1
|
Rui X, Gong H, Hu J, Yuan H, Wang Y, Yang L, Zhu N. Distribution, removal and potential factors affecting antibiotics occurrence in leachate from municipal solid waste incineration plants in China. WATER RESEARCH 2025; 275:123187. [PMID: 39889445 DOI: 10.1016/j.watres.2025.123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/10/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Leachate from municipal solid waste (MSW) incineration harbors a plethora of contaminants, including antibiotics and antibiotic resistance genes (ARGs). However, the understanding of such leachate is markedly scant in comparison to that of landfill leachate. In this study, the distribution and removal of 8 sulfonamides (SAs), 4 quinolones (FQs), and 4 macrolides (MLs) antibiotics in leachate from 14 MSW incineration plants in representative cities across different regions of China were investigated. In addition, potential factors affecting the contamination levels of antibiotics and ARGs in fresh leachate were evaluated. The results showed that the total concentration of target antibiotics in fresh leachate ranged from 4406.1 to 14,930.6 ng/L. Notably, the antibiotic distribution in leachate exhibited regional disparities, influenced by economic status, climatic conditions, and waste separation policies. The absolute abundance of total ARGs ranged from 1.3 × 107-4.0 × 108 copies/mL, with the mobile genetic elements intl1 facilitates the dissemination of qnrS, sul1 and sul2. No distinct regional distribution of the ARGs was observed among different cities. Antibiotic and ARGs distributions were significantly correlated with total organic carbon, pH, ammonia nitrogen, heavy metals, and microbial communities. Moreover, SAs were identified as contributors to the proliferation and spread of corresponding ARGs. Fourteen typical "anaerobic-anoxic/aerobic-anoxic/aerobic-ultrafiltration-nanofiltration " treatment processes removed the target antibiotics effectively (76.1 %-97.0 %). Biodegradation was considered to be the dominant antibiotic removal pathway, removing 62.0 %-90.9 % of antibiotics, while sludge adsorption removed only 1.0 %-11.7 %. This research furnishes valuable insights into the fate of antibiotics in MSW incineration leachate.
Collapse
Affiliation(s)
- Xuan Rui
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Hangzhou Environmental Protection Scientific Research and Design Co., Ltd., Hangzhou 310014, PR China
| | - Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Lixia Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle (Nanchang Hangkong University), Nanchang 330063, Jiangxi, PR China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
2
|
Zheng Z, Gong Z, Zhang R, Lin X, Hong W, Song L. Potential pathogens drive ARGs enrichment during biofilms formation on environmental surfaces. ISME COMMUNICATIONS 2025; 5:ycaf057. [PMID: 40270585 PMCID: PMC12016037 DOI: 10.1093/ismeco/ycaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
The enrichment of antibiotic resistance genes (ARGs) on environmental surfaces is a fundamental question in microbial ecology. Understanding the processes driving ARG variations can provide clues into their transfer mechanisms between phases and offer insights for public health management. In this study, we examined microbiota, potential pathogen, and ARG dynamics on two common environment surfaces-polyvinyl chloride (PVC) and carbon steel (CS)-under environmental stress (induced by landfill leachate flow) in a Center for Disease Control and Prevention Biofilm Reactor using metagenomics and quantitative polymerase chain reaction-Chip techniques. Contrary to the expected changes in biofilms morphology and physiochemical properties, microbiota, potential pathogens, and ARGs exhibited a divergence-convergence pattern, primarily shaped by attachment surface properties and, subsequently, biofilm maturity during biofilms formation. During this process, ARG levels in biofilms gradually increased to and exceeded the levels in the surrounding environment, but with a distinct structure (P < .05). Furthermore, 1.93- and 3.05-fold increases in the concentrations of mobile genetic elements intI-1 in PVC and CS biofilms, respectively, suggested their important role in the transfer and spread of ARGs within the biofilm matrix. Although potential pathogens were less abundant (3.48%-5.63%) in the biofilms microbiota, they accounted for 18.28%-45.16% of the ARG hosts and harbored multiple ARGs. Pathogens significantly impacted ARG enrichment (Procrustes analysis: P = .0136, M2 = 0.34) although microbiota development also influenced this process (P = .0385, M2 = 0.67). These results suggest that pathogens are key in shaping ARG enrichment in biofilms. Our findings provide dynamic insights into resistome enrichment on environmental surfaces.
Collapse
Affiliation(s)
- Zihao Zheng
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Zhourui Gong
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Rui Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Xiaoxing Lin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Wenqing Hong
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| |
Collapse
|
3
|
Puga A, Moreira MM, Sanromán MA, Pazos MM, Delerue-Matos C. Antidepressants and COVID-19: Increased use, occurrence in water and effects and consequences on aquatic environment. A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175993. [PMID: 39244044 DOI: 10.1016/j.scitotenv.2024.175993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
The COVID-19 pandemic changed the consumption of many drugs, among which antidepressants stand out. This review evaluated the frequency of antidepressant use before and after COVID-19. Once the most consumed antidepressants were identified, detecting a variation in the frequency of consumption on the different continents, an overview of their life cycle was carried out, specifying which antidepressants are mostly detected and the places where there is a greater concentration. In addition, the main metabolites of the most used antidepressants were also investigated. A correlation between the most consumed drugs and the most detected was made, emphasizing the lack of information on the occurrence of some of the most consumed antidepressants. Subsequently, studies on the effects on aquatic life were also reviewed, evaluated through different living beings (fish, crustaceans, molluscs, planktonic crustaceans and algae). Likewise, many of the most used antidepressants lack studies on potential adverse effects on aquatic living beings. This review underscores the need for further research, particularly focusing on the life cycle of the most prescribed antidepressants. In particular, it is a priority to know the occurrence and adverse effects in the aquatic environment of the most used antidepressants after the pandemic.
Collapse
Affiliation(s)
- Antón Puga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; CINTECX, University of Vigo, BIOSUV Group, Department of Chemical Engineering, Campus Lagoas-Marcosende, 36310 Vigo, Spain.
| | - Manuela M Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - M Angeles Sanromán
- CINTECX, University of Vigo, BIOSUV Group, Department of Chemical Engineering, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marta M Pazos
- CINTECX, University of Vigo, BIOSUV Group, Department of Chemical Engineering, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| |
Collapse
|
4
|
Gong H, Hu J, Rui X, Wang Y, Zhu N. Drivers of change behind the spatial distribution and fate of typical trace organic pollutants in fresh waste leachate across China. WATER RESEARCH 2024; 263:122170. [PMID: 39096808 DOI: 10.1016/j.watres.2024.122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/15/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
There have been growing concerns regarding the health and environmental impacts of trace organic pollutants (TOPs). However, fresh leachate from municipal solid waste (MSW) has been overlooked as a potential reservoir of TOPs. Therefore, we investigated 90 legacy and emerging TOPs in fresh leachate from 14 provinces and municipalities in China. Additionally, the fate and final discharge impacts of TOPs in 14 leachate treatment systems were analyzed. The results revealed that the detection rate of 90 TOPs was over 50 % in all samples. Notably, polychlorinated biphenyls, banned for 40 years, were frequently detected in fresh leachate. The concentration of pseudo-persistent TOPs (105-107 ng/L) is significantly higher than that of persistent TOPs (102-104 ng/L). Spatial distribution patterns of TOPs in fresh leachate suggest that economy, population, climate, and policies impact TOPs discharge from MSW. For example, economically developed and densely populated areas displayed higher TOPs concentrations, whereas warmer climates facilitate TOPs leaching from MSW. We confirmed that waste classification policies were a key driver of the decline in multiple TOPs in leachate. Mass balance analysis shows that the final effluent and sludge from current dominant leachate treatment systems contain refractory TOPs, especially perfluoroalkyl acids, which must be prioritized for control. This paper was the first comprehensive investigation of multiple TOPs in fresh leachate at a large geographic scale. The factors affecting the occurrence, spatial distribution, and fate of TOPs in fresh leachate were revealed. It provides a valuable reference for the establishment of policies for the management of TOPs in MSW and the associated leachate.
Collapse
Affiliation(s)
- Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xuan Rui
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
5
|
Zhang LH, Li JN, Li YH, Min XZ, Kong DY, Han Y, Jiang C, Xiao H, Liang B, Zhang ZF. Tracing residual patterns and microbial communities of pharmaceuticals and personal care products from 17 urban landfills leachate in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135295. [PMID: 39047556 DOI: 10.1016/j.jhazmat.2024.135295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/07/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Landfill leachate contributes significantly to the presence of pharmaceuticals and personal care products (PPCPs) in the environment, and is a crucial source of contamination. To examine the occurrence of PPCPs and microbial communities, this study comprehensively investigated the concentrations of PPCPs and the abundance of microorganisms in the leachate from 17 municipal landfills across China. Generally, Lidocaine, Linear alkylbenzene sulfonate-C11, and Triclocarban, which are closely associated with human activities, exhibited a detection frequency of 100 % in the leachate. Driven by consumer demand, analgesic and antipyretic drugs have emerged as the most prominent PPCPs in leachate (accounting for 39.9 %). Notably, the Ibuprofen peaked at 56.3 μg/L. Regarding spatial distribution, the contamination of PPCPs in leachates from the eastern regions of China was significantly higher than that in other regions, owing to the level of economic development and demographic factors. Furthermore, the 16S rRNA results revealed significant differences in microbial communities among the leachates from different areas. Although the impact of PPCPs on microbial communities may not be as significant as that of environmental factors, most positive correlations between PPCPs and microorganisms indicate their potential role in providing nutrients and creating favorable conditions for microbial growth. Overall, this research offers new perspectives on the residual features of PPCPs and the microbial community structure in leachates from various regions in China.
Collapse
Affiliation(s)
- Lin-Hui Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Jin-Nong Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Yi-Hao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xi-Ze Min
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - De-Yong Kong
- Liaoning HaiTianGe Environmental Protection Technology Co. Ltd., Fushun 113122, China
| | - Yue Han
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin 150028, China
| | - Chao Jiang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin 150028, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Mai Z, Xiong X, Li X, Hu H, Wu C. Antibiotics in the rice-crayfish rotation pattern: Occurrence, prioritization, and resistance risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172540. [PMID: 38636854 DOI: 10.1016/j.scitotenv.2024.172540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/23/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Antibiotics are extensively utilized in aquaculture to mitigate diseases and augment the productivity of aquatic commodities. However, to date, there have been no reports on the presence and associated risks of antibiotics in the emergent rice-crayfish rotation (RCR) system. This study investigated the occurrence, temporal dynamics, prioritization, sources, and potential for resistance development of 15 antibiotics within the RCR ecosystem. The findings revealed that during the crayfish breeding and rice planting periods, florfenicol (FFC) predominated in the RCR's surface water, with peak and average concentrations of 1219.70 ng/L and 57.43 ng/L, and 1280.70 ng/L and 52.60 ng/L, respectively. Meanwhile, enrofloxacin (ENX) was the primary antibiotic detected in RCR soil and its maximum and average concentrations were 624.73 ng/L and 69.02 ng/L in the crayfish breeding period, and 871.27 ng/L and 45.89 ng/L in the rice planting period. Throughout the adjustment period, antibiotic concentrations remained relatively stable in both phases. Notably, antibiotic levels in surface water and soil escalated during the crayfish breeding period and subsided during the rice planting period, with these fluctuations predominantly influenced by FFC and ENX. Source analysis indicated that the antibiotics in RCR predominantly originated from aquaculture activities, supplemented by water exchange processes. Utilizing the entropy utility function and a resistance development model, FFC, clarithromycin (CLR), and roxithromycin (ROX) in surface water, along with ENX, CLR, and ROX in soil, were identified as priority antibiotics. FFC, ENX, and ROX exhibited a medium risk for resistance development. Consequently, this study underscores the necessity to intensify antibiotic usage control during the crayfish breeding period in the RCR system to mitigate environmental risks.
