1
|
Zhang C, Gao J, Dong M, Sacramento CQ, Li P, Lian X, Fan L, Rong L, Du R, Tian J, Cui Q. Antiviral effects and mechanism of Qi pi pill against influenza viruses. Animal Model Exp Med 2025. [PMID: 39865580 DOI: 10.1002/ame2.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/24/2024] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Qi pi pill (QPP), which contains Renshen, Baizhu, Fuling, Gancao, Chenpi, Shanyao, Lianzi, Shanzha, Liushenqu, Maiya, and Zexie, was recommended for preventing and treating COVID-19 in Shandong Province (China). However, the mechanism by which QPP treats infectious diseases remains unclear. This study aims to investigate the therapeutic effect of QPP in vitro and on acute influenza infection in mice, exploring its mechanism of action against influenza A virus (IAV). METHODS The in vitro activity of QPP was assessed using dose-response curve analysis and titer reduction assay, and its antiviral mechanism was identified in vitro by real-time polymerase chain reaction (PCR), time-of-addition, and enzymatic assays. The antiviral efficacy of QPP was further evaluated in vivo using BALB/c mice infected with IAV. At the same time, each single Chinese herbal medicine in QPP was evaluated to preliminarily identify those with antiviral effects. RESULTS In vitro results showed that QPP exhibited a higher potency antiviral effect against both influenza A and B viruses, inhibiting viral RNA replication and release by targeting RNA-dependent RNA polymerase and neuraminidase. Additionally, QPP significantly decreased the expression of inflammatory cytokines in A549 cells. In vivo study revealed that QPP significantly reduced the lung index and viral load in lung tissue of mice infected with IAV. Renshen, Gancao, Zexie, and Lianzi were the Chinese herbal medicines from QPP that showed anti-IAV activity. CONCLUSION The antiviral activity of QPP targets IAV replication and release, cytokine modulation in host cells, and provides protection in mice with acute influenza infection.
Collapse
Affiliation(s)
- Chengcheng Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jing Gao
- The Third People's Hospital of Qingdao, Qingdao, Shandong, China
| | - Meiyue Dong
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Carolina Q Sacramento
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ping Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiangyu Lian
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, China
| | - Lingyuan Fan
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ruikun Du
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, China
| | - Jingzhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qinghua Cui
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, China
| |
Collapse
|
2
|
Singh S, Agrawal R, Sharma H. Comprehensive PRISMA Based Systematic Review: Exploring the Phytochemistry, Pharmacological Profile and Clinical aspects of Panax ginseng. Curr Top Med Chem 2025; 25:172-195. [PMID: 39428934 DOI: 10.2174/0115680266344493241014082257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Ginseng, a perennial herb belonging to the Araliaceae family, is renowned for its traditional and folk uses. The Panax ginseng C.A. Meyer species is predominantly found in Asian countries, including Japan, China, and Korea. MATERIALS AND METHODS This manuscript offers valuable insights into the cultivation, collection, morphology, phytochemistry, pharmacological properties, and clinical studies of Ginseng. The data was meticulously gathered from diverse electronic resources, such as PubMed, Scopus, Science Direct, and Web of Science, spanning from 1963 to 2023. RESULTS Ginseng contains various bioactive components, including carbohydrates, polyacetylenic alcohols, polysaccharides, ginsenosides, peptides, vitamins, and fatty acids. The biological attributes of ginsenosides, which include anti-diabetic, anti-cancer, anti-oxidant, and anti-inflammatory activities, render them especially remarkable. CONCLUSION This manuscript comprehensively explores the versatile therapeutic applications of ginseng in the treatment of various types of cancers.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Ronak Agrawal
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| |
Collapse
|
3
|
Song J, Lee N, Yang HJ, Lee MS, Kopalli SR, Kim YU, Lee Y. The beneficial potential of ginseng for menopause. J Ginseng Res 2024; 48:449-453. [PMID: 39263310 PMCID: PMC11385173 DOI: 10.1016/j.jgr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 05/30/2024] [Indexed: 09/13/2024] Open
Abstract
Korean Red Ginseng (KRG) has long been used not only as a food supplement but also as a treatment for various diseases. Ginseng originated in South Korea, which later spread to China and Japan, has a wide range of pharmacological activities including immune, endocrine, cardiovascular, and central nervous system effects. KRG is produced by repetitions of steaming and drying of ginseng to extend preservation. During this steaming process, the components of ginseng undergo physio-chemical changes forming a variety of potential active constituents including ginsenoside-Rg3, a unique compound in KRG. Pandemic Coronavirus disease 2019 (COVID-19), has affected both men and women differentially. In particular, women were more vulnerable to COVID-related distress which in turn could aggravate menopause-related disturbances. Complementary and alternative medicinal plants could have aided middle-aged women for several menopause-related symptoms during and post COVID-19 pandemic. This review aimed to explore the beneficial effects of KRG on menopausal symptoms and gynecological cancer.
Collapse
Affiliation(s)
- JiHyeon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Namkyu Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
| | - Myeong Soo Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Yong-Ung Kim
- Department of Pharmaceutical Engineering, College of Cosmetics and Pharmaceuticals, Daegu Haany University, Gyeongsan, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Prasad S, Pandey VK, Singh K, Shams R, Singh R, Goksen G. A comprehensive review on nutritional interventions and nutritive elements: Strengthening immunity for effective defense mechanism during pandemic. Food Sci Nutr 2024; 12:4534-4545. [PMID: 39055200 PMCID: PMC11266904 DOI: 10.1002/fsn3.4138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 07/27/2024] Open
Abstract
The pandemic has brought attention to the importance of a healthy immune system in preventing infectious diseases. In this in-depth review, the process by which nutritional interventions and fundamental nutrients affect immune function has been discussed with the goal of enhancing the body's natural defenses against viral infections. We explored the complex interplay between diet and immunology, highlighting the essential nutrients, vitamins, minerals, and bioactive substances that are crucial for enhancing immune response. We also investigated the effect of dietary patterns and supplementation methods on immune function. We assessed the effectiveness and potential mechanisms of action of various nutritional therapies in modifying immune responses through a thorough examination of scientific literature. Additionally, we go through the significance of individualized nutrition and highlight possible factors to consider for vulnerable groups, such as the elderly and people with chronic conditions. This review attempts to provide a thorough understanding of the role of diet in boosting immunity by synthesizing available research. It also offers insights into practical methods for enhancing the immune function during the current epidemic and in the future.
Collapse
Affiliation(s)
| | - Vinay Kumar Pandey
- RDC, Biotechnology DepartmentManav Rachna International Institute of Research and Studies (Deemed to Be University)FaridabadIndia
| | - Kunal Singh
- Institute of Bio Science and TechnologyShri Ramswaroop Memorial UniversityLucknowIndia
| | - Rafeeya Shams
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraIndia
| | - Rahul Singh
- Department of BioengineeringIntegral UniversityLucknowIndia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial ZoneTarsus UniversityMersinTurkey
| |
Collapse
|
5
|
Moon S, Lee KW, Park M, Moon J, Park SH, Kim S, Hwang J, Yoon JW, Jeon SM, Kim JS, Jeon YJ, Kweon DH. 3-Fucosyllactose-mediated modulation of immune response against virus infection. Int J Antimicrob Agents 2024; 64:107187. [PMID: 38697577 DOI: 10.1016/j.ijantimicag.2024.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Viral pathogens, particularly influenza and SARS-CoV-2, pose a significant global health challenge. Given the immunomodulatory properties of human milk oligosaccharides, in particular 2'-fucosyllactose and 3-fucosyllactose (3-FL), we investigated their dietary supplementation effects on antiviral responses in mouse models. This study revealed distinct immune modulations induced by 3-FL. RNA-sequencing data showed that 3-FL increased the expression of interferon receptors, such as Interferon Alpha and Beta Receptor (IFNAR) and Interferon Gamma Receptor (IFNGR), while simultaneously downregulating interferons and interferon-stimulated genes, an effect not observed with 2'-fucosyllactose supplementation. Such modulation enhanced antiviral responses in both cell culture and animal models while attenuating pre-emptive inflammatory responses. Nitric oxide concentrations in 3-FL-supplemented A549 cells and mouse lung tissues were elevated exclusively upon infection, reaching 5.8- and 1.9-fold increases over control groups, respectively. In addition, 3-FL promoted leukocyte infiltration into the site of infection upon viral challenge. 3-FL supplementation provided protective efficacy against lethal influenza challenge in mice. The demonstrated antiviral efficacy spanned multiple influenza strains and extended to SARS-CoV-2. In conclusion, 3-FL is a unique immunomodulator that helps protect the host from viral infection while suppressing inflammation prior to infection.
Collapse
Affiliation(s)
- Seokoh Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Wook Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeonghui Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Hee Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Soomin Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Won Yoon
- Advanced Protein Technologies Corp., Suwon, Republic of Korea
| | - Seon-Min Jeon
- Advanced Protein Technologies Corp., Suwon, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea.
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea; Advanced Protein Technologies Corp., Suwon, Republic of Korea.
| |
Collapse
|
6
|
Yue Y, Yang HJ, Zhang T, Li C, Kim MJ, Kim KN, Park S. Porcine Brain Enzyme Hydrolysate Enhances Immune Function and Antioxidant Defense via Modulation of Gut Microbiota in a Cyclophosphamide-Induced Immunodeficiency Model. Antioxidants (Basel) 2024; 13:476. [PMID: 38671923 PMCID: PMC11047735 DOI: 10.3390/antiox13040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
This study examined how consuming porcine brain enzyme hydrolysate (PBEH) affects the immune function and composition of the gut microbiota in an immunodeficient animal model. Male Wistar rats aged 6 weeks were fed casein (control), 100 mg/kg body weight (BW), red ginseng extract (positive-control), and 6, 13, and 26 mg PBEH per kg BW (PBEH-L, PBEH-M, and PBEH-H, respectively) daily for 4 weeks. At 30 min after consuming assigned compounds, they were orally administered cyclophosphamide (CTX; 5 mg/kg BW), an immunosuppressive agent, to suppress the immune system by inhibiting the proliferation of lymphocytes. The normal-control rats were fed casein and water instead of CTX. Natural killer cell activity and splenocyte proliferation induced by 1 μg/mL lipopolysaccharide were lower in the control group than the normal-control group, and they significantly increased with PBEH consumption, particularly at high doses. The PBEH consumption increased dose-dependently in the Th1/Th2 ratio compared to the control. The lipid peroxide contents were lower in the PBEH group than in the control group. Moreover, PBEH m and PBEH-H consumption mitigated white pulp cell damage, reduced red pulp congestion, and increased spleen mast cells in the histological analysis. Intestinal microbiota composition demonstrated differences between the groups at the genus levels, with Akkermansia being more abundant in the control group than the normal-control group and the PBEH-H group showing a decrease. However, Bifidobacterium decreased in the control group but increased in the PBEH-H group. The β-diversity revealed distinct microbial communities of PBEH and positive-control groups compared to the control group (p < 0.05). The metagenome predictions revealed that PBEH-H influenced amino acid metabolism, antioxidant defense, insulin sensitivity, and longevity pathways. In conclusion, PBEH-H intake boosted immune responses and reduced lipid peroxides by modulating gut microbiota composition. These findings suggest that PBEH-H has the potential as a dietary supplement for improving immune function and gut health in individuals with immunodeficiency.
