1
|
Barichello T, Kluwe-Schiavon B, Borba LA, Pedro LC, Niero FS, Dos Santos LN, Leonardo LM, Ignácio ZM, Morales R, Ceretta LB, Reus GZ. Alterations in Gut Microbiome Composition and Increased Inflammatory Markers in Post-COVID-19 Individuals. Mol Neurobiol 2025; 62:8038-8047. [PMID: 39966327 PMCID: PMC12078008 DOI: 10.1007/s12035-025-04769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Dysfunctions in the immune system and alterations in the microbiome composition following SARS-CoV-2 infection contribute to persistent neurological issues observed in long COVID-19 survivors. We hypothesize that alterations in the gut microbiome composition and peripheral inflammatory profile following COVID-19 may play pivotal roles in behavior changes among individuals experiencing long-term illness. This cross-sectional study included a sample of post-COVID-19 and non-COVID-19 subjects. We assessed the presence of psychiatric conditions utilizing standardized diagnostic criteria, Hamilton Rating Scale for Anxiety (HAM-A), Hamilton Rating Scale for Depression (HAM-D), Biological Rhythms in Neuropsychiatry Assessment Interview (BRIAN), and Functional Assessment Short Test (FAST). Plasma samples were analyzed to examine lipid and inflammatory profiles. Fecal samples were evaluated by 16S rRNA sequencing to identify the gut microbiome composition. Noteworthy findings include a significant increase in the myeloid progenitor inhibitory factor 1 (MPIF-1), interleukin (IL)-17, and triglyceride among post-COVID-19 individuals. While α-diversity in the gut microbiome composition showed no significant differences, β-diversity demonstrated a notable distinction between the healthy control and post-COVID-19 groups. Post-COVID-19 individuals exhibited a decreased abundance of phylum, class, and order of Verrucomicrobia, family, and genus of Akkermansia, a short-chain fatty acid producer and microbial group significantly associated with intestinal barrier homeostasis and the amelioration of metabolic diseases. No difference was found between the behavioral and clinical data. In post-COVID-19 individuals, there were elevated IL-17 and MPIF-1 levels, compared to non-COVID-19 individuals. Additionally, there were notable alterations in gut microbiome composition, as evidenced by changes in β-diversity and a decrease of Verrucomicrobia, family, and Akkermansia genus abundance.
Collapse
Affiliation(s)
- Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, Mcgovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Neuroscience Graduate Program, the University of Texas MD Anderson Cancer Center Uthealth Graduate School of Biomedical Sciences, Houston, Texas, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Bruno Kluwe-Schiavon
- Department of Psychiatry and Behavioral Sciences, Mcgovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Lucas C Pedro
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Flávia S Niero
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Laísa N Dos Santos
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Letícia M Leonardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Zuleide M Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (Uthealth), Houston, Texas, USA
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Luciane B Ceretta
- Graduate Program in Public Health, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Reus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
2
|
Wu PS, Lee PC, Chang TE, Hsieh YC, Huang CW, Lin CH, Huang YL, Lin YT, Huo TI, Schnabl B, Lee KC, Hou MC. Fecal carriage of multidrug-resistant organisms increases the risk of hepatic encephalopathy in patients with cirrhosis: insights from gut microbiota and metabolite features. Gut Pathog 2025; 17:30. [PMID: 40380209 PMCID: PMC12085042 DOI: 10.1186/s13099-025-00706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/27/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND The impact of the fecal multidrug-resistant organism (MDRO) carriage on the gut microbiota, metabolite alterations, and cirrhosis-related complications remains unclear. METHODS Eighty-eight patients with cirrhosis and 22 healthy volunteers were analyzed for plasma metabolites, fecal MDROs, and microbiota composition. The fecal bacterial and fungal composition was assessed using 16S ribosomal RNA and internal transcribed spacer sequencing, whereas plasma metabolomic analysis was evaluated via untargeted liquid chromatography-mass spectrometry. Predictors of cirrhosis-related outcomes, risk factors for MDRO carriage, and microbiota-metabolite correlations were analyzed. RESULTS Fecal MDRO carriage was detected in 33% of patients with cirrhosis. MDRO carriers had a higher risk of hepatic encephalopathy (HE) compared to non-carriers (20.7% vs. 3.2%, p = 0.008). Patients carrying MDROs had higher plasma lipopolysaccharide (LPS) levels, and both elevated LPS and MDRO carriage independently predicted HE occurrence within 1 year. Compared with non-carriers, MDRO carriers had higher fecal bacterial and fungal burdens and exhibited different gut microbiota compositions, characterized by increased Streptococcus salivarius and enrichment of Saccharomycetes and Candida albicans. Thirty-one metabolites differed significantly among healthy controls, and patients with cirrhosis, with and without MDRO carriage. Six metabolites were significantly correlated with specific microbial taxa in MDRO carriers. Isoaustin, a fungal-derived metabolite, was significantly elevated in MDRO carriers with HE. CONCLUSIONS Fecal MDRO carriage was associated with endotoxemia, altered gut microbiota, metabolic changes, and a higher risk of HE. It's worthy to monitor fecal MDRO colonization in cirrhosis.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201 Shih-Pai Road, Sec. 2, Taipei, 112, Taiwan
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Chang Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201 Shih-Pai Road, Sec. 2, Taipei, 112, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tien-En Chang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201 Shih-Pai Road, Sec. 2, Taipei, 112, Taiwan
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Cheng Hsieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201 Shih-Pai Road, Sec. 2, Taipei, 112, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Long Huang
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Teh-Ia Huo
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201 Shih-Pai Road, Sec. 2, Taipei, 112, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kuei-Chuan Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201 Shih-Pai Road, Sec. 2, Taipei, 112, Taiwan.
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan.
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201 Shih-Pai Road, Sec. 2, Taipei, 112, Taiwan.
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan.
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan.
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Wang Y, Wang Q, Jia F, Li D, Gao X, Zhang X, Chang F, Xie Y. Rare and Intermediate Taxa Shape the Gut Bacterial Structure in Neonates and Preterm Infants with Necrotizing Enterocolitis. J Microbiol Biotechnol 2025; 35:e2501035. [PMID: 40374530 PMCID: PMC12099621 DOI: 10.4014/jmb.2501.01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 05/17/2025]
Abstract
Necrotizing enterocolitis (NEC) is a common neonatal gastrointestinal disease with high morbidity and mortality, especially in premature infants. In a prospective case-control study, we aimed to investigate the dynamic changes in the gut microbiota of preterm infants with NEC. Infants diagnosed with NEC and preterm neonates were enrolled in this study, while normal neonates were selected as the control group. The collected samples were divided into three groups: the control group (NC), the neonatal NEC group (NEC), and the premature delivery NEC group (pdNEC). Along with basic clinical data, fecal samples from the infants (n = 39) were collected at the time of the first diagnosis of NEC for 16S rRNA gene sequencing. Analysis of the gut microbiota revealed no significant difference in α-diversity between infants with NEC and controls, regardless of preterm birth. The significant difference in β-diversity was primarily driven by the rare and intermediate subgroups. The rare gut subgroup found in premature infants with NEC played a crucial role in the deterministic process and specialized functionality of the microbiota, ultimately forming a sparse association network structure. Finally, multiple biomarkers of Enterococcus from the Firmicutes phylum were identified, providing a theoretical basis for diagnosing NEC in premature infants.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Qi Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Fengan Jia
- Shaanxi Institute of Microbiology, Xi'an, Shaanxi 710043, P.R. China
| | - Dan Li
- Department of Laboratory Medicine, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Xuyang Gao
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi 710125, P.R. China
| | - Xiaoge Zhang
- Department of Pediatrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Fan Chang
- Shaanxi Institute of Microbiology, Xi'an, Shaanxi 710043, P.R. China
| | - Yun Xie
- Department of Laboratory Medicine, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
4
|
Sarnaik D, Krishnakumar A, Nejati S, Sullivan CR, Cross TWL, Campbell WW, Johnson JS, Rahimi R. A smart capsule with a bacteria- and pH-triggered enteric polymer coating for targeted colonic microbiome sampling. Acta Biomater 2025:S1742-7061(25)00268-5. [PMID: 40263059 DOI: 10.1016/j.actbio.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
The gut microbiome is recognized as a critical factor in advancing precision nutrition and medicine for health and in developing dietary recommendations and targeted therapies for gastrointestinal (GI) health and diseases. However, conventional sampling methods, such as fecal analysis and colonoscopy, often fail to capture microbial information from specific regions of the GI tract or require invasive procedures, thereby limiting accuracy and clinical utility. As a non-invasive alternative, passive sampling capsules have been developed for site-specific microbiome analysis by employing pH-sensitive enteric coatings that delay sampling until the capsule reaches the targeted intestinal region. Although this approach has been successful in the small intestine, colonic sampling remains challenging due to the high interpersonal variability in intestinal pH, which makes it difficult to rely solely on a pH-triggering mechanism. To overcome this challenge, a dual bacterially and pH triggered polymeric enteric coating was created by blending lactulose and N,N-dimethylaminoethyl methacrylate, enabling complete dissolution within the colonic region. Through systematic characterization of multiple polymer blend compositions using Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis, and Differential Scanning Calorimetry, an optimized design was identified that provides both suitable physical integrity and rapid (∼2 h) degradation in the presence of colonic bacteria, across a pH range of 5 to 8. The optimized blend was subsequently applied as a double-layer enteric coating on a sampling capsule, enabling the dissolution of the outer layer in the small intestine and complete dissolution of the inner layer in the colon. In-vitro and in-vivo pig model studies were conducted to validate the capsule's sampling performance and to ensure the preservation of the microbial environment. Furthermore, 16S rRNA sequencing revealed a taxonomic similarity between samples collected by the capsule and the colonic microbiome (residing between the ileum and fecal matter). Overall, this technology provides an effective approach to targeted microbial sampling and may pave the way for more comprehensive colonic microbiome analyses and improved diagnostic capabilities for GI diseases. STATEMENT OF SIGNIFICANCE: Precise monitoring of the gut microbiome is vital for understanding health and disease, yet current sampling techniques often lack precision or require invasive procedures. Our work introduces a novel, non-invasive capsule that targets the colon using a dual-trigger polymer system activated by both pH and colonic bacteria. This design enables localized sampling of gut microbiota, overcoming the limitations of fecal analysis, endoscopy, and earlier pH-triggered capsule designs. By capturing microbial communities directly from the colon, our technology provides deeper insights into colonic health and conditions such as inflammatory bowel disease and colorectal cancer. This breakthrough represents a significant advancement in precision nutrition and medicine for human health, and advanced diagnostics and targeted therapies to support dietary guidance, clinical practice and biomedical research.
Collapse
Affiliation(s)
- Devendra Sarnaik
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Akshay Krishnakumar
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sina Nejati
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Caitlyn R Sullivan
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Tzu-Wen L Cross
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Jay S Johnson
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Nam SL, Tarazona Carrillo KS, de la Mata AP, Giebelhaus RT, de Bruin OM, Doukhanine E, Harynuk JJ. Evaluation of solutions for stabilizing feces in metabolomics studies using GC × GC-TOFMS. Metabolomics 2025; 21:31. [PMID: 39982619 DOI: 10.1007/s11306-025-02232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/02/2025] [Indexed: 02/22/2025]
Abstract
INTRODUCTION Fecal metabolomics studies have garnered interest in recent years due to the potential for these samples to provide unique information about an individual. Stool is a dynamic mixture of human excrement, microbiota, and enzymes that yields a constantly changing metabolite profile. The main challenge in a fecal metabolomics study is ensuring that the metabolite profile changes as little as possible between sample collection and sample processing/analysis. OBJECTIVES This study aimed to evaluate the efficacy of five solutions in preserving human fecal metabolites over a seven-day storage period at ambient temperature, enabling at-home collection, cost-effective ambient transport and sample storage. METHOD Five solutions with varying chemical compositions were evaluated for their ability to stabilize fecal metabolites. Samples were stored at ambient temperature for seven days, and metabolites were analyzed using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS). The stabilizing efficacy of the solutions was assessed using total useful peak area (TUPA), absolute relative change (ARC) and compound class-based analyses, comparing the initial, stabilized, and unstabilized samples. RESULTS Different solutions demonstrated varied efficiencies for different compound classes. Overall, the results indicated that the use of stabilization solutions significantly minimized changes in the fecal metabolite profile compared to unstabilized samples left at room temperature for one week. CONCLUSION This study demonstrates that stabilization solutions are effective in preserving fecal metabolites during storage at ambient temperature, supporting the feasibility of at-home sample collection.