Collapse
Affiliation(s)
- Zhan Mai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiong Xiong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xin Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hongjuan Hu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
7
|
Xue C, Luo Y, Peng Y, Zhou L, Zheng J, Zhang K, Fang Z. Activation of peroxydisulfate by zero valent iron-carbon composites prepared by carbothermal reduction: Enhanced non-radical and radical synergies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124321. [PMID: 38844043 DOI: 10.1016/j.envpol.2024.124321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Since its application in environmental remediation, nano zero-valent iron (nZVI) has gained wide attention for its environmental friendliness, strong reducing ability, and wide range of raw materials. However, its high preparation cost and difficulty in preservation remain the bottlenecks for their application. Carbothermal reduction is a promising method for the industrial preparation of nZVI. Micronized zero-valent iron/carbon materials (Fe0/CB) were produced in one step by co-pyrolysis of carbon and iron. The performance of the Fe0/CB is comparable to that of nZVI. In addition, Fe0/CB overcomed the disadvantages of agglomeration and oxidative deactivation of nZVI. Experiments on the Fenton-like reaction of its activated PDS showed that metronidazole (MNZ) was efficiently removed through the synergistic action of radicals and non-radicals, which were mainly superoxide radicals (·O2-), monoclinic oxygen (1O2), and high-valent iron (FeIVO). Moreover, the degradation process showed better generalization, making it suitable for a wide range of applications in the degradation of antibiotics.
Collapse
Affiliation(s)
- Chengjie Xue
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yanping Luo
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yifu Peng
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Long Zhou
- College of Chemistry & Materials Science, Longyan University, Longyan, 364000, China
| | - Jiaru Zheng
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Kai Zhang
- PowerChina Eco-Environmental Group Co., Ltd., Shenzhen 518102, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou 510006, China.
| |
Collapse
|
8
|
Yu X, Lyu S, Zhao W, Guo C, Xu J, Sui Q. A picture of pharmaceutical pollution in landfill leachates: Occurrence, regional differences and influencing factors. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 184:20-27. [PMID: 38788499 DOI: 10.1016/j.wasman.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Municipal solid waste (MSW) landfill sites have been identified as a significant source of pharmaceuticals in the environment because unused or expired pharmaceuticals are discarded into MSW, which eventually percolate into leachates. However, the contamination of pharmaceuticals in landfill leachate in China is not comprehensively understood. Previous research into factors influencing pharmaceutical concentrations focused on a limited number and type of target pollutants or restricted study area. In the present study, 66 pharmaceuticals were analyzed (including 45 antibiotic and 21 non-antibiotic pharmaceuticals, also categorized as 59 prescription and 7 non-prescription pharmaceuticals) in leachate samples from landfill sites with various characteristics in different regions of China. The results indicated that non-antibiotic pollutants were present at significantly higher concentrations than antibiotic pollutants, with median concentrations of 1.74 μg/L and 527 ng/L, respectively. Non-antibiotic pollutants also presented a higher environmental risk than antibiotic pollutants, by 2 to 4 orders of magnitude, highlighting that non-antibiotic pharmaceuticals should not be overlooked during the assessment of landfill leachate. Pharmaceutical concentrations in landfill leachate samples exhibited regional differences; the population size served by the landfills was the dominant factor contributing to the observed differences. In addition, landfill characteristics such as the solid waste composition and MSW loading can also affect pharmaceutical concentrations in landfill leachate. Despite the implementation of the classification and disposal policy of MSW in Shanghai, China since July 2019, specifying that unused or expired pharmaceuticals should be discarded as hazardous waste, high levels of pharmaceutical contaminations were detected in leachate from the main components of classified MSW (i.e., residual and food waste). These findings emphasize the importance of pharmaceutical management in solid waste systems.
Collapse
Affiliation(s)
- Xia Yu
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wentaonceo Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Changsheng Guo
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
9
|
Qiu L, Li H, Ma M, Fang C. Effect of antibiotic exposure on the characteristics of activated sludge in a landfill leachate biological treatment system. ENVIRONMENTAL TECHNOLOGY 2024; 45:1596-1607. [PMID: 36377722 DOI: 10.1080/09593330.2022.2148568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Changes in the activated sludge performance in an anaerobic/aerobic biological treatment system for leachate was discussed under the condition of tetracycline (TC) exposure. The results show that a low concentration of TC did not have an obvious effect on the removal of chemical oxygen demand (COD) while a high concentration of TC had a certain promoting effect. Under the stimulation of TC, the particle size distribution of anaerobic/aerobic sludge tended to be more uniform, the particle size of anaerobic sludge decreased while the settleability increased; however, the particle size of aerobic sludge increased due to bulking. With the addition of TC, the concentration of most heavy metal ions in sludge samples increased.TC exposure results in the release of a large amount of extracellular polymeric substances (EPS), thus leading to a smoother surface of anaerobic sludge and a rougher surface of aerobic sludge. The high removal efficiency of COD under the high concentration of TC was also presumed to be due to EPS promoting the microbial absorption of anaerobic substances in the leachate. The results clearly showed that TC had a bacteriostatic effect. After antibiotic exposure, the abundance and diversity index of bacteria in each reactor decreased obviously, the microbial community evolved, and the dominant species at the genus and phylum levels of anaerobic/aerobic reactors changed. This study provides a better understanding the effect of TC on activated sludge and has reference value for the management of antibiotic exposure in leachate treatment facilities.
Collapse
Affiliation(s)
- Libo Qiu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hong Li
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Mengfei Ma
- College of Civil Engineering, Southeast University, Nanjing, People's Republic of China
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Chen H, Xu H, Zhong C, Liu M, Yang L, He J, Sun Y, Zhao C, Wang D. Treatment of landfill leachate by coagulation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169294. [PMID: 38110093 DOI: 10.1016/j.scitotenv.2023.169294] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Landfill leachate is a seriously polluted and hazardous liquid, which contains a high concentration of refractory organics, ammonia nitrogen, heavy metals, inorganic salts, and various suspended solids. The favorable disposal of landfill leachate has always been a hot and challenging issue in wastewater treatment. As one of the best available technologies for landfill leachate disposal, coagulation has been studied extensively. However, there is an absence of a systematic review regarding coagulation in landfill leachate treatment. In this paper, a review focusing on the characteristics, mechanisms, and application of coagulation in landfill leachate treatment was provided. Different coagulants and factors influencing the coagulation effect were synthetically summarized. The performance of coagulation coupled with other processes and their complementary advantages were elucidated. Additionally, the economic analysis conducted in this study suggests the cost-effectiveness of the coagulation process. Based on previous studies, challenges and perspectives met by landfill leachate coagulation treatment were also put forward. Overall, this review will provide a reference for the coagulation treatment of landfill leachate and promote the development of efficient and eco-friendly leachate treatment technology.
Collapse
Affiliation(s)
- Hongni Chen
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Hui Xu
- Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530006, China
| | - Chao Zhong
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Mingjie Liu
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Liwei Yang
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Jiaojie He
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Yan Sun
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Chuanliang Zhao
- School of Civil Engineering, Chang'an University, Xi'an 710061, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dongsheng Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Gunarathne V, Phillips AJ, Zanoletti A, Rajapaksha AU, Vithanage M, Di Maria F, Pivato A, Korzeniewska E, Bontempi E. Environmental pitfalls and associated human health risks and ecological impacts from landfill leachate contaminants: Current evidence, recommended interventions and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169026. [PMID: 38056656 DOI: 10.1016/j.scitotenv.2023.169026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The improper management of solid waste, particularly the dumping of untreated municipal solid waste, poses a growing global challenge in both developed and developing nations. The generation of leachate is one of the significant issues that arise from this practice, and it can have harmful impacts on both the environment and public health. This paper presents an overview of the primary waste types that generate landfill leachate and their characteristics. This includes examining the distribution of waste types in landfills globally and how they have changed over time, which can provide valuable insights into potential pollutants in a given area and their trends. With a lack of specific regulations and growing concerns regarding environmental and health impacts, the paper also focuses on emerging contaminants. Furthermore, the environmental and ecological impacts of leachate, along with associated health risks, are analyzed. The potential applications of landfill leachate, suggested interventions and future directions are also discussed in the manuscript. Finally, this work addresses future research directions in landfill leachate studies, with attention, for the first time to the potentialities that artificial intelligence can offer for landfill leachate management, studies, and applications.