Collapse
Affiliation(s)
- Yu Yue
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea; (Y.Y.); (T.Z.); (C.L.)
| | - Hye Jeong Yang
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea; (H.J.Y.); (M.J.K.)
| | - Ting Zhang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea; (Y.Y.); (T.Z.); (C.L.)
| | - Chen Li
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea; (Y.Y.); (T.Z.); (C.L.)
| | - Min Jung Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea; (H.J.Y.); (M.J.K.)
| | - Keun-Nam Kim
- Department of R&D, UNIMED PHARM Inc., Seoul 05567, Republic of Korea;
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea; (Y.Y.); (T.Z.); (C.L.)
| |
Collapse
|
7
|
Kim JK, Choi MS, Park HS, Kee KH, Kim DH, Yoo HH. Pharmacokinetic Profiling of Ginsenosides, Rb1, Rd, and Rg3, in Mice with Antibiotic-Induced Gut Microbiota Alterations: Implications for Variability in the Therapeutic Efficacy of Red Ginseng Extracts. Foods 2023; 12:4342. [PMID: 38231867 DOI: 10.3390/foods12234342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Ginsenoside Rg3 is reported to contribute to the traditionally known diverse effects of red ginseng extracts. Significant individual variations in the therapeutic efficacy of red ginseng extracts have been reported. This study aimed to investigate the effect of amoxicillin on the pharmacokinetics of ginsenosides Rb1, Rd, and Rg3 in mice following the oral administration of red ginseng extracts. We examined the α-diversity and β-diversity of gut microbiota and conducted pharmacokinetic studies to measure systemic exposure to ginsenoside Rg3. We also analyzed the microbiome abundance and microbial metabolic activity involved in the biotransformation of ginsenoside Rb1. Amoxicillin treatment reduced both the α-diversity and β-diversity of the gut microbiota and decreased systemic exposure to ginsenoside Rg3 in mice. The area under the curve (AUC) values for Rg3 in control and amoxicillin-treated groups were 247.7 ± 96.6 ng·h/mL and 139.2 ± 32.9 ng·h/mL, respectively. The microbiome abundance and microbial metabolic activity involved in the biotransformation of ginsenoside Rb1 were also altered by amoxicillin treatment. The metabolizing activity was reduced from 0.13 to 0.05 pmol/min/mg on average. Our findings indicate that amoxicillin treatment potentially reduces the gut-microbiota-mediated metabolism of ginsenoside Rg3 in mice given red ginseng extracts, altering its pharmacokinetics. Gut microbiome variations may thus influence individual ginsenoside pharmacokinetics, impacting red ginseng extract's efficacy. Our results suggest that modulating the microbiome could enhance the efficacy of red ginseng.
Collapse
Affiliation(s)
- Jeon-Kyung Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
- School of Pharmacy, Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Min Sun Choi
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kyung Hwa Kee
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hye Hyun Yoo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
8
|
Ratan ZA, Das RC, Cho JY. Letter to Editor: Antiviral activities of ginseng and its potential benefit against monkeypox virus: A mini review. J Ginseng Res 2023; 47:686. [PMID: 38107392 PMCID: PMC10721454 DOI: 10.1016/j.jgr.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 12/19/2023] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
- School of Health and Society, University of Wollongong, NSW, Australia
| | - Rajib Chandra Das
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW, Australia
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU, Suwon, Republic of Korea
| |
Collapse
|
9
|
Wang Y, Han Q, Zhang S, Xing X, Sun X. New perspective on the immunomodulatory activity of ginsenosides: Focus on effective therapies for post-COVID-19. Biomed Pharmacother 2023; 165:115154. [PMID: 37454595 DOI: 10.1016/j.biopha.2023.115154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
More than 700 million confirmed cases of Coronavirus Disease-2019 (COVID-19) have been reported globally, and 10-60% of patients are expected to exhibit "post-COVID-19 symptoms," which will continue to affect human life and health. In the absence of safer, more specific drugs, current multiple immunotherapies have failed to achieve satisfactory efficacy. Ginseng, a traditional Chinese medicine, is often used as an immunomodulator and has been used in COVID-19 treatment as a tonic to increase blood oxygen saturation. Ginsenosides are the main active components of ginseng. In this review, we summarize the multiple ways in which ginsenosides affect post-COVID-19 symptoms, including inhibition of lipopolysaccharide, tumor necrosis factor signaling, modulation of chemokine receptors and inflammasome activation, induction of macrophage polarization, effects on Toll-like receptors, nuclear factor kappa-B, the mitogen-activated protein kinase pathway, lymphocytes, intestinal flora, and epigenetic regulation. Ginsenosides affect virus-mediated tissue damage, local or systemic inflammation, immune modulation, and other links, thus alleviating respiratory and pulmonary symptoms, reducing the cardiac burden, protecting the nervous system, and providing new ideas for the rehabilitation of patients with post-COVID-19 symptoms. Furthermore, we analyzed its role in strengthening body resistance to eliminate pathogenic factors from the perspective of ginseng-epidemic disease and highlighted the challenges in clinical applications. However, the benefit of ginsenosides in modulating organismal imbalance post-COVID-19 needs to be further evaluated to better validate the pharmacological mechanisms associated with their traditional efficacy and to determine their role in individualized therapy.
Collapse
Affiliation(s)
- Yixin Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Qin Han
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Shuxia Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| |
Collapse
|
10
|
Shang Z, Fan M, Zhang J, Wang Z, Jiang S, Li W. Red Ginseng Improves D-galactose-Induced Premature Ovarian Failure in Mice Based on Network Pharmacology. Int J Mol Sci 2023; 24:ijms24098210. [PMID: 37175917 PMCID: PMC10179375 DOI: 10.3390/ijms24098210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, we evaluated the ameliorative effect and molecular mechanism of red ginseng (Panax ginseng C.A. Meyer) extract (RGE) on D-galactose (D-gal)-induced premature ovarian failure (POF) using network pharmacology analysis. Ginsenosides are important active ingredients in ginseng, which also contains some sugar and amino acid derivatives. We aimed to determine the key proteins through which RGE regulates POF. In this work, we retrieved and screened for active ingredients in ginseng and the corresponding POF disease targets in multiple databases. A PPI network of genes was constructed in the STRING database and core targets were screened using topological analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted in R software. Finally, molecular docking was conducted to validate the results. Female ICR mice were used to establish a POF mouse model for in vivo experiments. Serum levels of relevant estrogens were determined using ELISA and expression levels of relevant proteins in ovarian tissues were detected using immunofluorescence and western blot analysis. Network pharmacology analysis predicted that PI3K, Akt, Bax, Bcl-2, p16, and other proteins were highly correlated with POF and RGE. The results clearly showed that RGE could increase estradiol (E2) and lower follicle-stimulating hormone (FSH) levels in D-gal-fed mice. RGE restored the expression levels of related proteins by reducing Nrf2-mediated oxidative stress, PI3K/Akt-mediated apoptosis, and senescence signaling pathways. Overall, RGE has the potential to prevent and treat POF and is likely to be a promising natural protector of the ovaries.
Collapse
Affiliation(s)
- Zijing Shang
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, China
| | - Meiling Fan
- College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jingtian Zhang
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
11
|
Chandra Das R, Ratan ZA, Rahman MM, Runa NJ, Mondal S, Konstantinov K, Hosseinzadeh H, Cho JY. Antiviral activities of ginseng and its potential and putative benefits against monkeypox virus: A mini review. J Ginseng Res 2023; 47:S1226-8453(23)00028-3. [PMID: 37362081 PMCID: PMC10065872 DOI: 10.1016/j.jgr.2023.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Due to the Covid-19 pandemic more than 6 million people have died, and it has bought unprecedented challenges to our lives. The recent outbreak of monkeypox virus (MPXV) has brought out new tensions among the scientific community. Currently, there is no specific treatment protocol for MPXV. Several antivirals, vaccinia immune globulin (VIG) and smallpox vaccines have been used to treat MPXV. Ginseng, one of the more famous among traditional medicines, has been used for infectious disease for thousands of years. It has shown promising antiviral effects. Ginseng could be used as a potential adaptogenic agent to help prevent infection by MPXV along with other drugs and vaccines. In this mini review, we explore the possible use of ginseng in MPXV prevention based on its antiviral activity.
Collapse
Affiliation(s)
- Rajib Chandra Das
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW, Australia
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
- School of Health and Society, University of Wollongong, NSW, Australia
| | - Md Mustafizur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh
| | | | - Susmita Mondal
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW, Australia
| | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU, Suwon, Republic of Korea
| |
Collapse
|
12
|
Broni E, Ashley C, Adams J, Manu H, Aikins E, Okom M, Miller WA, Wilson MD, Kwofie SK. Cheminformatics-Based Study Identifies Potential Ebola VP40 Inhibitors. Int J Mol Sci 2023; 24:ijms24076298. [PMID: 37047270 PMCID: PMC10094735 DOI: 10.3390/ijms24076298] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The Ebola virus (EBOV) is still highly infectious and causes severe hemorrhagic fevers in primates. However, there are no regulatorily approved drugs against the Ebola virus disease (EVD). The highly virulent and lethal nature of EVD highlights the need to develop therapeutic agents. Viral protein 40 kDa (VP40), the most abundantly expressed protein during infection, coordinates the assembly, budding, and release of viral particles into the host cell. It also regulates viral transcription and RNA replication. This study sought to identify small molecules that could potentially inhibit the VP40 protein by targeting the N-terminal domain using an in silico approach. The statistical quality of AutoDock Vina’s capacity to discriminate between inhibitors and decoys was determined, and an area under the curve of the receiver operating characteristic (AUC-ROC) curve of 0.791 was obtained. A total of 29,519 natural-product-derived compounds from Chinese and African sources as well as 2738 approved drugs were successfully screened against VP40. Using a threshold of −8 kcal/mol, a total of 7, 11, 163, and 30 compounds from the AfroDb, Northern African Natural Products Database (NANPDB), traditional Chinese medicine (TCM), and approved drugs libraries, respectively, were obtained after molecular docking. A biological activity prediction of the lead compounds suggested their potential antiviral properties. In addition, random-forest- and support-vector-machine-based algorithms predicted the compounds to be anti-Ebola with IC50 values in the micromolar range (less than 25 μM). A total of 42 natural-product-derived compounds were identified as potential EBOV inhibitors with desirable ADMET profiles, comprising 1, 2, and 39 compounds from NANPDB (2-hydroxyseneganolide), AfroDb (ZINC000034518176 and ZINC000095485942), and TCM, respectively. A total of 23 approved drugs, including doramectin, glecaprevir, velpatasvir, ledipasvir, avermectin B1, nafarelin acetate, danoprevir, eltrombopag, lanatoside C, and glycyrrhizin, among others, were also predicted to have potential anti-EBOV activity and can be further explored so that they may be repurposed for EVD treatment. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area calculations corroborated the stability and good binding affinities of the complexes (−46.97 to −118.9 kJ/mol). The potential lead compounds may have the potential to be developed as anti-EBOV drugs after experimental testing.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Joseph Adams
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
| | - Hammond Manu
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Ebenezer Aikins
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Mary Okom
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (W.A.M.III); (S.K.K.); Tel.: +1(708)-2168451 (W.A.M.III); +23-320-3797922 (S.K.K.)