Collapse
Affiliation(s)
- Seo Lin Nam
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- The Metabolomics Innovation Centre, Edmonton, AB, Canada
| | - Kieran S Tarazona Carrillo
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- The Metabolomics Innovation Centre, Edmonton, AB, Canada
| | - A Paulina de la Mata
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- The Metabolomics Innovation Centre, Edmonton, AB, Canada
| | - Ryland T Giebelhaus
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- The Metabolomics Innovation Centre, Edmonton, AB, Canada
| | | | | | - James J Harynuk
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
- The Metabolomics Innovation Centre, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Park H, Yeo S, Lee T, Han Y, Ryu CB, Huh CS. Culture-based characterization of gut microbiota in inflammatory bowel disease. Front Microbiol 2025; 16:1538620. [PMID: 40051478 PMCID: PMC11884817 DOI: 10.3389/fmicb.2025.1538620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by disruptions in the gut microbiome. While most studies on gut dysbiosis in IBD rely on sequencing-based methods, we employed a streamlined culturomics approach to obtain a more comprehensive understanding of gut microbiota imbalance in patients with IBD that may not be captured by sequencing alone. A total of 367 bacteria were identified at the species level, including 211 species from ulcerative colitis patients, 164 species from Crohn's disease (CD) patients, and 263 species from healthy individuals. Consistent with our 16S rRNA gene amplicon sequencing results, a significant decrease in microbial diversity and a severe imbalance, especially in CD patients, were also observed in the culture-based analysis. Our culturomics approach provided additional insights, highlighting dysbiosis in unique anaerobic and Gram-negative species in CD patients. Moreover, species-level findings for Bifidobacterium and Enterobacterales emphasized specific species expansions in IBD patients. Notably, Mediterraneibacter gnavus, Thomasclavelia ramosa, Parabacteroides merdae, and Collinsella aerofaciens are of particular clinical interest due to their correlation with inflammatory biomarkers. This comprehensive analysis underscores the value of integrating a culture-based approach with a genome-based approach to provide complementary insights and therapeutic targets in IBD.
Collapse
Affiliation(s)
- Hyunjoon Park
- Research Institute of Eco-friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Soyoung Yeo
- Research Institute of Eco-friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Taekyu Lee
- Department of Internal Medicine, Digestive Disease Center and Research Institute, Soon Chun Hyang University School of Medicine, Bucheon, Republic of Korea
| | - Yumin Han
- Department of Internal Medicine, Digestive Disease Center and Research Institute, Soon Chun Hyang University School of Medicine, Bucheon, Republic of Korea
| | - Chang Beom Ryu
- Department of Internal Medicine, Digestive Disease Center and Research Institute, Soon Chun Hyang University School of Medicine, Bucheon, Republic of Korea
| | - Chul Sung Huh
- Research Institute of Eco-friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
7
|
Erlin M, Rianda D, Fadilah F, Erlina L, Rahayu MD, Prafiantini E, Sungkar A, Shankar AH, Agustina R. Association of Prepregnancy Body Mass Index with Gut Microbiota Diversity and Abundance in Pregnant Women. J Nutr 2025:S0022-3166(25)00087-2. [PMID: 39956391 DOI: 10.1016/j.tjnut.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Understanding the link between prepregnancy nutritional status and gut microbiota during pregnancy may lead to novel maternal and child health interventions. OBJECTIVE To explore the association of prepregnancy body mass index (BMI) status with gut microbiota diversity and abundance during pregnancy. METHODS A cross-sectional study was conducted on 90 pregnant women from primary health centers in Jakarta, Indonesia. Trained staff interviewed women on sociodemographic characteristics and nutrient intake, gathered data on prepregnancy BMI from antenatal records, and obtained fecal samples. Samples were analyzed for microbiota diversity indices [Shannon, Faith phylogenetic diversity (Faith PD), and Chao1] and abundance using 16S ribosome ribonucleic acid sequencing. Multivariate logistic regression was performed adjusting for carbohydrate and protein intake, ethnicity, and education to determine the relationship between prepregnancy BMI and the alpha diversity indices and the presence of the phylum Firmicutes and genera Prevotella and Blautia. RESULTS Pregnant women who were overweight or obese (BMI ≥23.0 kg/m2) before pregnancy had significantly lower odds of having gut microbiota diversity above the median of the Shannon index [adjusted odds ratio (aOR): 0.37, 95% confidence interval (CI): 0.14, 0.97, P = 0.042], Faith PD (aOR: 0.23, 95% CI: 0.07, 0.75, P = 0.015), and Chao1 (aOR: 0.25, 95% CI: 0.09, 0.67, P = 0.006) compared with those who were neither overweight nor obese. Prepregnant women who were overweight or obese also had significantly lower odds of having levels above the median of the phylum Firmicutes (aOR: 0.38, 95% CI: 0.15, 0.98, P = 0.045) and genus Blautia (aOR: 0.32, 95% CI: 0.12, 0.85, P = 0.022) compared with women who were neither overweight nor obese. CONCLUSIONS Prepregnancy overweight or obese status was associated with lower gut microbiota diversity and lower abundance of Firmicutes and Blautia among pregnant women in an urban community. These findings suggest that prepregnancy interventions to control BMI may improve gut flora and potentially benefit pregnant women.
Collapse
Affiliation(s)
- Maria Erlin
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Davrina Rianda
- Human Nutrition Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Fadilah Fadilah
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Linda Erlina
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Mega Diasty Rahayu
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Erfi Prafiantini
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia; Human Nutrition Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ali Sungkar
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Anuraj H Shankar
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Clinical Research Unit-Indonesia, Jakarta, Indonesia
| | - Rina Agustina
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia; Human Nutrition Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| |
Collapse
|
8
|
Mohamad Habibullah NN, Shahar S, Ismail M, Ibrahim N, Kamaruddin MZA, Tang SGH, Hamid MFA, Ramasamy K. Efficacy of yeast beta-glucan 1,3/1,6 supplementation on respiratory infection, fatigue, immune markers and gut health among moderate stress adults in Klang Valley of Malaysia: protocol for a randomised, double-blinded, placebo-controlled, parallel-group study. BMJ Open 2025; 15:e084277. [PMID: 39832981 PMCID: PMC11749537 DOI: 10.1136/bmjopen-2024-084277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Yeast beta-glucan (YBG) are recognised for enhancing the immune system by activating macrophages, a key defence mechanism. Given the global prevalence and impact of upper respiratory tract infections (URTIs) on productivity and healthcare costs, YBG has shown promise as a potential therapeutic and preventive strategy for recurrent respiratory tract infections. However, little is known regarding the efficacy of YBG at lower dosages in relation to URTI, fatigue, immune response and uncertainties of how they affect the gut microbiota composition. METHODS AND ANALYSIS This 12-week randomised, double-blinded, placebo control, parallel-group clinical trial aims to evaluate the efficacy of YBG 1,3/1,6 on respiratory tract infection, fatigue, immune markers and gut health among adults with moderate stress. The study involves 198 adults aged 18-59 years with moderate stress levels as assessed using Perceived Stress Scale 10 (score 14-26) and Patient Health Questionnaire 9 (score ≥9); and had symptoms of common colds for the past 6 months as assessed using Jackson Cold Scale. These participants will be randomised into three groups, receiving YBG 1,3/1,6 at either 120 mg, 204 mg or a placebo. The outcomes measures include respiratory infection symptoms, fatigue, mood state and quality of life assessed using Wisconsin Upper Respiratory Symptoms Scale, Multidimensional Fatigue Inventory, Profile of Mood State and Short Form 36 Health Survey Questionnaire, respectively. In addition, full blood analysis and assessment of immune, inflammatory and oxidative stress biomarkers will be taken. Secondary outcome includes gut microbiota analysis using stool samples via 16S rRNA sequencing. ETHICS AND DISSEMINATION The research protocol of the study was reviewed and approved by the Research Ethics Committee of Universiti Kebangsaan Malaysia (UKM/PPI/111/8/JEP-2023-211). The findings will be disseminated to participants, healthcare professionals and researchers via conference presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER ISRCTN48336189.
Collapse
Affiliation(s)
- Nur Nadia Mohamad Habibullah
- Dietetics Programme, Centre for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Federal Territories Kuala Lumpur, Malaysia
| | - Suzana Shahar
- Dietetics Programme, Centre for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Federal Territories Kuala Lumpur, Malaysia
| | - Munirah Ismail
- Dietetics Programme, Centre for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Federal Territories Kuala Lumpur, Malaysia
| | - Norhayati Ibrahim
- Clinical Psychology Programme, Centre for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Federal Territories Kuala Lumpur, Malaysia
| | - Mohd Zul Amin Kamaruddin
- Dietetics Programme, Centre for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Federal Territories Kuala Lumpur, Malaysia
| | - Shirley Gee Hoon Tang
- Biomedical Science Programme, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Federal Territories Kuala Lumpur, Malaysia
| | - Mohd Faisal Abdul Hamid
- Respiratory Unit, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras Kuala Lumpur, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Malaysia
| |
Collapse
|
9
|
Kim HJ, Park DH, Han SH, Kim SY. Optimal storage time and temperature of human oral samples to minimize microbiome changes: A scoping review. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:220-231. [PMID: 39498230 PMCID: PMC11533461 DOI: 10.1016/j.jdsr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/25/2024] [Accepted: 05/12/2024] [Indexed: 11/07/2024] Open
Abstract
Improper storage times and temperatures negatively impact the quality of biospecimens with oral microbiomes. This study aimed to determine the optimal storage time and temperature for maintaining the integrity of human dental plaque and saliva samples' microbial profiles. A comprehensive search yielded 5433 studies, with 12 meeting inclusion criteria. The number of studies on the storage time and temperature for plaque or saliva samples was extremely limited, with large variability in study designs and analytical tools. The best approach for dental plaque and saliva samples was to immediately freeze fresh specimens at - 80 °C or lower until DNA extraction, with a recommended storage time not exceeding 1-2 years, regardless of temperature. Checkerboard DNA-DNA hybridization-based studies suggested dental plaque storage at - 20 °C for 6 months, but a shorter duration was advised. Based on 16 S rRNA gene sequencing studies, dental plaque samples could be stored at - 80 °C for 6 months in 75 % ethanol or Bead Solution. Dental plaque and saliva samples could be stored at room temperature for 1-2 weeks without significant microbiome changes if stored in appropriate media. Further well-designed randomized controlled studies with longer-storage duration are necessary to establish more definitive guidelines.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Department of Periodontics, Seoul National University Dental Hospital, 101 Daehakro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehakro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Dong Hyun Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sun-Young Kim
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehakro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
10
|
Lapauw L, Rutten A, Dupont J, Amini N, Vercauteren L, Derrien M, Raes J, Gielen E. Associations between gut microbiota and sarcopenia or its defining parameters in older adults: A systematic review. J Cachexia Sarcopenia Muscle 2024; 15:2190-2207. [PMID: 39192550 PMCID: PMC11634501 DOI: 10.1002/jcsm.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Altered gut microbiota (GM) potentially contribute to development or worsening of sarcopenia through a gut-muscle axis. This systematic review aims to compare GM between persons with sarcopenia or low sarcopenia-defining parameters (muscle mass, strength, and physical performance) to those with preserved muscle status, as well as to clarify possible associations between sarcopenia (-defining parameters) and relative abundance (RA) of GM-taxa or GM-(α- or β) diversity indices, in order to clarify whether there is robust evidence of the existence of a GM signature for sarcopenia. This systematic review was conducted according to the PRISMA-reporting guideline and pre-registered on PROSPERO (CRD42021259597). PubMed, Web of Science, Embase, ClinicalTrials.gov, and Cochrane library were searched until 20 July 2023. Included studies reported on GM and sarcopenia or its defining parameters. Observational studies were included with populations of mean age ≥50 years. Thirty-two studies totalling 10 781 persons (58.56% ♀) were included. Thirteen studies defined sarcopenia as a construct. Nineteen studies reported at least one sarcopenia-defining parameter (muscle mass, strength or physical performance). Studies found different GM-taxa at multiple levels to be significantly associated with sarcopenia (n = 4/6), muscle mass (n = 13/14), strength (n = 7/9), and physical performance (n = 3/3); however, directions of associations were heterogeneous and also conflicting for specific GM-taxa. Regarding β-diversity, studies found GM of persons with sarcopenia, low muscle mass, or low strength to cluster differently compared with persons with preserved muscle status. α-diversity was low in persons with sarcopenia or low muscle mass as compared with those with preserved muscle status, indicating low richness and diversity. In line with this, α-diversity was significantly and positively associated with muscle mass (n = 3/4) and muscle strength (n = 2/3). All reported results were significant (P < 0.05). Persons with sarcopenia and low muscle parameters have less rich and diverse GM and can be separated from persons with preserved muscle mass and function based on GM-composition. Sarcopenia and low muscle parameters are also associated with different GM-taxa at multiple levels, but results were heterogeneous and no causal conclusions could be made due to the cross-sectional design of the studies. This emphasizes the need for uniformly designed cross-sectional and longitudinal trials with appropriate GM confounder control in large samples of persons with sarcopenia and clearly defined core outcome sets in order to further explore changes in GM-taxa and to determine a sarcopenia-specific GM-signature.
