1
|
Bradford YM, Van Slyke CE, Muyskens JB, Tseng WC, Howe DG, Fashena D, Martin R, Paddock H, Pich C, Ramachandran S, Ruzicka L, Singer A, Taylor R, Westerfield M. ZFIN updates to support zebrafish environmental exposure data. Genetics 2025; 229:iyaf021. [PMID: 39903545 PMCID: PMC11912870 DOI: 10.1093/genetics/iyaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
The Zebrafish Information Network (ZFIN, zfin.org) is the database resource for genetic, genomic, and phenotypic data from research using zebrafish, Danio rerio. ZFIN curates information about genetic perturbations, gene expression, phenotype, gene function, and human disease models from zebrafish research publications and makes these data available to researchers worldwide. Over the past 20 years, zebrafish have increasingly been used to investigate the effects of environmental exposures, becoming an ideal model to study toxicity, phenotypic outcomes, and gene-chemical interactions. Despite this, database resources supporting zebrafish toxicology and environmental exposure research are limited. To fill this gap, ZFIN has expanded functionality to incorporate and convey toxicology data better. ZFIN annotations for gene expression, phenotype, and human disease models include information about genotypes and experimental conditions used. One type of experimental condition the database captures is the application of chemicals to zebrafish. ZFIN annotates chemicals using the Chemical Entities of Biological Interest Ontology (ChEBI) along with the Zebrafish Experimental Conditions Ontology (ZECO) to denote route of exposure and other experimental conditions. These features allow researchers to search phenotypes and human disease models linked to chemicals more efficiently. Here, we discuss how experimental conditions are displayed on ZFIN web pages, the data displayed on chemical term pages, and how to search and download data associated with chemical exposure experiments.
Collapse
Affiliation(s)
- Yvonne M Bradford
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Ceri E Van Slyke
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Jonathan B Muyskens
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Wei-Chia Tseng
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Douglas G Howe
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - David Fashena
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Ryan Martin
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Holly Paddock
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Christian Pich
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Sridhar Ramachandran
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Leyla Ruzicka
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Amy Singer
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Ryan Taylor
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Monte Westerfield
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| |
Collapse
|
2
|
Singh M, Guru A, Pachaiappan R, Almutairi BO, Arokiyaraj S, Gopi M, Arockiaraj J. Impact of butylparaben on β-cell damage and insulin/PEPCK expression in zebrafish larvae: Protective effects of morin. J Biochem Mol Toxicol 2024; 38:e23520. [PMID: 37632306 DOI: 10.1002/jbt.23520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Butylparaben (BP), a common chemical preservative in cosmetic and pharmaceutical products, has been known to induce oxidative stress and disrupt endocrine function in humans. In contrast, morin, a flavonoid derived from the Moraceae family, exhibits diverse pharmacological properties, including anti-inflammatory and antioxidant. Despite this, the protective role of morin against oxidative stress-induced damage in pancreatic islets remains unclear. Therefore, in this study, we aimed to investigate the potential protective mechanism of morin against oxidative stress-induced damage caused by BP in zebrafish larvae. To achieve this, we exposed the zebrafish larvae to butylparaben (2.5 mg/L) for 5 days, leading to increased oxidative stress and apoptosis in β-cells. However, our compelling findings revealed that pretreatment with various concentrations of morin effectively reduced mortality and mitigated apoptosis and lipid peroxidation in β-cells induced by BP exposure. In addition, zebrafish larvae exposed to BP for 5 days exhibited evident β-cell damage. However, the pretreatment with morin showed promising effects by promoting β-cell proliferation and lowering glucose levels. Furthermore, gene expression studies indicated that morin pretreatment normalized PEPCK expression while increasing insulin expression in BP-exposed larvae. In conclusion, our findings highlight the potential of morin as a protective agent against BP-induced β-cell damage in zebrafish larvae. The observed improvements in oxidative stress, apoptosis, and gene expression patterns support the notion that morin could be further explored as a therapeutic candidate to counteract the detrimental effects of BP exposure on pancreatic β-cells.