Collapse
Affiliation(s)
- Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Ankur J Phillips
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka
| | - Francesco Di Maria
- LAR5 Laboratory, Dipartimento di Ingegneria, University of Perugia, via G. Duranti 93, 06125 Perugia, Italy
| | - Alberto Pivato
- DICEA - Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| |
Collapse
|
12
|
Xiao Y, Han D, Currell M, Song X, Zhang Y. Review of Endocrine Disrupting Compounds (EDCs) in China's water environments: Implications for environmental fate, transport and health risks. WATER RESEARCH 2023; 245:120645. [PMID: 37769420 DOI: 10.1016/j.watres.2023.120645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/25/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
Endocrine Disrupting Compounds (EDCs) are ubiquitous in soil and water system and have become a great issue of environmental and public health concern since the 1990s. However, the occurrence and mechanism(s) of EDCs' migration and transformation at the watershed scale are poorly understood. A review of EDCs pollution in China's major watersheds (and comparison to other countries) has been carried out to better assess these issues and associated ecological risks, compiling a large amount of data. Comparing the distribution characteristics of EDCs in water environments around the world and analyzing various measures and systems for managing EDCs internationally, the significant insights of the review are: 1) There are significant spatial differences and concentration variations of EDCs in surface water and groundwater in China, yet all regions present non-negligible ecological risks. 2) The hyporheic zone, as a transitional zone of surface water and groundwater interaction, can effectively adsorb and degrade EDCs and prevent the migration of high concentrations of EDCs from surface water to groundwater. This suggests that more attention needs to be paid to the role played by critical zones in water environments, when considering the removal of EDCs in water environments. 3) In China, there is a lack of comprehensive and effective regulations to limit and reduce EDCs generated during human activities and their discharge into the water environment. 4) To prevent the deterioration of surface water and groundwater quality, the monitoring and management of EDCs in water environments should be strengthened in China. This review provides a thorough survey of scientifically valid data and recommendations for the development of policies for the management of EDCs in China's water environment.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Han
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Matthew Currell
- School of Engineering, RMIT University, Melbourne, VIC, 3001, SA; Australian Rivers Institute, Griffith University, Nathan, Queensland, 4111, SA
| | - Xianfang Song
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Zhang
- Chinese Academy of Surveying and Mapping, Beijing, 100036, China
| |
Collapse
|
13
|
Zhu HS, Liang X, Liu JC, Zhong HY, Yang YH, Guan WP, Du ZJ, Ye MQ. Antibiotic and Heavy Metal Co-Resistant Strain Isolated from Enrichment Culture of Marine Sediments, with Potential for Environmental Bioremediation Applications. Antibiotics (Basel) 2023; 12:1379. [PMID: 37760676 PMCID: PMC10526090 DOI: 10.3390/antibiotics12091379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotics and heavy metals have caused serious contamination of the environment and even resulted in public health concerns. It has therefore become even more urgent to adopt a sustainable approach to combating these polluted environments. In this paper, we investigated the microbial community of marine sediment samples after 255 days of enrichment culture under Cu (II) and lincomycin stress and ZC255 was the most resistant strain obtained. The 16S rRNA gene sequence confirmed that it belonged to the genus Rossellomorea. Strain ZC255 was resistant to 12 kinds of antibiotics, and had a superior tolerance to Cu (II), Pb (II), Ni (II), Zn (II), Cr (III), and Cd (II). Moreover, it exhibits strong bioremoval ability of Cu and lincomycin. The removal efficiency of Cu (II) and lincomycin can achieve 651 mg/g biomass and 32.5 mg/g biomass, respectively. Strain ZC255 was a promising isolate for pollution bioremediation applications.
Collapse
Affiliation(s)
- Han-Sheng Zhu
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Xiao Liang
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Jun-Cheng Liu
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Han-Yang Zhong
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Yuan-Hang Yang
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Wen-Peng Guan
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
| | - Meng-Qi Ye
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, China
| |
Collapse
|
14
|
Kashyap A, Nishil B, Thatikonda S. Experimental and numerical elucidation of the fate and transport of antibiotics in aquatic environment: A review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:942. [PMID: 37436551 DOI: 10.1007/s10661-023-11482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
This review highlights various experimental and mathematical modeling strategies to investigate the fate and transport of antibiotics that elucidate antimicrobial selective pressure in aquatic environments. Globally, the residual antibiotic concentrations in effluents from bulk drug manufacturing industries were 30- and 1500-fold greater than values reported in municipal and hospital effluents, respectively. The antibiotic concentration from different effluents enters the waterbodies that usually get diluted as they go downstream and undergo various abiotic and biotic reactive processes. In aquatic systems, photolysis is the predominant process for antibiotic reduction in the water matrix, while hydrolysis and sorption are frequently reported in the sediment compartment. The rate of antibiotic reduction varies widely with influencing factors such as the chemical properties of the antibiotics and hydrodynamic conditions of river streams. Among all, tetracycline was found to more unstable (log Kow = - 0.62 to - 1.12) that can readily undergo photolysis and hydrolysis; whereas macrolides were more stable (log Kow = 3.06 to 4.02) that are prone to biodegradation. The processes like photolysis, hydrolysis, and biodegradation followed first-order reaction kinetics while the sorption followed a second-order kinetics for most antibiotic classes with reaction rates occurring in the decreasing order of Fluoroquinolones and Sulphonamides. The reports from various experiments on abiotic and biotic processes serve as input parameters for an integrated mathematical modeling to predict the fate of the antibiotics in the aquatic environment. Various mathematical models viz. Fugacity level IV, RSEMM, OTIS, GREAT-ER, SWAT, QWASI, and STREAM-EU are discussed for their potential capabilities. However, these models do not account for microscale interactions of the antibiotics and microbial community under real-field conditions. Also, the seasonal variations for contaminant concentrations that exert selective pressure for antimicrobial resistance has not been accounted. Addressing these aspects collectively is the key to exploring the emergence of antimicrobial resistance. Therefore, a comprehensive model involving antimicrobial resistance parameters like fitness cost, bacterial population dynamics, conjugation transfer efficiency, etc. is required to predict the fate of antibiotics.
Collapse
Affiliation(s)
- Arun Kashyap
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Benita Nishil
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
15
|
Trihadiningrum Y, Wilujeng SA, Tafaqury R, Radita DR, Radityaningrum AD. Evidence of microplastics in leachate of Randegan landfill, Mojokerto City, Indonesia, and its potential to pollute surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162207. [PMID: 36796682 DOI: 10.1016/j.scitotenv.2023.162207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
About 80-90 tons municipal solid waste (MSW) in Mojokerto City, Indonesia, is disposed of into Randegan landfill daily. The landfill was facilitated with a conventional leachate treatment plant (LTP). The plastic waste component in the MSW, which is 13.22 % weight, possibly contaminates leachate with microplastics (MPs). This research aims to determine the presence of MPs in leachate of the landfill, its characteristics, and the removal efficiency of the LTP. The potential of leachate as MP pollutant source to surface water was also discussed. Raw leachate samples were collected from the LTP inlet channel. Leachate samples were also taken from each LTP's sub-units. Leachate collection was performed two times using a 2.5 L glass bottle during March 2022. The MPs were treated using Wet Peroxide Oxidation method, and filtered using PTFE membrane. MP size and shape were determined using a dissecting microscope with 40-60 x magnifications. The polymer types in the samples were identified using Thermo Scientific™ Nicolet™ iS™ 10 FTIR Spectrometer. The average MP abundance in raw leachate was 9.00 ± 0.85 particles/L. MP shape in the raw leachate was dominated by fiber (64.44 %), followed by fragment (28.89 %), and film (6.67 %). The majority of the MPs were of black color (53.33 %). Abundance of 350 - <1000 μm sized MPs was the highest (64.44 %) in the raw leachate, followed by those of 100-350 μm (31.11 %), and 1000-5000 μm (4.45 %). MP removal efficiency of the LTP was 75.6 %, leaving <100 μm fiber shaped MP residuals of 2.20 ± 0.28 p/L in the effluent. Based on these results, effluent of the LTP is considered potential as MP contamination source to surface water.
Collapse
Affiliation(s)
- Yulinah Trihadiningrum
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Jl. A.R. Hakim, Surabaya 60111, Indonesia.
| | - Susi Agustina Wilujeng
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Jl. A.R. Hakim, Surabaya 60111, Indonesia
| | - Rafimarsa Tafaqury
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Jl. A.R. Hakim, Surabaya 60111, Indonesia
| | - Deqi Rizkivia Radita
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Jl. A.R. Hakim, Surabaya 60111, Indonesia
| | - Arlini Dyah Radityaningrum
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Jl. A.R. Hakim, Surabaya 60111, Indonesia; Department of Environmental Engineering, Institut Teknologi Adhi Tama, Jl. A.R. Hakim, Surabaya 60111, Indonesia
| |
Collapse
|
16
|
Zhang J, Yu X, Wang J, Sui Q, Zhao W. Impacts of garbage classification and disposal on the occurrence of pharmaceutical and personal care products in municipal solid waste leachates: A case study in Shanghai. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162467. [PMID: 36842588 DOI: 10.1016/j.scitotenv.2023.162467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Leachate generated during the treatment and disposal of municipal solid wastes (MSWs) can be an important source of pharmaceutical and personal care products (PPCPs) in the environment. With the implementation of garbage classification policy in China, the disposal methods of MSWs have changed, while its impacts on the occurrence of PPCPs in the generated leachate remain unknown. In this study, we investigated 49 target PPCPs in the leachates of classified MSWs, i.e. residual waste leachate (RWL) and food waste leachate (FWL), and revealed the influence of garbage classification implementation on the occurrence of PPCPs in leachates to be treated. The results showed the concentration and mass load of target PPCPs in the RWL samples (median values: 34.9 ng/L and 52.3 mg/d, respectively) were significantly higher than those in the FWL samples (median values: 19.3 ng/L and 14.5 mg/d, respectively). Macrolide (ML) antibiotics were the predominant PPCPs in the RWL samples, while in the FWL samples, quinolone (QL) antibiotics exhibited the highest concentration and mass load. The implementation of garbage classification policy led to the reduction of PPCP mass load (from 739 g/d to 262 g/d) in leachates to be treated. The findings are helpful for better designing or managing MSW treatment and disposal processes to minimize the emission of PPCPs from MSW leachates.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaxi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
17
|
Lu J, Wang L, Si G, Lu B, Zhang X, Li J, Zhang W, Wang Z. Tertiary treatment of bio-treated landfill leachate by a two-step electrochemical process including electrooxidation and electrocoagulation: a bench-scale trial. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32600-32613. [PMID: 36464744 DOI: 10.1007/s11356-022-24028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
A two-step electrochemical process including electrooxidation (EO) and electrocoagulation (EC) was proposed for the tertiary treatment of bio-treated landfill leachate (BTLL). The operating conditions of sole EO and EC technology were optimized via batch tests. Batch tests indicate that EO displayed superior removal efficiency towards color (89%) and UV254 (64%) under optimal experimental conditions. EC with the electrode combinations Fe-Fe-Fe-Fe (four plates, anode-cathode-anode-cathode) performed better than the other electrode combinations (Fe-Al-Fe-Al, Al-Fe-Al-Fe, Al-Al-Al-Al) and showed excellent removal efficiency towards COD (60%) and color (85%). In continuous-flow tests of 13 h, compared to sequential EC-EO process, the sequential EO-EC process was more effective than the sequential EC-EO process in reducing organic matters (COD, TOC) and residual chlorine. The sequential EO-EC process could remove 50% COD, 55% TOC, 72% UV254, and 96% color. The average concentration of residual chlorine in the final effluent of EO-EC process (147 mg/L) was significantly lower than that of EC-EO process (463 mg/L). UV-vis and GC-MS analyses indicate that the BTLL mainly contained humic acid and fulvic acid-like substances with unsaturated bonds. Conjugated unsaturated organics could be degraded into organic of small molecular weight after the sequential EO-EC process. EEM spectroscopic analysis revealed that soluble microbial byproducts became the predominant organics in the final effluent. This work verifies the synergism between EO and EC and provides some insights into the removal and degradation performance of organic substances in BTLL during the sequential EO-EC treatment.