Collapse
Affiliation(s)
- Laurence Lapauw
- Department of Public Health and Primary Care, Division of Gerontology and GeriatricsKU LeuvenLeuvenBelgium
| | - Aurélie Rutten
- Division of Gerontology and GeriatricsZuyderland Medisch CentrumSittardThe Netherlands
| | - Jolan Dupont
- Department of Public Health and Primary Care, Division of Gerontology and GeriatricsKU LeuvenLeuvenBelgium
- Division of Gerontology and GeriatricsUniversity Hospitals LeuvenLeuvenBelgium
| | - Nadjia Amini
- Department of Public Health and Primary Care, Division of Gerontology and GeriatricsKU LeuvenLeuvenBelgium
| | - Laura Vercauteren
- Department of Public Health and Primary Care, Division of Gerontology and GeriatricsKU LeuvenLeuvenBelgium
| | - Muriel Derrien
- Department of Microbiology, Immunology and Transplantation, Rega InstituteKU LeuvenLeuvenBelgium
- VIB Center for MicrobiologyLeuvenBelgium
| | - Jeroen Raes
- Department of Microbiology, Immunology and Transplantation, Rega InstituteKU LeuvenLeuvenBelgium
- VIB Center for MicrobiologyLeuvenBelgium
| | - Evelien Gielen
- Department of Public Health and Primary Care, Division of Gerontology and GeriatricsKU LeuvenLeuvenBelgium
- Division of Gerontology and GeriatricsZuyderland Medisch CentrumSittardThe Netherlands
| |
Collapse
|
11
|
Joubran P, Roux FA, Serino M, Deschamps JY. Gut Microbiota Comparison in Rectal Swabs Versus Stool Samples in Cats with Kidney Stones. Microorganisms 2024; 12:2411. [PMID: 39770613 PMCID: PMC11677927 DOI: 10.3390/microorganisms12122411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
To investigate the role of the intestinal bacterial microbiota in the pathogenesis of calcium oxalate nephrolithiasis in cats, a condition characterized by the formation of kidney stones, it is desirable to identify a sample collection method that accurately reflects the microbiota's composition. The objective of this study was to evaluate the impact of fecal sample collection methods on the intestinal microbiota composition in two cat populations: healthy cats and kidney stone-diseased cats. The study included eighteen cats from the same colony, comprising nine healthy cats and nine cats with spontaneously occurring presumed calcium oxalate kidney stones. Three fecal collection methods were compared: rectal swabs, the collection of fresh stool, and the collection of stool exposed to ambient air for 24 h. The bacterial microbiota was analyzed through the high-resolution sequencing of the V3-V4 region of the 16S rRNA gene. For all cats, within the same individual, a one-way PERMANOVA analysis showed a significant difference between the rectal swabs and fresh stool (p = 0.0003), as well as between the rectal swabs and stool exposed to ambient air for 24 h (p = 0.0003), but no significant difference was identified between the fresh stool and non-fresh stool (p = 0.0651). When comparing the two populations of cats, this study provides seemingly conflicting results. (1) A principal component analysis (PCA) comparison revealed a significant difference in the bacterial composition between the healthy cats and the cats with kidney stones only when the sample was a fresh fecal sample (p = 0.0037). This finding suggests that the intestinal bacteria involved in the pathogenesis of kidney stones in cats are luminal and strictly anaerobic bacteria. Consequently, exposure to ambient air results in a loss of information, preventing the identification of dysbiosis. For clinical studies, non-fresh stool samples provided by owners does not appear suitable for studying the gut microbiota of cats with kidney stones; fresh stool should be favored. (2) Interestingly, the rectal swabs alone highlighted significant differences in the proportion of major phyla between the two populations. These findings highlight the critical importance of carefully selecting fecal collection methods when studying feline gut microbiota. Combining rectal swabs and fresh stool sampling provides complementary insights, offering the most accurate understanding of the gut microbiota composition in the context of feline kidney stone pathogenesis.
Collapse
Affiliation(s)
- Patrick Joubran
- NP3, Nutrition, PathoPhysiology and Pharmacology Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44307 Nantes, France; (P.J.); (F.A.R.)
| | - Françoise A. Roux
- NP3, Nutrition, PathoPhysiology and Pharmacology Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44307 Nantes, France; (P.J.); (F.A.R.)
- Emergency and Critical Care Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44307 Nantes, France
| | - Matteo Serino
- IRSD, Institut de Recherche en Santé Digestive, Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Ecole Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse III-Paul Sabatier (UPS), CS 60039, 31024 Toulouse, France;
| | - Jack-Yves Deschamps
- NP3, Nutrition, PathoPhysiology and Pharmacology Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44307 Nantes, France; (P.J.); (F.A.R.)
- Emergency and Critical Care Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44307 Nantes, France
| |
Collapse
|
12
|
Charles P, Kumar S, Girish Kumar CP, Parameswaran S, Viswanathan P, Nachiappa Ganesh R. Association of gut microbiota with allograft injury in kidney transplant recipients: a comparative profiling through 16S metagenomics and quantitative PCR. J Med Microbiol 2024; 73. [PMID: 39540836 DOI: 10.1099/jmm.0.001934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Introduction. The existence of a mutual relationship between gut microbiota and immune homeostasis highlights its importance in the context of kidney transplantation.Gap statement. The translational utility of gut microbiota as a biomarker for allograft injury has not been assessed before.Aim. In this study, we aimed to characterize the gut microbial diversity in kidney transplant recipients and investigate the alterations in the gut microbial composition in association with allograft injury such as histopathological graft rejection and calcineurin inhibitor toxicity. In addition, we compared the gut microbial quantitation using 16S metagenomics and quantitative PCR (qPCR) to assess its translational utility.Methodology. In this prospective longitudinal cohort study, we enrolled 38 kidney transplant recipients and collected serial faecal specimens (n=114), once before the induction therapy, and twice after transplant, during the first and third month. We characterized the gut microbial composition through 16S rRNA sequencing and qPCR from the DNA isolates of the samples. The recipients were clinically followed up for a median of 600 days post-transplant. Histopathological evidence of allograft rejection and calcineurin inhibitor toxicity were used for the correlational analysis with gut microbial diversity.Results. Significant differences in the gut microbial diversity were observed between the pre- and post-transplant samples. Pre-transplant gut microbiota revealed a higher relative abundance of phylum Bacteroidetes in the allograft rejection group, and a higher relative abundance of phylum Firmicutes was observed in the histopathological features of calcineurin inhibitor toxicity (hCNI toxicity) group. We found a high concordance between 16S metagenomics and qPCR outputs for assessing the gut microbial diversity. Furthermore, the receiver operating characteristic curve analysis has also proven that the pre-transplant levels of gut microbial dysbiosis, as a potential predictive biomarker for allograft injury.Conclusion. Our pilot study found a strong statistical association of gut microbial dysbiosis with kidney allograft injury, highlighting the potential of gut microbiota as a predictive biomarker and that qPCR serves as a more reliable and economic tool for assessing dysbiosis paving the way for its translational utility.
Collapse
Affiliation(s)
- Priscilla Charles
- Department of Pathology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Santosh Kumar
- Department of Pathology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - C P Girish Kumar
- Laboratory Division, National Institute of Epidemiology, Indian Council of Medical Research, Chennai, Tamil Nadu, India
| | - Sreejith Parameswaran
- Department of Nephrology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Pragasam Viswanathan
- Renal Research Lab, Biomedical Research Centre, School of Biosciences and Technology, VIT University, Vellore, India
| | - Rajesh Nachiappa Ganesh
- Department of Pathology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
13
|
Lukacz ES, Fok CS, Bryant M, Rodriguez-Ponciano DP, Meister MR, Mueller MG, Lewis CE, Lowder JL, Smith AL, Stapleton A, Ayala A, Pakpahan R, Hortsch S, Putnam S, Rudser K, Song SJ, Knight R, Brubaker L. Feasibility of Home Collection for Urogenital Microbiome Samples. UROGYNECOLOGY (PHILADELPHIA, PA.) 2024; 30:896-905. [PMID: 38958286 PMCID: PMC11502285 DOI: 10.1097/spv.0000000000001544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
IMPORTANCE Feasibility of home urogenital microbiome specimen collection is unknown. OBJECTIVES This study aimed to evaluate successful sample collection rates from home and clinical research centers. STUDY DESIGN Adult women participants enrolled in a multicentered cohort study were recruited to an in-person research center evaluation, including self-collected urogenital samples. A nested feasibility substudy evaluated home biospecimen collection prior to the scheduled in-person evaluation using a home collection kit with written instructions, sample collection supplies, and a Peezy™ urine collection device. Participants self-collected samples at home and shipped them to a central laboratory 1 day prior to and the day of the in-person evaluation. We defined successful collection as receipt of at least one urine specimen that was visibly viable for sequencing. RESULTS Of 156 participants invited to the feasibility substudy, 134 were enrolled and sent collection kits with 89% (119/134) returning at least 1 home urine specimen; the laboratory determined that 79% (106/134) of these urine samples were visually viable for analysis. The laboratory received self-collected urine from the research center visit in 97% (115/119); 76% (91/119) were visually viable for sequencing. Among 401 women who did not participate in the feasibility home collection substudy, 98% (394/401) self-collected urine at the research center with 80% (321/401) returned and visibly viable for sequencing. CONCLUSIONS Home collection of urogenital microbiome samples for research is feasible, with comparable success to clinical research center collection. Sample size adjustment should plan for technical and logistical difficulties, regardless of specimen collection site.
Collapse
Affiliation(s)
- Emily S. Lukacz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Cynthia S. Fok
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, USA
| | - MacKenzie Bryant
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Dulce P. Rodriguez-Ponciano
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Melanie R. Meister
- Department of Obstetrics and Gynecology, University of Kansas, Kansas City, Kansas, USA
| | - Margaret G. Mueller
- Department of Obstetrics and Gynecology, University of Chicago, Pritzker School of Medicine Chicago, Illinois, USA
| | - Cora E. Lewis
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jerry L. Lowder
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ariana L. Smith
- Perelman School of Medicine, Division of Urology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ann Stapleton
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, WA, USA
| | - Amy Ayala
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - R Pakpahan
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Sara Putnam
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kyle Rudser
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Se Jim Song
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Linda Brubaker
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego School of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
14
|
Kruger K, Myeonghyun Y, van der Wielen N, Kok DE, Hooiveld GJ, Keshtkar S, Diepeveen-de Bruin M, Balvers MGJ, Grootte-Bromhaar M, Mudde K, Ly NTHN, Vermeiren Y, de Groot LCPGM, de Vos RCH, Gonzales GB, Steegenga WT, van Trijp MPH. Evaluation of inter- and intra-variability in gut health markers in healthy adults using an optimised faecal sampling and processing method. Sci Rep 2024; 14:24580. [PMID: 39427011 PMCID: PMC11490648 DOI: 10.1038/s41598-024-75477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Despite advances in gut health research, the variability of important gut markers within individuals over time remains underexplored. We investigated the intra-individual variation of various faecal gut health markers using an optimised processing protocol aimed at reducing variability. Faecal samples from ten healthy adults over three consecutive days demonstrated marker-specific intra-individual coefficients of variation (CV%), namely: stool consistency (16.5%), water content (5.7%), pH (3.9%), total SCFAs (17.2%), total BCFAs (27.4%), total bacteria and fungi copies (40.6% and 66.7%), calprotectin and myeloperoxidase (63.8% and 106.5%), and untargeted metabolites (on average 40%). For thirteen microbiota genera, including Bifidobacterium and Akkermansia, variability exceeded 30%, whereas microbiota diversity was less variable (Phylogenetic Diversity 3.3%, Inverse Simpson 17.2%). Mill-homogenisation of frozen faeces significantly reduced the replicates CV% for total SCFAs (20.4-7.5%) and total BCFAs (15.9-7.8%), and untargeted metabolites compared to faecal hammering only, without altering mean concentrations. Our results show the potential need for repeated sampling to accurately represent specific gut health markers. We also demonstrated the effectiveness of optimised preprocessing of human stool samples in reducing overall analytical variability.
Collapse
Affiliation(s)
- Kirsten Kruger
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Yoou Myeonghyun
- Clinical Microbiomics, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Nicky van der Wielen
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Guido J Hooiveld
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Shohreh Keshtkar
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Mechteld Grootte-Bromhaar
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Karin Mudde
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Nhien T H N Ly
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Yannick Vermeiren
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Lisette C P G M de Groot
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Ric C H de Vos
- Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Gerard Bryan Gonzales
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wilma T Steegenga
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Mara P H van Trijp
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
15
|
Mancin L, Paoli A, Berry S, Gonzalez JT, Collins AJ, Lizarraga MA, Mota JF, Nicola S, Rollo I. Standardization of gut microbiome analysis in sports. Cell Rep Med 2024; 5:101759. [PMID: 39368478 PMCID: PMC11514603 DOI: 10.1016/j.xcrm.2024.101759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/09/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
The gut microbiome plays a significant role in physiological functions such as nutrient processing, vitamin production, inflammatory response, and immune modulation, which, in turn, are important contributors to athlete health and performance. To date, the interpretation, discussion, and visualization of microbiome results of athletes are challenging, due to a lack of standard parameters and reference data for collection and comparison. The purpose of this perspective piece is to provide researchers with an easy-to-understand framework for the collection, analysis, and data management related to the gut microbiome with a specific focus on athletic populations. In the absence of a consensus on microbiome research in the sports field, we hope that these considerations serve as foundational "best practice." Adherence to these standard operating procedures will accelerate the path toward improving the quality of data and ultimately our understanding of the influence of the gut microbiome in sport settings.