Collapse
Affiliation(s)
- Mahima Singh
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, South Korea
| | - Muthukaruppan Gopi
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Tamil Nadu, India
| |
Collapse
|
3
|
Huang BB, Gao MW, Li G, Ouyang MA, Chen QJ. Design, Synthesis, Structure-Activity Relationship, and Three-Dimensional Quantitative Structure-Activity Relationship of Fusarium Acid Derivatives and Analogues as Potential Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18566-18577. [PMID: 37971433 DOI: 10.1021/acs.jafc.3c04720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In research related to fungicides, the development of compounds from natural products with high antifungal activity has attracted considerable attention. Fusaric acid (FA), an alkaloid isolated from the metabolites of Fusarium oxysporum, is an important precursor for developing pharmacologically active herbicides. In our previous work, we reported that FA has a wide range of inhibitory activities against 14 plant pathogenic fungi. In particular, it exhibited excellent antifugal effects on Colletotrichum higginsianum (EC50 = 31.7 μg/mL). Herein, to explore the practical application in the agricultural field, the design and synthesis of three series of FA derivatives and their inhibitory activities against plant pathogenic fungi were examined. Results demonstrated that the optimized FA derivatives had excellent inhibitory activities against C. higginsianum, Helminthosporium (Harpophora maydis), and Pyricularia grisea. In particular, the inhibitory activities were considerably improved when the 5-butyl groups of FA were substituted. The EC50 of C. higginsianum and P. grisea was only 1.2 and 12.0 μg/mL when 5-butylalkyl groups were substituted with 5-([1,1'-biphenyl]-4-yl) and 5-phenyl, respectively. Moreover, the safety index of target compounds, which was obtained from the treatment index of medicines, on rice seeds was evaluated. Finally, 16 leading compounds (H4, H22-H24, H27, H29, H30-H34, H37, H45, H50, H52, and H53) were obtained; they had considerable potential for additional modification and optimization as agricultural fungicides. Moreover, three-dimensional quantitative structure-activity relationship models were developed for obtaining a systematic structure-activity relationship profile to explore the possibility of more potent FA derivatives as novel fungicides.
Collapse
Affiliation(s)
- Bin Bin Huang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Ming Wei Gao
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Guo Li
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Ming-An Ouyang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Qi-Jian Chen
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
4
|
Han EJ, Elbegbayar E, Baek Y, Lee JS, Lee HG. Taste masking and stability improvement of Korean red ginseng (Panax ginseng) by nanoencapsulation using chitosan and gelatin. Int J Biol Macromol 2023; 250:126259. [PMID: 37567543 DOI: 10.1016/j.ijbiomac.2023.126259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
In this study, red ginseng extract (RGE)-loaded nanoparticles (NPs) were prepared by ionic gelation between chitosan (CS) and gelatin (Gel), and the physical characteristics of the RGE-loaded CS-Gel NPs (RGE-CS/Gel NPs), including particle size and polydispersity index (PDI), using different ratios of CS and Gel were examined. The particle size and PDI were 398.1 ± 41.3 nm and 0.433 ± 0.033, respectively for the optimal ratio of CS (0.075 mg/mL) and Gel (0.05 mg/mL). In vitro taste masking test and in vivo sensory evaluation using 10 panelists demonstrated that the CS/Gel NPs significantly reduced the bitter taste of RGE. Additionally, the CS/Gel NPs improved the thermal and acid stabilities, which were almost 6 and 8 times higher than those in the free RGE (p < 0.05), respectively. Likewise, our findings revealed that the RGE-CS/Gel NPs effectively maintain their inhibitory function against platelet aggregation (76.30 %) in an acidic environment. Therefore, the CS/Gel NPs can be used as a potential delivery system to mask the bitterness and improve the stability of RGE, which may enhance its application as a more palatable functional food ingredient with high anti-platelet activity.
Collapse
Affiliation(s)
- Eun Ji Han
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Enkhtsatsral Elbegbayar
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Youjin Baek
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Ji-Soo Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea; Medicine Park, Co., Ltd, A-609, 406 Teheran-ro, Gangnam-gu, Seoul 06192, Republic of Korea.