Collapse
Affiliation(s)
- Jianbo Lu
- School of Civil Engineering, Yantai University, No.30, Qingquan Road, Laishan District, Shandong Province, 264005, Yantai, China
| | - Lei Wang
- School of Civil Engineering, Yantai University, No.30, Qingquan Road, Laishan District, Shandong Province, 264005, Yantai, China
| | - Guifang Si
- School of Civil Engineering, Yantai University, No.30, Qingquan Road, Laishan District, Shandong Province, 264005, Yantai, China
| | - Bin Lu
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai, 200092, China
| | - Xintong Zhang
- School of Civil Engineering, Yantai University, No.30, Qingquan Road, Laishan District, Shandong Province, 264005, Yantai, China.
| | - Jie Li
- School of Economics and Management, Yantai, 264005, Shandong Province, China
| | - Wei Zhang
- School of Civil Engineering, Yantai University, No.30, Qingquan Road, Laishan District, Shandong Province, 264005, Yantai, China
| | - Zhenhua Wang
- School of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, Shandong Province, China
| |
Collapse
|
18
|
Evgenidou Ε, Vasilopoulou K, Ioannidou E, Koronaiou L, Nannou C, Trikkaliotis D, Bikiaris D, Kyzas G, Lambropoulou D. Photocatalytic Degradation of the Antiviral Drug Abacavir Using Titania-Graphene Oxide Nanocomposites in Landfill Leachate. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
19
|
Kanafin YN, Abdirova P, Arkhangelsky E, Dionysiou DD, Poulopoulos SG. UVA and goethite activated persulfate oxidation of landfill leachate. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
20
|
Villamizar S, Maturana Cordoba A, Soto J. Leachate decontamination through biological processes coupled to advanced oxidation: A review. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:1341-1365. [PMID: 34569916 DOI: 10.1080/10962247.2021.1985012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 08/21/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The landfill leachate is considered a toxic effluent composed of recalcitrant contaminants that requires innovative alternatives for its decontamination. Coupling between advanced oxidation processes (AOPs) and aerobic biological treatments are highlighted in this research. Therefore, a bibliographic review of the research made from 2010 to 2021 was developed. These combined alternatives were applied in leachates, and it is oriented toward the analysis of knowledge gaps, trends, and future proposals of the treatment combined that contribute to researchers who wish to work on the subject. These kinds of treatments were chosen due to a bibliometric analysis made. Also, the information was searched in several scientific database. This work was found to be unpublished, as no reviews were found so far that agglomerate studies of coupling between photocatalytic and aerobic biological processes to treat leachates. Besides, AOPs are ideal for treating wastewater of complex composition, however, when it is used as the only treatment, they are usually unprofitable, which justifies their coupling with biological treatments. Subsequently, it was determined that the knowledge main gap is the lack of documentation of treatment costs, which makes it difficult to implement on a real scale. In addition to this, the couplings trends are toward doping with metallic and nonmetallic ions of the catalyst used in the photocatalytic process to improve the efficiency of these. Finally, future research should work on finding alternatives that allow the optimization of the resources used in the combined systems and on promoting the recovery of existing products in the leachate.Implications: Leachates generate several environmental impacts due to their toxic composition. Even when coupling between heterogeneous photocatalysis and biologic treatment can solve them, issues like cost analysis and the scaling-up factor have not been developed, and futures researchers should work on that. Besides, the trend founded in almost all investigations was the catalyst doping with metals and nonmetals ions, particularly when they use TiO2 because it gives the possibility of improving efficiencies just with a structural variation. Finally, these treatment combinations require more analyses and comparison of their remotion over emerging pollutants and their performance with new designs.
Collapse
Affiliation(s)
- Salvador Villamizar
- Department of Civil and Environmental Engineering - Institute of Hydraulic and Environmental Studies IDEHA, Universidad del Norte, Barranquilla, Atlántico, Colombia
| | - Aymer Maturana Cordoba
- Department of Civil and Environmental Engineering - Institute of Hydraulic and Environmental Studies IDEHA, Universidad del Norte, Barranquilla, Atlántico, Colombia
| | - Joseph Soto
- Department of Civil and Environmental Engineering - Institute of Hydraulic and Environmental Studies IDEHA, Universidad del Norte, Barranquilla, Atlántico, Colombia
| |
Collapse
|
21
|
Wu D, Sui Q, Mei X, Yu X, Gu Y, Zhao W. Non-antibiotics matter: Evidence from a one-year investigation of livestock wastewater from six farms in East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157418. [PMID: 35850340 DOI: 10.1016/j.scitotenv.2022.157418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Livestock wastewater is an important source of pharmaceuticals in aquatic environments; however, most related studies only focused on antibiotics. This study investigated 18 pharmaceutical active compounds (PhACs), including 12 antibiotics and 6 non-antibiotics, in livestock wastewater during a one-year survey of six livestock farms in East China. The results showed that four non-antibiotic PhACs-caffeine, N,N-diethyl-m-toluamide, gemfibrozil, and diclofenac-exhibited high detection frequencies (80% to 97%), high concentrations (median 0.43 to 3.79 μg/L), poor removal efficiencies (3% to 53%), and high environmental risks. A ranking system was developed to prioritize PhACs based on their occurrence, removal, and environmental risks in livestock wastewater; diclofenac, N,N-diethyl-m-toluamide, sulfamethazine, sulfadiazine, and gemfibrozil, were identified as the top five priority PhACs that should be considered first. Finally, a preliminary source apportionment protocol using four priority PhACs was proposed to trace the emission originating from treated and untreated livestock wastewater and to indicate the major contributor (cattle or swine farms) in the region. To the best of our knowledge, this is the first long-term investigation on the pollution characteristics of non-antibiotics in livestock wastewater in China, and our findings highlight the importance of considering non-antibiotics and the prioritized PhACs for the pollution control of PhACs in livestock wastewater.
Collapse
Affiliation(s)
- Dongquan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xuebing Mei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
22
|
Han Y, Hu LX, Liu T, Liu J, Wang YQ, Zhao JH, Liu YS, Zhao JL, Ying GG. Non-target, suspect and target screening of chemicals of emerging concern in landfill leachates and groundwater in Guangzhou, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155705. [PMID: 35523323 DOI: 10.1016/j.scitotenv.2022.155705] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Landfill sites have been regarded as a significant source of chemicals of emerging concern (CECs) in groundwater. However, our understanding about the compositions of CECs in landfill leachate and adjacent groundwater is still very limited. Here we investigated the CECs in landfill leachates and groundwater of Guangzhou in South China by target, suspect and non-target analysis using high-resolution mass spectrometry (HRMS). A variety of CECs (n = 242), including pharmaceuticals (n = 64), pharmaceutical intermediates (n = 18), personal care products (n = 9), food additives (n = 18), industrial chemicals (n = 82, e.g., flame retardants, plasticizers, antioxidants and catalysts), pesticides (n = 26), transformation products (n = 8) and other organic compounds (n = 17) were (tentatively) identified by non-target and suspect screening. 142 CECs were quantitated with target analysis, and among them 37, 24 and 27 CECs were detected respectively in the raw leachate (272-1780 μg/L), treated leachate (0.25-0.81 μg/L) and groundwater (0.10-53.7 μg/L). The CECs in the raw leachates were efficiently removed with the removal efficiencies greater than 88.7%. Acesulfame, bisphenol F and ketoprofen were the most abundant compounds in both treated leachate and groundwater. The CECs in groundwater was found most likely to be originated from the landfill sites. Our results highlight the importance of non-target screening in identifying CECs, and reveal the contamination risk of groundwater by landfill leachate.
Collapse
Affiliation(s)
- Yu Han
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ting Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jing Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Qing Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jia-Hui Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
23
|
Kan X, Feng S, Mei X, Sui Q, Zhao W, Lyu S, Sun S, Zhang Z, Yu G. Quantitatively identifying the emission sources of pharmaceutically active compounds (PhACs) in the surface water: Method development, verification and application in Huangpu River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152783. [PMID: 34990669 DOI: 10.1016/j.scitotenv.2021.152783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 05/13/2023]
Abstract
Recognizing the main sources of pharmaceutically active compounds (PhACs) found in surface waters has been a challenge to the effective control of PhAC contamination from the sources. In the present study, a novel method based on Characteristic Matrix (ChaMa) model of indicator PhACs to quantitatively identify the contribution of multiple emission sources was developed, verified, and applied in Huangpu River, Shanghai. Carbamazepine (CBZ), caffeine (CF) and sulfadiazine (SDZ) were proposed as indicators. Their occurrence patterns in the corresponding emission sources and the factor analysis of their composition in the surface water samples were employed to construct the ChaMa model and develop the source apportionment method. Samples from typical emission sources were collected and analyzed as hypothetical surface water samples, to verify the method proposed. The results showed that the calculated contribution proportions of emission sources to the corresponding source samples were 45%-85%, proving the feasibility of the method. Finally, the method was applied to different sections in Huangpu River, and the results showed that livestock wastewater was the dominant emission source, accounting for 55%-73% in the upper reach of Huangpu River. Untreated municipal wastewater was dominant in the middle and lower reaches of Huangpu River, accounting for 76%-94%. This novel source apportionment method allows the quantitative identification of the contribution of multiple PhAC emission sources. It can be replicated in other regions where the occurrence of localized indicators was available, and will be helpful to control the contamination of PhACs in the water environment from the major sources.
Collapse
Affiliation(s)
- Xiping Kan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengya Feng
- School of Mathematics, East China University of Science and Technology, Shanghai 200237, China
| | - Xuebing Mei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuying Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ziwei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gang Yu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Rezaei Adaryani A, Keen O. Occurrence of pharmaceuticals and plasticizers in leachate from municipal landfills of different age. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:1-7. [PMID: 35085866 DOI: 10.1016/j.wasman.2022.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Contaminants of emerging concern (CECs), such as pharmaceuticals and plasticizers, are present in leachate due to disposal of pharmaceuticals and plastic waste. Leachate is usually released to publicly owned treatment works, but CECs could pass through and be discharged into water resources. Landfills generate leachate for many years after closure, but it is currently unknown whether CECs continue to leach over time or dissipate soon after the waste is deposited. Leachate samples from four domestic landfills with various closure status in North Carolina, United States, have been collected from summer 2019 to summer 2020 (n = 36). Samples were analyzed for 13 pharmaceuticals (7 detected), and 3 plasticizers (2 detected). Carbamazepine and ibuprofen were detected in 100% of samples at respective median concentrations of 45 and 14,867 ng/L in open cells and 100 and 3,049 ng/L in cells closed for > 13 years. 17α-ethinylestradiol, acetaminophen, bisphenol A, doxycycline, and metformin were also frequently detected at concentrations spanning over 5 orders of magnitude between the compounds. Carbamazepine was present at significantly higher concentrations in older leachate (p < 0.1), while acetaminophen, doxycycline and bisphenol S were found at significantly lower concentrations. Lower concentration of bisphenol S is likely related to its usage pattern and not to its attenuation in the landfill. This study showed that leachate could be a source of CECs many years after closure. Thus, the transport of these compounds with landfill leachate is expected to persist for as long as leachate is generated in the landfill.