Collapse
Affiliation(s)
- Laura Mancin
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy.
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy
| | - Sara Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | | | - Adam J Collins
- Department for Health, University of Bath, BA2 7AY Bath, UK
| | | | - Joao Felipe Mota
- APC Microbiome Ireland, Department of Medicine, School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Segata Nicola
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Ian Rollo
- Gatorade Sports Science Institute, PepsiCo Life Sciences, Global R&D, Leicestershire, UK; School of Sports Exercise and Health Sciences, Loughborough University, Leicestershire, UK
| |
Collapse
|
16
|
Verhoeven JE, Wolkowitz OM, Satz IB, Conklin Q, Lamers F, Lavebratt C, Lin J, Lindqvist D, Mayer SE, Melas PA, Milaneschi Y, Picard M, Rampersaud R, Rasgon N, Ridout K, Veibäck GS, Trumpff C, Tyrka AR, Watson K, Wu GWY, Yang R, Zannas AS, Han LK, Månsson KNT. The researcher's guide to selecting biomarkers in mental health studies. Bioessays 2024; 46:e2300246. [PMID: 39258367 PMCID: PMC11811959 DOI: 10.1002/bies.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/12/2024]
Abstract
Clinical mental health researchers may understandably struggle with how to incorporate biological assessments in clinical research. The options are numerous and are described in a vast and complex body of literature. Here we provide guidelines to assist mental health researchers seeking to include biological measures in their studies. Apart from a focus on behavioral outcomes as measured via interviews or questionnaires, we advocate for a focus on biological pathways in clinical trials and epidemiological studies that may help clarify pathophysiology and mechanisms of action, delineate biological subgroups of participants, mediate treatment effects, and inform personalized treatment strategies. With this paper we aim to bridge the gap between clinical and biological mental health research by (1) discussing the clinical relevance, measurement reliability, and feasibility of relevant peripheral biomarkers; (2) addressing five types of biological tissues, namely blood, saliva, urine, stool and hair; and (3) providing information on how to control sources of measurement variability.
Collapse
Affiliation(s)
- Josine E. Verhoeven
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Owen M. Wolkowitz
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Isaac Barr Satz
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Quinn Conklin
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
- Center for Health and Community, University of California, San Francisco, San Francisco, CA 94107 USA
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, United States
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Stefanie E. Mayer
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Philippe A. Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam, The Netherlands
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ryan Rampersaud
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Natalie Rasgon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn Ridout
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
- Department of Psychiatry, Kaiser Permanente, Santa Rosa Medical Center, Santa Rosa, CA 95403, USA
| | - Gustav Söderberg Veibäck
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Audrey R. Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI 02885, USA
| | - Kathleen Watson
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gwyneth Winnie Y Wu
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Anthony S. Zannas
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA; 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill
| | - Laura K.M. Han
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Kristoffer N. T. Månsson
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
17
|
Žukauskaitė K, Li M, Horvath A, Jarmalaitė S, Stadlbauer V. Cellular and Microbial In Vitro Modelling of Gastrointestinal Cancer. Cancers (Basel) 2024; 16:3113. [PMID: 39272971 PMCID: PMC11394127 DOI: 10.3390/cancers16173113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Human diseases are multifaceted, starting with alterations at the cellular level, damaging organs and their functions, and disturbing interactions and immune responses. In vitro systems offer clarity and standardisation, which are crucial for effectively modelling disease. These models aim not to replicate every disease aspect but to dissect specific ones with precision. Controlled environments allow researchers to isolate key variables, eliminate confounding factors and elucidate disease mechanisms more clearly. Technological progress has rapidly advanced model systems. Initially, 2D cell culture models explored fundamental cell interactions. The transition to 3D cell cultures and organoids enabled more life-like tissue architecture and enhanced intercellular interactions. Advanced bioreactor-based devices now recreate the physicochemical environments of specific organs, simulating features like perfusion and the gastrointestinal tract's mucus layer, enhancing physiological relevance. These systems have been simplified and adapted for high-throughput research, marking significant progress. This review focuses on in vitro systems for modelling gastrointestinal tract cancer and the side effects of cancer treatment. While cell cultures and in vivo models are invaluable, our main emphasis is on bioreactor-based in vitro modelling systems that include the gut microbiome.
Collapse
Affiliation(s)
- Kristina Žukauskaitė
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Melissa Li
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Biotech Campus Tulln, Fachhochschule Wiener Neustadt, 3430 Tulln, Austria
| | - Angela Horvath
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| | - Sonata Jarmalaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
- National Cancer Institute, 08406 Vilnius, Lithuania
| | - Vanessa Stadlbauer
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| |
Collapse
|
18
|
Park H, Yeo S, Ryu CB, Huh CS. A streamlined culturomics case study for the human gut microbiota research. Sci Rep 2024; 14:20361. [PMID: 39223323 PMCID: PMC11368911 DOI: 10.1038/s41598-024-71370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Bacterial culturomics is a set of techniques to isolate and identify live bacteria from complex microbial ecosystems. Despite its potential to revolutionize microbiome research, bacterial culturomics has significant challenges when applied to human gut microbiome studies due to its labor-intensive nature. Therefore, we established a streamlined culturomics approach with minimal culture conditions for stool sample preincubation. We evaluated the suitability of non-selective medium candidates for maintaining microbial diversity during a 30-day incubation period based on 16S rRNA gene amplicon analysis. Subsequently, we applied four culture conditions (two preincubation media under an aerobic/anaerobic atmosphere) to isolate gut bacteria on a large scale from eight stool samples of healthy humans. We identified 8141 isolates, classified into 263 bacterial species, including 12 novel species candidates. Our analysis of cultivation efficiency revealed that seven days of aerobic and ten days of anaerobic incubation captured approximately 91% and 95% of the identified species within each condition, respectively, with a synergistic effect confirmed when selected preincubation media were combined. Moreover, our culturomics findings expanded the coverage of gut microbial diversity compared to 16S rRNA gene amplicon sequencing results. In conclusion, this study demonstrated the potential of a streamlined culturomics approach for the efficient isolation of gut bacteria from human stool samples. This approach might pave the way for the broader adoption of culturomics in human gut microbiome studies, ultimately leading to a more comprehensive understanding of this complex microbial ecosystem.
Collapse
Affiliation(s)
- Hyunjoon Park
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
| | - Soyoung Yeo
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Chang Beom Ryu
- Department of Internal Medicine, Digestive Disease Center and Research Institute, Soon Chun Hyang University School of Medicine, Bucheon, 14584, South Korea
| | - Chul Sung Huh
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, South Korea.
| |
Collapse
|
19
|
Aizpurua O, Dunn RR, Hansen LH, Gilbert MTP, Alberdi A. Field and laboratory guidelines for reliable bioinformatic and statistical analysis of bacterial shotgun metagenomic data. Crit Rev Biotechnol 2024; 44:1164-1182. [PMID: 37731336 DOI: 10.1080/07388551.2023.2254933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 09/22/2023]
Abstract
Shotgun metagenomics is an increasingly cost-effective approach for profiling environmental and host-associated microbial communities. However, due to the complexity of both microbiomes and the molecular techniques required to analyze them, the reliability and representativeness of the results are contingent upon the field, laboratory, and bioinformatic procedures employed. Here, we consider 15 field and laboratory issues that critically impact downstream bioinformatic and statistical data processing, as well as result interpretation, in bacterial shotgun metagenomic studies. The issues we consider encompass intrinsic properties of samples, study design, and laboratory-processing strategies. We identify the links of field and laboratory steps with downstream analytical procedures, explain the means for detecting potential pitfalls, and propose mitigation measures to overcome or minimize their impact in metagenomic studies. We anticipate that our guidelines will assist data scientists in appropriately processing and interpreting their data, while aiding field and laboratory researchers to implement strategies for improving the quality of the generated results.
Collapse
Affiliation(s)
- Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Lars H Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - M T P Gilbert
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Jaramillo-Jaramillo AS, McClure JT, Stryhn H, Tahlan K, Sanchez J. Effects of storage conditions on the microbiota of fecal samples collected from dairy cattle. PLoS One 2024; 19:e0308571. [PMID: 39121104 PMCID: PMC11315314 DOI: 10.1371/journal.pone.0308571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024] Open
Abstract
Microbiota analyses are key to understanding the bacterial communities within dairy cattle, but the impact of different storage conditions on these analyses remains unclear. This study sought to examine the effects of freezing at -80°C immediately after collection, refrigeration at 4°C for three days and seven days and absolute ethanol preservation on the microbiota diversity of pooled fecal samples from dairy cattle. Examining 16S rRNA gene sequences, alpha (Shannon, Pielou evenness, observed features and Faith PD indices) and beta (Bray-Curtis, βw and Weighted UniFrac) diversity were assessed. The effects of storage conditions on these metrics were evaluated using linear mixed models and PERMANOVA, incorporating the farm as a random effect. Our findings reveal that 7d and E significantly altered the Shannon index, suggesting a change in community composition. Changes in Pielou evenness for 3d and 7d storage when compared to 0d were found, indicating a shift in species evenness. Ethanol preservation impacted both observed features and Faith PD indices. Storage conditions significantly influenced Bray-Curtis, βw, and Weighted UniFrac metrics, indicating changes in community structure. PERMANOVA analysis showed that these storage conditions significantly contributed to microbiota differences compared to immediate freezing. In conclusion, our results demonstrate that while refrigeration for three days had minimal impact, seven days of refrigeration and ethanol preservation significantly altered microbiota analyses. These findings highlight the importance of sample storage considerations in microbiota research.
Collapse
Affiliation(s)
- Ana S. Jaramillo-Jaramillo
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - J. T. McClure
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Henrik Stryhn
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Javier Sanchez
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
21
|
Isokääntä H, Tomnikov N, Vanhatalo S, Munukka E, Huovinen P, Hakanen AJ, Kallonen T. High-throughput DNA extraction strategy for fecal microbiome studies. Microbiol Spectr 2024; 12:e0293223. [PMID: 38747618 PMCID: PMC11237708 DOI: 10.1128/spectrum.02932-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Microbiome studies are becoming larger in size to detect the potentially small effect that environmental factors have on our gut microbiomes, or that the microbiome has on our health. Therefore, fast and reproducible DNA isolation methods are needed to handle thousands of fecal samples. We used the Chemagic 360 chemistry and Magnetic Separation Module I (MSMI) instrument to compare two sample preservatives and four different pre-treatment protocols to find an optimal method for DNA isolation from thousands of fecal samples. The pre-treatments included bead beating, sample handling in tube and plate format, and proteinase K incubation. The optimal method offers a sufficient yield of high-quality DNA without contamination. Three human fecal samples (adult, senior, and infant) with technical replicates were extracted. The extraction included negative controls (OMNIgeneGUT, DNA/RNA shield fluid, and Chemagic Lysis Buffer 1) to detect cross-contamination and ZymoBIOMICS Gut Microbiome Standard as a positive control to mimic the human gut microbiome and assess sensitivity of the extraction method. All samples were extracted using Chemagic DNA Stool 200 H96 kit (PerkinElmer, Finland). The samples were collected in two preservatives, OMNIgeneGUT and DNA/RNA shield fluid. DNA quantity was measured using Qubit-fluorometer, DNA purity and quality using gel electrophoresis, and taxonomic signatures with 16S rRNA gene-based sequencing with V3V4 and V4 regions. Bead beating increased bacterial diversity. The largest increase was detected in gram-positive genera Blautia, Bifidobacterium, and Ruminococcus. Preservatives showed minor differences in bacterial abundances. The profiles between the V3V4 and V4 regions differed considerably with lower diversity samples. Negative controls showed signs from genera abundant in fecal samples. Technical replicates of the Gut Standard and stool samples showed low variation. The selected isolation protocol included recommended steps from manufacturer as well as bead beating. Bead beating was found to be necessary to detect hard-to-lyse bacteria. The protocol was reproducible in terms of DNA yield among different stool replicates and the ZymoBIOMICS Gut Microbiome Standard. The MSM1 instrument and pre-treatment in a 96-format offered the possibility of automation and handling of large sample collections. Both preservatives were feasible in terms of sample handling and had low variation in taxonomic signatures. The 16S rRNA target region had a high impact on the composition of the bacterial profile. IMPORTANCE Next-generation sequencing (NGS) is a widely used method for determining the composition of the gut microbiota. Due to the differences in the gut microbiota composition between individuals, microbiome studies have expanded into large population studies to maximize detection of small effects on microbe-host interactions. Thus, the demand for a rapid and reliable microbial profiling is continuously increasing, making the optimization of high-throughput 96-format DNA extraction integral for NGS-based downstream applications. However, experimental protocols are prone to bias and errors from sample collection and storage, to DNA extraction, primer selection and sequencing, and bioinformatics analyses. Methodological bias can contribute to differences in microbiome profiles, causing variability across studies and laboratories using different protocols. To improve consistency and confidence of the measurements, the standardization of microbiome analysis methods has been recognized in many fields.