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea.
| |
Collapse
|
5
|
Fliszár-Nyúl E, Bock I, Csepregi R, Szente L, Szabó I, Csenki Z, Poór M. Testing the protective effects of cyclodextrins vs. alternariol-induced acute toxicity in HeLa cells and in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103965. [PMID: 36031178 DOI: 10.1016/j.etap.2022.103965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Alternariol (AOH) is a mycotoxin produced by Alternaria fungi, it appears as a contaminant in tomatoes, grains, and grapes. The chronic exposure to AOH may cause carcinogenic and xenoestrogenic effects. Cyclodextrins (CDs) are cyclic oligosaccharides, they form host-guest complexes with apolar molecules. In this study, the interactions of AOH with CD monomers and polymers were examined employing fluorescence spectroscopy. Thereafter, the protective effects of certain CDs vs. AOH-induced toxicity were investigated on HeLa cells and on zebrafish embryos. Our major observations are the following: (1) Sugammadex forms highly stable complex with AOH (K = 4.8 ×104 L/mol). (2) Sugammadex abolished the AOH-induced toxicity in HeLa cells, while native β-CD did not show relevant protective effect. (3) Each CD tested decreased the AOH-induced mortality and sublethal adverse effects in zebrafish embryos: Interestingly, native β-CD showed the strongest protective impact in this model. (4) CD technology may be suitable to relieve AOH-induced toxicity.
Collapse
Affiliation(s)
- Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| | - Illés Bock
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő H-2100, Hungary.
| | - Rita Csepregi
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, Pécs H-7624, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Illatos út 7, Budapest H-1097, Hungary.
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő H-2100, Hungary.
| | - Zsolt Csenki
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő H-2100, Hungary.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| |
Collapse
|
6
|
Testing the Protective Effects of Sulfobutylether-Βeta-Cyclodextrin (SBECD) and Sugammadex against Chlorpromazine-Induced Acute Toxicity in SH-SY5Y Cell Line and in NMRI Mice. Pharmaceutics 2022; 14:pharmaceutics14091888. [PMID: 36145637 PMCID: PMC9504268 DOI: 10.3390/pharmaceutics14091888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Chlorpromazine (CPZ) is an antipsychotic drug which can cause several adverse effects and drug poisoning. Recent studies demonstrated that CPZ forms highly stable complexes with certain cyclodextrins (CDs) such as sulfobutylether-β-CD (SBECD) and sugammadex (SGD). Since there is no available antidote in CPZ intoxication, and considering the good tolerability of these CDs even if when administered parenterally, we aimed to investigate the protective effects of SBECD and SGD against CPZ-induced acute toxicity employing in vitro (SH-SY5Y neuroblastoma cells) and in vivo (zebrafish embryo) models. Our major findings and conclusions are the following: (1) both SBECD and SGD strongly relieved the cytotoxic effects of CPZ in SH-SY5Y cells. (2) SGD co-treatment did not affect or increase the CPZ-induced 24 h mortality in NMRI mice, while SBECD caused a protective effect in a dose-dependent fashion. (3) The binding constants of ligand–CD complexes and/or the in vitro protective effects of CDs can help to estimate the in vivo suitability of CDs as antidotes; however, some other factors can overwrite these predictions.
Collapse
|
7
|
Preparation, Characterization, and Bioavailability of Host-Guest Inclusion Complex of Ginsenoside Re with Gamma-Cyclodextrin. Molecules 2021; 26:molecules26237227. [PMID: 34885811 PMCID: PMC8659091 DOI: 10.3390/molecules26237227] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
This work aimed at improving the water solubility of Ginsenoside (G)-Re by forming an inclusion complex. The solubility parameters of G-Re in alpha (α), beta (β), and gamma (γ) cyclodextrin (CD) were investigated. The phase solubility profiles were all classified as AL-type that indicated the 1:1 stoichiometric relationship with the stability constants Ks which were 22 M−1 (α-CD), 612 M−1 (β-CD), and 14,410 M−1 (γ-CD), respectively. Molecular docking studies confirmed the results of phase solubility with the binding energy of −4.7 (α-CD), −5.10 (β-CD), and −6.70 (γ-CD) kcal/mol, respectively. The inclusion complex (IC) of G-Re was prepared with γ-CD via the water-stirring method followed by freeze-drying. The successful preparation of IC was confirmed by powder X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). In-vivo absorption studies were carried out by LC-MS/MS. Dissolution rate of G-Re was increased 9.27 times after inclusion, and the peak blood concentration was 2.7-fold higher than that of pure G-Re powder. The relative bioavailability calculated from the ratio of Area under the curve AUC0–∞ of the inclusion to pure G-Re powder was 171%. This study offers the first report that describes G-Re’s inclusion into γ-CD, and explored the inclusion complex’s mechanism at the molecular level. The results indicated that the solubility could be significantly improved as well as the bioavailability, implying γ-CD was a very suitable inclusion host for complex preparation of G-Re.