Collapse
Affiliation(s)
- Amirhossein Rezaei Adaryani
- Department of Civil and Environmental Engineering, University of North Carolina - Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Olya Keen
- Department of Civil and Environmental Engineering, University of North Carolina - Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA.
| |
Collapse
|
25
|
González-González RB, Sharma A, Parra-Saldívar R, Ramirez-Mendoza RA, Bilal M, Iqbal HMN. Decontamination of emerging pharmaceutical pollutants using carbon-dots as robust materials. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127145. [PMID: 34547693 DOI: 10.1016/j.jhazmat.2021.127145] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/05/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Environmental pollution is a critical issue that requires proper measures to maintain environmental health in a sustainable and effective manner. The growing persistence of several active pharmaceutical residues, such as antibiotics like tetracycline, and anti-inflammatory drugs like diclofenac in water matrices is considered an issue of global concern. Numerous sewage/drain waste lines from the domestic and pharmaceutical sector contain an array of toxic compounds, so-called "emerging pollutants" and possess adverse effects on entire living ecosystem and damage its biodiversity. Therefore, effective solution and preventive measures are urgently required to sustainably mitigate and/or remediate pharmaceutically active emerging pollutants from environmental matrices. In this context, herein, the entry pathways of the pharmaceutical waste into the environment are presented, through the entire lifecycle of a pharmaceutical product. There is no detailed review available on carbon-dots (CDs) as robust materials with multifunctional features that support sustainable mitigation of emerging pollutants from water matrices. Thus, CDs-based photocatalysts are emerging as an efficient alternative for decontamination by pharmaceutical pollutants. The addition of CDs on photocatalytic systems has an important role in their performance, mainly because of their up-conversion property, transfer photoinduced electron capacities, and efficient separation of electrons and holes. In this review, we analyze the strategies followed by different researchers to optimize the photodegradation of various pharmaceutical pollutants. In this manner, the effect of different parameters such as pH, the dosage of photocatalyst, amount of carbon dots, and initial pollutant concentration, among others are discussed. Finally, current challenges are presented from a pollution prevention perspective and from CDs-based photocatalytic remediation perspective, with the aim to suggest possible research directions.
Collapse
Affiliation(s)
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Av. Epigmenio González 500, Fracc, SanPablo, CP 76130 Queretaro, Mexico
| | | | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
26
|
Pisharody L, Gopinath A, Malhotra M, Nidheesh PV, Kumar MS. Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes. CHEMOSPHERE 2022; 287:132216. [PMID: 34517234 DOI: 10.1016/j.chemosphere.2021.132216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Landfilling is the most prominently adopted disposal technique for managing municipal solid waste across the globe. However, the main drawback associated with this method is the generation of leachate from the landfill site. Leachate, a highly concentrated liquid consisting of both organic and inorganic components arises environmental issues as it contaminates the nearby aquifers. Landfill leachate treatment by conventional methods is not preferred as the treatment methods are not much effective to remove these pollutants. Advanced oxidation processes (AOPs) based on both hydroxyl and sulfate radicals could be a promising method to remove the micropollutants completely or convert them to non-toxic compounds. The current review focuses on the occurrence of micropollutants in landfill leachate, their detection methods and removal from landfill leachate using AOPs. Pharmaceuticals and personal care products occur in the range of 10-1 to more than 100 μg L-1 whereas phthalates were found below the detectable limit to 384 μg L-1, pesticides in the order of 10-1 μg L-1 and polyaromatic hydrocarbons occur in concentration from 10-2 to 114.7 μg L-1. Solid-phase extraction is the most preferred method for extracting micropollutants from leachate and liquid chromatography (LC) - mass spectrophotometer (MS) for detecting the micropollutants. Limited studies have been focused on AOPs as a potential method for the degradation of micropollutants in landfill leachate. The potential of Fenton based techniques, electrochemical AOPs and ozonation are investigated for the removal of micropollutants from leachate whereas the applicability of photocatalysis for the removal of a wide variety of micropollutants from leachate needs in-depth studies.
Collapse
Affiliation(s)
- Lakshmi Pisharody
- The Zuckerberg Institute of Water Research, Ben-Gurion University, Israel
| | - Ashitha Gopinath
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Milan Malhotra
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - M Suresh Kumar
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
27
|
Liu X, Wang Z, Zhang L, Fan W, Yang C, Li E, Du Y, Wang X. Inconsistent seasonal variation of antibiotics between surface water and groundwater in the Jianghan Plain: Risks and linkage to land uses. J Environ Sci (China) 2021; 109:102-113. [PMID: 34607659 DOI: 10.1016/j.jes.2021.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 05/12/2023]
Abstract
Antibiotics are widely used in humans and animals, but their transformation from surface water to groundwater and the impact of land uses on them remain unclear. In this study, 14 antibiotics were systematically surveyed in a complex agricultural area in Central China. Results indicated that the selected antibiotic concentrations in surface waters were higher in winter (average: 32.7 ng/L) than in summer (average: 17.9 ng/L), while the seasonal variation in groundwaters showed an opposite trend (2.2 ng/L in dry winter vs. 8.0 ng/L in summer). Macrolides were the predominant antibiotics in this area, with a detected frequency of over 90%. A significant correlation between surface water and groundwater antibiotics was only observed in winter (R2 = 0.58). This study further confirmed the impact of land uses on these contaminants, with optimal buffer radii of 2500 m in winter and 500 m in summer. Risk assessment indicated that clarithromycin posed high risks in this area. Overall, this study identified the spatiotemporal variability of antibiotics in a typical agricultural area in Central China and revealed the impact of land uses on antibiotic pollution in aquatic environments.
Collapse
Affiliation(s)
- Xi Liu
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; Honghu Lake Station for Wetland Ecosystem Research, Chinese Academy of Sciences, Honghu 433200, China.
| | - Lu Zhang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiying Fan
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Yang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; Honghu Lake Station for Wetland Ecosystem Research, Chinese Academy of Sciences, Honghu 433200, China
| | - Enhua Li
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; Honghu Lake Station for Wetland Ecosystem Research, Chinese Academy of Sciences, Honghu 433200, China
| | - Yun Du
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; Honghu Lake Station for Wetland Ecosystem Research, Chinese Academy of Sciences, Honghu 433200, China
| | - Xuelei Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; Honghu Lake Station for Wetland Ecosystem Research, Chinese Academy of Sciences, Honghu 433200, China.
| |
Collapse
|
28
|
Performance Comparison between the Specific and Baseline Prediction Models of Ecotoxicity for Pharmaceuticals: Is a Specific QSAR Model Inevitable? J CHEM-NY 2021. [DOI: 10.1155/2021/5563066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Assessing the ecotoxicity of pharmaceuticals is of urgent need due to the recognition of their possible adverse effects on nontarget organisms in the aquatic environment. The reality of ecotoxicity data scarcity promotes the development and application of quantitative structure activity relationship (QSAR) models. In the present study, we aimed to clarify whether a QSAR model of ecotoxicity specifically for pharmaceuticals is needed considering that pharmaceuticals are a class of chemicals with complex structures, multiple functional groups, and reactive properties. To this end, we conducted a performance comparison of two previously developed and validated QSAR models specifically for pharmaceuticals with the commonly used narcosis toxicity prediction model, i.e., Ecological Structure Activity Relationship (ECOSAR), using a subset of pharmaceuticals produced in China that had not been included in the training datasets of QSAR models under consideration. A variety of statistical measures demonstrated that the pharmaceutical specific model outperformed ECOSAR, indicating the necessity of developing a specific QSAR model of ecotoxicity for the active pharmaceutical contaminants. ECOSAR, which was generally used to predict the baseline or the minimum toxicity of a compound, generally underestimated the ecotoxicity of the analyzed pharmaceuticals. This could possibly be because some pharmaceuticals can react through specific modes of action. Nonetheless, it should be noted that 95% prediction intervals spread over approximately four orders of magnitude for both tested QSAR models specifically for pharmaceuticals.
Collapse
|
29
|
Fang D, Wang J, Cui D, Dong X, Tang C, Zhang L, Yue D. Recent Advances of Landfill Leachate Treatment. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00262-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Wang K, Zhuang T, Su Z, Chi M, Wang H. Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: Occurrence, removal and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147811. [PMID: 34023602 DOI: 10.1016/j.scitotenv.2021.147811] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 05/19/2023]
Abstract
Sewage treatment plants (STPs) and pharmaceutical manufactories (PMFs) are recognized as important reservoirs for aquatic pollution with antibiotics. Although the occurrence of multiple classes of antibiotics has been mostly reported for STPs and PMFs, knowledge on the effects of wastewater treatment processes on the removal of antibiotics is not well documented. In this study, wastewaters were collected from different treatment points of two STPs and two PMFs in eastern China. Thirty-seven antibiotics within the four classes of fluoroquinolones (FQs), macrolides (MACs), sulfonamides (SAs) and tetracyclines (TCs) were analyzed. Among the investigated antibiotics, 19-33 out of 37 target compounds were detected at least once in the STPs wastewaters ranging from low ng/L to approximately 12.7 μ/L. In the wastewater samples collected from PMFs, up to 34 antibiotics were present with detection frequencies up to 100%, showing generally higher concentrations (up to 19.0 μ/L) than those at the STPs. FQs and SAs were the dominant antibiotic families, which accounted for more than 90% of the total antibiotic concentration in the wastewaters. Moreover, the removal of antibiotics by anaerobic-anoxic-oxic (A2O), membrane bioreactor (MBR) and conventional activated sludge (CAS) systems was evaluated. The MBR system exhibited the best performance, mainly due to the processes of biodegradation and sorption during biological treatments. Notably, several SAs (SMP, SMZ) and FQs (CIN, ENO) antibiotics were consistently detected at concentration levels of μ/L in the effluent samples. The culturable antibiotic-resistance tests and risk assessment indicated that the antibiotic-contaminated effluents would facilitate the development of resistant bacteria and pose high toxicity to non-target organisms in the aquatic environment. Overall, the findings suggested an urgent need for improving the wastewater treatment technologies for simultaneous removal of different classes of antibiotics.