Collapse
Affiliation(s)
- Heidi Isokääntä
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku, Finland
| | - Natalie Tomnikov
- Department of Clinical Microbiology, Tyks Laboratories, Turku University Hospital, Turku, Finland
| | - Sanja Vanhatalo
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eveliina Munukka
- Clinical Microbiome Bank, Microbe Center, Turku University Hospital and University of Turku, Turku, Finland
- Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Pentti Huovinen
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Antti J. Hakanen
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Tyks Laboratories, Turku University Hospital, Turku, Finland
- Clinical Microbiome Bank, Microbe Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Teemu Kallonen
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Tyks Laboratories, Turku University Hospital, Turku, Finland
- Clinical Microbiome Bank, Microbe Center, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
22
|
Ma X, Brinker E, Lea CR, Delmain D, Chamorro ED, Martin DR, Graff EC, Wang X. Evaluation of fecal sample collection methods for feline gut microbiome profiling: fecal loop vs. litter box. Front Microbiol 2024; 15:1337917. [PMID: 38800749 PMCID: PMC11127567 DOI: 10.3389/fmicb.2024.1337917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Microbial population structures within fecal samples are vital for disease screening, diagnosis, and gut microbiome research. The two primary methods for collecting feline fecal samples are: (1) using a fecal loop, which retrieves a rectal sample using a small, looped instrument, and (2) using the litter box, which collects stool directly from the litter. Each method has its own advantages and disadvantages and is suitable for different research objectives. Methods and results Whole-genome shotgun metagenomic sequencing were performed on the gut microbiomes of fecal samples collected using these two methods from 10 adult cats housed in the same research facility. We evaluated the influence of collection methods on feline microbiome analysis, particularly their impact on DNA extraction, metagenomic sequencing yield, microbial composition, and diversity in subsequent gut microbiome analyses. Interestingly, fecal sample collection using a fecal loop resulted in a lower yield of microbial DNA compared to the litterbox method (p = 0.004). However, there were no significant differences between the two groups in the proportion of host contamination (p = 0.106), virus contamination (p = 0.232), relative taxonomy abundance of top five phyla (Padj > 0.638), or the number of microbial genes covered (p = 0.770). Furthermore, no significant differences were observed in alpha-diversity, beta-diversity, the number of taxa identified at each taxonomic level, and the relative abundance of taxonomic units. Discussion These two sample collection methods do not affect microbial population structures within fecal samples and collecting fecal samples directly from the litterbox within 6 hours after defecation can be considered a reliable approach for microbiome research.
Collapse
Affiliation(s)
- Xiaolei Ma
- School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Emily Brinker
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | - Christopher R. Lea
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Diane Delmain
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Erin D. Chamorro
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Douglas R. Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Emily C. Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| |
Collapse
|
23
|
Trecarten S, Fongang B, Liss M. Current Trends and Challenges of Microbiome Research in Prostate Cancer. Curr Oncol Rep 2024; 26:477-487. [PMID: 38573440 DOI: 10.1007/s11912-024-01520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW The role of the gut microbiome in prostate cancer is an emerging area of research interest. However, no single causative organism has yet been identified. The goal of this paper is to examine the role of the microbiome in prostate cancer and summarize the challenges relating to methodology in specimen collection, sequencing technology, and interpretation of results. RECENT FINDINGS Significant heterogeneity still exists in methodology for stool sampling/storage, preservative options, DNA extraction, and sequencing database selection/in silico processing. Debate persists over primer choice in amplicon sequencing as well as optimal methods for data normalization. Statistical methods for longitudinal microbiome analysis continue to undergo refinement. While standardization of methodology may help yield more consistent results for organism identification in prostate cancer, this is a difficult task due to considerable procedural variation at each step in the process. Further reproducibility and methodology research is required.
Collapse
Affiliation(s)
- Shaun Trecarten
- Department of Urology, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Bernard Fongang
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Michael Liss
- Department of Urology, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| |
Collapse
|
24
|
Trinks J, Mascardi MF, Gadano A, Marciano S. Omics-based biomarkers as useful tools in metabolic dysfunction-associated steatotic liver disease clinical practice: How far are we? World J Gastroenterol 2024; 30:1982-1989. [PMID: 38681130 PMCID: PMC11045490 DOI: 10.3748/wjg.v30.i14.1982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Unmet needs exist in metabolic dysfunction-associated steatotic liver disease (MASLD) risk stratification. Our ability to identify patients with MASLD with advanced fibrosis and at higher risk for adverse outcomes is still limited. Incorporating novel biomarkers could represent a meaningful improvement to current risk predictors. With this aim, omics technologies have revolutionized the process of MASLD biomarker discovery over the past decades. While the research in this field is thriving, much of the publication has been haphazard, often using single-omics data and specimen sets of convenience, with many identified candidate biomarkers but lacking clinical validation and utility. If we incorporate these biomarkers to direct patients' management, it should be considered that the roadmap for translating a newly discovered omics-based signature to an actual, analytically valid test useful in MASLD clinical practice is rigorous and, therefore, not easily accomplished. This article presents an overview of this area's current state, the conceivable opportunities and challenges of omics-based laboratory diagnostics, and a roadmap for improving MASLD biomarker research.
Collapse
Affiliation(s)
- Julieta Trinks
- Instituto de Medicina Traslacional e Ingeniería Biomédica - Consejo Nacional de Investigaciones Científicas y Técnicas - Instituto Universitario del Hospital Italiano - Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires C1199ACL, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - María F Mascardi
- Instituto de Medicina Traslacional e Ingeniería Biomédica - Consejo Nacional de Investigaciones Científicas y Técnicas - Instituto Universitario del Hospital Italiano - Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires C1199ACL, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Adrián Gadano
- Liver Unit, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires C1199DF, Argentina
- Department of Research, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires C1199DF, Argentina
| | - Sebastián Marciano
- Instituto de Medicina Traslacional e Ingeniería Biomédica - Consejo Nacional de Investigaciones Científicas y Técnicas - Instituto Universitario del Hospital Italiano - Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires C1199ACL, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- Liver Unit, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires C1199DF, Argentina
- Department of Research, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires C1199DF, Argentina
| |
Collapse
|
25
|
Rostgaard-Hansen AL, Esberg A, Dicksved J, Hansen T, Pelve E, Brunius C, Halkjær J, Tjønneland A, Johansson I, Landberg R. Temporal gut microbiota variability and association with dietary patterns: From the one-year observational Diet, Cancer, and Health - Next Generations MAX study. Am J Clin Nutr 2024; 119:1015-1026. [PMID: 38301827 DOI: 10.1016/j.ajcnut.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Knowledge about the variability of gut microbiota within an individual over time is important to allow meaningful investigations of the gut microbiota in relation to diet and health outcomes in observational studies. Plant-based dietary patterns have been associated with a lower risk of morbidity and mortality and may alter gut microbiota in a favorable direction. OBJECTIVES To assess the gut microbiota variability during one year and investigate the association between adherence to diet indexes and the gut microbiota in a Danish population. METHODS Four hundred forty-four participants were included in the Diet, Cancer, and Health - Next Generations MAX study (DCH-NG MAX). Stool samples collected up to three times during a year were analyzed by 16S ribosomal ribonucleic acid gene sequencing. Diet was obtained by 24-hour dietary recalls. Intraclass correlation coefficient (ICC) was calculated to assess temporal microbial variability based on 214 individuals. Diet indexes (Nordic, Mediterranean, and plant-based diets) and food groups thereof were associated with gut microbiota using linear regression analyses. RESULTS We found that 91 out of 234 genera had an ICC >0.5. We identified three subgroups dominated by Bacteroides, Prevotella 9, and Ruminococcaceae and adherence to diet indexes differed between subgroups. Higher adherence to diet indexes was associated with the relative abundance of 22 genera. Across diet indexes, higher intakes of fruit, vegetables, whole grains/cereals, and nuts were most frequently associated with these genera. CONCLUSIONS In the DCH-NG MAX study, 39% of the genera had an ICC >0.5 over one year, suggesting that these genera could be studied with health outcomes in prospective analyses with acceptable precision. Adherence to the Nordic, Mediterranean, and plant-based diets differed between bacterial subgroups and was associated with a higher abundance of genera with fiber-degrading properties. Fruits, vegetables, whole grains/cereals, and nuts were frequently associated with these genera.
Collapse
Affiliation(s)
- Agnetha L Rostgaard-Hansen
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden; Department of Diet, Cancer, and Health, Danish Cancer Institute, Copenhagen, Denmark.
| | - Anders Esberg
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Pelve
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carl Brunius
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Jytte Halkjær
- Department of Diet, Cancer, and Health, Danish Cancer Institute, Copenhagen, Denmark
| | - Anne Tjønneland
- Department of Diet, Cancer, and Health, Danish Cancer Institute, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
26
|
El Jeni R, Villot C, Koyun OY, Osorio-Doblado A, Baloyi JJ, Lourenco JM, Steele M, Callaway TR. Invited review: "Probiotic" approaches to improving dairy production: Reassessing "magic foo-foo dust". J Dairy Sci 2024; 107:1832-1856. [PMID: 37949397 DOI: 10.3168/jds.2023-23831] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The gastrointestinal microbial consortium in dairy cattle is critical to determining the energetic status of the dairy cow from birth through her final lactation. The ruminant's microbial community can degrade a wide variety of feedstuffs, which can affect growth, as well as production rate and efficiency on the farm, but can also affect food safety, animal health, and environmental impacts of dairy production. Gut microbial diversity and density are powerful tools that can be harnessed to benefit both producers and consumers. The incentives in the United States to develop Alternatives to Antibiotics for use in food-animal production have been largely driven by the Veterinary Feed Directive and have led to an increased use of probiotic approaches to alter the gastrointestinal microbial community composition, resulting in improved heifer growth, milk production and efficiency, and animal health. However, the efficacy of direct-fed microbials or probiotics in dairy cattle has been highly variable due to specific microbial ecological factors within the host gut and its native microflora. Interactions (both synergistic and antagonistic) between the microbial ecosystem and the host animal physiology (including epithelial cells, immune system, hormones, enzyme activities, and epigenetics) are critical to understanding why some probiotics work but others do not. Increasing availability of next-generation sequencing approaches provides novel insights into how probiotic approaches change the microbial community composition in the gut that can potentially affect animal health (e.g., diarrhea or scours, gut integrity, foodborne pathogens), as well as animal performance (e.g., growth, reproduction, productivity) and fermentation parameters (e.g., pH, short-chain fatty acids, methane production, and microbial profiles) of cattle. However, it remains clear that all direct-fed microbials are not created equal and their efficacy remains highly variable and dependent on stage of production and farm environment. Collectively, data have demonstrated that probiotic effects are not limited to the simple mechanisms that have been traditionally hypothesized, but instead are part of a complex cascade of microbial ecological and host animal physiological effects that ultimately impact dairy production and profitability.
Collapse
Affiliation(s)
- R El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - C Villot
- Lallemand SAS, Blagnac, France, 31069
| | - O Y Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - A Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J J Baloyi
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - M Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
27
|
Lehnert T, Gijs MAM. Microfluidic systems for infectious disease diagnostics. LAB ON A CHIP 2024; 24:1441-1493. [PMID: 38372324 DOI: 10.1039/d4lc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.
Collapse
Affiliation(s)
- Thomas Lehnert
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
28
|
Bertolo A, Valido E, Stoyanov J. Optimized bacterial community characterization through full-length 16S rRNA gene sequencing utilizing MinION nanopore technology. BMC Microbiol 2024; 24:58. [PMID: 38365589 PMCID: PMC10870487 DOI: 10.1186/s12866-024-03208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Accurate identification of bacterial communities is crucial for research applications, diagnostics, and clinical interventions. Although 16S ribosomal RNA (rRNA) gene sequencing is a widely employed technique for bacterial taxonomic classification, it often results in misclassified or unclassified bacterial taxa. This study sought to refine the full-length 16S rRNA gene sequencing protocol using the MinION sequencer, focusing on the V1-V9 regions. Our methodological enquiry examined several factors, including the number of PCR amplification cycles, choice of primers and Taq polymerase, and specific sequence databases and workflows employed. We used a microbial standard comprising eight bacterial strains (five gram-positive and three gram-negative) in known proportions as a validation control. RESULTS Based on the MinION protocol, we employed the microbial standard as the DNA template for the 16S rRNA gene amplicon sequencing procedure. Our analysis showed that an elevated number of PCR amplification cycles introduced PCR bias, and the selection of Taq polymerase and primer sets significantly affected the subsequent analysis. Bacterial identification at genus level demonstrated Pearson correlation coefficients ranging from 0.73 to 0.79 when assessed using BugSeq, Kraken-Silva and EPI2ME-16S workflows. Notably, the EPI2ME-16S workflow exhibited the highest Pearson correlation with the microbial standard, minimised misclassification, and increased alignment accuracy. At the species taxonomic level, the BugSeq workflow was superior, with a Pearson correlation coefficient of 0.92. CONCLUSIONS These findings emphasise the importance of careful selection of PCR settings and a well-structured analytical framework for 16S rRNA full-length gene sequencing. The results showed a robust correlation between the predicted and observed bacterial abundances at both the genus and species taxonomic levels, making these findings applicable across diverse research contexts and with clinical utility for reliable pathogen identification.