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
- Correspondence: (W.A.M.III); (S.K.K.); Tel.: +1(708)-2168451 (W.A.M.III); +23-320-3797922 (S.K.K.)
| |
Collapse
|
13
|
Yoon J, Park B, Kim H, Choi S, Jung D. Korean Red Ginseng Potentially Improves Maintaining Antibodies after COVID-19 Vaccination: A 24-Week Longitudinal Study. Nutrients 2023; 15:nu15071584. [PMID: 37049424 PMCID: PMC10097014 DOI: 10.3390/nu15071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Despite the effectiveness and safety of COVID-19 vaccines, vaccine-induced responses decline over time; thus, booster vaccines have been approved globally. In addition, interest in natural compounds capable of improving host immunity has increased. This study aimed to examine the effect of Korean Red Ginseng (KRG) on virus-specific antibodies after COVID-19 vaccination. We conducted a 24 week clinical pilot study of 350 healthy subjects who received two doses of the COVID-19 vaccine and a booster vaccination (third dose). These subjects were randomized 1:2 to the KRG and control groups. We evaluated antibody response five times: just before the second dose (baseline), 2 weeks, 4 weeks, 12 weeks after the second dose, and 4 weeks after the third dose. The primary endpoints were changes in COVID-19 spike antibody titers and neutralizing antibody titers. The antibody formation rate of the KRG group was sustained higher than that of the control group for 12 weeks after the second dose. This trend was prominently observed in those above 50 years old. We found that KRG can help to increase and maintain vaccine response, highlighting that KRG could potentially be used as an immunomodulator with COVID-19 vaccines.
Collapse
Affiliation(s)
- Jihyun Yoon
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Byoungjin Park
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Heejung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seungjun Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Laboratory Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Donghyuk Jung
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
Yang X, Sun H, Zhang Z, Ou W, Xu F, Luo L, Liu Y, Chen W, Chen J. Antiviral Effect of Ginsenosides rk1 against Influenza a Virus Infection by Targeting the Hemagglutinin 1-Mediated Virus Attachment. Int J Mol Sci 2023; 24:ijms24054967. [PMID: 36902398 PMCID: PMC10003360 DOI: 10.3390/ijms24054967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Influenza A virus (IAV) infections have been a serious hazard to public health everywhere. With the growing concern of drug-resistant IAV strains, there is an urgent need for novel anti-IAV medications, especially those with alternative mechanisms of action. Hemagglutinin (HA), an IAV glycoprotein, plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a good target for developing anti-IAV drugs. Panax ginseng is a widely used herb in traditional medicine with extensive biological effects in various disease models, and its extract was reported to show protection in IAV-infected mice. However, the main effective anti-IAV constituents in panax ginseng remain unclear. Here, we report that ginsenoside rk1 (G-rk1) and G-rg5, out of the 23 screened ginsenosides, exhibit significant antiviral effects against 3 different IAV subtypes (H1N1, H5N1, and H3N2) in vitro. Mechanistically, G-rk1 blocked IAV binding to sialic acid in a hemagglutination inhibition (HAI) assay and an indirect ELISA assay; more importantly, we showed that G-rk1 interacted with HA1 in a dose-dependent manner in a surface plasmon resonance (SPR) analysis. Furthermore, G-rk1 treatment by intranasal inoculation effectively reduced the weight loss and mortality of mice challenged with a lethal dose of influenza virus A/Puerto Rico/8/34 (PR8). In conclusion, our findings reveal for the first time that G-rk1 possesses potent anti-IAV effects in vitro and in vivo. We have also identified and characterized with a direct binding assay a novel ginseng-derived IAV HA1 inhibitor for the first time, which could present potential approaches to prevent and treat IAV infections.
Collapse
Affiliation(s)
- Xia Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhening Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weixin Ou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fengxiang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ling Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yahong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: (W.C.); (J.C.); Tel./Fax: +61-3-9479-3961 (W.C.); +86-20-8528-0234 (J.C.)
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (W.C.); (J.C.); Tel./Fax: +61-3-9479-3961 (W.C.); +86-20-8528-0234 (J.C.)
| |
Collapse
|
15
|
Antiviral effects of Korean Red Ginseng on human coronavirus OC43. J Ginseng Res 2023; 47:329-336. [PMID: 36217314 PMCID: PMC9534539 DOI: 10.1016/j.jgr.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022] Open
Abstract
Background Panax ginseng Meyer is a medicinal plant well-known for its antiviral activities against various viruses, but its antiviral effect on coronavirus has not yet been studied thoroughly. The antiviral activity of Korean Red Ginseng (KRG) and ten ginsenosides against Human coronavirus OC43 (HCoV-OC43) was investigated in vitro. Methods The antiviral response and mechanism of action of KRG extract and ginsenoside Rc, Re, Rf, Rg1, Rg2-20 (R) and -20 (S), Rg3-20 (R) and -20 (S), and Rh2-20 (R) and -20 (S), against the human coronavirus strain OC43 were investigated by using plaque assay, time of addition assay, real-time PCR, and FACS analysis. Results Virus plaque formation was reduced in KRG extract-treated and HCoV-OC43-infected HCT-8 cells. KRG extract decreased the viral proteins (Nucleocapsid protein and Spike protein) and mRNA (N and M gene) expression, while increased the expression of interferon genes. Conclusion KRG extract exhibits antiviral activity by enhancing the expression of interferons and can be used in treating infections caused by HCoV-OC43.
Collapse
|
16
|
Protective effects of Korean Red Ginseng against toxicity of endocrine-disrupting chemicals. J Ginseng Res 2023; 47:193-198. [PMID: 36926605 PMCID: PMC10014227 DOI: 10.1016/j.jgr.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Several chemicals have been developed owing to the progression of industrialization, among which endocrine-disrupting chemicals (EDCs; essential for plastic production) are used as plasticizers and flame retardants. Plastics have become an essential element in modern life because they provide convenience, thus increasing EDCs exposure to humans. EDCs cause adverse effects such as deterioration of reproductive function, cancer, and neurological abnormalities by disrupting the endocrine system and hence are classified as "dangerous substances." Additionally, they are toxic to various organs but continue to be used. Therefore, it is necessary to review the contamination status of EDCs, select potentially hazardous substances for management, and monitor the safety standards. In addition, it is necessary to discover substances that can protect against EDC toxicity and conduct active research on the protective effects of these substances. According to recent research, Korean Red Ginseng (KRG) exhibits protective effects against several toxicities caused by EDCs to humans. In this review, the effects of EDCs on the human body and the role of KRG in protection against EDC toxicity are discussed.
Collapse
|
17
|
Recent advances in ginsenosides against respiratory diseases: Therapeutic targets and potential mechanisms. Biomed Pharmacother 2023; 158:114096. [PMID: 36502752 DOI: 10.1016/j.biopha.2022.114096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Respiratory diseases mainly include asthma, influenza, pneumonia, chronic obstructive pulmonary disease, pulmonary hypertension, lung fibrosis, and lung cancer. Given their high prevalence and poor prognosis, the prevention and treatment of respiratory diseases are increasingly essential. In particular, the development for the novel strategies of drug treatment has been a hot topic in the research field. Ginsenosides are the major component of Panax ginseng C. A. Meyer (ginseng), a food homology and well-known medicinal herb. In this review, we summarize the current therapeutic effects and molecular mechanisms of ginsenosides in respiratory diseases. METHODS The reviewed studies were retrieved via a thorough analysis of numerous articles using electronic search tools including Sci-Finder, ScienceDirect, PubMed, and Web of Science. The following keywords were used for the online search: ginsenosides, asthma, influenza, pneumonia, chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung fibrosis, lung cancer, and clinical trials. We summarized the findings and the conclusions from 176 manuscripts on ginsenosides, including research articles and reviews. RESULTS Ginsenosides Rb1, Rg1, Rg3, Rh2, and CK, which are the most commonly reported ginsenosides for treating of respiratory diseases, and other ginsenosides such as Rh1, Rk1, Rg5, Rd and Re, all primarily reduce pneumonia, fibrosis, and inhibit tumor progression by targeting NF-κB, TGF-β/Smad, PI3K/AKT/mTOR, and JNK pathways, thereby ameliorating respiratory diseases. CONCLUSION This review provides novel ideas and important aspects for the future research of ginsenosides for treating respiratory diseases.
Collapse
|
18
|
Abstract
Acute rhinopharyngitis, usually called common cold, is a widespread disease, mainly in childhood and adolescence. The use of common cold relievers is, therefore, prevalent as documented by the market data. A well-established tradition considers natural remedies an effective and safe way to relieve the common cold. Hundreds of products for treating the common cold contain non-pharmacological components. Nevertheless, a few studies investigated the role of non-pharmacologic remedies for the common cold. The current study reported the most common non-pharmacological remedies for the common cold, including herbal medicines and other substances. As ancient people used traditional herbs to treat and prevent the common cold, various herbs are widely used to clear viral infections. The herbal agents include polyphenols, flavonoids, saponins, glucosides, and alkaloids. Moreover, other non-pharmacological agents are widely used in real-life. Many multi- or monocomponent dietary supplements or medical devices contain these substances and are available in the market as tablets, syrups, drops, nasal or oral sprays, and nebulization solutions. Many products are available in the market. However, there is some evidence only for some substances. Consequently, further rigorous studies should confirm natural products' efficacy and safety to relieve the common cold.
