significant potentialities as antiviral, anti-inflammatory, and immunomodulatory agents. We explored comprehensive information about a total of 26 plant species, belonging to 23 genera and 17 different botanical families, used in COVID-19 treatment as home remedies by the respondents. Most of the plants and plant-derived products were collected directly from the local marketplace. According to our survey results, greatly top 5 cited plant species measured as per the highest RFC value are Camellia sinensis (1.0) > Allium sativum (0.984) > Azadirachta indica (0.966) > Zingiber officinale (0.966) > Syzygium aromaticum (0.943). Previously published ethnomedicinal usage reports, antiviral, anti-inflammatory, and immunomodulatory activity of the concerned plant species also support our results. Thus, the survey and review analysis simultaneously reveals that these reported plants and plant-derived products might be promising candidates for the treatment of COVID-19. Moreover, this study clarifies the reported plants for their safety during COVID-19 management and thereby supporting them to include in any future pre-clinical and clinical investigation for developing herbal COVID-19 therapeutics.
Collapse
Key Words
- BAL, Bronchoalveolar lavage
- BALF, Bronchoalveolar lavage fluid
- Bangladesh
- CHO-K1, Wild-type Chinese hamster ovary CHO-K1 cells
- CIK, Ctenopharyngodon idellus kidney Cell line
- COPD, Chronic obstructive pulmonary disease
- COVID-19
- CRD, Complex chronic respiratory disease
- CRFK, Crandell-Reese feline kidney cells
- EGCG, Epigallocatechin-3-gallate
- EPO, Eosinophil peroxidase
- Ethnobotany
- FRhk-4cells, Fetal rhesus monkey kidney cells
- H1N1, Hemagglutinin Type 1 and Neuraminidase Type 1
- HEK293T, Human embryonic kidney cells
- HEp-2 cells, Epithelial cells of human larynx carcinoma
- HLAC, Human lymphoid aggregate cultures
- HeLa, Human epithelial cervical carcinoma cell lines
- Huh-7, Human hepatocyte-derived carcinoma cell line
- IBD, Inflammatory bowel disease
- ICU, Intensive care unit
- IFN‐γ, Interferon‐gamma
- IL, Interleukin
- IgE, Immunoglobulin E
- MARC-145 cells, African green monkey kidney cell line
- MCP-1, Monocyte chemoattractant protein-1
- MDCK, Madin-Darby Canine Kidney cell lines
- MEF, Mouse embryonic fibroblast cells
- Medicinal plants
- NF-κB, Nuclear factor-kappaB
- PBMCs, Peripheral Blood Mononuclear Cells
- RT-PCR, Reverse transcription polymerase chain reaction
- SARS, Severe acute respiratory syndrome, MERS, Middle East respiratory syndrome
- TNF-β, Tumor necrosis factor‐beta
- TNF‐α, Tumor necrosis factor‐alpha
- Th, T-helper
- Traditional home remedies
- VERO cell lines, African green monkey kidney cell lines
Collapse
Affiliation(s)
- A.T.M. Rafiqul Islam
- Department of Botany, Faculty of Bio-Sciences, University of Barishal, Barishal 8200, Bangladesh
| | - Jannatul Ferdousi
- Department of Botany, Faculty of Bio-Sciences, University of Barishal, Barishal 8200, Bangladesh
| | - Md Shahinozzaman
- Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
18
|
Anti-Inflammatory Activity of S. Marianum and N. Sativa Extracts on Macrophages. Rep Biochem Mol Biol 2021; 10:288-301. [PMID: 34604418 DOI: 10.52547/rbmb.10.2.288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/18/2021] [Indexed: 12/30/2022]
Abstract
Background Nigella sativa (N. sativa) and Silybum marianum (S. marianum) are used to regulate macrophage polarization in lipopolysaccharide-induced RAW 264.7 cells and thioglycollate-elicited peritoneal inflammation. Methods Cytotoxicity assays and acute toxicity tests were performed to investigate the safe dose and toxicity of the prepared extracts. Also, nitric oxide production was determined by Griess assay on RAW264.7 and peritoneal macrophage supernatants. After RNA extraction from macrophages, real-time PCR was performed to measure the relative gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6, transforming growth factor (TGF)-β, and IL-10. Finally, regulatory T cells (Treg cells) were counted by flow cytometry. Results S. marianum methanolic extract (SME), N. sativa ethanolic extract (NEE), and their mixture (SME+NEE) decreased NO levels significantly in RAW264.7 and peritoneal murine macrophages. N. sativa ethanolic extract significantly increased IL-10 gene expression and significantly decreased IL-6 and TNF-α expression in RAW264.7 cells. In mixture-treated peritoneal macrophages, IL-10 and TGF-β expression were significantly increased, while IL-6 and TNF-α were significantly decreased. Also, the percentage of Treg cells was significantly greater in the mixture-treated cells than in controls. Conclusion These results suggest that an SME and NEE mixture has anti-inflammatory and immunomodulatory activities and may be useful in the treatment of diseases of immunopathologic origin characterized by macrophage hyperactivation.
Collapse
|
19
|
Niu Y, Wang B, Zhou L, Ma C, Waterhouse GIN, Liu Z, Ahmed AF, Sun-Waterhouse D, Kang W. Nigella sativa: A Dietary Supplement as an Immune-Modulator on the Basis of Bioactive Components. Front Nutr 2021; 8:722813. [PMID: 34485368 PMCID: PMC8415885 DOI: 10.3389/fnut.2021.722813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
Nutrients can be considered as functional foods, which exert physiological benefits on immune system. The seeds of Nigella sativa, which have many active constituents, are mainly used for medicine, food spice, and nutritional supplements in Egypt. Much attention has been paid to N. sativa seeds for their anticancer, antibacterial, anti-inflammatory, and immune properties. However, their active constituents and mechanisms underlying functions from N. sativa seeds is unclear. Thus, the bioactive constituents with immune regulation in N. sativa seeds were systematically studied. A new compound (3-methoxythymol-6-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside 1) and 11 known compounds (2–12) were separated from the N. sativa seeds by chromatographic methods. Their structures were then elucidated by spectroscopic analysis of MS, UV, IR, 1H-, and 13C-NMR. Furthermore, immunomodulatory effects of those compounds in RAW 264.7 cells were evaluated by phagocytosis, nitric oxide (NO) and cytokine release, related mRNA transcription, and key proteins expression in vitro. Monosaccharide derivatives, Ethyl-α-D-furaarabinose (5), and Ethyl-β-D-fructofuranoside (8) were shown to played bidirectional regulatory roles in immunity and anti-inflammation through the regulation of nuclear factor-κB (NF-κB) signaling pathways. The results showed the active compounds and mechanisms of immune regulation in N. sativa, thus indicating that N. sativa seeds could be used as dietary supplements in immunomodulation.