Collapse
Affiliation(s)
- Alessandro Bertolo
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland
- Department of Orthopaedic Surgery, University of Bern, Bern Inselspital, Bern, Switzerland
| | - Ezra Valido
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland
| | - Jivko Stoyanov
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland.
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
29
|
Fernández-Pato A, Sinha T, Gacesa R, Andreu-Sánchez S, Gois MFB, Gelderloos-Arends J, Jansen DBH, Kruk M, Jaeger M, Joosten LAB, Netea MG, Weersma RK, Wijmenga C, Harmsen HJM, Fu J, Zhernakova A, Kurilshikov A. Choice of DNA extraction method affects stool microbiome recovery and subsequent phenotypic association analyses. Sci Rep 2024; 14:3911. [PMID: 38366085 PMCID: PMC10873414 DOI: 10.1038/s41598-024-54353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
The lack of standardization in the methods of DNA extraction from fecal samples represents the major source of experimental variation in the microbiome research field. In this study, we aimed to compare the metagenomic profiles and microbiome-phenotype associations obtained by applying two commercially available DNA extraction kits: the AllPrep DNA/RNA Mini Kit (APK) and the QIAamp Fast DNA Stool Mini Kit (FSK). Using metagenomic sequencing data available from 745 paired fecal samples from two independent population cohorts, Lifelines-DEEP (LLD, n = 292) and the 500 Functional Genomics project (500FG, n = 453), we confirmed significant differences in DNA yield and the recovered microbial communities between protocols, with the APK method resulting in a higher DNA concentration and microbial diversity. Further, we observed a massive difference in bacterial relative abundances at species-level between the APK and the FSK protocols, with > 75% of species differentially abundant between protocols in both cohorts. Specifically, comparison with a standard mock community revealed that the APK method provided higher accuracy in the recovery of microbial relative abundances, with the absence of a bead-beating step in the FSK protocol causing an underrepresentation of gram-positive bacteria. This heterogeneity in the recovered microbial composition led to remarkable differences in the association with anthropometric and lifestyle phenotypes. The results of this study further reinforce that the choice of DNA extraction method impacts the metagenomic profile of human gut microbiota and highlight the importance of harmonizing protocols in microbiome studies.
Collapse
Affiliation(s)
- Asier Fernández-Pato
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
| | - Milla F Brandao Gois
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
| | - Jody Gelderloos-Arends
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
| | - Dianne B H Jansen
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
| | - Marloes Kruk
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
| | - Hermie J M Harmsen
- Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, the Netherlands.
| |
Collapse
|
30
|
Malta FAPS, Gonçalves DC. A triple-masked, two-center, randomized parallel clinical trial to assess the superiority of eight weeks of grape seed flour supplementation against placebo for weight loss attenuation during perioperative period in patients with cachexia associated with colorectal cancer: a study protocol. Front Endocrinol (Lausanne) 2024; 14:1146479. [PMID: 38313843 PMCID: PMC10834683 DOI: 10.3389/fendo.2023.1146479] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 12/07/2023] [Indexed: 02/06/2024] Open
Abstract
Background Progressive, involuntary weight and lean mass loss in cancer are linked to cachexia, a prevalent syndrome in gastrointestinal malignancies that impacts quality of life, survival and postoperative complications. Its pathophysiology is complex and believed to involve proinflammatory cytokine-mediated systemic inflammation resulting from tumor-host interaction, oxidative stress, abnormal metabolism and neuroendocrine changes. Therapeutic options for cachexia remain extremely limited, highlighting the need for clinical research targeting new interventions. Thus, this study primarily assesses the effects of grape-seed flour (GSF), rich in polyphenols and fibers, for attenuating perioperative weight loss in colorectal cancer. Methods This is a dual-center, triple-masked, placebo-controlled, parallel-group, phase II, randomized clinical trial designed to investigate GSF supplementation in subjects with pre- or cachexia associated with colorectal cancer during the perioperative period. Eighty-two participants will receive 8g of GSF or cornstarch (control) for 8 weeks. Assessments are scheduled around surgery: pre-intervention (4 weeks prior), day before, first week after, and post-intervention (4 weeks later). The primary endpoint is the difference in body weight mean change from baseline to week 8. The secondary endpoints describe the harms from 8-week supplementation and assess its superiority to improve body composition, post-surgical complications, quality of life, anorexia, fatigue, gastrointestinal symptoms, and handgrip strength. The study will also explore its effects on gut bacteria activity and composition, systemic inflammation, and muscle metabolism. Discussion The current trial addresses a gap within the field of cancer cachexia, specifically focusing on the potential role of a nutritional intervention during the acute treatment phase. GSF is expected to modulate inflammation and oxidative stress, both involved in muscle and intestinal dysfunction. The research findings hold substantial implications for enhancing the understanding about cachexia pathophysiology and may offer a new clinical approach to managing cachexia at a critical point in treatment, directly impacting clinical outcomes. Trial registration The Brazilian Registry of Clinical Trials (ReBEC), RBR-5p6nv8b; UTN: U1111-1285-9594. Prospectively registered on February 07, 2023.
Collapse
|
31
|
Routy B, Jackson T, Mählmann L, Baumgartner CK, Blaser M, Byrd A, Corvaia N, Couts K, Davar D, Derosa L, Hang HC, Hospers G, Isaksen M, Kroemer G, Malard F, McCoy KD, Meisel M, Pal S, Ronai Z, Segal E, Sepich-Poore GD, Shaikh F, Sweis RF, Trinchieri G, van den Brink M, Weersma RK, Whiteson K, Zhao L, McQuade J, Zarour H, Zitvogel L. Melanoma and microbiota: Current understanding and future directions. Cancer Cell 2024; 42:16-34. [PMID: 38157864 PMCID: PMC11096984 DOI: 10.1016/j.ccell.2023.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Over the last decade, the composition of the gut microbiota has been found to correlate with the outcomes of cancer patients treated with immunotherapy. Accumulating evidence points to the various mechanisms by which intestinal bacteria act on distal tumors and how to harness this complex ecosystem to circumvent primary resistance to immune checkpoint inhibitors. Here, we review the state of the microbiota field in the context of melanoma, the recent breakthroughs in defining microbial modes of action, and how to modulate the microbiota to enhance response to cancer immunotherapy. The host-microbe interaction may be deciphered by the use of "omics" technologies, and will guide patient stratification and the development of microbiota-centered interventions. Efforts needed to advance the field and current gaps of knowledge are also discussed.
Collapse
Affiliation(s)
- Bertrand Routy
- University of Montreal Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada; Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC H2X 3E4, Canada
| | - Tanisha Jackson
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA
| | - Laura Mählmann
- Seerave Foundation, The Seerave Foundation, 35-37 New Street, St Helier, JE2 3RA Jersey, UK
| | | | - Martin Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Allyson Byrd
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Kasey Couts
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Diwakar Davar
- Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lisa Derosa
- Gustave Roussy Cancer Center, ClinicoBiome, 94805 Villejuif, France; Université Paris Saclay, Faculty of Medicine, 94270 Kremlin Bicêtre, France; Inserm U1015, Equipe Labellisée par la Ligue Contre le Cancer, 94800 Villejuif, France
| | - Howard C Hang
- Departments of Immunology & Microbiology and Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geke Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94905 Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Florent Malard
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Kathy D McCoy
- Department of Physiology & Pharmacology, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA USA
| | - Sumanta Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Ze'ev Ronai
- Sanford Burnham Prebys Discovery Medical Research Institute, La Jolla, CA 92037, USA
| | - Eran Segal
- Weizmann Institute of Science, Computer Science and Applied Mathematics Department, 234th Herzel st., Rehovot 7610001, Israel
| | - Gregory D Sepich-Poore
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Micronoma Inc., San Diego, CA 92121, USA
| | - Fyza Shaikh
- Johns Hopkins School of Medicine, Department of Oncology, Baltimore, MD 21287, USA
| | - Randy F Sweis
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Giorgio Trinchieri
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcel van den Brink
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology, Sloan Kettering Institute, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Liping Zhao
- Department of Biochemistry and Microbiology, New Jersey Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NY 08901, USA
| | - Jennifer McQuade
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Hassane Zarour
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA.
| | - Laurence Zitvogel
- Gustave Roussy Cancer Center, ClinicoBiome, 94805 Villejuif, France; Université Paris Saclay, Faculty of Medicine, 94270 Kremlin Bicêtre, France; Inserm U1015, Equipe Labellisée par la Ligue Contre le Cancer, 94800 Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Gustave Roussy, 94805 Villejuif, France.
| |
Collapse
|
32
|
Phuna ZX, Madhavan P. A reappraisal on amyloid cascade hypothesis: the role of chronic infection in Alzheimer's disease. Int J Neurosci 2023; 133:1071-1089. [PMID: 35282779 DOI: 10.1080/00207454.2022.2045290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer disease (AD) is a progressive neurological disorder that accounted for the most common cause of dementia in the elderly population. Lately, 'infection hypothesis' has been proposed where the infection of microbes can lead to the pathogenesis of AD. Among different types of microbes, human immunodeficiency virus-1 (HIV-1), herpes simplex virus-1 (HSV-1), Chlamydia pneumonia, Spirochetes and Candida albicans are frequently detected in the brain of AD patients. Amyloid-beta protein has demonstrated to exhibit antimicrobial properties upon encountering these pathogens. It can bind to microglial cells and astrocytes to activate immune response and neuroinflammation. Nevertheless, HIV-1 and HSV-1 can develop into latency whereas Chlamydia pneumonia, Spirochetes and Candida albicans can cause chronic infections. At this stage, the DNA of microbes remains undetectable yet active. This can act as the prolonged pathogenic stimulus that over-triggers the expression of Aβ-related genes, which subsequently lead to overproduction and deposition of Aβ plaque. This review will highlight the pathogenesis of each of the stated microbial infection, their association in AD pathogenesis as well as the effect of chronic infection in AD progression. Potential therapies for AD by modulating the microbiome have also been suggested. This review will aid in understanding the infectious manifestations of AD.
Collapse
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| |
Collapse
|
33
|
Fahrer J, Wittmann S, Wolf AC, Kostka T. Heme Oxygenase-1 and Its Role in Colorectal Cancer. Antioxidants (Basel) 2023; 12:1989. [PMID: 38001842 PMCID: PMC10669411 DOI: 10.3390/antiox12111989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme located at the endoplasmic reticulum, which is responsible for the degradation of cellular heme into ferrous iron, carbon monoxide and biliverdin-IXa. In addition to this main function, the enzyme is involved in many other homeostatic, toxic and cancer-related mechanisms. In this review, we first summarize the importance of HO-1 in physiology and pathophysiology with a focus on the digestive system. We then detail its structure and function, followed by a section on the regulatory mechanisms that control HO-1 expression and activity. Moreover, HO-2 as important further HO isoform is discussed, highlighting the similarities and differences with regard to HO-1. Subsequently, we describe the direct and indirect cytoprotective functions of HO-1 and its breakdown products carbon monoxide and biliverdin-IXa, but also highlight possible pro-inflammatory effects. Finally, we address the role of HO-1 in cancer with a particular focus on colorectal cancer. Here, relevant pathways and mechanisms are presented, through which HO-1 impacts tumor induction and tumor progression. These include oxidative stress and DNA damage, ferroptosis, cell cycle progression and apoptosis as well as migration, proliferation, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| | | | | | - Tina Kostka
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| |
Collapse
|
34
|
West ML, Hart S, Loughman A, Jacka FN, Staudacher HM, Abbaspour A, Phillipou A, Ruusunen A, Rocks T. Challenges and priorities for researching the gut microbiota in individuals living with anorexia nervosa. Int J Eat Disord 2023; 56:2001-2011. [PMID: 37548294 DOI: 10.1002/eat.24033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE The gut microbiota is implicated in several symptoms and biological pathways relevant to anorexia nervosa (AN). Investigations into the role of the gut microbiota in AN are growing, with a specific interest in the changes that occur in response to treatment. Findings suggest that microbial species may be associated with some of the symptoms common in AN, such as depression and gastrointestinal disturbances (GID). Therefore, researchers believe the gut microbiota may have therapeutic relevance. Whilst research in this field is rapidly expanding, the unique considerations relevant to conducting gut microbiota research in individuals with AN must be addressed. METHOD We provide an overview of the published literature investigating the relationship between the gut microbiota and symptoms and behaviors present in AN, discuss important challenges in gut microbiota research, and offer recommendations for addressing these. We conclude by summarizing research design priorities for the field to move forward. RESULTS Several ways exist to reduce participant burden and accommodate challenges when researching the gut microbiota in individuals with AN. DISCUSSION Recommendations from this article are foreseen to encourage scientific rigor and thoughtful protocol planning for microbiota research in AN, including ways to reduce participant burden. Employing such methods will contribute to a better understanding of the role of the gut microbiota in AN pathophysiology and treatment. PUBLIC SIGNIFICANCE The field of gut microbiota research is rapidly expanding, including the role of the gut microbiota in anorexia nervosa. Thoughtful planning of future research will ensure appropriate data collection for meaningful interpretation while providing a positive experience for the participant. We present current challenges, recommendations for research design and priorities to facilitate the advancement of research in this field.