Collapse
Affiliation(s)
- Giorgio Ciprandi
- Outpatients Department, Allergy Clinic, Casa di Cura Villa Montallegro, Genoa, Italy -
| | - Maria A Tosca
- Department of Pediatrics, Allergy Center, Istituto G. Gaslini, Genoa, Italy
| |
Collapse
|
19
|
Immune System and Epidemics: The Role of African Indigenous Bioactive Substances. Nutrients 2023; 15:nu15020273. [PMID: 36678143 PMCID: PMC9864875 DOI: 10.3390/nu15020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
With over 6 million coronavirus pandemic deaths, the African continent reported the lowest death rate despite having a high disease burden. The African community's resilience to the pandemic has been attributed to climate and weather conditions, herd immunity, repeated exposure to infectious organisms that help stimulate the immune system, and a disproportionately large youth population. In addition, functional foods, herbal remedies, and dietary supplements contain micronutrients and bioactive compounds that can help boost the immune system. This review identified significant traditional fermented foods and herbal remedies available within the African continent with the potential to boost the immune system in epidemics and pandemics. Methodology: Databases, such as PubMed, the Web of Science, and Scopus, were searched using relevant search terms to identify traditional African fermented foods and medicinal plants with immune-boosting or antiviral capabilities. Cereal-based fermented foods, meat-, and fish-based fermented foods, and dairy-based fermented foods containing antioxidants, immunomodulatory effects, probiotics, vitamins, and peptides were identified and discussed. In addition, nine herbal remedies and spices belonging to eight plant families have antioxidant, immunomodulatory, anti-inflammatory, neuroprotective, hepatoprotective, cardioprotective, and antiviral properties. Peptides, flavonoids, alkaloids, sterols, ascorbic acid, minerals, vitamins, and saponins are some of the bioactive compounds in the remedies. Bioactive compounds in food and plants significantly support the immune system and help increase resistance against infectious diseases. The variety of food and medicinal plants found on the African continent could play an essential role in providing community resilience against infectious diseases during epidemics and pandemics. The African continent should investigate nutritional, herbal, and environmental factors that support healthy living and longevity.
Collapse
|
20
|
Production and characterization of lentivirus vector-based SARS-CoV-2 pseudoviruses with dual reporters: Evaluation of anti-SARS-CoV-2 viral effect of Korean Red Ginseng. J Ginseng Res 2023; 47:123-132. [PMID: 35855181 PMCID: PMC9283196 DOI: 10.1016/j.jgr.2022.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
Background Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean Red Ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.
Collapse
|
21
|
Yang S, Han SB, Kang S, Lee J, Kim D, Kozlova A, Song M, Park SH, Lee J. The relationship of skin disorders, COVID-19, and the therapeutic potential of ginseng: a review. J Ginseng Res 2023; 47:33-43. [PMID: 36249949 PMCID: PMC9546782 DOI: 10.1016/j.jgr.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made significant impacts on global public health, including the development of several skin diseases that have arisen primarily as a result of the pandemic. Owing to the widespread expansion of coronavirus disease 19 (COVID-19), the development of effective treatments for these skin diseases is drawing attention as an important social issue. For many centuries, ginseng and its major active ingredients, ginsenosides and saponins, have been widely regarded as herbal medicines. Further, the anti-viral action of ginseng suggests its potential effectiveness as a therapeutic agent against COVID-19. Thus, the aim of this review was to examine the association of skin lesions with COVID-19 and the effect of ginseng as a therapeutic agent to treat skin diseases induced by COVID-19 infection. We classified COVID-19-related skin disorders into three categories: caused by inflammatory, immune, and complex (both inflammatory and immune) responses and evaluated the evidence for ginseng as a treatment for each category. This review offers comprehensive evidence on the improvement of skin disorders induced by SARS-CoV-2 infection using ginseng and its active constituents.
Collapse
Affiliation(s)
- Seoyoun Yang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Su Bin Han
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Soohyun Kang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Junghyun Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dongseon Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Anastasiia Kozlova
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Minkyung Song
- T cell and Tumor Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea,Corresponding author. T cell and Tumor Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419, Gyunggi Do, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea,Corresponding author. Department of Bio and Chemical Engineering, Hongik University, 30016, Sejong City, Republic of Korea
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea,Corresponding author. Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419, Gyunggi Do, Republic of Korea
| |
Collapse
|
22
|
Liu Y, Xia K, Liu S, Wang W, Li G. Ginseng as a Key Immune Response Modulator in Chinese Medicine: From Antipandemic History to COVID-19 Management. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 51:19-34. [PMID: 36419254 DOI: 10.1142/s0192415x23500027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cytokine storm plays an indispensable role in the severe and critical illness and death of the COVID-19 vulnerable population. Thus, suppressing the cytokine storm is of great significance. Ginseng is a traditional Chinese herb originally used for improving physiological conditions and ameliorating disease. Common throughout the history of ancient Chinese medicine is utilizing ginseng as a major ingredient to successfully fight various pandemics, and the most famous decoction is Renshen Baidu powder. In recent years, ginseng has been observed to provide preventive and therapeutic benefits in the treatment of various conditions by suppressing hyper-inflammation, inhibiting virus intrusion, and balancing the host's immunity. This paper summarizes the ancient Chinese medicine books' recordings of, the clinical practice of, and the laboratory exploration of ginseng for the treatment of pandemics and COVID-19. Ginseng and its active ingredients were found to downregulate inflammatory cytokines, upregulate anti-inflammatory cytokines, stimulate the secretion of the antiviral cytokine IFN-[Formula: see text], prevent viral entry and replication, and improve viral clearance. Furthermore, ginseng modulates both natural and acquired immunity during viral infection. Collectively, we propose that ginseng can act as a key immune response modulator against the cytokine storm of COVID-19. This paper may provide a new approach to discover specific medications using ginseng to combat COVID-19.
Collapse
Affiliation(s)
- Yanyi Liu
- Department of Respiratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China.,Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Kun Xia
- Department of Respiratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Shixu Liu
- Department of Respiratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Wei Wang
- Department of Respiratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Guangxi Li
- Department of Respiratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| |
Collapse
|
23
|
Roy PK, Song MG, Jeon EB, Kim SH, Park SY. Effects of dietary intake behavior, food supply, nutrition, and health during the COVID-19 outbreak. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1032750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, which began in 2019, has far-reaching ramifications, including economic losses and health challenges that still affect various parts of the world. During our review, we learned that the entire world is working to stop the spread of the SARS-CoV-2 outbreak. We explore ways that may lower the danger of SARS-CoV-2 contamination and useful strategies to avoid the possibility of SARS-CoV-2 spreading through food. While hygienic protocols are required in the food supply sector, cleaning, disinfection, and the avoidance of cross-contamination across food categories and other related goods at different stages of the manufacturing process remain especially important because the virus can survive for long periods of time on inert materials such as food packaging. Furthermore, personal hygiene (regular washing and disinfection), wearing gloves and using masks, garments, and footwear dedicated to maintaining hygiene provide on-site safety for food sector personnel, supply chain intermediaries, and consumers. Restrictions imposed in response to the pandemic (e.g., closure of physical workplaces, canteens, cafes, restaurants, schools, and childcare institutions), changes in household grocery shopping frequency, individuals' perceived risk of COVID-19, income losses due to the pandemic, and sociodemographic factors are among the factors. The conclusions drawn from this study consider the implications of healthy diets, food system resilience, behavior change, and nutritional imbalance for policymakers and food supply chain participants, as well as the antimicrobial effects of vitamins and nutrients. During a public health crisis, people should eat less, necessitating preventive policies and nutritional advice to deal with this.
Collapse
|
24
|
Shifeng P, Boopathi V, Murugesan M, Mathiyalagan R, Ahn J, Xiaolin C, Yang DU, Kwak GY, Kong BM, Yang DC, Kang SC, Hao Z. Molecular Docking and Dynamics Simulation Studies of Ginsenosides with SARS-CoV-2 Host and Viral Entry Protein Targets. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221134331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Despite the contemporary advancements in the field of science and medicine, combating the coronavirus disease 2019 (COVID-19) is extremely challenging in many aspects as the virus keeps spreading and mutating rapidly. As there is no effective and conclusive drug therapy to date, it is crucial to explore plant-based natural compounds for their potential to inhibit SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Recent research highly focuses on screening various phytochemicals to elucidate their anti-viral efficacy. However, very few studies were published investigating the anti-viral efficacy of ginsenosides. Hence, the main aim of this study was to investigate the inhibitory potential of the available 122 ginsenosides from Panax ginseng against SARS-CoV-2-related proteins using a molecular docking and molecular dynamics approach. The major bioactive compounds “ginsenosides” of P. ginseng were docked to six vital SAR-CoV-2 host entry-related proteins such as ACE2, Spike RBD, ACE2 and Spike RBD complex, Spike (pre-fused), Spike (post-fused), and HR domain, with lowest binding energies of −9.5 kcal/mol, −8.1 kcal/mol, −10.4 kcal/mol, −10.4 kcal/mol, −9.3 kcal/mol, and −8.2 kcal/mol, respectively. Almost all the ginsenosides have shown low binding energies and were found to be favourable for efficient docking and resultant inhibition of the viral proteins. However, ACE2 has shown the highest interaction capability. Hence, the top five ginsenosides with the highest binding energy with ACE2 were subjected to MD, post MD analysis, and MM/PBSA calculations. MD simulation results have shown higher stability, flexibility, and mobility of the selected compounds. Additionally, MM-PBSA also affirms the docking results. The results obtained from this study have provided highly potential candidates for developing natural inhibitors against COVID-19.