Collapse
Affiliation(s)
- Yun Niu
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Baoguang Wang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Li Zhou
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Functional Food Engineering Technology Research Center, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Changyang Ma
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Geoffrey I N Waterhouse
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Zhenhua Liu
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Adel F Ahmed
- Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China.,Medicinal and Aromatic Plants Researches Department, Agricultural Research Center, Horticulture Research Institute, Giza, Egypt
| | - Dongxiao Sun-Waterhouse
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Wenyi Kang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Functional Food Engineering Technology Research Center, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| |
Collapse
|
20
|
Gholamnezhad Z, Boskabady MH, Hosseini M. The effect of chronic supplementation of Nigella sativa on splenocytes response in rats following treadmill exercise. Drug Chem Toxicol 2021; 44:487-492. [PMID: 31137984 DOI: 10.1080/01480545.2019.1617301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
Abstract
Nigella sativa (N. sativa) was shown to recover fatigue and imbalanced immune system. Therefore, effect of chronic administration of N. sativa hydroethanolic extract on splenocytes response in sedentary and exercised animals, was evaluated. Male Wistar rats were randomly divided into non-treated (control sedentary (C), moderately trained (MT; Velocity 20 m/min, 30 min/day 8 weeks), and over-trained (OT; Velocity 25 m/min, 60 min/day 11 weeks)), and N. sativa-treated animals (Nisa, 200 mg/kg, orally) (control (Nisa-C), moderately trained (Nisa-MT) and over-trained (Nisa-OT)). Finally, cell viability and proliferation, as well as interleukin 4 (IL-4) and interferon-γ (IFN-γ) secretion in non-stimulated and concanavalin A (Con A)-stimulated splenocytes, were evaluated. In the absence of the mitogen, cell viability in Nisa-C and Nisa-OT, cell proliferation in Nisa-C and Nisa-MT, IFN-γ concentration in Nisa-MT and Nisa-OT and IFN-γ/IL-4 ratio in Nisa C, Nisa-MT and Nisa-OT were higher compared to non-treated groups; but, IL-4 level in Nisa-MT was lower than non-treated groups. In the presence of the mitogen, cell viability in Nisa-C and Nisa-OT, IL-4 concentration in Nisa-C and Nisa-OT groups, and IFN-γ concentration and IFN-γ/IL-4 ratio in Nisa-MT were higher, while IFN-γ/IL-4 ratio was lower in Nisa-C group compared to non-treated groups. Moreover, IFN-γ/IL-4 ratio in stimulated and non-stimulated splenocytes supernatant was higher in Nisa-MT compared to Nisa-C and Nisa-OT groups. N. sativa chronic administration may shift Th1/Th2 cytokines profile of splenocytes towards Th1, especially in over-trained and non-stimulated condition. Moderate exercise and N. sativa supplementation may improve disorders associated with elevated Th2 such as overtraining syndrome.
Collapse
Affiliation(s)
- Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Majeed A, Muhammad Z, Ahmad H, Rehmanullah, Hayat SSS, Inayat N, Siyyar S. Nigella sativa L.: Uses in traditional and contemporary medicines – An overview. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.chnaes.2020.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Madkour DA, Ahmed MM, Orabi SH, Sayed SM, Korany RMS, Khalifa HK. Nigella sativa oil protects against emamectin benzoate-Induced neurotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:1521-1535. [PMID: 33885218 DOI: 10.1002/tox.23149] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated the ameliorative impact of Nigella sativa oil (NSO) on emamectin benzoate (EMB) neurotoxicity. Thirty-five male rats were randomly allocated into 5 groups (n = 7). G1 (control): received distilled water; G2: received NSO (3 ml. Kg-1 B.W.) for 6 weeks; G3: received EMB (9 mg kg-1 B.W.) for 6 weeks; G4: was co-treated with NSO and EMB for 6 weeks; G5: was treated with EMB for 4 weeks then, received NSO for 2 weeks. All treatments were given orally every other day. EMB increased serum urea, creatinine levels; brain dopamine, serotonin, malondialdehyde levels; brain expression levels of caspase 3 and TNF-α. While, it decreased serum total protein, albumin, brain GABA, AChE, GSH-Px, CAT, and SOD levels. Histopathological findings revealed hemorrhage, congestion, severe degeneration, and edema of the brain tissues. NSO reversed the EMB-induced biochemical and histopathological alterations. This NSO effect is mostly due to its antioxidant, antiinflammatory, and antiapoptotic activities. These findings suggest NSO as a potential protective and therapeutic agent for EMB-induced neurotoxicity.
Collapse
Affiliation(s)
- Doaa A Madkour
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohamed M Ahmed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Sahar H Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Samy M Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Ranyah, Saudi Arabia
| | - Reda M S Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Hanem K Khalifa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
23
|
Kulyar MFEA, Li R, Mehmood K, Waqas M, Li K, Li J. Potential influence of Nagella sativa (Black cumin) in reinforcing immune system: A hope to decelerate the COVID-19 pandemic. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153277. [PMID: 32773257 PMCID: PMC7347483 DOI: 10.1016/j.phymed.2020.153277] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/14/2020] [Accepted: 07/02/2020] [Indexed: 05/10/2023]
Abstract
The world is witnessing a difficult time. The race of developing a new coronavirus (COVID-19) vaccine is becoming more urgent. Many preliminary studies on the pathophysiology of COVID-19 patients have provided some clues to treat this pandemic. However, no suitable treatment has found yet. Various symptoms of patients infected with COVID-19 indicated the importance of immune regulation in the human body. Severe cases admitted to the intensive care unit showed high level of pro-inflammatory cytokines which enhanced the disease severity. Acute Respiratory Distress Syndrome (ARDS) in COVID-19 patients is another critical factor of disease severity and mortality. So, Immune modulation is the only way of regulating immune system. Nigella sativa has been used for medicinal purposes for centuries. The components of this plant are known for its intense immune-regulatory, anti-inflammatory, and antioxidant benefits in obstructive respiratory disorders. A molecular docking study also gave evidences that N. sativa decelerates COVID-19 and might give the same or better results than the FDA approved drugs. The aim of this review was to investigate the possible immune-regulatory effects of N. sativa on COVID-19 pandemic. Our review found N. sativa's Thymoquinone, Nigellidine, and α-hederin can be a potential influencer in reinforcing the immune response on molecular grounds.