Collapse
Affiliation(s)
- Madeline L West
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Susan Hart
- Eating and Nutrition Research Group, School of Medicine, Western Sydney University, Cambelltown, Australia
- Nutrition Services, St Vincent's Health Network, Darlinghurst, Australia
- Translational Health Research Institute, Eating Disorders and Body Image, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Amy Loughman
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Black Dog Institute, Randwick, New South Wales, Australia
- James Cook University, Townsville, Queensland, Australia
| | - Heidi M Staudacher
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Afrouz Abbaspour
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutetet, Solna, Stockholm, Sweden
| | - Andrea Phillipou
- Orygen, Melbourne, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Psychological Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Mental Health, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Mental Health, Austin Health, Melbourne, Victoria, Australia
| | - Anu Ruusunen
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| | - Tetyana Rocks
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
- Translational Health Research Institute, Eating Disorders and Body Image, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
35
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
36
|
Chen CY, Ho HC. Roles of gut microbes in metabolic-associated fatty liver disease. Tzu Chi Med J 2023; 35:279-289. [PMID: 38035063 PMCID: PMC10683521 DOI: 10.4103/tcmj.tcmj_86_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease. Gut dysbiosis is considered a significant contributing factor in disease development. Increased intestinal permeability can be induced by gut dysbiosis, followed by the entry of lipopolysaccharide into circulation to reach peripheral tissue and result in chronic inflammation. We reviewed how microbial metabolites push host physiology toward MAFLD, including short-chain fatty acids (SCFAs), bile acids, and tryptophan metabolites. The effects of SCFAs are generally reported as anti-inflammatory and can improve intestinal barrier function and restore gut microbiota. Gut microbes can influence intestinal barrier function through SCFAs produced by fermentative bacteria, especially butyrate and propionate producers. This is achieved through the activation of free fatty acid sensing receptors. Bile is directly involved in lipid absorption. Gut microbes can alter bile acid composition by bile salt hydrolase-producing bacteria and bacterial hydroxysteroid dehydrogenase-producing bacteria. These bile acids can affect host physiology by activating farnesoid X receptor Takeda G protein-coupled receptor 5. Gut microbes can also induce MAFLD-associated symptoms by producing tryptophan metabolites kynurenine, serotonin, and indole-3-propionate. A summary of bacterial genera involved in SCFAs production, bile acid transformation, and tryptophan metabolism is provided. Many bacteria have demonstrated efficacy in alleviating MAFLD in animal models and are potential therapeutic candidates for MAFLD.
Collapse
Affiliation(s)
- Chun-Yao Chen
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
37
|
Wong SP, Er YX, Tan SM, Lee SC, Rajasuriar R, Lim YAL. Oral and Gut Microbiota Dysbiosis is Associated with Mucositis Severity in Autologous Hematopoietic Stem Cell Transplantation: Evidence from an Asian Population. Transplant Cell Ther 2023; 29:633.e1-633.e13. [PMID: 37422196 DOI: 10.1016/j.jtct.2023.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Mucositis is a debilitating complication of hematopoietic stem cell transplantation (HSCT). It is unclear how changes in the composition of microbiota, which are modulated by geographical location and ethnicity, may influence immune regulation leading to the development of mucositis, and the study of both oral and gut microbiota in a single population of autologous HSCT in the Asian region is lacking. The present study aimed to characterize the oral and gut microbiota changes, and the impact on both oral and lower gastrointestinal (GI) mucositis, with associated temporal changes in a population of adult recipients of autologous HSCT. Autologous HSCT recipients age ≥18 years were recruited from Hospital Ampang, Malaysia, between April 2019 and December 2020. Mucositis assessments were conducted daily, and blood, saliva, and fecal samples were collected prior to conditioning, on day 0, and at 7 days and 6 months post-transplantation. Longitudinal differences in alpha diversity and beta diversity were determined using the Wilcoxon signed-rank test and permutational multivariate analysis of variance, respectively. Changes in relative abundances of bacteria across time points were assessed using the microbiome multivariate analysis by linear models function. The combined longitudinal effects of clinical, inflammatory, and microbiota variables on mucositis severity were measured using the generalized estimating equation. Among the 96 patients analyzed, oral mucositis and diarrhea (representing lower GI mucositis) occurred in 58.3% and 95.8%, respectively. Alpha and beta diversities were significantly different between sample types (P < .001) and across time points, with alpha diversity reaching statistical significance at day 0 in fecal samples (P < .001) and at day +7 in saliva samples (P < .001). Diversities normalized to baseline by 6 months post-transplantation. Significant microbiota, clinical, and immunologic factors were associated with increasing mucositis grades. Increasing relative abundances of saliva Paludibacter, Leuconostoc, and Proteus were associated with higher oral mucositis grades, whereas increasing relative abundances of fecal Rothia and Parabacteroides were associated with higher GI mucositis grades. Meanwhile, increasing relative abundances of saliva Lactococcus and Acidaminococcus and fecal Bifidobacterium were associated with protective effects against worsening oral and GI mucositis grades, respectively. This study provides real-world evidence and insights into the dysbiosis of the microbiota in patients exposed to conditioning regimen during HSCT. Independent of clinical and immunologic factors, we demonstrated significant associations between relative bacteria abundances with the increasing severity of oral and lower GI mucositis. Our findings offer a potential rationale to consider the inclusion of preventive and restorative measures targeting oral and lower GI dysbiosis as interventional strategies to ameliorate mucositis outcome in HSCT recipients.
Collapse
Affiliation(s)
- Shu Ping Wong
- Department of Pharmacy, Ampang Hospital, Ministry of Health, Ampang, Selangor Darul Ehsan, Malaysia
| | - Yi Xian Er
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sen Mui Tan
- Department of Haematology, Ampang Hospital, Ministry of Health, Ampang, Selangor Darul Ehsan, Malaysia
| | - Soo Ching Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
38
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
39
|
Tarazona Carrillo K, Nam SL, de la Mata AP, de Bruin OM, Doukhanine E, Harynuk J. Optimization of fecal sample homogenization for untargeted metabolomics. Metabolomics 2023; 19:74. [PMID: 37566260 DOI: 10.1007/s11306-023-02036-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Fecal samples are highly complex and heterogeneous, containing materials at various stages of digestion. The heterogeneity and complexity of feces make stool metabolomics inherently challenging. The level of homogenization influences the outcome of the study, affecting the metabolite profiles and reproducibility; however, there is no consensus on how fecal samples should be prepared to overcome the topographical discrepancy and obtain data representative of the stool as a whole. OBJECTIVES Various combinations of homogenization conditions were compared to investigate the effects of bead size, addition of solvents and the differences between wet-frozen and lyophilized feces. METHODS The homogenization parameters were systematically altered to evaluate the solvent usage, bead size, and whether lyophilization is required in homogenization. The metabolic coverage and reproducibility were compared among the different conditions. RESULTS The current work revealed that a combination of mechanical and chemical lysis obtained by bead-beating with a mixture of big and small sizes of beads in an organic solvent is an effective way to homogenize fecal samples with adequate reproducibility and metabolic coverage. Lyophilization is required when bead-beating is not available. CONCLUSIONS A comprehensive and systematical evaluation of various fecal matter homogenization conditions provides a profound understanding for the effects of different homogenization methods. Our findings would be beneficial to assist with standardization of fecal sample homogenization protocol.
Collapse
Affiliation(s)
| | - Seo Lin Nam
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | | | | | | - James Harynuk
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| |
Collapse
|
40
|
Herrera-Mejía J, Campos-Vega R, Wall-Medrano A, Jiménez-Vega F. A Two-Step Single Plex PCR Method for Evaluating Key Colonic Microbiota Markers in Young Mexicans with Autism Spectrum Disorders: Protocol and Pilot Epidemiological Application. Diagnostics (Basel) 2023; 13:2387. [PMID: 37510132 PMCID: PMC10377852 DOI: 10.3390/diagnostics13142387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Many neurological disorders have a distinctive colonic microbiome (CM) signature. Particularly, children with autism spectrum disorders (ASD) exhibit a very dissimilar CM when compared to neurotypical (NT) ones, mostly at the species level. Thus far, knowledge on this matter comes from high-throughput (yet very expensive and time-consuming) analytical platforms, such as massive high-throughput sequencing of bacterial 16S rRNA. Here, pure (260/280 nm, ~1.85) stool DNA samples (200 ng.µL-1) from 48 participants [39 ASD, 9 NT; 3-13 y] were used to amplify four candidate differential CM markers [Bacteroides fragilis (BF), Faecalibacterium prausnitzii (FP), Desulfovibrio vulgaris (DV), Akkermansia muciniphila (AM)], using micro-organism-specific oligonucleotide primers [265 bp (BF), 198 bp (FP), 196 bp (DV), 327 bp (AM)] and a standardized two-step [low (step 1: °Tm-5 °C) to high (stage 2: °Tm-0 °C) astringent annealing] PCR protocol (2S-PCR). The method was sensitive enough to differentiate all CM biomarkers in the studied stool donors [↑ abundance: NT (BF, FP, AM), ASD (DV)], and phylogenetic analysis confirmed the primers' specificity.
Collapse
Affiliation(s)
- Julián Herrera-Mejía
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico
| | - Rocío Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Querétaro, Mexico
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico
| | - Florinda Jiménez-Vega
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico
| |
Collapse
|
41
|
Neidhöfer C, Bagniceva M, Wetzig N, Sieber MA, Thiele R, Parčina M. Pragmatic Considerations When Extracting DNA for Metagenomics Analyses of Clinical Samples. Int J Mol Sci 2023; 24:11262. [PMID: 37511022 PMCID: PMC10379426 DOI: 10.3390/ijms241411262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Microbiome analyses are essential for understanding microorganism composition and diversity, but interpretation is often challenging due to biological and technical variables. DNA extraction is a critical step that can significantly bias results, particularly in samples containing a high abundance of challenging-to-lyse microorganisms. Taking into consideration the distinctive microenvironments observed in different bodily locations, our study sought to assess the extent of bias introduced by suboptimal bead-beating during DNA extraction across diverse clinical sample types. The question was whether complex targeted extraction methods are always necessary for reliable taxonomic abundance estimation through amplicon sequencing or if simpler alternatives are effective for some sample types. Hence, for four different clinical sample types (stool, cervical swab, skin swab, and hospital surface swab samples), we compared the results achieved from extracting targeted manual protocols routinely used in our research lab for each sample type with automated protocols specifically not designed for that purpose. Unsurprisingly, we found that for the stool samples, manual extraction protocols with vigorous bead-beating were necessary in order to avoid erroneous taxa proportions on all investigated taxonomic levels and, in particular, false under- or overrepresentation of important genera such as Blautia, Faecalibacterium, and Parabacteroides. However, interestingly, we found that the skin and cervical swab samples had similar results with all tested protocols. Our results suggest that the level of practical automation largely depends on the expected microenvironment, with skin and cervical swabs being much easier to process than stool samples. Prudent consideration is necessary when extending the conclusions of this study to applications beyond rough estimations of taxonomic abundance.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Maria Bagniceva
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Nina Wetzig
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Ralf Thiele
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| |
Collapse
|
42
|
Rachmühl C, Lacroix C, Giorgetti A, Stoffel NU, Zimmermann MB, Brittenham GM, Geirnaert A. Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants. BMC Microbiol 2023; 23:174. [PMID: 37403024 PMCID: PMC10318780 DOI: 10.1186/s12866-023-02915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The combination of cultivation studies with molecular analysis approaches allows characterization of the complex human gut microbiota in depth. In vitro cultivation studies of infants living in rural sub-Saharan Africa are scarce. In this study, a batch cultivation protocol for Kenyan infant fecal microbiota was validated. METHODS Fresh fecal samples were collected from 10 infants living in a rural area of Kenya. Samples were transported under protective conditions and subsequently prepared for inoculation within less than 30 h for batch cultivation. A diet-adapted cultivation medium was used that mimicked the daily intake of human milk and maize porridge in Kenyan infants during weaning. 16 S rRNA gene amplicon sequencing and HPLC analyses were performed to assess the composition and metabolic activity, respectively, of the fecal microbiota after 24 h of batch cultivation. RESULTS High abundance of Bifidobacterium (53.4 ± 11.1%) and high proportions of acetate (56 ± 11% of total metabolites) and lactate (24 ± 22% of total metabolites) were detected in the Kenyan infant fecal microbiota. After cultivation started at an initial pH 7.6, the fraction of top bacterial genera (≥ 1% abundant) shared between fermentation and fecal samples was high at 97 ± 5%. However, Escherichia-Shigella, Clostridium sensu stricto 1, Bacteroides and Enterococcus were enriched concomitant with decreased Bifidobacterium abundance. Decreasing the initial pH to 6.9 lead to higher abundance of Bifidobacterium after incubation and increased the compositional similarity of fermentation and fecal samples. Despite similar total metabolite production of all fecal microbiota after cultivation, inter-individual differences in metabolite profiles were apparent. CONCLUSIONS Protected transport and batch cultivation in host and diet adapted conditions allowed regrowth of the top abundant genera and reproduction of the metabolic activity of fresh Kenyan infant fecal microbiota. The validated batch cultivation protocol can be used to study the composition and functional potential of Kenyan infant fecal microbiota in vitro.