Collapse
Affiliation(s)
- Pang Shifeng
- Institute of Special Animal and Plant Sciences of CAAS, Changchun 130112, China
| | - Vinothini Boopathi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi 17104, Korea
| | - Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi 17104, Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi 17104, Korea
| | - JongChan Ahn
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi 17104, Korea
| | - Chen Xiaolin
- Ginseng Antler Office of Jilin Province (TCM Development Centre of Department of Agriculture and Rural Affairs of Jilin Provincial), Changchun 130033, China
| | - Dong-Uk Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi 17104, Korea
| | - Gi-Young Kwak
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Byoung Man Kong
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi 17104, Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi 17104, Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Zhang Hao
- Institute of Special Animal and Plant Sciences of CAAS, Changchun 130112, China
| |
Collapse
|
25
|
Vaccinium bracteatum Thunb Extract Inhibits HSV-1 Infection by Regulating ER Stress and Apoptosis. Antioxidants (Basel) 2022; 11:antiox11091773. [PMID: 36139847 PMCID: PMC9495922 DOI: 10.3390/antiox11091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
Herpes simplex Type 1 (HSV-1) is a neurotropic virus that infects the peripheral and central nervous system. Usually, after primary infection in epithelial cells, HSV-1 migrates retrograde to the peripheral nervous system (PNS), where it establishes a latent infection. HSV-1 can remain latent in the nervous system, and its reactivation in the brain can rarely cause acute HSV-1 encephalitis, often a life-threatening condition, or asymptomatic reactivations that could lead to neuronal damage and ultimately neurodegenerative disorders. Acyclovir and related nucleoside analogs have been used as therapeutic agents for HSV-1 infection, but resistance to the drug can arise, and the protective effect of HSV-1 on brain cells is limited. Therefore, there is an urgent need for research into safe and effective new antiviral agents that can protect brain cells from the damage that is caused by HSV-1 infection. Vaccinium bracteatum Thunb. (VBT) is widely distributed in Korea and China, and has pharmacological actions such as anti-inflammatory, antioxidant, and antidiabetic activity. Studies on the antiviral effect of VBT on HSV-1 infection have not been reported so far. Therefore, we sought to determine the HSV-1 antiviral effect and molecular mechanism of VBT at the cellular level. We confirmed that VBT repressed the VP16 and IE genes in both Vero and SK-N-SH cells. We also found that the generation of HSV-1 virions was inhibited by VBT treatment. VBT inhibited the activities of the HSV-1-induced endoplasmic reticulum (ER) stressors PERK, ATF4, and CHOP. We confirmed that VBT inhibited the activity of apoptosis factors by regulating the expression of death receptor (DR) after HSV-1 infection. As HSV-1 is closely associated with brain diseases, the study of the antiviral drug effects and mechanism of VBT is meaningful. Further studies using animal models of infection will also be performed to determine the potential of VBT as an antiviral agent.
Collapse
|
26
|
Kamanga P. Impact of government policies on individual choices of food and potential impact on outcomes and nutrition among vulnerable population during COVID-19 pandemic in low- to middle-income country: Literature review. SAGE Open Med 2022; 10:20503121221098123. [PMID: 35600703 PMCID: PMC9118892 DOI: 10.1177/20503121221098123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Corona Virus Disease 2019 (COVID-19) is a highly infectious disease which has affected almost all countries globally. The disease is caused by the corona virus, transmitted from human to human through droplet infection. The virus was first identified in China in December 2019, and spread worldwide. Despite the virus being highly infectious, there is no cure for coronavirus disease COVID-19. The current global approach in the fight against COVID-19 focuses on travel bans including border closures, restrictions on mass gatherings, and mass vaccination of all adults. However, the travel bans and border closures have shown to negatively affect availability, accessibility, and affordability of basic needs such as food, especially for populations in the low- to middle-income countries. This is so since a good percentage of population in low- to middle-income countries live on hand to mouth, and cannot afford adequate food stock to sustain them for a long period of time. In addition, there is a challenge to afford purchasing storage facilities such as refrigerators for storage of fresh foods. Therefore, the purpose of this narrative literature review is to unveil the impact of government policies on individual choices of food and potential impact on outcomes and nutrition in children, elderly and chronically ill individuals in the COVID-19 pandemic era in low- and middle-income countries from 2020 to 2021.
Collapse
|
27
|
Hossain MA, Kim JH. Possibility as role of ginseng and ginsenosides on inhibiting the heart disease of COVID-19: A systematic review. J Ginseng Res 2022; 46:321-330. [PMID: 35068945 PMCID: PMC8767974 DOI: 10.1016/j.jgr.2022.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/25/2022] Open
Abstract
Coronavirus has been spreading rapidly around the world since it broke out in China in 2019. Respiratory diseases caused by coronavirus infection cause various diseases ranging from asymptomatic subclinical infections to severe pneumonia and cardiovascular complications, leading to death. In this regard, natural products are being studied to prevent various diseases caused by COVID-19. In current review, we would like to present mechanisms related to the inhibition of heart disease in ginseng and ginsenoside against SARS-CoV-2. In many previous studies, ginseng and ginsenoside are known to have antioxidant, blood flow improvement, improvement of vascular and heart function, blood pressure control, suppression of myocardial infarction and heart failure, and antiarrhythmia. Therefore, ginseng and ginsenoside have a possibility to suppress cardiovascular complications caused by COVID-19. Many of research provide evidence for ginseng and ginsenoside as treatments for the risk of cardiovascular complications. However, in this review, more specific contents on the proposition of the efficacy of ginseng and ginsenoside for COVID-19 should be presented. Therefore, we hope that researches to reduce cardiovascular complications of ginseng and ginsenoside for COVID-19 should be presented to reduce mortality for COVID-19.
Collapse
Affiliation(s)
- Mohammad Amjad Hossain
- College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Iksan-city, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Iksan-city, Republic of Korea
| |
Collapse
|
28
|
Functional foods with antiviral activity. Food Sci Biotechnol 2022; 31:527-538. [PMID: 35437360 PMCID: PMC9007579 DOI: 10.1007/s10068-022-01073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Viruses are known to cause a variety of diseases, ranging from mild respiratory diseases, such as the common cold, to fatal illnesses. Although the development of vaccines and targeted drugs have significantly improved the mortality rate and disease severity against a number of viral infections, there are still many viruses without proper treatment/prevention options and newly emerging viruses can pose serious health threats. For instance, the coronavirus disease 2019 (COVID-19) pandemic is producing significant healthcare and socio-economic burden worldwide, which may jeopardize the lives and livelihoods for years to come. Studies have identified functional foods with antiviral activity. Certain foods may target the viral life cycle or modulate the host immune system to enhance defense against viral infections. In this review, we will discuss some of the food products reported to display protective effects against viruses including the influenza virus, human immunodeficiency virus, and severe acute respiratory syndrome coronavirus 2.
Collapse
|
29
|
Choi JH, Lee YH, Kwon TW, Ko SG, Nah SY, Cho IH. Can Panax ginseng help control cytokine storm in COVID-19? J Ginseng Res 2022; 46:337-347. [PMID: 35233163 PMCID: PMC8876050 DOI: 10.1016/j.jgr.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/05/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is currently a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 are directly associated with hyper-activation of innate immune response that excessively produce pro-inflammatory cytokines and induce cytokine storm, leading to multi-organ-failure and significant morbidity/mortality. Currently, several antiviral drugs such as Paxlovid (nirmatrelvir and ritonavir) and molnupiravir are authorized to treat mild to moderate COVID-19, however, there are still no drugs that can specifically fight against challenges of SARS-CoV-2 variants. Panax ginseng, a medicinal plant widely used for treating various conditions, might be appropriate for this need due to its anti-inflammatory/cytokine/viral activities, fewer side effects, and cost efficiency. To review Panax ginseng and its pharmacologically active-ingredients as potential phytopharmaceuticals for treating cytokine storm of COVID-19, articles that reporting its positive effects on the cytokine production were searched from academic databases. Experimental/clinical evidences for the effectiveness of Panax ginseng and its active-ingredients in preventing or mitigating cytokine storm, especially for the cascade of cytokine storm, suggest that they might be beneficial as an adjunct treatment for cytokine storm of COVID-19. This review may provide a new approach to discover specific medications using Panax ginseng to control cytokine storm of COVID-19.
Collapse
|
30
|
A Review on Dietary Additive, Food Supplement and Exercise Effects on the Prevention of Covid-19. NUTRITION AND FOOD SCIENCES RESEARCH 2022. [DOI: 10.52547/nfsr.9.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
31
|
El-Bassouny DR, Omar NM, Khalaf HA, Al-Salam RAA. Role of nuclear factor-kappa B in bleomycin induced pulmonary fibrosis and the probable alleviating role of ginsenoside: histological, immunohistochemical, and biochemical study. Anat Cell Biol 2021; 54:448-464. [PMID: 34936986 PMCID: PMC8693141 DOI: 10.5115/acb.21.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/17/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Bleomycin (BLM) is one of anti-cancerous drugs. One of its limitation is the development of pulmonary fibrosis during therapy So, we proposed to examine the outcome of BLM take on the light and electron microscopic design of rat lung. Along with, assessment the probable protecting role of ginsenoside on BLM induced pulmonary changes. In this study, thirty adult male albino rats were comprised and were classified to four clusters; Negative & positive control group, BLM treated group and BLM& ginsenoside treated group. The lung was treated for histological and immunohistochemical (anti-p65) studies. Light microscopic examination of H&E stained sections of BLM treated group showed huge distortion of the lung building. Mallory trichrome stain of this group showed evident deposition of collagen fibers in the markedly thickened interalveolar septa and around intrapulmonary bronchi, bronchioles and blood vessels. Moreover, strong positive staining for nuclear factor (NF)-κB in the wall of bronchiole as well as the thickened interalveolar septa were observed. Ultrastructural inspection of lung of this group revealed muddled lung planning. Marked improvement of the lung structure and marked reduction in NF-κB immunoexpression was appeared in BLM and ginsenoside treated group. So, we concluded that co-administration of ginsenoside with BLM significantly enhanced the histological and morphometric image of the lung.
Collapse
Affiliation(s)
- Dalia Refaat El-Bassouny
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, El Mansoura, Egypt
| | - Nesreen Mostafa Omar
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, El Mansoura, Egypt
| | - Hanaa Attia Khalaf
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, El Mansoura, Egypt
| | - Reem Ahmad Abd Al-Salam
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, El Mansoura, Egypt
| |
Collapse
|
32
|
Tan B, Giangaspero M, Sun N, Jin Y, Liu K, Wang Q, Cheng S, Wang Y, Zhang S. Antiviral Effect of Ginsenoside Rb2 and Rb3 Against Bovine Viral Diarrhea Virus and Classical Swine Fever Virus in vitro. Front Vet Sci 2021; 8:764909. [PMID: 34957281 PMCID: PMC8692705 DOI: 10.3389/fvets.2021.764909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) and classical swine fever virus (CSFV) are members of the genus Pestivirus that cause disease in wild and domestic animals and are responsible for extensive economic losses of livestock and biological industry. BVDV is also a significant laboratory contaminant. Currently, no effective antiviral therapeutics are available to control their infection. Ginsenosides, as major pharmacological ingredients in the plants of ginseng, have various biological activities. In the present work, the antiviral activity of 9 ginsenosides and 3 other saponins from Araliaceae plants was investigated against Pestivirus. Ginsenoside Rb2 and Rb3 showed low cytotoxicity and obvious antiviral effect. They were able to inhibit the replication and proliferation of BVDV and CSFV. In addition, our results suggest that the possible antiviral mechanism of Rb2 might be related to its ability to affect the translation of these viruses. Obtained results suggest that ginsenoside Rb2 and Rb3 have a potential for effective treatment against Pestivirus infection.