Collapse
Affiliation(s)
- Kun Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Jinan Environmental Research Academy, Jinan, Shandong 250100, China.
| | - Tao Zhuang
- Jinan Environmental Research Academy, Jinan, Shandong 250100, China
| | - Zhaoxin Su
- Jinan Environmental Research Academy, Jinan, Shandong 250100, China
| | - Menghao Chi
- Jinan Environmental Research Academy, Jinan, Shandong 250100, China
| | - Haichao Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
31
|
Zhang Y, Zhu Y, Shao Y, Rong C, Pan Z, Deng J. Toxicity of disinfection byproducts formed during the chlorination of sulfamethoxazole, norfloxacin, and 17β-estradiol in the presence of bromide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50718-50730. [PMID: 33966160 DOI: 10.1007/s11356-021-14161-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Brominated disinfection byproducts (Br-DBPs) are formed during the disinfection process of water containing bromine ions, such as marine aquaculture water. Little attention has been paid to Br-DBPs with anthropogenic chemicals as precursors. This study summarized the sodium hypochlorite (NaClO) oxidation of three frequently used pharmaceuticals, including two antibiotics, norfloxacin (NOR) and sulfamethoxazole (SMX), and the growth hormone estrogen 17β-estradiol (E2). Transformations of the pharmaceuticals were found to be faster in marine aquaculture water than in distilled water. Several Br-DBPs and Cl-DBPs were identified for NOR, SMX, and E2. It was shown that the carboxyl group, piperazine ring, C3, and C8 atoms were the primary reaction sites on NOR. The aniline moiety and S-N bond were identified to be the reaction sites on SMX. The C2, C4, C9, and C16 atoms were the potential reaction centers on E2. Preliminary calculation by QSAR model indicated that the value of logKow significantly increased with an increase in the number of bromine atoms in the Br-DBPs. The results of the bioconcentration factors (BCF) analysis suggested that the bioaccumulation of Br-DBPs were greater than that chlorinated DBPs (Cl-DBPs) in distilled water.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Yunjie Zhu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Yanan Shao
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Chuan Rong
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Zihan Pan
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Jie Deng
- Guangxi Bo-Huan Environmental Consulting Services Co. Ltd, 12 Kexing Road, Gaoxin District, Nanning, 530007, Guangxi Autonomous Region, China.
| |
Collapse
|
32
|
Ezugworie FN, Igbokwe VC, Onwosi CO. Proliferation of antibiotic-resistant microorganisms and associated genes during composting: An overview of the potential impacts on public health, management and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147191. [PMID: 33905939 DOI: 10.1016/j.scitotenv.2021.147191] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 05/28/2023]
Abstract
Antibiotic residues together with non-antibiotic drugs and heavy metals act as a selective pressure for the spread of antibiotic-resistant microorganisms (ARMs), antibiotic-resistant genes (ARGs), and mobile genetic elements (MGEs) during composting of livestock manure. ARMs, ARGs and MGEs have become emerging contaminants since they are regularly implicated in the majority of compost produced from livestock manure. The prevalence of these contaminants in agricultural soil receiving compost has drawn huge attention globally due to the risks they pose to the total environment. Although a large body of literature exists on the application of composting methods in minimizing the relative abundance of these contaminants, there is a paucity of information on the robustness, limitations and opportunities and threats of various composting protocols currently deployed. To address this knowledge gap, the current review compiled literature on the origin and mechanisms of the proliferation of ARMs, ARGs, and MGEs during composting of livestock manure. The effectiveness of current composting protocols in the reduction or removal of emerging contaminants was evaluated. Furthermore, the potential environmental impacts and human health risks of these contaminants following land application of compost were also presented. Finally, we propose some strategic approaches for the reduction of ARGs and MGEs during composting of livestock manure.
Collapse
Affiliation(s)
- Flora N Ezugworie
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Victor C Igbokwe
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria.
| |
Collapse
|
33
|
Duyar A, Ciftcioglu V, Cirik K, Civelekoglu G, Uruş S. Treatment of landfill leachate using single-stage anoxic moving bed biofilm reactor and aerobic membrane reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145919. [PMID: 33640548 DOI: 10.1016/j.scitotenv.2021.145919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Landfill leachate (LFL) is one of the most serious environmental problems due to the high concentrations of toxic and hazardous matters. Although several physical, chemical, methods have been tested, biological processes and single or multiple-stage combinations of them have been receiving more attention due to their cost-effective and environmentally-friendly manner. The present work recommended coupling of conventional single-stage A/O with moving bed biofilm reactor and membrane bioreactor (AnoxMBBR/AeMBR) for LFL treatment. The system performance was evaluated for 233 d under varying nitrate concentrations (100-1000 mgNO3--N/L), sludge retention time (SRT) (30-90 d), and HRT (24-48 h) in AnoxMBBR, and constant SRT (infinite) and HRT (48 h) in the AeMBR. The best system performances were observed at 1000 mgNO3--N/L concentration, SRT of 90 d and HRT of 48 h, and the average removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and nitrate‑nitrogen (NO3-N) were 74.2%, 99.7%, and 89.1%, respectively. Besides, the AeMBR was achieved above 99% NH4+-N removal and not adversely affected by varying operation conditions of AnoxMBBR. A slight increase in selected phthalic acid ester (PAE) concentrations (diethyl phthalate (DEP), di (2-Ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP)) was detected in the AnoxMBR, and complete PAEs removal was attained in the AeMBR. Mg, Al, Si, Na, Fe was detected by SEM-EDX analyses in both biofilm of AnoxMBBR and the cake layers of AeMBR. Nitrobacter and Nitratireductor which showed a relatively high abundance played an important role in the removal of NH4+-N and COD in LFL. The results confirmed that the proposed sequence is efficient for COD removal, nitrogen removal, and PAEs being an acceptable treatment for landfill leachates.
Collapse
Affiliation(s)
- Ahmet Duyar
- Department of Environmental Engineering, Suleyman Demirel University, 32260 Isparta, Turkey; University-Industry-Public Collaboration, Research-Development-Application Centre, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| | - Vildan Ciftcioglu
- Department of Bioengineering and Sciences, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras Turkey
| | - Kevser Cirik
- Department of Environmental Engineering, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey; Research and Application Center for Environmental Concerns, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| | - Gokhan Civelekoglu
- Department of Environmental Engineering, Akdeniz University, 07058 Antalya, Turkey.
| | - Serhan Uruş
- Department of Chemistry, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| |
Collapse
|
34
|
Nava-Andrade K, Carbajal-Arízaga GG, Obregón S, Rodríguez-González V. Layered double hydroxides and related hybrid materials for removal of pharmaceutical pollutants from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112399. [PMID: 33774560 DOI: 10.1016/j.jenvman.2021.112399] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/23/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals and their by-products are recalcitrant contaminants in water. Moreover, the high consumption of these drugs has many detrimental effects on body waters and ecosystems. In this timely review, the advances in molecular engineering of layered double hydroxides (LDH) that have been used for the removal of pharmaceutical pollutants are discussed. The approach starts from the strategies to obtain homogeneous synthesis of LDH that allow the doping and/or surface functionalization of different metals and oxides, producing heterojunction systems as well as composites with carbon and silica-based materials with high surface area. Adsorption is considered as a traditional removal of pharmaceutical pollutants, so the kinetic and mechanism of this phenomenon are analyzed based on pH, temperature, ionic strength, in order to obtain new insights for the formation of multifunctional LDH. Advanced oxidation methodologies, mainly heterogeneous photocatalysis and Fenton-like processes, stand out as the more efficient even to obtain the mineralization of the drugs. The LDH have the advantage of structural memory that favors regeneration processes. The reconstruction of calcined LDH can be used to improve drug removal, through a combination of adsorption capacity/catalytic activity. A meticulous analysis of the persistence, toxicity and bioaccumulation of the most common pharmaceuticals has allowed us to highlight the ability of the LDH to remove recalcitrant drugs at relatively low concentrations (ppm, ppb), in contrast to other mixed oxide nanostructures and homogeneous oxidation processes. In this sense, the mechanism of drug removal by LDH is discussed based on the importance of the use of composites, scavenger agents, Fenton and electro-Fenton processes, membranes, thin films and coatings, among others. In addition, the ecotoxicity of LDH is also reviewed to indicate that these layered structures can exhibit biocompatibility or high toxicity depending on the adsorbed drug and ions/metals that compose them. Undoubtedly, the LDH have a unique flexible structure with adsorption capacity and catalytic activity, facts that explain the important reasons for their extensive use in the environmental remediation of pharmaceutical pollutants from water.
Collapse
Affiliation(s)
- K Nava-Andrade
- Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco, Mexico.
| | - G G Carbajal-Arízaga
- Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco, Mexico.
| | - S Obregón
- Universidad Autónoma de Nuevo León, UANL, CICFIM-Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455, Nuevo León, Mexico.
| | - V Rodríguez-González
- Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), División de Materiales Avanzados, Camino a la Presa San José 2055, Lomas 4ta, Sección, 78216, San Luis Potosí, Mexico.
| |
Collapse
|
35
|
Zhao W, Yu G, Blaney L, Wang B. Development of emission factors to estimate discharge of typical pharmaceuticals and personal care products from wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144556. [PMID: 33485210 DOI: 10.1016/j.scitotenv.2020.144556] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/30/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Due to the potential ecological and human health risks, pharmaceuticals and personal care products (PPCPs) are considered as contaminants of emerging concern. PPCPs can be discharged to the aquatic environment from various sources, including municipal wastewater treatment plants (WWTPs), animal feeding operations, hospitals, and pharmaceutical manufacturers. A major challenge to regional characterization of ecological and human health risks is identification of the environmental emissions of PPCPs. This study established a facile approach for calculation of PPCP emission factors from raw wastewater and wastewater effluent. Using reported concentrations from WWTPs, nine PPCPs, namely carbamazepine, ciprofloxacin, erythromycin, ibuprofen, ketoprofen, ofloxacin, sulfadiazine, sulfamethoxazole, and trimethoprim, were identified as priority contaminants based on environmental significance (i.e., high detection frequency and potential ecological risk) and data availability. Emission factors were calculated for the nine PPCPs in raw wastewater, secondary effluent, and tertiary effluent for low, medium and high emission scenarios according to the concentration distributions of these nine PPCPs. The emission factors were used to estimate the mass of the PPCPs discharged from the nine provinces and two municipalities of the Yangtze River valley. The total mass of the nine PPCPs emitted into the watershed was estimated as 3867 kg, 8808 kg and 21,464 kg for low, medium and high emission scenarios respectively in 2018. Although uncertainty is inevitable in the emission factors, the reported approach provides a viable alternative to top-down and multimedia fugacity estimation strategies that require an abundance of sewershed-, WWTP-, and compound-specific information that is difficult to collect in developing countries.