Collapse
Affiliation(s)
| | - Rongrong Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur-63100, Pakistan
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch 12350, Azad Jammu & Kashmir, Pakistan
| | - Kun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
24
|
Memarzia A, Khazdair MR, Behrouz S, Gholamnezhad Z, Jafarnezhad M, Saadat S, Boskabady MH. Experimental and clinical reports on anti-inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. Biofactors 2021; 47:311-350. [PMID: 33606322 DOI: 10.1002/biof.1716] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Curcuma longa (C. longa) or turmeric is a plant with a long history of use in traditional medicine, especially for treating inflammatory conditions C. longa and its main constituent, curcumin (CUR), showed various pharmacological effects such as antioxidant and anti-microbial properties. The updated knowledge of anti-inflammatory, antioxidant, and immunomodulatory effects of C. longa and CUR is provided in this review article. Pharmacological effects of C. longa, and CUR, including anti-inflammatory, antioxidant, and immunomodulatory properties, were searched using various databases and appropriate keywords until September 2020. Various studies showed anti-inflammatory effects of C. longa and CUR, including decreased white blood cell, neutrophil, and eosinophil numbers, and its protective effects on serum levels of inflammatory mediators such as phospholipase A2 and total protein in different inflammatory disorders. The antioxidant effects of C. longa and CUR were also reported in several studies. The plant extracts and CUR decreased malondialdehyde and nitric oxide levels but increased thiol, superoxide dismutase, and catalase levels in oxidative stress conditions. Treatment with C. longa and CUR also improved immunoglobulin E (Ig)E, pro-inflammatory cytokine interleukin 4 (IL)-4, transforming growth factor-beta, IL-17, interferon-gamma levels, and type 1/type 2 helper cells (Th1)/(Th2) ratio in conditions with disturbance in the immune system. Therefore C. longa and CUR showed anti-inflammatory, antioxidant, and immunomodulatory effects, indicating a potential therapeutic effect of the plant and its constituent, CUR, for treating of inflammatory, oxidative, and immune dysregulation disorders.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad R Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Jafarnezhad
- Department of Anesthesia, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad H Boskabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Shahid F, Farooqui Z, Alam T, Abidi S, Parwez I, Khan F. Thymoquinone supplementation ameliorates cisplatin-induced hepatic pathophysiology. Hum Exp Toxicol 2021; 40:1673-1684. [PMID: 33832332 DOI: 10.1177/09603271211003645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatotoxicity is a major dose-limiting side effect of CP chemotherapy besides nephrotoxicity and gastrointestinal dysfunction. TQ, a principal Nigella sativa seed oil constituent, has been shown to improve hepatic functions in various in vivo models of acute hepatic injury. In view of this, the present study aimed to evaluate the effect of TQ against CP-induced hepatotoxicity. Rats were divided into four experimental groups; control, CP, CP+TQ and TQ. Animals in CP+TQ and TQ groups were administered TQ (1.5 mg/kg bwt, orally), with or without a single hepatotoxic dose of CP (6 mg/kg bwt, i.p.) respectively, for 14 days before and four days following the CP treatment. CP induced an upsurge in serum ALT and AST activities, indicating liver injury, as also confirmed by the histopathological findings. CP caused significant alterations in the activities of membrane marker enzymes, carbohydrate metabolic enzymes, and the enzymatic and nonenzymatic components of the antioxidant defense system. TQ supplementation ameliorated all these adverse biochemical and histological changes in CP-treated rats. Thus, TQ may have excellent scope for clinical applications in combating CP-induced hepatic pathophysiology.
Collapse
Affiliation(s)
- F Shahid
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Z Farooqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - T Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - S Abidi
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - I Parwez
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - F Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
26
|
Mahmoud HS, Almallah AA, Gad El-Hak HN, Aldayel TS, Abdelrazek HMA, Khaled HE. The effect of dietary supplementation with Nigella sativa (black seeds) mediates immunological function in male Wistar rats. Sci Rep 2021; 11:7542. [PMID: 33824353 PMCID: PMC8024296 DOI: 10.1038/s41598-021-86721-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/15/2021] [Indexed: 12/23/2022] Open
Abstract
This experiment aimed to investigate the effect of dietary Nigella sativa on the cell-mediated immune response. Eighteen male Wistar rats were divided equally into a control group and treated groups that received black seeds at rates of 30 and 50 g/kg in the diet (Sa30 and Sa50 groups, respectively, for 30 days. The weight gain, feed intake, feed conversion ratio (FCR), and cell-mediated immune response were monitored after the injection of 0.1 mL of 10% phytohemagglutinin (PHA). The intumesce index, serum total antioxidant capacity (TAC), catalase (CAT), interleukin-12 (IL-12), gamma interferon (γ-IF) and tumor necrosis factor alpha (TNF-α) were determined. Histopathological examination and an immunohistochemistry analysis of splenic caspase-3 and CD8 were performed. Nigella sativa significantly improved the weight gain and FCR. Intumesce index of Sa50 group was significantly increased. Nigella sativa significantly increased TAC, CAT, IL-12, γ-IF and TNF-α. A histological examination of PHA-stimulated foot pads showed increased leukocyte infiltration and edema in a dose-dependent pattern. Splenic caspase-3 and CD8 showed significant decreases and increases, respectively, in the Sa30 and Sa50 groups. The results indicate that Nigella sativa seeds exhibit immunostimulatory function through their antioxidant potential, induction of cytokine production, promotion of CD8 expression and reduction of splenic apoptosis.
Collapse
Affiliation(s)
- Hany Salah Mahmoud
- Center of Scientific Foundation for Experimental Studies and Research, Ismailia, 41511, Egypt
| | - Amani A Almallah
- Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba Nageh Gad El-Hak
- Zoology Department, Faculty of Sciences, Suez Canal University, Ismailia, 41522, Egypt
| | - Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Howayda E Khaled
- Zoology Department, Faculty of Sciences, Suez University, Ismailia, 43533, Egypt
| |
Collapse
|
27
|
Lim XY, Teh BP, Tan TYC. Medicinal Plants in COVID-19: Potential and Limitations. Front Pharmacol 2021; 12:611408. [PMID: 33841143 PMCID: PMC8025226 DOI: 10.3389/fphar.2021.611408] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Currently, the search to identify treatments and vaccines for novel coronavirus disease (COVID-19) are ongoing. Desperation within the community, especially among the middle-and low-income groups acutely affected by the economic impact of forced lockdowns, has driven increased interest in exploring alternative choices of medicinal plant-based therapeutics. This is evident with the rise in unsubstantiated efficacy claims of these interventions circulating on social media. Based on enquiries received, our team of researchers was given the chance to produce evidence summaries evaluating the potential of complementary interventions in COVID-19 management. Here, we present and discuss the findings of four selected medicinal plants (Nigella sativa, Vernonia amygdalina, Azadirachta indica, Eurycoma longifolia), with reported antiviral, anti-inflammatory, and immunomodulatory effects that might be interesting for further investigation. Our findings showed that only A. indica reported positive antiviral evidence specific to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on preliminary in silico data while all four medicinal plants demonstrated differential anti-inflammatory or immunomodulatory effects. The definitive roles of these medicinal plants in cytokine storms and post-infection complications remains to be further investigated. Quality control and standardisation of medicinal plant-based products also needs to be emphasized. However, given the unprecedented challenges faced, ethnopharmacological research should be given a fair amount of consideration for contribution in this pandemic.