Collapse
Affiliation(s)
- Bin Tan
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | | | - Na Sun
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yinping Jin
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kexin Liu
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qianying Wang
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shipeng Cheng
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yingping Wang
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Shuqin Zhang
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
33
|
Lee M, Lee SH, Kim MS, Ahn KS, Kim M. Effect of Lactobacillus dominance modified by Korean Red Ginseng on the improvement of Alzheimer's disease in mice. J Ginseng Res 2021; 46:464-472. [PMID: 35600775 PMCID: PMC9120797 DOI: 10.1016/j.jgr.2021.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/08/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Background Gut microbiota influence the central nervous system through gut-brain-axis. They also affect the neurological disorders. Gut microbiota differs in patients with Alzheimer's disease (AD), as a potential factor that leads to progression of AD. Oral intake of Korean Red Ginseng (KRG) improves the cognitive functions. Therefore, it can be proposed that KRG affect the microbiota on the gut-brain-axis to the brain. Methods Tg2576 were used for the experimental model of AD. They were divided into four groups: wild type (n = 6), AD mice (n = 6), AD mice with 30 mg/kg/day (n = 6) or 100 mg/kg/day (n = 6) of KRG. Following two weeks, changes in gut microbiota were analyzed by Illumina HiSeq4000 platform 16S gene sequencing. Microglial activation were evaluated by quantitative Western blot analyses of Iba-1 protein. Claudin-5, occludin, laminin and CD13 assay were conducted for Blood-brain barrier (BBB) integrity. Amyloid beta (Aβ) accumulation demonstrated through Aβ 42/40 ratio was accessed by ELISA, and cognition were monitored by Novel object location test. Results KRG improved the cognitive behavior of mice (30 mg/kg/day p < 0.05; 100 mg/kg/day p < 0.01), and decreased Aβ 42/40 ratio (p < 0.01) indicating reduced Aβ accumulation. Increased Iba-1 (p < 0.001) for reduced microglial activation, and upregulation of Claudin-5 (p < 0.05) for decreased BBB permeability were shown. In particular, diversity of gut microbiota was altered (30 mg/kg/day q-value<0.05), showing increased population of Lactobacillus species. (30 mg/kg/day 411%; 100 mg/kg/day 1040%). Conclusions KRG administration showed the Lactobacillus dominance in the gut microbiota. Improvement of AD pathology by KRG can be medicated through gut-brain axis in mice model of AD.
Collapse
|
34
|
Baranwal M, Gupta Y, Dey P, Majaw S. Antiinflammatory phytochemicals against virus-induced hyperinflammatory responses: Scope, rationale, application, and limitations. Phytother Res 2021; 35:6148-6169. [PMID: 34816512 DOI: 10.1002/ptr.7222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
Uncontrolled inflammatory responses or cytokine storm associated with viral infections results in deleterious consequences such as vascular leakage, severe hemorrhage, shock, immune paralysis, multi-organ failure, and even death. With the emerging new viral infections and lack of effective prophylactic vaccines, evidence-based complementary strategies that limit viral infection-mediated hyperinflammatory responses could be a promising approach to limit host tissue injury. The present review emphasizes the potentials of antiinflammatory phytochemicals in limiting hyperinflammatory injury caused by viral infections. The predominant phytochemicals along with their mechanism in limiting hyperimmune and pro-inflammatory responses under viral infection have been reviewed comprehensively. How certain phytochemicals can be effective in limiting hyper-inflammatory response indirectly by favorably modulating gut microbiota and maintaining a functional intestinal barrier has also been presented. Finally, we have discussed improved systemic bioavailability of phytochemicals, efficient delivery strategies, and safety measures for effective antiinflammatory phytotherapies, in addition to emphasizing the requirement of tightly controlled clinical studies to establish the antiinflammatory efficacy of the phytochemicals. Collectively, the review provides a scooping overview on the potentials of bioactive phytochemicals to mitigate pro-inflammatory injury associated with viral infections.
Collapse
Affiliation(s)
- Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Yogita Gupta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Suktilang Majaw
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, India
| |
Collapse
|
35
|
Das G, Heredia JB, de Lourdes Pereira M, Coy-Barrera E, Rodrigues Oliveira SM, Gutiérrez-Grijalva EP, Cabanillas-Bojórquez LA, Shin HS, Patra JK. Korean traditional foods as antiviral and respiratory disease prevention and treatments: A detailed review. Trends Food Sci Technol 2021; 116:415-433. [PMID: 34345117 PMCID: PMC8321624 DOI: 10.1016/j.tifs.2021.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Korean traditional food (KTF), originated from ancestral agriculture and the nomadic traditions of the Korean peninsula and southern Manchuria, is based on healthy food that balances disease prevention and treatment. Fermented foods that include grains, herbs, fruits, and mushrooms are also an important practice in KTF, providing high levels of Lactobacilli, which confer relevant health benefits, including antiviral properties. Some of these probiotics may also protect against the Influenza virus through the modulation of innate immunity. SCOPE AND APPROACH The emerging of the COVID-19 pandemic, in addition to other diseases of viral origin, and the problems associated with other respiratory disorders, highlight how essential is a healthy eating pattern to strengthen our immune system.Key Findings and Conclusions: The present review covers the information available on edible plants, herbs, mushrooms, and preparations used in KTF to outline their multiple medicinal effects (e.g., antidiabetic, chemopreventive, antioxidative, anti-inflammatory, antibacterial), emphasizing their role and effects on the immune system with an emphasis on modulating properties of the gut microbiota that further support strong respiratory immunity. Potential functional foods commonly used in Korean cuisine such as Kimchi (a mixture of fermented vegetables), Meju, Doenjang, Jeotgal, and Mekgeolli and fermented sauces, among others, are highlighted for their great potential to improve gut-lung immunity. The traditional Korean diet and dietary mechanisms that may target viruses ACE-2 receptors or affect any step of a virus infection pathway that can determine a patient's prognosis are also highlighted. The regular oral intake of bioactive ingredients used in Korean foods can offer protection for some viral diseases, through protective and immunomodulatory effects, as evidenced in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110, Culiacán, Sinaloa, Mexico
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, 250247, Cajicá, Colombia
| | - Sonia Marlene Rodrigues Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- HMRI and Hunter Cancer Research Alliance Centres, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erick Paul Gutiérrez-Grijalva
- Catedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110 Culiacán, Sinaloa, Mexico
| | - Luis Angel Cabanillas-Bojórquez
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110, Culiacán, Sinaloa, Mexico
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, South Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| |
Collapse
|
36
|
Huang L, Ren C, Li HJ, Wu YC. Recent Progress on Processing Technologies, Chemical Components, and Bioactivities of Chinese Red Ginseng, American Red Ginseng, and Korean Red Ginseng. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02697-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Alsayari A, Muhsinah AB, Almaghaslah D, Annadurai S, Wahab S. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections. Molecules 2021; 26:molecules26134095. [PMID: 34279434 PMCID: PMC8271507 DOI: 10.3390/molecules26134095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory tract infections are underestimated, as they are mild and generally not incapacitating. In clinical medicine, however, these infections are considered a prevalent problem. By 2030, the third most comprehensive reason for death worldwide will be chronic obstructive pulmonary disease (COPD), according to the World Health Organization. The current arsenal of anti-inflammatory drugs shows little or no benefits against COPD. For thousands of years, herbal drugs have been used to cure numerous illnesses; they exhibit promising results and enhance physical performance. Ginseng is one such herbal medicine, known to alleviate pro-inflammatory chemokines and cytokines (IL-2, IL-4, IFN-γ, TNF-α, IL-5, IL-6, IL-8) formed by macrophages and epithelial cells. Furthermore, the mechanisms of action of ginsenoside are still not fully understood. Various clinical trials of ginseng have exhibited a reduction of repeated colds and the flu. In this review, ginseng’s structural features, the pathogenicity of microbial infections, and the immunomodulatory, antiviral, and anti-bacterial effects of ginseng were discussed. The focus was on the latest animal studies and human clinical trials that corroborate ginseng’s role as a therapy for treating respiratory tract infections. The article concluded with future directions and significant challenges. This review would be a valuable addition to the knowledge base for researchers in understanding the promising role of ginseng in treating respiratory tract infections. Further analysis needs to be re-focused on clinical trials to study ginseng’s efficacy and safety in treating pathogenic infections and in determining ginseng-drug interactions.
Collapse
Affiliation(s)
- Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
- Correspondence: or
| |
Collapse
|
38
|
Kim CH. Anti-SARS-CoV-2 Natural Products as Potentially Therapeutic Agents. Front Pharmacol 2021; 12:590509. [PMID: 34122058 PMCID: PMC8194829 DOI: 10.3389/fphar.2021.590509] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2), a β-coronavirus, is the cause of the recently emerged pandemic and worldwide outbreak of respiratory disease. Researchers exchange information on COVID-19 to enable collaborative searches. Although there is as yet no effective antiviral agent, like tamiflu against influenza, to block SARS-CoV-2 infection to its host cells, various candidates to mitigate or treat the disease are currently being investigated. Several drugs are being screened for the ability to block virus entry on cell surfaces and/or block intracellular replication in host cells. Vaccine development is being pursued, invoking a better elucidation of the life cycle of the virus. SARS-CoV-2 recognizes O-acetylated neuraminic acids and also several membrane proteins, such as ACE2, as the result of evolutionary switches of O-Ac SA recognition specificities. To provide information related to the current development of possible anti-SARS-COV-2 viral agents, the current review deals with the known inhibitory compounds with low molecular weight. The molecules are mainly derived from natural products of plant sources by screening or chemical synthesis via molecular simulations. Artificial intelligence-based computational simulation for drug designation and large-scale inhibitor screening have recently been performed. Structure-activity relationship of the anti-SARS-CoV-2 natural compounds is discussed.