Collapse
|
8
|
Sharma A, Lee HJ. Ginsenoside Compound K: Insights into Recent Studies on Pharmacokinetics and Health-Promoting Activities. Biomolecules 2020; 10:E1028. [PMID: 32664389 PMCID: PMC7407392 DOI: 10.3390/biom10071028] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Ginseng (Panax ginseng) is an herb popular for its medicinal and health properties. Compound K (CK) is a secondary ginsenoside biotransformed from major ginsenosides. Compound K is more bioavailable and soluble than its parent ginsenosides and hence of immense importance. The review summarizes health-promoting in vitro and in vivo studies of CK between 2015 and 2020, including hepatoprotective, anti-inflammatory, anti-atherosclerosis, anti-diabetic, anti-cancer, neuroprotective, anti-aging/skin protective, and others. Clinical trial data are minimal and are primarily based on CK-rich fermented ginseng. Besides, numerous preclinical and clinical studies indicating the pharmacokinetic behavior of CK, its parent compound (Rb1), and processed ginseng extracts are also summarized. With the limited evidence available from animal and clinical studies, it can be stated that CK is safe and well-tolerated. However, lower water solubility, membrane permeability, and efflux significantly diminish the efficacy of CK and restrict its clinical application. We found that the use of nanocarriers and cyclodextrin for CK delivery could overcome these limitations as well as improve the health benefits associated with them. However, these derivatives have not been clinically evaluated, thus requiring a safety assessment for human therapy application. Future studies should be aimed at investigating clinical evidence of CK.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Korea
| |
Collapse
|
9
|
Faisal Z, Garai E, Csepregi R, Bakos K, Fliszár-Nyúl E, Szente L, Balázs A, Cserháti M, Kőszegi T, Urbányi B, Csenki Z, Poór M. Protective effects of beta-cyclodextrins vs. zearalenone-induced toxicity in HeLa cells and Tg(vtg1:mCherry) zebrafish embryos. CHEMOSPHERE 2020; 240:124948. [PMID: 31726616 DOI: 10.1016/j.chemosphere.2019.124948] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Zearalenone is a xenoestrogenic mycotoxin produced by Fusarium species. High exposure with zearalenone induces reproductive disorders worldwide. Cyclodextrins are ring-shaped host molecules built up from glucose units. The apolar cavity of cyclodextrins can entrap so-called guest molecules. The formation of highly stable host-guest type complexes with cyclodextrins can decrease the biological effect of the guest molecule. Therefore, cyclodextrins may be suitable to decrease the toxicity of some xenobiotics even after the exposure. In this study, the protective effect of beta-cyclodextrins against zearalenone-induced toxicity was investigated in HeLa cells and zebrafish embryos. Fluorescence spectroscopic studies demonstrated the formation of stable complexes of zearalenone with sulfobutyl-, methyl-, and succinyl-methyl-substituted beta-cyclodextrins at pH 7.4 (K = 1.4-4.7 × 104 L/mol). These chemically modified cyclodextrins considerably decreased or even abolished the zearalenone-induced loss of cell viability in HeLa cells and mortality in zebrafish embryos. Furthermore, the sublethal effects of zearalenone were also significantly alleviated by the co-treatment with beta-cyclodextrins. To test the estrogenic effect of the mycotoxin, a transgenic bioindicator zebrafish model (Tg(vtg1:mCherry)) was also applied. Our results suggest that the zearalenone-induced vitellogenin production is partly suppressed by the hepatotoxicity of zearalenone in zebrafish. This study demonstrates that the formation of stable zearalenone-cyclodextrin complexes can strongly decrease or even abolish the zearalenone-induced toxicity, both in vitro and in vivo. Therefore, cyclodextrins appear as promising new mycotoxin binders.