Collapse
Affiliation(s)
- Wenxing Zhao
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Building 16, 101 Business Park, No, 158 Jinfeng Road, New District, Suzhou 215163, China
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Bin Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Building 16, 101 Business Park, No, 158 Jinfeng Road, New District, Suzhou 215163, China.
| |
Collapse
|
36
|
Pharmaceutical and Personal Care Products in Different Matrices: Occurrence, Pathways, and Treatment Processes. WATER 2021. [DOI: 10.3390/w13091159] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The procedures for analyzing pharmaceuticals and personal care products (PPCPs) are typically tedious and expensive and thus, it is necessary to synthesize all available information from previously conducted research. An extensive collection of PPCP data from the published literature was compiled to determine the occurrence, pathways, and the effectiveness of current treatment technologies for the removal of PPCPs in water and wastewater. Approximately 90% of the compiled published papers originated from Asia, Europe, and the North American regions. The incomplete removal of PPCPs in different water and wastewater treatment processes was widely reported, thus resulting in the occurrence of PPCP compounds in various environmental compartments. Caffeine, carbamazepine, diclofenac, ibuprofen, triclosan, and triclocarban were among the most commonly reported compounds detected in water and solid matrices. Trace concentrations of PPCPs were also detected on plants and animal tissues, indicating the bioaccumulative properties of some PPCP compounds. A significant lack of studies regarding the presence of PPCPs in animal and plant samples was identified in the review. Furthermore, there were still knowledge gaps on the ecotoxicity, sub-lethal effects, and effective treatment processes for PPCPs. The knowledge gaps identified in this study can be used to devise a more effective research paradigm and guidelines for PPCP management.
Collapse
|
37
|
Yu X, Sui Q, Lyu S, Zhao W, Wu D, Yu G, Barcelo D. Rainfall Influences Occurrence of Pharmaceutical and Personal Care Products in Landfill Leachates: Evidence from Seasonal Variations and Extreme Rainfall Episodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4822-4830. [PMID: 33792295 DOI: 10.1021/acs.est.0c07588] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Unused or expired pharmaceutical and personal care products (PPCPs) are usually discharged into municipal solid wastes, then travel to landfills, and eventually percolate into leachates. However, knowledge of their occurrence and temporal dynamics in leachates is limited, making landfill leachate an underappreciated emission source of PPCPs. Furthermore, the differences in PPCP variations in landfill leachates emphasize the necessity for identifying the influencing factors and elucidating the mechanisms for PPCP fluctuations. In this study, successive monthly monitoring of PPCPs in leachates throughout an entire year was performed to determine their seasonal variations and identify their influencing factors. Furthermore, five pairs of additional sampling campaigns were conducted before and after rainfall events during wet seasons to elucidate the influencing mechanisms. The results showed that there was a distinct seasonal variation in PPCPs in landfill leachates-elevated levels during the wet period (from April to September, with a mean concentration of 17.0 μg/L for total monitored PPCPs)-when compared to other months (mean concentration of 3.8 μg/L). Rainfall played a considerable role in mediating PPCP concentrations in leachates. The PPCP responses to five rainfall episodes further verified the influence of rainfall and demonstrated that the tendency to PPCP concentration increase was related to rainfall precipitation. Torrential rain events (i.e., 24 h cumulative precipitation of 50-99.9 mm) led to the most significant increases in PPCP concentrations in landfill leachates. In addition, the hydrophilicity of PPCPs contributed to the different fluctuations during the 1 year investigation and different responses to rainfall. To the best of our knowledge, this study provides the first direct evidence supporting the influence of rainfall on PPCPs in landfill leachates, which can help better understand the occurrence and behavior of emerging contaminants in this underappreciated emission source.
Collapse
Affiliation(s)
- Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dongquan Wu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gang Yu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damia Barcelo
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, Girona 17003, Spain
| |
Collapse
|
38
|
Park J, Kim C, Hong Y, Lee W, Lee S, Chung H, Kim H, Jeong DH. Determination of pharmaceuticals in solid samples in municipal wastewater treatment plants by online SPE LC-MS/MS using QuEChERS extraction. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:279. [PMID: 33864156 DOI: 10.1007/s10661-021-09069-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
In this study, a pretreatment method based on the QuEChERS method has been applied for simultaneously extracting 27 residual pharmaceuticals from wastewater solids. The extracted compounds have been analyzed using online solid-phase extraction (SPE) coupled to liquid chromatography with tandem mass spectrometry (LC-MS/MS). A recovery test was conducted according to the absorbent type, and buffers were added in the sample extraction step. The highest recovery efficiency could be observed when Na2SO4 was used as an absorbent and Na2EDTA was injected during the extraction process; the recovery efficiencies of the proposed method for the target compounds ranged from 61.3 to 137.2%, and the repeatability was 6.8%. These recovery and repeatability data showed that the proposed method could reliably analyze the 27 target residual pharmaceuticals. The concentrations of the target compounds were all below the limits of quantification: 830 ng g-1 for the target compounds in suspended solids, 2353 ng g-1 in activated sludge, and 1929 ng g-1 in waste sludge. The analytical method established in this study can be applied to quantify residual pharmaceuticals in solid samples and to investigate their behaviors in a municipal wastewater treatment plant.
Collapse
Affiliation(s)
- Junwon Park
- Department of Environmental Infrastructure Research, National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, South Korea
- Division of Monitoring and Analysis, Yeongsan River Basin Environmental Office, 31Seo-gu, Gyesuro, Gwangju, 61945, South Korea
| | - Changsoo Kim
- Department of Environmental Infrastructure Research, National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, South Korea
| | - Youngmin Hong
- Technical Research Center, Shimadzu Scientific Korea, 145 Gasan digital 1-ro, Geumcheon-gu, Seoul, 08056, South Korea
| | - Wonseok Lee
- Department of Environmental Infrastructure Research, National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, South Korea
| | - Soohyung Lee
- Department of Environmental Infrastructure Research, National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, South Korea
| | - Hyenmi Chung
- Department of Environmental Infrastructure Research, National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, South Korea
| | - Hyunook Kim
- Department of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02054, South Korea
| | - Dong-Hwan Jeong
- Department of Environmental Infrastructure Research, National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, South Korea.
| |
Collapse
|
39
|
Wang K, Reguyal F, Zhuang T. Risk assessment and investigation of landfill leachate as a source of emerging organic contaminants to the surrounding environment: a case study of the largest landfill in Jinan City, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18368-18381. [PMID: 32681338 DOI: 10.1007/s11356-020-10093-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Emerging organic contaminants (EOCs) have been widely studied in landfill leachates but not in the surrounding environment of landfills. In this study, two sampling campaigns were conducted to determine 45 EOCs in landfill leachates and environmental samples near a landfill in East China. Our study focused on the seasonal occurrence and spatial distribution of the target EOCs, as well as their ecological risks. The results showed 13 out of 45 EOCs were detectable and achieved individual concentrations that ranged from 2.0 to 5080 ng/L in the landfill leachates. Most of the detected EOCs exhibited higher concentrations in the leachates collected in summer than in winter. Effective removal of the EOCs by a two-stage disc tube reverse osmosis (DTRO) system led to a significant reduction in their concentration levels (< LOQ ~ 49 ng/L) in treated leachates. Eight EOCs (< LOQ ~ 62.7 ng/L) were detected in the groundwater adjacent to the landfill and had a similar composition pattern to raw leachates. The contamination levels of the target EOCs in groundwater decreased with the distance of sampling sites from the landfill. In soil samples, the occurrence of target EOCs was not consistent with raw or treated landfill leachates. Spatially, no apparent difference in the EOC concentrations was observed in the soil nearby the landfill. Crop plants sorbed the EOCs contained in soil (< LOQ ~ 30.4 ng/L), but they were not able to bioconcentrate the contaminants in either roots or edible parts. Risk assessment suggested that the individual EOC likely posed medium to high risks to aquatic organisms in groundwater while negligible impacts to human health through consumption of vegetables. To the best of our knowledge, this is the first report on the contribution of landfill leachates to EOC contamination in both aquatic and soil environments in East China. Our findings emphasized the importance of investigating EOCs in landfill leachates and accumulative environmental risks of EOCs in the neighboring environment of landfills in China.
Collapse
Affiliation(s)
- Kun Wang
- Jinan Environmental Research Academy, Jinan, 250100, Shandong, People's Republic of China.
| | - Febelyn Reguyal
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Tao Zhuang
- Jinan Environmental Research Academy, Jinan, 250100, Shandong, People's Republic of China
| |
Collapse
|
40
|
Potential Environmental and Human Health Risks Caused by Antibiotic-Resistant Bacteria (ARB), Antibiotic Resistance Genes (ARGs) and Emerging Contaminants (ECs) from Municipal Solid Waste (MSW) Landfill. Antibiotics (Basel) 2021; 10:antibiotics10040374. [PMID: 33915892 PMCID: PMC8065726 DOI: 10.3390/antibiotics10040374] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
The disposal of municipal solid waste (MSW) directly at landfills or open dump areas, without segregation and treatment, is a significant concern due to its hazardous contents of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and metal resistance genes (MGEs). The released leachate from landfills greatly effects the soil physicochemical, biological, and groundwater properties associated with agricultural activity and human health. The abundance of ARB, ARGs, and MGEs have been reported worldwide, including MSW landfill sites, animal husbandry, wastewater, groundwater, soil, and aerosol. This review elucidates the occurrence and abundance of ARB, ARGs, and MRGs, which are regarded as emerging contaminants (ECs). Recently, ECs have received global attention because of their prevalence in leachate as a substantial threat to environmental and public health, including an economic burden for developing nations. The present review exclusively discusses the demands to develop a novel eco-friendly management strategy to combat these global issues. This review also gives an intrinsic discussion about the insights of different aspects of environmental and public health concerns caused due to massive leachate generation, the abundance of antibiotics resistance (AR), and the effects of released leachate on the various environmental reservoirs and human health. Furthermore, the current review throws light on the source and fate of different ECs of landfill leachate and their possible impact on the nearby environments (groundwater, surface water, and soil) affecting human health. The present review strongly suggests the demand for future research focuses on the advancement of the removal efficiency of contaminants with the improvement of relevant landfill management to reduce the potential effects of disposable waste. We propose the necessity of the identification and monitoring of potential environmental and human health risks associated with landfill leachate contaminants.