Collapse
Affiliation(s)
- Carole Rachmühl
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.
| | - Ambra Giorgetti
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Nicole U Stoffel
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Gary M Brittenham
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
43
|
Kedia S, Ahuja V. Human gut microbiome: A primer for the clinician. JGH Open 2023; 7:337-350. [PMID: 37265934 PMCID: PMC10230107 DOI: 10.1002/jgh3.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/14/2022] [Accepted: 04/01/2023] [Indexed: 06/03/2023]
Abstract
The human host gets tremendously influenced by a genetically and phenotypically distinct and heterogeneous constellation of microbial species-the human microbiome-the gut being one of the most densely populated and characterized site for these organisms. Microbiome science has advanced rapidly, technically with respect to the analytical methods and biologically with respect to its mechanistic influence in health and disease states. A clinician conducting a microbiome study should be aware of the nuances related to microbiome research, especially with respect to the technical and biological factors that can influence the interpretation of research outcomes. Hence, this review is an attempt to detail these aspects of the human gut microbiome, with emphasis on its determinants in a healthy state.
Collapse
Affiliation(s)
- Saurabh Kedia
- Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Vineet Ahuja
- Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia
| |
Collapse
|
44
|
Burnham CM, McKenney EA, Heugten KA, Minter LJ, Trivedi S. Effect of fecal preservation method on captive southern white rhinoceros gut microbiome. WILDLIFE SOC B 2023. [DOI: 10.1002/wsb.1436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
45
|
Abstract
Recent advances in next-generation sequencing technologies (NGS) coupled with machine learning have demonstrated the potential of microbiome-based analyses in applied areas such as clinical diagnostics and forensic sciences. Particularly in forensics, microbial markers in biological stains left at a crime scene can provide valuable information for the reconstruction of crime scene cases, as they contain information on bodily origin, the time since deposition, and donor(s) of the stain. Importantly, microbiome-based analyses provide a complementary or an alternative approach to current methods when these are limited or not feasible. Despite the promising results from recent research, microbiome-based stain analyses are not yet employed in routine casework. In this review, we highlight the two main gaps that need to be addressed before we can successfully integrate microbiome-based analyses in applied areas with a special focus on forensic casework: one is a comprehensive assessment of the method's strengths and limitations, and the other is the establishment of a standard operating procedure. For the latter, we provide a roadmap highlighting key decision steps and offering laboratory and bioinformatic workflow recommendations, while also delineating those aspects that require further testing. Our goal is to ultimately facilitate the streamlining of microbiome-based analyses within the existing forensic framework to provide alternate lines of evidence, thereby improving the quality of investigations.
Collapse
|
46
|
Shoukat M, Ullah F, Tariq MN, Din G, Khadija B, Faryal R. Profiling of potential pathogenic candida species in obesity. Microb Pathog 2023; 174:105894. [PMID: 36496057 DOI: 10.1016/j.micpath.2022.105894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/17/2022] [Accepted: 11/19/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE OF RESEARCH The aim of the current study was gut profiling of culturable Candida species and their possible pathogenic potential to asses role in obesity. METHODS This case control study includes stool samples from 75 obese individuals and 50 controls. Isolation and identification of various Candida species was carried out by standard microbiological techniques. For pathogenic profiling, extracellular enzymatic assays, biofilm forming ability and resistance to azole were analyzed. RESULTS Culturable gut profiling identified comparative higher abundance and diversity of Candida species among obese compared to controls. The most abundant specie among both groups was C.kefyr. A comparatively higher pathogenic potential as more hydrolases expression was detected in C.kefyr, C.albicans and Teunomyces krusei from obese group. Majority isolates from obese group were strong biofilm formers (47.1%) compared to control group (35.4%) suggesting it as strong risk factor for obesity. Fluconazole resistance was highest among C.kefyr (51%) followed by Teunomyces krusei and C.albicans. All the isolates from different species were voriconazole sensitive except C.kefyr displaying a 4.2% resistance in obese group only. A significant association of dominant colonizing species with meat, fruit/vegetable consumption and residence area was present (p < 0.05). CONCLUSION The presence of hydrolytic enzymes in gut Candida species showed strong association with protein's degradation and enhanced pathogenicity. C.kefyr and Teunomyces krusei has emerged as potential pathogen showing increased colonization as result of protein rich and low carb diet. Thus presenting it as a bad choice for weight loss in obese individuals.
Collapse
Affiliation(s)
- Mehreen Shoukat
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Faheem Ullah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan; Department of Medical Lab Technology, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Marbaila Nane Tariq
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Ghufranud Din
- Department of Medical Lab Technology, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Bibi Khadija
- Department of Medical Lab Technology, National Skills University, Islamabad, Pakistan.
| | - Rani Faryal
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| |
Collapse
|
47
|
Fachrul M, Méric G, Inouye M, Pamp SJ, Salim A. Assessing and removing the effect of unwanted technical variations in microbiome data. Sci Rep 2022; 12:22236. [PMID: 36564466 PMCID: PMC9789116 DOI: 10.1038/s41598-022-26141-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Varying technologies and experimental approaches used in microbiome studies often lead to irreproducible results due to unwanted technical variations. Such variations, often unaccounted for and of unknown source, may interfere with true biological signals, resulting in misleading biological conclusions. In this work, we aim to characterize the major sources of technical variations in microbiome data and demonstrate how in-silico approaches can minimize their impact. We analyzed 184 pig faecal metagenomes encompassing 21 specific combinations of deliberately introduced factors of technical and biological variations. Using the novel Removing Unwanted Variations-III-Negative Binomial (RUV-III-NB), we identified several known experimental factors, specifically storage conditions and freeze-thaw cycles, as likely major sources of unwanted variation in metagenomes. We also observed that these unwanted technical variations do not affect taxa uniformly, with freezing samples affecting taxa of class Bacteroidia the most, for example. Additionally, we benchmarked the performances of different correction methods, including ComBat, ComBat-seq, RUVg, RUVs, and RUV-III-NB. While RUV-III-NB performed consistently robust across our sensitivity and specificity metrics, most other methods did not remove unwanted variations optimally. Our analyses suggest that a careful consideration of possible technical confounders is critical during experimental design of microbiome studies, and that the inclusion of technical replicates is necessary to efficiently remove unwanted variations computationally.
Collapse
Affiliation(s)
- Muhamad Fachrul
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Sünje Johanna Pamp
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Agus Salim
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Department of Population Health, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.
- Department Mathematics and Statistics, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
48
|
Abstract
In light of the demonstrated antagonism of Wnt5A signaling toward the growth of several bacterial pathogens, it was important to study the influence of Wnt5A on gut-resident bacteria and its outcome. Here, we demonstrate that in contrast to inhibiting the survival of the established gut pathogen Salmonella enterica, Wnt5A clearly promotes the survival of the common gut commensals Enterococcus faecalis and Lactobacillus rhamnosus within macrophages through a self-perpetuating Wnt5A-actin axis. A Wnt5A-actin axis furthermore regulates the subsistence of the natural bacterial population of the Peyer's patches, as is evident from the diminution in the countable bacterial CFU therein through the application of Wnt5A signaling and actin assembly inhibitors. Wnt5A dependency of the gut-resident bacterial population is also manifested in the notable difference between the bacterial diversities associated with the feces and Peyer's patches of Wnt5A heterozygous mice, which lack a functional copy of the Wnt5A gene, and their wild-type counterparts. Alterations in the gut commensal bacterial population resulting from either the lack of a copy of the Wnt5A gene or inhibitor-mediated attenuation of Wnt5A signaling are linked with significant differences in cell surface major histocompatibility complex (MHC) II levels and regulatory versus activated CD4 T cells associated with the Peyer's patches. Taken together, our findings reveal the significance of steady state Wnt5A signaling in shaping the gut commensal bacterial population and the T cell repertoire linked to it, thus unveiling a crucial control device for the maintenance of gut bacterial diversity and T cell homeostasis. IMPORTANCE Gut commensal bacterial diversity and T cell homeostasis are crucial entities of the host innate immune network, yet the molecular details of host-directed signaling pathways that sustain the steady state of gut bacterial colonization and T cell activation remain unclear. Here, we describe the protective role of a Wnt5A-actin axis in the survival of several gut bacterial commensals and its necessity in shaping gut bacterial colonization and the associated T cell repertoire. This study opens up new avenues of investigation into the role of the Wnt5A-actin axis in protection of the gut from dysbiosis-related inflammatory disorders.
Collapse
|
49
|
Differential gut microbiota and intestinal permeability between frail and healthy older adults: A systematic review. Ageing Res Rev 2022; 82:101744. [PMID: 36202312 DOI: 10.1016/j.arr.2022.101744] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/19/2022] [Accepted: 09/30/2022] [Indexed: 01/31/2023]
Abstract
This systematic review appraised previous findings on differential gut microbiota composition and intestinal permeability markers between frail and healthy older adults. A literature search was performed using PubMed, Scopus, ScienceDirect and the Cochrane Library. Relevant studies were shortlisted based on inclusion and exclusion criteria as well as assessed for risk of bias. The primary outcome was the differential composition of gut microbiota and/ or intestinal permeability markers between frail and healthy older adults. A total of 10 case-control studies and one cohort study were shortlisted. Based on consistent findings reported by more than one shortlisted study, the microbiota of frail older adults was characterised by decreased phylum Firmicutes, with Dialister, Lactobacillus and Ruminococcus being the prominent genera. Healthy controls, on the other hand, exhibited higher Eubacterium at the genera level. In terms of intestinal permeability, frail older adults were presented with increased serum zonulin, pro-inflammatory cytokines (TNF-α, HMGB-1, IL-6, IL1-ra, MIP-1β) and amino acids (aspartic acid and phosphoethanolamine) when compared to healthy controls. Altogether, frail elderlies had lower gut microbiota diversity and lower abundance of SCFA producers, which may have led to leaky guts, upregulated pro-inflammatory cytokines, frailty and sarcopenia.
Collapse
|
50
|
Edwards CA, Van Loo-Bouwman CA, Van Diepen JA, Schoemaker MH, Ozanne SE, Venema K, Stanton C, Marinello V, Rueda R, Flourakis M, Gil A, Van der Beek EM. A systematic review of breast milk microbiota composition and the evidence for transfer to and colonisation of the infant gut. Benef Microbes 2022; 13:365-382. [PMID: 36377578 DOI: 10.3920/bm2021.0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The intestinal microbiota plays a major role in infant health and development. However, the role of the breastmilk microbiota in infant gut colonisation remains unclear. A systematic review was performed to evaluate the composition of the breastmilk microbiota and evidence for transfer to/colonisation of the infant gut. Searches were performed using PUBMED, OVID, LILACS and PROQUEST from inception until 18th March 2020 with a PUBMED update to December 2021. 88 full texts were evaluated before final critique based on study power, sample contamination avoidance, storage, purification process, DNA extraction/analysis, and consideration of maternal health and other potential confounders. Risk of skin contamination was reduced mainly by breast cleaning and rejecting the first milk drops. Sample storage, DNA extraction and bioinformatics varied. Several studies stored samples under conditions that may selectively impact bacterial DNA preservation, others used preculture reducing reliability. Only 15 studies, with acceptable sample size, handling, extraction, and bacterial analysis, considered transfer of bacteria to the infant. Three reported bacterial transfer from infant to breastmilk. Despite consistent evidence for the breastmilk microbiota, and recent studies using improved methods to investigate factors affecting its composition, few studies adequately considered transfer to the infant gut providing very little evidence for effective impact on gut colonisation.
Collapse
Affiliation(s)
- C A Edwards
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, 84 Castle St, Glasgow G4 0SF, United Kingdom
| | - C A Van Loo-Bouwman
- Yili Innovation Center Europe, Bronland 12 E-1, 6708 WH Wageningen, the Netherlands
| | - J A Van Diepen
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, the Netherlands
| | - M H Schoemaker
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, the Netherlands
| | - S E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, P.O. Box 289, Cambridge CB2 0QQ, United Kingdom
| | - K Venema
- Department of Human Biology, Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, P.O. Box 8, 5900 AA Venlo, the Netherlands
| | - C Stanton
- Teagasc Moorepark Food Research Centre, and APC Microbiome Ireland, Cork, Ireland
| | - V Marinello
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, 84 Castle St, Glasgow G4 0SF, United Kingdom
| | - R Rueda
- R&D Department, Abbott Nutrition, Cam. de Purchil, 68, 18004 Granada, Spain
| | - M Flourakis
- ILSI Europe a.i.s.b.l., E. Mounierlaan 83, 1200 Brussels, Belgium; correspondence has been taken over by C.-Y. Chang of ILSI Europe
| | - A Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Institute of Nutrition and Food Technology 'José Mataix,' Biomedical Research Centre, University of Granada, and Instituto de Investigación Biosanitaria ibs Granada, Avda. del Conocimiento s/n, 18100, Armilla, Grenada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - E M Van der Beek
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Postbus 30.001, 9700 RB Groningen, the Netherlands
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands
| |
Collapse
|