Collapse
Affiliation(s)
- Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Edina Garai
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Rita Csepregi
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság út 13, H-7624, Pécs, Hungary.
| | - Katalin Bakos
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Illatos út 7, H-1097, Budapest, Hungary.
| | - Adrienn Balázs
- Department of Environmental Safety and Ecotoxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Mátyás Cserháti
- Department of Environmental Safety and Ecotoxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Tamás Kőszegi
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság út 13, H-7624, Pécs, Hungary.
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Zsolt Csenki
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| |
Collapse
|
10
|
Nam YH, Hong BN, Rodriguez I, Park MS, Jeong SY, Lee YG, Shim JH, Yasmin T, Kim NW, Koo YT, Lee SH, Paik DH, Jeong YJ, Jeon H, Kang SC, Baek NI, Kang TH. Steamed Ginger May Enhance Insulin Secretion through K ATP Channel Closure in Pancreatic β-Cells Potentially by Increasing 1-Dehydro-6-Gingerdione Content. Nutrients 2020; 12:E324. [PMID: 31991895 PMCID: PMC7071297 DOI: 10.3390/nu12020324] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Ginger (Zingiber officinale Roscoe) and its active compounds (gingerols, shogaols and paradols) have been reported as having beneficial functions for several diseases, including diabetes. In this study, we revealed that the steaming process could enhance the anti-diabetic potential of ginger. To confirm the anti-diabetic effect of steamed ginger extract (GG03), we assessed pancreatic islets impaired by alloxan in zebrafish and demonstrated anti-hyperglycemic efficacy in a mouse model. The EC50 values of ginger extract (GE) and GG03 showed that the efficacy of GG03 was greater than that of GE. In addition, LC50 values demonstrated that GG03 had lower toxicity than GE, and the comparison of the Therapeutic Index (TI) proved that GG03 is a safer functional food. Furthermore, our data showed that GG03 significantly lowered hyperglycemia in a diabetic mouse model. HPLC was performed to confirm the change in the composition of steamed ginger. Interestingly, GG03 showed a 375% increase in 1-dehydro-6-gingerdione (GD) compared with GE. GD has not yet been studied much pharmacologically. Thus, we identified the protective effects of GD in the damaged pancreatic islets of diabetic zebrafish. We further assessed whether the anti-diabetic mechanism of action of GG03 and GD involves insulin secretion. Our results suggest that GG03 and GD might stimulate insulin secretion by the closure of KATP channels in pancreatic β-cells.
Collapse
Affiliation(s)
- Youn Hee Nam
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (Y.H.N.); (B.N.H.); (I.R.); (M.S.P.); (S.Y.J.); (Y.-G.L.); (J.H.S.); (T.Y.); (N.W.K.); (S.C.K.); (N.-I.B.)
| | - Bin Na Hong
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (Y.H.N.); (B.N.H.); (I.R.); (M.S.P.); (S.Y.J.); (Y.-G.L.); (J.H.S.); (T.Y.); (N.W.K.); (S.C.K.); (N.-I.B.)
| | - Isabel Rodriguez
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (Y.H.N.); (B.N.H.); (I.R.); (M.S.P.); (S.Y.J.); (Y.-G.L.); (J.H.S.); (T.Y.); (N.W.K.); (S.C.K.); (N.-I.B.)
| | - Min Seon Park
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (Y.H.N.); (B.N.H.); (I.R.); (M.S.P.); (S.Y.J.); (Y.-G.L.); (J.H.S.); (T.Y.); (N.W.K.); (S.C.K.); (N.-I.B.)
| | - Seo Yule Jeong
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (Y.H.N.); (B.N.H.); (I.R.); (M.S.P.); (S.Y.J.); (Y.-G.L.); (J.H.S.); (T.Y.); (N.W.K.); (S.C.K.); (N.-I.B.)