Collapse
Affiliation(s)
- Xin Yi Lim
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Malaysia
| | - Bee Ping Teh
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Malaysia
| | - Terence Yew Chin Tan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Malaysia
| |
Collapse
|
28
|
Saadat S, Aslani MR, Ghorani V, Keyhanmanesh R, Boskabady MH. The effects of Nigella sativa on respiratory, allergic and immunologic disorders, evidence from experimental and clinical studies, a comprehensive and updated review. Phytother Res 2021; 35:2968-2996. [PMID: 33455047 DOI: 10.1002/ptr.7003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/28/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022]
Abstract
Nigella sativa (N. sativa) seed had been used traditionally due to several pharmacological effects. The updated experimental and clinical effects of N. sativa and its constituents on respiratory, allergic and immunologic disorders are provided in this comprehensive review article. Various databases including PubMed, Science Direct and Scopus were used. The preventive effects of N. sativa on pulmonary diseases were mainly due to its constituents such as thymoquinone, thymol, carvacrol and alpha-hederin. Extracts and constituents of N. sativa showed the relaxant effect, with possible mechanisms indicating its bronchodilatory effect in obstructive pulmonary diseases. In experimental animal models of different respiratory diseases, the preventive effect of various extracts and constituents of N. sativa was demonstrated by mechanisms such as antioxidant, immunomodulatory and antiinflammatory effects. Bronchodilatory and preventive effects of the plant and its components on asthma, COPD and lung disorders due to exposure to noxious agents as well as on allergic and immunologic disorders were also shown in the clinical studies. Various extracts and constituents of N. sativa showed pharmacological and therapeutic effects on respiratory, allergic and immunologic disorders indicating possible remedy effect of that the plant and its effective substances in treating respiratory, allergic and immunologic diseases.
Collapse
Affiliation(s)
- Saeideh Saadat
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Aslani
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahideh Ghorani
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rana Keyhanmanesh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Cerdá-Bernad D, Valero-Cases E, Pastor JJ, Frutos MJ. Saffron bioactives crocin, crocetin and safranal: effect on oxidative stress and mechanisms of action. Crit Rev Food Sci Nutr 2020; 62:3232-3249. [PMID: 33356506 DOI: 10.1080/10408398.2020.1864279] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Saffron (Crocus sativus L.) is used as a spice for its organoleptic characteristics related to its coloring and flavoring properties, and it has been also used in traditional medicine to treat various diseases. The main chemical components responsible for these properties are crocin, crocetin and safranal. These compounds have been shown to have a wide spectrum of biological activities, including several properties as antigenotoxic, antioxidant, anticancer, anti-inflammatory, antiatherosclerotic, antidiabetic, hypotensive, hypoglycemic, antihyperlipidemic, antidegenerative and antidepressant, among others. This review article highlights the antioxidant effects of these bioactive compounds to reduce reactive oxygen species (ROS) and the mechanisms of action involved, since there are a multitude of diseases related to oxidative stress and the generation of free radicals (FRs). Recent studies have shown that the effects of crocin, crocetin and safranal against oxidative stress include the reduction in lipid peroxidation (malondialdehyde [MDA] levels) and nitric oxide (NO) levels, and the increase in the levels of glutathione, antioxidant enzymes (superoxide dismutase [SOD], catalase (CAT) and glutathione peroxidase [GPx]) and thiol content. Therefore, due to the great antioxidant effects of these saffron compounds, it makes saffron a potential source of bioactive extracts for the development of bioactive ingredients, which can be used to produce functional foods.
Collapse
Affiliation(s)
- Débora Cerdá-Bernad
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| | - Estefanía Valero-Cases
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| | | | - María José Frutos
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| |
Collapse
|
30
|
Ghoreyshi M, Mahmoudabady M, Bafadam S, Niazmand S. The Protective Effects of Pharmacologic Postconditioning of Hydroalcoholic Extract of Nigella sativa on Functional Activities and Oxidative Stress Injury During Ischemia-Reperfusion in Isolated Rat Heart. Cardiovasc Toxicol 2020; 20:130-138. [PMID: 31286398 DOI: 10.1007/s12012-019-09540-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidative stress is known to act as the trigger of cardiac damage during ischemia-reperfusion (I/R) injury. Postconditioning (PoC) is employed to minimize the consequences of ischemia at the onset of reperfusion. Regarding the well-known antioxidant properties of Nigella sativa (Ns), the aim of this study was to investigate whether Nigella sativa postconditioning (Ns-PoC) could reduce IRI by lowering the formation of reactive oxygen species (ROS). Isolated rat hearts were perfused with the Langendorff apparatus, which were subjected to 20 min of preperfusion, 20 min of global ischemia, followed by 40 min of reperfusion. At the onset of reperfusion, based on the type of intervention group, a 10-min period of Krebs flow was developed along with the treatment, and then the reperfusion with Krebs solution was conducted for 30 min. Heart rate (HR) and left ventricular pressure (LVP) were recorded by isometric transducers connected to a data acquisition system. Thiobarbituric acid reactive substances (TBARS), 4-hydroxynonenal (4-HNE) levels, total thiol groups (-SH) levels, superoxide anion dismutase (SOD), and catalase (CAT) activities in myocardial tissues were detected to evaluate the oxidative stress damage degree. Ns-PoC significantly improved cardiodynamic parameters including left ventricular developed pressure (LVDP), rate pressure product (RPP), and the maximum up/down rate of the left ventricular pressure (± dp/dt) as well as SH groups, SOD, and CAT activities. Moreover, it decreased MDA and 4-HNE levels during early reperfusion. The results of this study showed that Ns-PoC ameliorated cardiac functions in isolated rat heart during I/R injuries by improving myocardial oxidative stress states, which may be related to the antioxidant effect of Ns.
Collapse
Affiliation(s)
- Mina Ghoreyshi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Soleyman Bafadam
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Saeed Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| |
Collapse
|
31
|
Al-Azzawi MA, AboZaid MMN, Ibrahem RAL, Sakr MA. Therapeutic effects of black seed oil supplementation on chronic obstructive pulmonary disease patients: A randomized controlled double blind clinical trial. Heliyon 2020; 6:e04711. [PMID: 32904114 PMCID: PMC7452452 DOI: 10.1016/j.heliyon.2020.e04711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 10/26/2022] Open
Abstract
This study sought to examine whether supplementation of Black Seed Oil (BSO) can improve pulmonary function tests (PFTs), inflammation, and oxidant-antioxidant markers in COPD patients. The study involved 100 patients of mild to moderate COPD divided randomly into 2 groups who were appointed to receive standard medication only (control group) or with additional Black Seed Oil (BSO group). They were assessed initially and after 3 months, 44 patients responded in control group and 47 patients in BSO group. BSO group evidenced a significant decreasing in oxidant and inflammatory markers; thiobarbituric acid reactive-substances (TBARS), protein carbonyl (PC) content, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), a significant increase in antioxidants; superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx), vitamin C, and E, and a significant improvement in PFTs versus control group and baseline levels. Supplementation of Black Seed Oil may be an effective adjunct therapy to improve pulmonary functions, inflammation, and oxidant-antioxidant imbalance in COPD patients.