Collapse
Affiliation(s)
- Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkhwan University, Suwon, South Korea
| |
Collapse
|
39
|
Kim TY, Jeon S, Jang Y, Gotina L, Won J, Ju YH, Kim S, Jang MW, Won W, Park MG, Pae AN, Han S, Kim S, Lee CJ. Platycodin D, a natural component of Platycodon grandiflorum, prevents both lysosome- and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion. Exp Mol Med 2021; 53:956-972. [PMID: 34035463 PMCID: PMC8143993 DOI: 10.1038/s12276-021-00624-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 02/04/2023] Open
Abstract
An ongoing pandemic of coronavirus disease 2019 (COVID-19) is now the greatest threat to global public health. Herbal medicines and their derived natural products have drawn much attention in the treatment of COVID-19, but the detailed mechanisms by which natural products inhibit SARS-CoV-2 have not been elucidated. Here, we show that platycodin D (PD), a triterpenoid saponin abundant in Platycodon grandiflorum (PG), a dietary and medicinal herb commonly used in East Asia, effectively blocks the two main SARS-CoV-2 infection routes via lysosome- and transmembrane protease serine 2 (TMPRSS2)-driven entry. Mechanistically, PD prevents host entry of SARS-CoV-2 by redistributing membrane cholesterol to prevent membrane fusion, which can be reinstated by treatment with a PD-encapsulating agent. Furthermore, the inhibitory effects of PD are recapitulated by the pharmacological inhibition or gene silencing of NPC1, which is mutated in patients with Niemann-Pick type C (NPC) displaying disrupted membrane cholesterol distribution. Finally, readily available local foods or herbal medicines containing PG root show similar inhibitory effects against SARS-CoV-2 infection. Our study proposes that PD is a potent natural product for preventing or treating COVID-19 and that briefly disrupting the distribution of membrane cholesterol is a potential novel therapeutic strategy for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tai Young Kim
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea
| | - Sangeun Jeon
- grid.418549.50000 0004 0494 4850Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Youngho Jang
- grid.37172.300000 0001 2292 0500Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Lizaveta Gotina
- grid.35541.360000000121053345Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792 Republic of Korea ,grid.412786.e0000 0004 1791 8264Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Joungha Won
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Yeon Ha Ju
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.412786.e0000 0004 1791 8264IBS School, University of Science and Technology, Daejeon, Republic of Korea ,grid.412786.e0000 0004 1791 8264Neuroscience Program, University of Science and Technology, Daejeon, Republic of Korea
| | - Sunpil Kim
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| | - Minwoo Wendy Jang
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| | - Woojin Won
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| | - Mingu Gordon Park
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| | - Ae Nim Pae
- grid.35541.360000000121053345Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792 Republic of Korea ,grid.412786.e0000 0004 1791 8264Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Sunkyu Han
- grid.37172.300000 0001 2292 0500Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Seungtaek Kim
- grid.418549.50000 0004 0494 4850Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - C. Justin Lee
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
40
|
Kim TY, Jeon S, Jang Y, Gotina L, Won J, Ju YH, Kim S, Jang MW, Won W, Park MG, Pae AN, Han S, Kim S, Lee CJ. Platycodin D, a natural component of Platycodon grandiflorum, prevents both lysosome- and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion. Exp Mol Med 2021; 53:956-972. [PMID: 34035463 DOI: 10.1101/2020.12.22.423909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 05/18/2023] Open
Abstract
An ongoing pandemic of coronavirus disease 2019 (COVID-19) is now the greatest threat to global public health. Herbal medicines and their derived natural products have drawn much attention in the treatment of COVID-19, but the detailed mechanisms by which natural products inhibit SARS-CoV-2 have not been elucidated. Here, we show that platycodin D (PD), a triterpenoid saponin abundant in Platycodon grandiflorum (PG), a dietary and medicinal herb commonly used in East Asia, effectively blocks the two main SARS-CoV-2 infection routes via lysosome- and transmembrane protease serine 2 (TMPRSS2)-driven entry. Mechanistically, PD prevents host entry of SARS-CoV-2 by redistributing membrane cholesterol to prevent membrane fusion, which can be reinstated by treatment with a PD-encapsulating agent. Furthermore, the inhibitory effects of PD are recapitulated by the pharmacological inhibition or gene silencing of NPC1, which is mutated in patients with Niemann-Pick type C (NPC) displaying disrupted membrane cholesterol distribution. Finally, readily available local foods or herbal medicines containing PG root show similar inhibitory effects against SARS-CoV-2 infection. Our study proposes that PD is a potent natural product for preventing or treating COVID-19 and that briefly disrupting the distribution of membrane cholesterol is a potential novel therapeutic strategy for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tai Young Kim
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Sangeun Jeon
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Youngho Jang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Lizaveta Gotina
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Joungha Won
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeon Ha Ju
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- IBS School, University of Science and Technology, Daejeon, Republic of Korea
- Neuroscience Program, University of Science and Technology, Daejeon, Republic of Korea
| | - Sunpil Kim
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Minwoo Wendy Jang
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Woojin Won
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Mingu Gordon Park
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
41
|
Bian S, Zhao Y, Li F, Lu S, He Z, Wang S, Bai X, Zhao D, Liu M, Wang J. Total ginsenosides induce autophagic cell death in cervical cancer cells accompanied by downregulation of bone marrow stromal antigen-2. Exp Ther Med 2021; 22:667. [PMID: 33986832 PMCID: PMC8112150 DOI: 10.3892/etm.2021.10099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Ginsenosides are important active components in Panax ginseng. In the present study, total ginsenosides (TGNs) were demonstrated to enhance autophagy by promoting acidic vacuole organelle formation, recruitment of enhanced green fluorescent protein-microtubule-associated protein light chain 3 and expression of autophagy-related factors in cervical cancer cell lines. TGN markedly increased the expression of p62 at the transcriptional level, but decreased p62 protein expression in the presence of actinomycin D. The autophagic regulatory effect was reversible. TGN (≤120 µg/ml) did not affect the proliferation of cervical cancer cells under normal culture conditions, but markedly inhibited the growth of serum-deprived cells. Treatment with an inhibitor of autophagy (3-methyladenine) impaired TGN-induced cell death. This suggested that TGN caused autophagic cell death. In addition, western blot analysis demonstrated that the protein level of bone marrow stromal antigen-2 (BST-2) was downregulated by TGN. Upregulation of BST-2 reduced cell death. The results of the combined actions of various monomeric ginsenosides in TGN provide the molecular basis to develop TGN as a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Shuai Bian
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Yue Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Fangyu Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Shuyan Lu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Ziyan He
- College of Chemistry, Jilin University, Changchun, Jilin 13012, P.R. China
| | - Siming Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xueyuan Bai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Meichen Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Jiawen Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| |
Collapse
|
42
|
Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, Mehta V, Uddin MS, Khullar G, Setia D, Arora S, Sinan KI, Ak G, Putnik P, Gallo M, Montesano D. Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals (Basel) 2021; 14:381. [PMID: 33921724 PMCID: PMC8073840 DOI: 10.3390/ph14040381] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
To date, the leading causes of mortality and morbidity worldwide include viral infections, such as Ebola, influenza virus, acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) and recently COVID-19 disease, caused by the SARS-CoV-2 virus. Currently, we can count on a narrow range of antiviral drugs, especially older generation ones like ribavirin and interferon which are effective against viruses in vitro but can often be ineffective in patients. In addition to these, we have antiviral agents for the treatment of herpes virus, influenza virus, HIV and hepatitis virus. Recently, drugs used in the past especially against ebolavirus, such as remdesivir and favipiravir, have been considered for the treatment of COVID-19 disease. However, even if these drugs represent important tools against viral diseases, they are certainly not sufficient to defend us from the multitude of viruses present in the environment. This represents a huge problem, especially considering the unprecedented global threat due to the advancement of COVID-19, which represents a potential risk to the health and life of millions of people. The demand, therefore, for new and effective antiviral drugs is very high. This review focuses on three fundamental points: (1) presents the main threats to human health, reviewing the most widespread viral diseases in the world, thus describing the scenario caused by the disease in question each time and evaluating the specific therapeutic remedies currently available. (2) It comprehensively describes main phytochemical classes, in particular from plant foods, with proven antiviral activities, the viruses potentially treated with the described phytochemicals. (3) Consideration of the various applications of drug delivery systems in order to improve the bioavailability of these compounds or extracts. A PRISMA flow diagram was used for the inclusion of the works. Taking into consideration the recent dramatic events caused by COVID-19 pandemic, the cry of alarm that denounces critical need for new antiviral drugs is extremely strong. For these reasons, a continuous systematic exploration of plant foods and their phytochemicals is necessary for the development of new antiviral agents capable of saving lives and improving their well-being.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, University Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh 171207, India;
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Gaurav Khullar
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Kouadio Ibrahime Sinan
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Gunes Ak
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Predrag Putnik
- Department of Food Technology, University North, 48000 Koprivnica, Croatia;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
43
|
Komolafe K, Komolafe TR, Fatoki TH, Akinmoladun AC, Brai BIC, Olaleye MT, Akindahunsi AA. Coronavirus Disease 2019 and Herbal Therapy: Pertinent Issues Relating to Toxicity and Standardization of Phytopharmaceuticals. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 31:142-161. [PMID: 33727754 PMCID: PMC7951132 DOI: 10.1007/s43450-021-00132-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a virulent viral disease that has now become a public health emergency of global significance and still without an approved treatment regimen or cure. In the absence of curative drugs and with vaccines development still in progress, alternative approaches to stem the tide of the pandemic are being considered. The potential of a phytotherapeutic approach in the management of the dreaded disease has gained attention, especially in developing countries, with several claims of the development of anti-COVID-19 herbal formulations. This is a plausible approach especially with the increasing acceptance of herbal medicine in both alternative and orthodox medical practices worldwide. Also, the established efficacy of herbal remedies in the treatment of numerous viral diseases including those caused by coronaviruses, as well as diseases with symptoms associated with COVID-19, presents a valid case for serious consideration of herbal medicine in the treatment of COVID-19. However, there are legitimate concerns and daunting challenges with the use of herbs and herbal products. These include issues of quality control, unethical production practice, inadequate information on the composition, use and mechanisms, weak regulatory policies, herb-drug interactions and adverse reactions, and the tendency for abuse. This review discusses the feasibility of intervention with herbal medicine in the COVID-19 pandemic and the need to take proactive measures to protect public health by improving the quality and safety of herbal medicine deployed to combat the disease. Graphical abstract. Supplementary Information The online version contains supplementary material available at 10.1007/s43450-021-00132-x.