| | - Yeong-Geun Lee
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (Y.H.N.); (B.N.H.); (I.R.); (M.S.P.); (S.Y.J.); (Y.-G.L.); (J.H.S.); (T.Y.); (N.W.K.); (S.C.K.); (N.-I.B.)
| | - Ji Heon Shim
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (Y.H.N.); (B.N.H.); (I.R.); (M.S.P.); (S.Y.J.); (Y.-G.L.); (J.H.S.); (T.Y.); (N.W.K.); (S.C.K.); (N.-I.B.)
| | - Tamanna Yasmin
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (Y.H.N.); (B.N.H.); (I.R.); (M.S.P.); (S.Y.J.); (Y.-G.L.); (J.H.S.); (T.Y.); (N.W.K.); (S.C.K.); (N.-I.B.)
| | - Na Woo Kim
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (Y.H.N.); (B.N.H.); (I.R.); (M.S.P.); (S.Y.J.); (Y.-G.L.); (J.H.S.); (T.Y.); (N.W.K.); (S.C.K.); (N.-I.B.)
| | - Young Tae Koo
- Kwang-Dong Pharmaceutical Co., Ltd., Seoul 06650, Korea; (Y.T.K.); (S.H.L.); (D.-H.P.)
| | - Sang Hun Lee
- Kwang-Dong Pharmaceutical Co., Ltd., Seoul 06650, Korea; (Y.T.K.); (S.H.L.); (D.-H.P.)
| | - Dong-Hyun Paik
- Kwang-Dong Pharmaceutical Co., Ltd., Seoul 06650, Korea; (Y.T.K.); (S.H.L.); (D.-H.P.)
| | - Yong Joon Jeong
- Research Institute, Genencell Co. Ltd., Yongin 16950, Gyeonggi-do, Korea; (Y.J.J.); (H.J.)
| | - Hyelin Jeon
- Research Institute, Genencell Co. Ltd., Yongin 16950, Gyeonggi-do, Korea; (Y.J.J.); (H.J.)
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (Y.H.N.); (B.N.H.); (I.R.); (M.S.P.); (S.Y.J.); (Y.-G.L.); (J.H.S.); (T.Y.); (N.W.K.); (S.C.K.); (N.-I.B.)
| | - Nam-In Baek
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (Y.H.N.); (B.N.H.); (I.R.); (M.S.P.); (S.Y.J.); (Y.-G.L.); (J.H.S.); (T.Y.); (N.W.K.); (S.C.K.); (N.-I.B.)
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (Y.H.N.); (B.N.H.); (I.R.); (M.S.P.); (S.Y.J.); (Y.-G.L.); (J.H.S.); (T.Y.); (N.W.K.); (S.C.K.); (N.-I.B.)
| |
Collapse
|
11
|
Nam YH, Moon HW, Lee YR, Kim EY, Rodriguez I, Jeong SY, Castañeda R, Park JH, Choung SY, Hong BN, Kang TH. Panax ginseng (Korea Red Ginseng) repairs diabetic sensorineural damage through promotion of the nerve growth factor pathway in diabetic zebrafish. J Ginseng Res 2019; 43:272-281. [PMID: 30976165 PMCID: PMC6437664 DOI: 10.1016/j.jgr.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 01/29/2023] Open
Abstract
Background Diabetic sensorineural damage is a complication of the sensory neural system, resulting from long-term hyperglycemia. Red ginseng (RG) has shown efficacy for treatment of various diseases, including diabetes mellitus; however, there is little research about its benefit for treating sensorineural damage. Therefore, we aim to evaluate RG efficacy in alloxan-induced diabetic neuromast (AIDN) zebrafish. Methods In this study, we developed and validated an AIDN zebrafish model. To assess RG effectiveness, we observed morphological changes in live neuromast zebrafish. Also, zebrafish has been observed to have an ultrastructure of hair-cell cilia under scanning electron microscopy. Thus, we recorded these physiological traits to assess hair cell function. Finally, we confirmed that RG promoted neuromast recovery via nerve growth factor signaling pathway markers. Results First, we established an AIDN zebrafish model. Using this model, we showed via live neuromast imaging that RG fostered recovery of sensorineural damage. Damaged hair cell cilia were recovered in AIDN zebrafish. Furthermore, RG rescued damaged hair cell function through cell membrane ion balance. Conclusion Our data suggest that RG potentially facilitates recovery in AIDN zebrafish, and its mechanism seems to be promotion of the nerve growth factor pathway through increased expression of topomyosin receptor kinase A, transient receptor potential channel vanilloid subfamily type 1, and mitogen-activated protein kinase phosphorylation.