Collapse
Affiliation(s)
- Mahmood A Al-Azzawi
- Department of Medical Biochemistry, College of Dentistry, Al-Ayen University, An-Nasiriyah, Iraq
| | - Mohamed M N AboZaid
- Department of Chest Diseases, Zagazig Faculty of Medicine, Zagazig University, Egypt
| | - Reda Abdel Latif Ibrahem
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Egypt
| | - Moustafa A Sakr
- Molecular Diagnostics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City, Egypt
| |
Collapse
|
32
|
Hallajzadeh J, Milajerdi A, Mobini M, Amirani E, Azizi S, Nikkhah E, Bahadori B, Sheikhsoleimani R, Mirhashemi SM. Effects of Nigella sativa on glycemic control, lipid profiles, and biomarkers of inflammatory and oxidative stress: A systematic review and meta-analysis of randomized controlled clinical trials. Phytother Res 2020; 34:2586-2608. [PMID: 32394508 DOI: 10.1002/ptr.6708] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
The aim of this systematic review and meta-analysis was to evaluate the effects of Nigella sativa (N. sativa) on glycemic control, lipid profiles, and biomarkers of inflammatory and oxidative stress. Two independent authors systematically examined online databases consisting of, EMBASE, Scopus, PubMed, Cochrane Library, and Web of Science from inception until October 30, 2019. Cochrane Collaboration risk of bias tool was applied to assess the methodological quality of the studied trials. The heterogeneity among the included studies were assessed using the Cochrane's Q test and I-square (I2 ) statistic. Data were pooled using a random-effects model and weighted mean difference (WMD) was considered as the overall effect size. A total of 50 trials were included in this meta-analysis. We found a significant reduction in total cholesterol (WMD: -16.80; 95% CI: -21.04, -12.55), triglycerides (WMD: -15.73; 95% CI: -20.77, -10.69), LDL-cholesterol (WMD: -18.45; 95% CI: -22.44, -14.94) and VLDL-cholesterol (WMD: -3.72; 95% CI: -7.27, -0.18) following supplementation with N. sativa. In addition, there was significant reductive effect observed with N. sativa on fasting glucose (WMD: -15.18; 95% CI: -19.82, -10.55) and HbA1C levels (WMD: -0.45; 95% CI: -0.66, -0.23). Effects of N. sativa on CRP (WMD: -3.61; 95% CI: -9.23, 2.01), TNF-α (WMD: -1.18; 95% CI: -3.23, 0.86), TAC (WMD: 0.31; 95% CI: 0.00, 0.63), and MDA levels (WMD: -0.95; 95% CI: -2.18, 0.27) were insignificant. This meta-analysis demonstrated the beneficial effects of N. sativa on fasting glucose, HbA1c, triglycerides, total-, VLDL-, LDL-cholesterol levels.
Collapse
Affiliation(s)
- Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Alireza Milajerdi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Mobini
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Susan Azizi
- Student Research Committe, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Elhameh Nikkhah
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Babak Bahadori
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | | | - Seyyed Mehdi Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
33
|
Mohebbati R, Abbasnezhad A. Effects of Nigella sativa on endothelial dysfunction in diabetes mellitus: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112585. [PMID: 31972323 DOI: 10.1016/j.jep.2020.112585] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Endothelial dysfunction is involved in lesion generation by the promotion of both early and late mechanism(s) of atherosclerosis such as adhesion molecules up-regulation, increased chemokine secretion and leukocyte adherence, increased cell permeability, enhanced low-density lipoprotein oxidation, cytokine elaboration, platelet activation and vascular smooth muscle cell migration, and proliferation. Nigella sativa is from the Ranunculaceae family which is used in some countries for various medicinal purposes. Nigella sativa seed has been widely used in traditional medicine for the treatment of diabetes. AIM OF THE REVIEW This review article summarized the therapeutic effects of Nigella sativa on endothelial dysfunction. METHODS Databases such as PubMed, Web of Science, Google Scholar, Scopus, and Iran Medex were considered. The search terms were " Nigella sativa " or "endothelium" and " Diabetes"," endothelial dysfunction ", " Thymoquinone " and " anti-inflammatory effect ". RESULTS The current review shows that Nigella sativa and Thymoquinone have a protective effect on endothelial dysfunction induced by diabetes. This is done by several mechanisms such as reduction of inflammatory and apoptotic markers, improving hyperglycemia, hyperlipidemia and antioxidant function, inhibiting platelet aggregation, and regulating eNOS, VCAM-1 and LOX-1 genes expression that involve in the endothelial dysfunction. Thymoquinone also reduces expression and secretion of some cytokines such as MCP-1, interleukin-1β, TNF-α, NF-κB, and Cox-2 that result in anti-inflammation effect. CONCLUSION Thymoquinone, the main phenolic terpene found in Nigella sativa, has several important properties such as antidiabetic, anti-inflammatory, and antioxidant activity. Therefore, Nigella sativa can improve endothelial dysfunction.
Collapse
Affiliation(s)
- Reza Mohebbati
- - Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Abbasali Abbasnezhad
- - Department of Physiology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
34
|
Ethnobotanical Approaches of Traditional Medicinal Plants Used in the Management of Asthma in Iran. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.62269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Eid AM, Jaradat NA, Elmarzugi NA, Alkowni R, Hussen F, Ayyash LA, Sawafta M, Danaa H. Anti-Microbial and Free Radical Scavenging Activities of Nigella Sativa Colloidal-Emulgel. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180620150922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Nigella sativa L. (N. sativa) has been reported to have biological activities
such as anti-bacterial, anti-inflammatory, anti-oxidant and anti-fungal activities.
Objective:
This study aims to develop N. Sativa colloidal-emulgel with the evaluation of its antibacterial,
anti-oxidant and in-vivo irritation and sensation testing.
Method:
Colloidal-emulgel formulations were prepared for N. sativa using different surfactants
(Sodium Lauryl Sulphate (S.L.S) and sucrose ester). N. sativa emulsion formulations were prepared
using heat inversion technique. After that, the optimum formulation was mixed with Carbopol to
produce the colloidal-emulgel. The droplet size, size distribution, and rheological behavior were
measured for emulgel formulations. Anti-bacterial and anti-oxidant activities were also reported in
the in vivo studies for sensitivity, irritancy and spreadability.
Results:
It was found that the sucrose ester was able to produce the optimum emulsion formulation
with droplets size of less than 1 μm. In the anti-bacterial test for Staphylococcus aureus, it was
found that emulgel has an inhibition zone of 2.5 cm in diameter, but the oil alone being 1.3 cm.
According to MRSA, the inhibition zone for emulgel was 1.1 cm, but for oil, it was 0.5 cm in diameter.
Emulgel does not show any irritation or sensitivity. Also it has a homogeneous appearance
with a smooth texture. In addition, it shows fair mechanical properties, and easy spreadability with
acceptable bio-adhesion.
Conclusion:
It is concluded that N. sativa emulgel has been prepared with dermatological and cosmeceutical
benefits.