Collapse
Affiliation(s)
- Kayode Komolafe
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
| | - Titilope Ruth Komolafe
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Toluwase Hezekiah Fatoki
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Afolabi Clement Akinmoladun
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Bartholomew I. C. Brai
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
| | - Mary Tolulope Olaleye
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | | |
Collapse
|
44
|
Sagaya Jansi R, Khusro A, Agastian P, Alfarhan A, Al-Dhabi NA, Arasu MV, Rajagopal R, Barcelo D, Al-Tamimi A. Emerging paradigms of viral diseases and paramount role of natural resources as antiviral agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143539. [PMID: 33234268 PMCID: PMC7833357 DOI: 10.1016/j.scitotenv.2020.143539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 05/04/2023]
Abstract
In the current scenario, the increasing prevalence of diverse microbial infections as well as emergence and re-emergence of viral epidemics with high morbidity and mortality rates are major public health threat. Despite the persistent production of antiviral drugs and vaccines in the global market, viruses still remain as one of the leading causes of deadly human diseases. Effective control of viral diseases, particularly Zika virus disease, Nipah virus disease, Severe acute respiratory syndrome, Coronavirus disease, Herpes simplex virus infection, Acquired immunodeficiency syndrome, and Ebola virus disease remain promising goal amidst the mutating viral strains. Current trends in the development of antiviral drugs focus solely on testing novel drugs or repurposing drugs against potential targets of the viruses. Compared to synthetic drugs, medicines from natural resources offer less side-effect to humans and are often cost-effective in the productivity approaches. This review intends not only to emphasize on the major viral disease outbreaks in the past few decades and but also explores the potentialities of natural substances as antiviral traits to combat viral pathogens. Here, we spotlighted a comprehensive overview of antiviral components present in varied natural sources, including plants, fungi, and microorganisms in order to identify potent antiviral agents for developing alternative therapy in future.
Collapse
Affiliation(s)
- R Sagaya Jansi
- Department of Bioinformatics, Stella Maris College, Chennai, India
| | - Ameer Khusro
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, India
| | - Paul Agastian
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, India.
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Damia Barcelo
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia; Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, JORDI GIRONA 18-26, 08034 Barcelona, Spain
| | - Amal Al-Tamimi
- Ecology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
Han S, Roy PK, Hossain MI, Byun KH, Choi C, Ha SD. COVID-19 pandemic crisis and food safety: Implications and inactivation strategies. Trends Food Sci Technol 2021; 109:25-36. [PMID: 33456205 PMCID: PMC7794057 DOI: 10.1016/j.tifs.2021.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/08/2020] [Accepted: 01/02/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The COVID-19 pandemic that emerged in 2019 has imposed huge consequences, including economic losses and threats to human health, which are still affecting many aspects throughout the world. SCOPE AND APPROACH This review provides an overview of SARS-CoV-2 infection, the cause of COVID-19, and explores its impact on the food supply system and food safety. This review examines the potential risk of transmission through food and environmental surfaces before discussing an effective inactivation strategy to control the COVID-19 pandemic in the aspect of food safety. This article also suggests effective food safety management post-COVID-19. KEY FINDINGS AND CONCLUSIONS Respiratory viruses including SARS-CoV-2 are responsible for huge impacts on the global economy and human health. Although food and water are not currently considered priority transmission routes of SARS-CoV-2, infection through contaminated food and environmental surfaces where the virus can persist for several days cannot be ignored, particularly when the surrounding environment is unhygienic. This approach could help determine the exact transmission route of SARS-CoV-2 and prepare for the post-COVID-19 era in the food safety sector.
Collapse
Affiliation(s)
- Sangha Han
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Pantu Kumar Roy
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Md Iqbal Hossain
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Kye-Hwan Byun
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Sang-Do Ha
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| |
Collapse
|
46
|
Inclination toward herbal remedies as immunity boosters and anti-stress agents during COVID-19 pandemic: A short report. Int J Health Sci (Qassim) 2021; 15:1-3. [PMID: 34285682 PMCID: PMC8265304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Galanakis CM, Aldawoud TM, Rizou M, Rowan NJ, Ibrahim SA. Food Ingredients and Active Compounds against the Coronavirus Disease (COVID-19) Pandemic: A Comprehensive Review. Foods 2020; 9:E1701. [PMID: 33233560 PMCID: PMC7699782 DOI: 10.3390/foods9111701] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
As media reports have noted, the COVID-19 pandemic has accelerated market mainstreaming of immune-boosting food bioactives, supplements, and nutraceuticals. However, most studies reporting on the potential of bioactives against COVID-19 transmission have been uploaded as preprints with little opportunity to revise content for benefit and impact. The current review discusses current best evidence and information underpinning the role of food ingredients and bioactive compounds in supporting immune functions in humans and animals, specifically in the prevention and treatment of COVID-19 disease. Up to now, some evidence from randomized population and clinical trials has suggested that vitamin D levels may be linked to COVID-19 transmission and severity. Numerous theoretical studies have pointed to polyphenols and particularly flavonoids as potential inhibitors of SARS-CoV-2 infection. There is also inconclusive evidence to support the future use of β-glucan to address COVID-19 due in part to variability in immune response arising from heterogeneity in polysaccharide branch and chain length for different sources and the absence of a standardized extraction method. To confirm the promising outcomes and hypotheses for bioactive compounds, more randomized and controlled clinical studies are needed. The results of such studies would have a profound effect on the prospects of food supplements and nutraceuticals as potential prophylaxis against COVID-19 and serve to help consumers to protect themselves during the post-lockdown recovery era.
Collapse
Affiliation(s)
- Charis M. Galanakis
- Research & Innovation Department, Galanakis Laboratories, 73131 Chania, Greece;
- College of Science, King Saud University, Riyadh 12372, Saudi Arabia;
- Food Waste Recovery Group, ISEKI Food Association, 1190 Vienna, Austria
| | | | - Myrto Rizou
- Research & Innovation Department, Galanakis Laboratories, 73131 Chania, Greece;
| | - Neil J. Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, N37 F6D7 Athlone, Ireland;
- Empower Eco Sustainability Hub, Lough Boora, R35 DA50 Co. Offaly, Ireland
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC 27401, USA
| |
Collapse
|
48
|
Wang BY, Yang XQ, Hu M, Shi LJ, Yin HY, Wu YM, Yang YB, Zhou H, Ding ZT. Biotransformation of natural polyacetylene in red ginseng by Chaetomium globosum. J Ginseng Res 2020; 44:770-774. [PMID: 33192119 PMCID: PMC7655485 DOI: 10.1016/j.jgr.2019.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 05/27/2019] [Accepted: 06/28/2019] [Indexed: 12/03/2022] Open
Abstract
Background Fermentation has been shown to improve the biological properties of plants and herbs. Specifically, fermentation causes decomposition and/or biotransformation of active metabolites into high-value products. Polyacetylenes are a class of polyketides with a pleiotropic profile of bioactivity. Methods Column chromatography was used to isolate compounds, and extensive NMR experiments were used to determine their structures. The transformation of polyacetylene in red ginseng (RG) and the production of cazaldehyde B induced by the extract of RG were identified by TLC and HPLC analyses. Results A new metabolite was isolated from RG fermented by Chaetomium globosum, and this new metabolite can be obtained by the biotransformation of polyacetylene in RG. Panaxytriol was found to exhibit the highest antifungal activity against C. globosum compared with other major ingredients in RG. The fungus C. globosum cultured in RG extract can metabolize panaxytriol to Metabolite A to survive, with no antifungal activity against itself. Metabolites A and B showed obvious inhibition against NO production, with ratios of 42.75 ± 1.60 and 63.95 ± 1.45% at 50 μM, respectively. A higher inhibitory rate on NO production was observed for Metabolite B than for a positive drug. Conclusion Metabolite A is a rare example of natural polyacetylene biotransformation by microbial fermentation. This biotransformation only occurred in fermented RG. The extract of RG also stimulated the production of a new natural product, cazaldehyde B, from C. globosum. The lactone in Metabolite A can decrease the cytotoxicity, which was deemed to be the intrinsic activity of polyacetylene in ginseng.
Collapse
Affiliation(s)
- Bang-Yan Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Xue-Qiong Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Ming Hu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Li-Jiao Shi
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Hai-Yue Yin
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Ya-Mei Wu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Ya-Bin Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Hao Zhou
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, China
| |
Collapse
|
49
|
Therapeutic Benefit in Allergic Dermatitis Derived from the Inhibitory Effect of Byakkokaninjinto on the Migration of Plasmacytoid Dendritic Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9532475. [PMID: 33149758 PMCID: PMC7603581 DOI: 10.1155/2020/9532475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
Dendritic cells (DCs) are well known to be essential immunocytes involved in innate and adaptive immunity. DCs are classified as conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs). Recently, the accumulation of pDCs in inflamed tissues and lymphoid tissues has been considered to be a possible contributing factor in the development of immunological diseases, but little is known about the pathophysiological roles of pDCs in immunological diseases. To date, many studies have demonstrated that many kinds of Kampo formulas can regulate immunological reactions in human immune diseases. Thus, we screened Kampo formulas to identify an agent that inhibits pDC migration. Furthermore, we investigated the therapeutic effects of these formulas on a murine DNFB-induced allergic contact dermatitis model. Bone marrow-derived pDCs (BMpDCs) were derived from the bone marrow cells of BALB/c mice in a culture medium with Flt3 ligand. The effects of Kampo formulas on BMpDC migration were evaluated by assessing the number, velocity, and directionality of BMpDCs chemotaxing toward the more concentrated side of a chemokine (C-C motif) ligand 21 (CCL21) gradient. The Kampo formulas that exerted inhibitory effects on pDC migration were orally administered to DNFB-induced allergic contact dermatitis model mice. Byakkokaninjinto reduced the number of migrated BMpDCs and suppressed the velocity and directionality of BMpDC migration in a chemotaxis assay. Gypsum Fibrosum and Ginseng Radix, which are components of byakkokaninjinto, obviously suppressed the velocity of BMpDC migration. Furthermore, Gypsum Fibrosum significantly suppressed the directionality of BMpDC migration. In DNFB-induced allergic contact dermatitis model mice, byakkokaninjinto markedly abrogated ear swelling in late-phase allergic reactions. In conclusions, byakkokaninjinto, which has an inhibitory effect on pDC migration, was able to prevent the occurrence of allergic contact dermatitis, suggesting that pDCs were involved in the onset of allergic contact dermatitis in the mouse model. Therefore, byakkokaninjinto is anticipated to be a therapeutic agent for disorders related to pDC migration.
Collapse
|
50
|
Shirani F, Khorvash F, Arab A. Review on selected potential nutritional intervention for treatment and prevention of viral infections: possibility of recommending these for Coronavirus 2019. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1825483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fatemeh Shirani
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzin Khorvash
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|