Collapse
Affiliation(s)
- Youn Hee Nam
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Hyo Won Moon
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Yeong Ro Lee
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Eun Young Kim
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Isabel Rodriguez
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Seo Yule Jeong
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Rodrigo Castañeda
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Ji-Ho Park
- Graduate School of East-West Medical Science, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Se-Young Choung
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Bin Na Hong
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| |
Collapse
|
12
|
Ko JH, Nam YH, Joo SW, Kim HG, Lee YG, Kang TH, Baek NI. Flavonoid 8-O-Glucuronides from the Aerial Parts of Malva verticillata and Their Recovery Effects on Alloxan-Induced Pancreatic Islets in Zebrafish. Molecules 2018; 23:E833. [PMID: 29617347 PMCID: PMC6017522 DOI: 10.3390/molecules23040833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Malva verticillata (Cluster mallow), a leafy vegetable that has been popular in East Asia for a long time, has also been used in herbal teas and medicines. The aqueous fraction of the aerial parts of Malva verticillata, exhibiting a very high quantity of flavonoids compared to the EtOAc and n-BuOH fractions, exhibited significant recovery effects on pancreatic islets damaged by alloxan in zebrafish larvae. Thus, the bioactive components responsible for this anti-diabetic activity were investigated. A new flavonoid glucuronide (1) and five known flavonoids were isolated from the aqueous fraction. Based on several spectroscopic methods, compound 1 was identified to be nortangeretin-8-O-β-D-glucuronide, and was named malvaflavone A. The A-ring of compound 1 had a 5,6,7,8-tetrahydroxy moiety, which rarely occurs in plant systems. Also 8-O-glucuronide attached to the flavonoid moiety was rarely occurred in plant system. Compounds 1, 3, 4, and 6 significantly improved the pancreatic islet size in zebrafish at 0.1 μM, and compounds 1 and 6 were found to block β-cell K⁺ channels in experiments with diazoxide. In ABTS, ORAC, and SOD assays, compounds 1-5 exhibited high anti-oxidant activities compared with quercetin and BHA (positive controls), indicating that the 8-O-glucuronide attached to the flavonoid moiety is a key structure for the expression of anti-oxidant activity. This is the first report of the isolation of compounds 1-6 from M. verticillata as well evaluated for anti-diabetic and anti-oxidant ativities.
Collapse
Affiliation(s)
- Jung-Hwan Ko
- Graduate School of Biotechnology & Department of Oriental Medicine Biotechnology, Kyung-Hee University, Yongin 17104, Korea.
| | - Youn Hee Nam
- Graduate School of Biotechnology & Department of Oriental Medicine Biotechnology, Kyung-Hee University, Yongin 17104, Korea.
| | - Sun-Woo Joo
- Graduate School of Biotechnology & Department of Oriental Medicine Biotechnology, Kyung-Hee University, Yongin 17104, Korea.
| | - Hyoung-Geun Kim
- Graduate School of Biotechnology & Department of Oriental Medicine Biotechnology, Kyung-Hee University, Yongin 17104, Korea.
| | - Yeong-Geun Lee
- Graduate School of Biotechnology & Department of Oriental Medicine Biotechnology, Kyung-Hee University, Yongin 17104, Korea.
| | - Tong Ho Kang
- Graduate School of Biotechnology & Department of Oriental Medicine Biotechnology, Kyung-Hee University, Yongin 17104, Korea.
| | - Nam-In Baek
- Graduate School of Biotechnology & Department of Oriental Medicine Biotechnology, Kyung-Hee University, Yongin 17104, Korea.
| |
Collapse
|