Collapse
Affiliation(s)
- Ahmad M. Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestinian Territory, Occupied
| | - Nidal A. Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestinian Territory, Occupied
| | - Nagib A. Elmarzugi
- Department of Industrial Pharmacy, Faculty of Pharmacy, Tripoli University & National Nanotechnology Project, Biotechnology Research Center, Tripoli, Libya
| | - Raed Alkowni
- Department of Biology, Faculty of Science, An-Najah National University, Nablus, Palestinian Territory, Occupied
| | - Fatima Hussen
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestinian Territory, Occupied
| | - Laila A. Ayyash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestinian Territory, Occupied
| | - Maher Sawafta
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestinian Territory, Occupied
| | - Hadeel Danaa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestinian Territory, Occupied
| |
Collapse
|
36
|
Islam MT, Khan MR, Mishra SK. An updated literature-based review: phytochemistry, pharmacology and therapeutic promises of Nigella sativa L. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s13596-019-00363-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Aslam H, Shahzad M, Shabbir A, Irshad S. Immunomodulatory effect of thymoquinone on atopic dermatitis. Mol Immunol 2018; 101:276-283. [PMID: 30031280 DOI: 10.1016/j.molimm.2018.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/09/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) or atopic eczema is a skin disease characterized with itching, increased serum level of immunoglobulin E, and peripheral eosinophilia. Thymoquinone (TQ) is an important ingredient of Nigella sativa seeds having antioxidant and anti-inflammatory effects. OBJECTIVE Present study investigates the immunomodulatory effects of Thymoquinone (TQ) in mice model of atopic dermatitis. METHODS Ear pinnas of mice were sensitized and challenged with DNCB (2-4 di nitro chloro benzene) to induce AD-like lesions. The mice were then treated with TQ and tacrolimus, both orally and topically. Ear thickness and weight were measured along with gross changes. Total and differential leukocyte counts were measured in blood. Total serum IgE levels were measured by enzyme linked immunosorbent assay (ELISA). The mRNA expression levels of IL-4, IL-5, and IFN-γ in ear tissue were measured using reverse transcription polymerase chain reaction (RT-PCR). RESULTS Both oral and topical thymoquinone showed the potential to improve atopic dermatitis by significantly reducing the inflammatory cells infiltration in the blood (p < 0.001) and improving the dermatitis score (p < 0.001). Significant reduction in ear thickness (p < 0.001) and IgE levels (p < 0.001) were also observed. TQ and tacrolimus also significantly attenuated mRNA expression levels of IL-4, IL-5 and IFN-γ (p < 0.001). CONCLUSIONS & CLINICAL RELEVANCE Taken together, our results showed that oral and topical application of thymoquinone exerts immunomodulatory effects in animal model of atopic dermatitis, suggesting further studies and clinical trials to establish it as a candidate nutraceutical for the treatment of AD.
Collapse
Affiliation(s)
- Hina Aslam
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan; Department of Pharmacology, King Edward Medical University, Lahore, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan.
| | - Arham Shabbir
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan; Department of Pharmacy, The University of Lahore-Gujrat Campus, Gujrat, Pakistan
| | - Sabeen Irshad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan; Department of Pharmacology, Allama Iqbal Medical College, Lahore, Pakistan
| |
Collapse
|
38
|
Mahboubi M. Natural therapeutic approach of Nigella sativa (Black seed) fixed oil in management of Sinusitis. Integr Med Res 2018; 7:27-32. [PMID: 29629288 PMCID: PMC5884000 DOI: 10.1016/j.imr.2018.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 12/18/2022] Open
Abstract
Sinusitis is associated with inflammation and infections of air-filled cavities of sinuses. The aim of this study was to evaluate the potential efficacy of Nigella sativa seed fixed oil in management of sinusitis. The information was extracted from accessible international databases, traditional books, electronic resources, and unpublished data. RESULTS The results of investigations on N. sativa seed fixed oil showed its therapeutic potential in treatment of sinusitis by its anti-inflammatory, antioxidant, antihistaminic, immune-modulator, antimicrobial and analgesic effects. The use of N. sativa seed fixed oil can inhibit the inflammation of sinuses and respiratory airways, microbial infections and finally help the patients suffering from clinical symptoms of sinusitis such as coryza, nasal congestion, headache, neck pain, earache and toothache. Clinical studies are required to evaluate its efficacy in patients with sinusitis in future.
Collapse
Affiliation(s)
- Mohaddese Mahboubi
- Department of Microbiology, Medicinal Plants Research Center of Barij, Kashan, Iran
| |
Collapse
|
39
|
Shahid F, Farooqui Z, Khan AA, Khan F. Oral Nigella sativa oil and thymoquinone administration ameliorates the effect of long-term cisplatin treatment on the enzymes of carbohydrate metabolism, brush border membrane, and antioxidant defense in rat intestine. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:145-157. [PMID: 29302711 DOI: 10.1007/s00210-017-1444-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
We have previously shown that oral administration of Nigella sativa oil (NSO) ameliorates the deleterious gastrointestinal effects of cisplatin (CP), administered as a single dose. Since a typical clinical CP dosing regimen involves multiple cycles of CP administration in lower doses, in the present study we investigate the protective efficacy of NSO and its major bioactive constituent, thymoquinone (TQ), against multiple-dose CP treatment-induced deleterious biochemical and histological changes in rat intestine. Rats were divided into six groups, viz., control, CP, CP+NSO, CP+TQ, NSO, and TQ. Animals in CP+NSO and CP+TQ groups were pre-administered NSO (2 ml/kg bwt, orally) and TQ (1.5 mg/kg bwt, orally), respectively, daily for 14 days and were then treated with five repeated doses of CP (3 mg/kg bwt, i.p.), every fourth day for 20 days while still receiving NSO/TQ. CP treatment alone led to a significant decline in specific activities of brush border membrane (BBM) enzymes while NSO or TQ administration to CP-treated rats significantly prevented the decline in BBM enzyme activities in the isolated brush border membrane vesicles (BBMV) as well as in mucosal homogenates. Furthermore, both NSO and TQ administration markedly ameliorated CP-induced alterations on carbohydrate metabolism enzymes and the enzymatic and non-enzymatic parameters of antioxidant defense system in the intestinal mucosa. However, NSO appeared to be more efficacious than TQ in protecting against CP-induced gastrointestinal dysfunction. Histopathological findings corroborated the biochemical results. Thus, NSO and TQ may prove clinically useful in amelioration of the intestinal toxicity associated with long-term CP chemotherapy.
Collapse
Affiliation(s)
- Faaiza Shahid
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Zeba Farooqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Aijaz Ahmed Khan
- Department of Anatomy, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India.
| |
Collapse
|
40
|
Radwan RR, Mohamed HA. Nigella sativa oil modulates the therapeutic efficacy of mesenchymal stem cells against liver injury in irradiated rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:447-456. [PMID: 29216568 DOI: 10.1016/j.jphotobiol.2017.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/17/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023]
Abstract
Stem cell transplantation is a novel strategy for regenerative medicine in liver disease. This study was conducted to explore the modulatory effect of Nigella sativa oil (NSO) on the therapeutic potential of mesenchymal stem cells (MSCs) against irradiation-induced liver damage in rats. Liver damage was induced by a total body exposure to a single dose of 7Gy. NSO (2mg/kg/day) was then given orally for 4 consecutive weeks starting 24h after irradiation with or without a single intravenous MSCs administration, then rats were sacrificed four weeks after exposure to γ radiation. Data revealed that irradiation elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities in serum, increased hepatic malondialdehyde (MDA) content and reduced hepatic superoxide dismutase (SOD) activity. Furthermore, it caused elevation in pro-inflammatory mediators such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) associated with reduction in anti-inflammatory cytokine interleukin-10 (IL-10) and it increased fibrogenic marker transforming growth factor-β (TGF-β) in liver tissues. It was observed that combined NSO/MSCs therapy provided more beneficial tissue repair comparable to MSCs alone as demonstrated by modulating the tested parameters. Finally, these results were confirmed by histopathological examination. In conclusion, dual therapy with NSO and MSCs could serve as a promising approach for alleviating radiation-induced liver injury in patients with radiotherapy.
Collapse
Affiliation(s)
- Rasha R Radwan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo, Egypt.
| | - Heba A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
41
|
A Review on the Cosmeceutical and External Applications of Nigella sativa. J Trop Med 2017; 2017:7092514. [PMID: 29358959 PMCID: PMC5735686 DOI: 10.1155/2017/7092514] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/15/2017] [Accepted: 11/05/2017] [Indexed: 01/17/2023] Open
Abstract
It is estimated by the World Health Organization (WHO) that most of the world's population depends on herbal medicine for their health care. Nigella sativa (N. sativa), also known as black-caraway and as “Kalonji,” is a well-known seed all over the world. It is one of the most common medicinal plants worldwide and contains many useful chemical constituents that we can find in its fixed oil, such as thymoquinone, thymohydroquinone, dithymoquinone, thymol, nigellicine, carvacrol, nigellimine, nigellicine, nigellidine, and alpha-hederin. Due to these numerous important ingredients it was found that it affects different areas of our body and has many pharmacological effects as antibacterial, antiviral, anti-inflammatory, and wound healing effect and also for acne vulgaris, skin cancer, pigmentation, and many cosmeceutical applications. Based on the folklore usage of N. sativa seeds and oil, they are used in various systems of food and medicines. The aim of this article is to provide a detailed survey of the literature of cosmeceutical and external applications of N. sativa which is expected to stimulate further studies on this subject.
Collapse
|
42
|
Oral thymoquinone administration ameliorates: the effect of cisplatin on brush border membrane enzymes, energy metabolism, and redox status in rat kidney. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1271-1284. [PMID: 28944407 DOI: 10.1007/s00210-017-1428-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022]
Abstract
Therapeutic use of cisplatin (CP), an effective anticancer drug, is limited by dose dependent nephrotoxicity. Thymoquinone (TQ), the major Nigella sativa seed oil constituent has been shown to prevent progression of various renal disorders. The present study investigates the protective effect of TQ on CP-induced nephrotoxicity. Rats were divided into six groups viz. control, CP, CPTQ1, CPTQ2, CPTQ3, and TQ alone group. Animals in CP and TQ combination groups were administered TQ (0.5, 1.5, and 3 mg/kg bwt, orally) with single intraperitoneal dose of CP (6 mg/kg bwt). The effect of TQ administration was determined on CP-induced alterations in various serum/urine parameters and on the enzymes of brush border membrane enzyme (BBM), carbohydrate metabolism, and antioxidant defense system in renal cortex and medulla. Oral administration of TQ in all the three doses prior to and following a single dose CP treatment caused significant recovery of serum creatinine and blood urea nitrogen levels; however, maximum recovery was seen in CPTQ2 group. TQ administration averted CP-induced decline in BBM activities, both in the cortical and medullary homogenates and in isolated BBM vesicles. TQ administration also ameliorated CP-induced impairments in renal metabolic and antioxidant status. Histopathological studies supported these biochemical findings. TQ ameliorates CP-induced oxidative damage owing to its intrinsic antioxidant properties.
Collapse
|
43
|
|
44
|
Mohebbati R, Hosseini M, Haghshenas M, Nazariborun A, Beheshti F. Th e eff ects of Nigella Sativa extract on renal tissue oxidative damage during neonatal and juvenile growth in propylthiouracil-induced hypothyroid rats. Endocr Regul 2017; 51:105-113. [PMID: 28609286 DOI: 10.1515/enr-2017-0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We investigated the effects of hydroalcoholic extract of Nigella sativa (NS) on renal tissue oxidative damage associated with propylthiouracil (PTU)-induced hypothyroidism during neonatal and juvenile growth in rats. METHODS Pregnant rats were divided into five groups designated as: 1) control; 2) propylthiouracil (PTU); 3) PTU-NS100; 4) PTU-NS200, and 5) PTU-NS400. All mothers except the control group received 0.005% PTU in their drinking water during lactation. Besides PTU, mothers in groups 3-5 received 100, 200, and 400 mg/kg of NS extract. After lactation period, the off spring continued to receive the same experimental treatment for the first 8 weeks of their life. Ten male off springs of each group were randomly selected, blood samples collected, and the kidney tissues removed. RESULTS The serum thyroxin concentration in PTU group was lower than control group and improved by extract. PTU increased the renal malondialdehyde (MDA), while reduced the total thiols concentrations and catalase (CAT) and superoxide dismutase (SOD) activity compared to control group. Administration of 200 and 400 mg/kg of NS extract decreased MDA level, while it increased the total thiols and 400 mg/kg increased CAT and SOD activity in renal tissues compared to PTU group. Serum creatinine and blood urea nitrogen (BUN) in PTU group was higher than in comparison with the control group. 400 mg/kg decreased creatinine, but both 200 and 400 mg/kg improved BUN concentration compared to PTU group. CONCLUSION The results of this study demonstrate that the hydroalcoholic extract of NS has a protective effect on the renal tissue oxidative damage associated with PTU-induced hypothyroidism during neonatal and juvenile growth in rats.
Collapse
|
45
|
Li LC, Kan LD. Traditional Chinese medicine for pulmonary fibrosis therapy: Progress and future prospects. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:45-63. [PMID: 28038955 PMCID: PMC7127743 DOI: 10.1016/j.jep.2016.12.042] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/09/2016] [Accepted: 12/26/2016] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is a chronic, debilitating and often lethal lung disorder. Despite the molecular mechanisms of PF are gradually clear with numerous researchers' efforts, few effective drugs have been developed to reverse human PF or even halt the chronic progression to respiratory failure. Traditional Chinese medicine (TCM), the main component of the medical practice used for more than 5000 years especially in China, often exerts wider action spectrum than previously attempted options in treating human diseases. Recent data have shown the anti-fibrotic benefits of the active ingredients from TCM in this field, which may represent an attractive source of the drug discovery against PF. AIM OF THE REVIEW This review summarizes the pre-clinical and clinical evidence on the benefits of TCM and their active ingredients, and provides a comprehensive information and reliable basis for the exploration of new treatment strategies of botanical drugs in the therapy of PF. METHODS The literature information was obtained from the scientific databases on ethnobotany and ethno medicines (up to Aug 2016), mainly from the Pubmed, Web of Science and CNKI databases, and was to identify the experimental studies on the anti-fibrotic role of the active agents from TCM and the involved mechanisms. The search keywords for such work included: "lung fibrosis" or "pulmonary fibrosis", and "traditional Chinese medicine", "extract" or "herb". RESULTS A number of studies have shown that the active agents of single herbs and TCM formulas, particularly the flavonoids, glycosides and alkaloids, exhibit potential benefits against PF, the mechanisms of which appear to involve the regulation of inflammation, oxidant stress, and pro-fibrotic signaling pathways, etc. Besides, the processing methods for discovering TCM in treating PF were prospectively discussed. CONCLUSION These research work have shown the therapeutic benefits of TCM in the treatment of PF. However, more continued researches should be undertaken to clarify the unconfirmed chemical composition and regulatory mechanisms, conduct standard clinical trials, and evaluate the possible side effects. The insights provided in present review will be needed for further exploration of botanical drugs in the development of PF therapy.
Collapse
Affiliation(s)
- Liu-Cheng Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| | - Lian-Di Kan
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
46
|
Shahid F, Farooqui Z, Rizwan S, Abidi S, Parwez I, Khan F. Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on brush border membrane enzymes, carbohydrate metabolism and antioxidant system in rat intestine. ACTA ACUST UNITED AC 2017; 69:299-306. [PMID: 28215571 DOI: 10.1016/j.etp.2017.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 12/25/2022]
Abstract
Cisplatin (CP) is an effective chemotherapeutic agent that induces gastrointestinal toxicity. Nigella sativa oil (NSO) has been shown to be beneficial in a wide range of gastrointestinal disorders. The present study investigates the possible protective effect of NSO on CP-induced gastrointestinal toxicity. NSO administration (2ml/kg bwt, orally), prior to and following, a single dose CP treatment (6mg/kg bwt. ip), significantly attenuated the CP-induced decrease in brush border membrane (BBM) enzyme activities in intestinal homogenates and BBM vesicles (BBMV). NSO administration also mitigated CP induced alterations in the activities of carbohydrate metabolism enzymes and in the enzymatic and non-enzymatic antioxidant parameters in the intestine. The results suggest that NSO by empowering the endogenous antioxidant system improves intestinal redox and metabolic status and restores BBM integrity in CP treated rats. Histopathological studies supported the biochemical findings. Thus, NSO may help prevent the accompanying gastrointestinal dysfunction in CP chemotherapy.
Collapse
Affiliation(s)
- Faaiza Shahid
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Zeba Farooqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Sana Rizwan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Subuhi Abidi
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Iqbal Parwez
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
47
|
Protective effect of Nigella sativa oil on cisplatin induced nephrotoxicity and oxidative damage in rat kidney. Biomed Pharmacother 2017; 85:7-15. [DOI: 10.1016/j.biopha.2016.11.110] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/11/2016] [Accepted: 11/27/2016] [Indexed: 12/11/2022] Open
|
48
|
Wang JZ, Zhang YH, Guo XH, Zhang HY, Zhang Y. The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy. Int Immunopharmacol 2016; 36:73-85. [PMID: 27111515 DOI: 10.1016/j.intimp.2016.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022]
Abstract
Emerging evidence reveals the controversial role of B cells in antitumor immunity, but the underlying mechanisms have to be explored. Three latest articles published in the issue 521 of Nature in 2015 reconfirmed the puzzling topic and put forward some explanations of how B cells regulate antitumor T-cell responses both positively and negatively. This paper attempts to demonstrate that different B-cell subpopulations have distinct immunological properties and that they are involved in either antitumor responses or immunosuppression. Recent studies supporting the positive and negative roles of B cells in tumor development were summarized comprehensively. Several specific B-cell subpopulations, such as IgG(+), IgA(+), IL-10(+), and regulatory B cells, were described in detail. The mechanisms underlying the controversial B-cell effects were mainly attributed to different B-cell subpopulations, different B-cell-derived cytokines, direct B cell-T cell interaction, different cancer categories, and different malignant stages, and the immunological interaction between B cells and T cells is mediated by dendritic cells. Promising B-cell-based antitumor strategies were proposed and novel B-cell regulators were summarized to present interesting therapeutic targets. Future investigations are needed to make sure that B-cell-based pharmacological strategies benefit cancer immunotherapy substantially.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| | - Yu-Hua Zhang
- Department of Library, Hebei University of Engineering, Handan 056038, PR China
| | - Xin-Hua Guo
- Department of Medicine, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| | - Hong-Yan Zhang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Yuan Zhang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| |
Collapse
|
49
|
Boskabady MH, Farkhondeh T. Antiinflammatory, Antioxidant, and Immunomodulatory Effects of Crocus sativus L. and its Main Constituents. Phytother Res 2016; 30:1072-94. [PMID: 27098287 DOI: 10.1002/ptr.5622] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/28/2016] [Accepted: 03/17/2016] [Indexed: 11/05/2022]
Abstract
Crocus sativus L. (C. sativus), commonly known as saffron, is used as a food additive, preservative, and medicinal herb. Traditionally, it has been used as an alternative treatment for different diseases. C. sativus' medicinal effects are related to its major constituents like crocins, crocetin, and safranal. According to the literature, C. sativus and its constituents could be considered as an effective treatment for neurodegenerative disorders, coronary artery diseases, asthma, bronchitis, colds, fever, diabetes, and so on. Recently, numerous studies have reported such medicinal properties and found that the underlying mechanisms of action may be mediated by antioxidant, inflammatory, and immunomodulatory effects. C. sativus enhances the antioxidant capacity and acts as a free radical scavenger. As an antiinflammatory and immunomodulatory agent, it modulates inflammatory mediators, humoral immunity, and cell-mediated immunity responses. This review highlights in vitro and animal findings regarding antiinflammatory, antioxidant, and immunomodulatory effects of C. sativus and its constituents. Present review found that the C. sativus and its main constituents such as safranal, crocins, and crocetin could be effective against various diseases because of their antioxidant, anti-inflammation, and immunomodulatory effects. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Tahereh Farkhondeh
- Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| |
Collapse
|
50
|
El-Hack MEA, Alagawany M, Farag MR, Tiwari R, Karthik K, Dhama K. Nutritional, Healthical and Therapeutic Efficacy of Black Cumin (Nigella sativa) in Animals, Poultry and Humans. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.232.248] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|