Collapse
|
41
|
He P, Huang J, Yu Z, Xu X, Raga R, Lü F. Antibiotic resistance contamination in four Italian municipal solid waste landfills sites spanning 34 years. CHEMOSPHERE 2021; 266:129182. [PMID: 33333336 DOI: 10.1016/j.chemosphere.2020.129182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Municipal solid waste landfill is now recognized as a significant reservoir of antibiotics and antibiotic resistance genes (ARGs). This study investigates the contamination of antibiotics resistance, in 10 leachate samples collected from four MSW landfills in north Italy spanning 34 years, including ARGs as well as mobile genetic element (MGEs). Antibiotics (0-434740 ng/L) and ARGs (5.56-6.85 × 105copies/μL leachate) were found in leachate. Abundances of the measured ARGs were found to be clustered into two groups with different changing tendencies with landfilling age in different landfills. Even though some antibiotics were banned or limited in Italy, they were found to still occur in landfills and drive the long-term contamination of ARGs indirectly, indicating the persistence of antibiotic resistance. What's more, the complexity of antibiotic resistance in leachate was found to synthetically relate to antibiotics, metals, microbes and MGEs presenting that Mn, SMX and EFC influence positively (p < 0.01) the contamination of tetW, tetQ, tetM, tetA, ermB, and cat, contributing importantly in new leachate. This study discusses the AR pollution of leachate in Italy where antibiotics are used the most in Europe, less reported in literatures. Our results suggest that a full-scale view for landfill antibiotics resistance should be considered with history of landfills, use of antibiotics and different phase in landfills, with both "relative static" and "dynamic tracking" perspective to focus on the principal antibiotic-resistance pollutants for leachate treatment, and raise the attention for landfill post-closure care and landfill mining.
Collapse
Affiliation(s)
- Pinjing He
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jinghua Huang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zhuofeng Yu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, PR China
| | - Xian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, PR China
| | - Roberto Raga
- ICEA, Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo, 9, 35131, Padova, Italy.
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
42
|
Su Y, Zhang Z, Zhu J, Shi J, Wei H, Xie B, Shi H. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116278. [PMID: 33333404 DOI: 10.1016/j.envpol.2020.116278] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs) are found to be ubiquitous and serve as vectors for other contaminants, and the inevitable aging process changes MP properties and fates. However, whether the MPs in aging process affects the fates of antibiotic resistance gene (ARGs) in aquatic environments is poorly understood. Herein, the physicochemical property alteration of MPs being aged in landfill leachate, an important reservoir of MPs and ARGs, was investigated, and microbial community evolution and ARGs occurrence of MP surface during the aging process were analyzed. Aging process remarkably altered surface properties, including increasing specific surface areas, causing the formation of oxygen-containing groups, and changing surface morphology, which further increased the probability of microbial colonization. The bacterial assemblage on MPs showed higher biofilm-forming and pathogenic potential compared to leachate. ARGs quantification results suggested that MPs exhibited selective enrichment for ARGs in a ratio of 5.7-103 folds, and the aging process enhanced the enrichment potential. Further co-occurrence networks suggested that the existence of non-random, closer and more stable ARGs-bacterial taxa relations on MP surface affected the ARG transmission. The study of ARG partitioning on MPs indicated that extracellular DNA was a nonnegligible reservoir of ARGs attached on MP surface, and that biofilm bacterial community influenced ARGs partitioning pattern during the aging process. This study confirmed that the aging process could enhance the potential of MPs as vectors for ARGs, which would promote the holistic understanding of MP behavior and risk in natural environments.
Collapse
Affiliation(s)
- Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhongjian Zhang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jundong Zhu
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianhong Shi
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Huawei Wei
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
43
|
Wu D, Sui Q, Yu X, Zhao W, Li Q, Fatta-Kassinos D, Lyu S. Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multi-residue analysis of 70 PPCPs: Analytical method development and application in Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141653. [PMID: 32896735 DOI: 10.1016/j.scitotenv.2020.141653] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 05/20/2023]
Abstract
The source apportionment of pharmaceuticals and personal care products (PPCPs) in the water environment based on indicators (i-PPCPs) requires a comprehensive characterization of various emission sources using reliable analytical methods for a wide spectrum of PPCPs. In this study, a robust and sensitive method based on solid phase extraction (SPE) and ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) for analyzing 70 PPCPs belonging to 17 therapeutic classes in landfill leachates and livestock wastewaters was developed. The SPE cartridges, sample pH, elution solvents and chelating agent additions were optimized, and acceptable recoveries (60- 130% for 67 target compounds), low method quantification limits (landfill leachate: 3- 1309 ng/L; livestock wastewater: 3- 686 ng/L) and high precisions (repeatability: 0- 20% for over 99% injections; reproducibility: 0- 20% for over 90% injections) were obtained. Using the optimized analytical method to characterize PPCPs in the typical landfill leachate and livestock wastewater in Yangtze River Delta, China, we found anthelmintics, which were first reported in landfill leachates globally, exhibited the highest concentration (albendazole, maximum concentration of 61.6 μg/L), and therefore proposed albendazole as one of the promising i-PPCP candidates in landfill leachates. In livestock wastewaters, antibiotics lincomycin was the most abundant PPCP (maximum concentration: 735 μg/L) and identified as an i-PPCP candidate for livestock-originated contamination. In addition, 15 non-antibiotic PPCPs were first investigated in the livestock wastewater in China and some non-steroidal anti-inflammatory drugs, acetaminophen, diclofenac and naproxen, were detected at similar concentration level (1.16- 91.1 μg/L) to antibiotics, highlighting the necessity to include representative non-antibiotic PPCPs in the studies of emerging contaminants in livestock wastewaters. The developed method provides a tool to comprehensively investigate PPCPs in high-strength wastewater, and the preliminary findings in the characterization of typical landfill leachates and livestock wastewaters are helpful to select i-PPCPs for the source apportionment of PPCPs in Yangtze River Delta, China.
Collapse
Affiliation(s)
- Dongquan Wu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiang Li
- Shimadzu (China) Co., Ltd, Shanghai 200233, China
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas, International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
44
|
Fekadu S, Alemayehu E, Dewil R, Van der Bruggen B. Electrochemical degradation of antivirus drug lamivudine formulation: photoelectrocoagulation, peroxi-electrocoagulation, and peroxi-photoelectrocoagulation processes. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-020-01521-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
45
|
Rizzi V, Gubitosa J, Fini P, Romita R, Nuzzo S, Gabaldón JA, Gorbe MIF, Gómez-Morte T, Cosma P. Chitosan film as recyclable adsorbent membrane to remove/recover hazardous pharmaceutical pollutants from water: the case of the emerging pollutant Furosemide. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:145-156. [PMID: 33284713 DOI: 10.1080/10934529.2020.1853985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Due to the negative effects of emerging contaminants on the environment, that can potentially induce deleterious effects in aquatic and human life, this paper focuses on the removal from the water of Furosemide, through the adsorption process. Indeed, only a few papers are available in the literature about the Furosemide adsorption and, chitosan films are thus proposed for this purpose as safe, sustainable, and recyclable adsorbent materials. In the present work, the effects on the adsorption process of several experimental parameters such as the pH values, ionic strength, amount of adsorbent/pollutant, and temperature values were investigated. The kinetics models, isotherms of adsorption, and the thermodynamic parameters were studied showing that the Furosemide physisorption occurred on the heterogeneous Chitosan surface, endothermically (ΔH° = +31.27 ± 3.40 kJ mol-1) and spontaneously (ΔS° = +150.00 ± 10.00 J mol-1 K-1), following a pseudo-second-order kinetic model. The 90% of the pollutant was adsorbed in 2 h, with a maximum adsorption capacity of 3.5 mg × g-1. Despite these relatively low adsorption capacities, experiments of desorption were performed and 100% of adsorbed Furosemide was recovered by using concentrated NaCl solutions, proposing a low-cost and green approach, with respect to the previous literature relative to the Furosemide adsorption, fundamental for the pollutant recovery and adsorbent reuse.
Collapse
Affiliation(s)
- Vito Rizzi
- Dip. Chimica, Università degli Studi "Aldo Moro" di Bari, Bari, Italy
| | - Jennifer Gubitosa
- Dip. Chimica, Università degli Studi "Aldo Moro" di Bari, Bari, Italy
| | - Paola Fini
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Bari, Italy
| | - Roberto Romita
- Dip. Chimica, Università degli Studi "Aldo Moro" di Bari, Bari, Italy
| | - Sergio Nuzzo
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Bari, Italy
| | - José Antonio Gabaldón
- Departamento Ciencia y Tecnología de Alimentos, Universidad Católica San Antonio de Murcia, Guadalupe, Murcia, Spain
| | - María Isabel Fortea Gorbe
- Departamento Ciencia y Tecnología de Alimentos, Universidad Católica San Antonio de Murcia, Guadalupe, Murcia, Spain
| | - Teresa Gómez-Morte
- Departamento Ciencia y Tecnología de Alimentos, Universidad Católica San Antonio de Murcia, Guadalupe, Murcia, Spain
| | - Pinalysa Cosma
- Dip. Chimica, Università degli Studi "Aldo Moro" di Bari, Bari, Italy
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Bari, Italy
| |
Collapse
|
46
|
Hong M, Wang Y, Lu G. UV-Fenton degradation of diclofenac, sulpiride, sulfamethoxazole and sulfisomidine: Degradation mechanisms, transformation products, toxicity evolution and effect of real water matrix. CHEMOSPHERE 2020; 258:127351. [PMID: 32563068 DOI: 10.1016/j.chemosphere.2020.127351] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Four common refractory pharmaceuticals, diclofenac (DF), sulpiride (SP), sulfamethoxazole (SMX) and sulfisomidine (SIM) were detected in the Disc Tubular Reverse Osmosis (DTRO) concentrates with higher concentrations ranging from 0.85 to 11.57 μg/L from the local landfill. The effect of complex matrix of DTRO concentrates on the UV-Fenton degradation kinetics of DF, SP, SMX and SIM and their transformation products (TPs) were studied. All the four pharmaceuticals could be degraded more efficiently in the ultrapure water than that in the DTRO-concentrate matrix, which also had a significant negative effect on the kinetic constants of the degradation. Twenty-two out of forty-nine TPs were newly identified by HPLC-QTOF-MS and their peak-area evolution was presented. The main degradation pathways for four pharmaceuticals were identified. When assessing cytotoxicity by using HepG2 cells, there appeared to be an obvious toxicity-increase region for each of SP, SMX and SIM. Eleven TPs were identified as the potential toxicity-increase causing TPs by combination of the QSAR prediction, HepG2 cytotoxicity assessment and peak-area evolution of TPs. Therefore, UV-Fenton process was a promising method for the refractory pharmaceutical degradation even in the complex water matrix and choosing appropriate reaction parameters for the UV-Fenton could eliminate the cytotoxicity of the TPs.
Collapse
Affiliation(s)
- Mianwei Hong
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Yang Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Gang Lu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore.
| |
Collapse
|
47
|
Bu Q, Cao H, He X, Zhang H, Yu G. Is Disposal of Unused Pharmaceuticals as Municipal Solid Waste by Landfilling a Good Option? A Case Study in China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:784-789. [PMID: 32979083 DOI: 10.1007/s00128-020-03006-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Properly disposing of unused pharmaceuticals is essential to minimize emissions of active pharmaceutical ingredients (APIs). The aim of this study was to determine whether disposing of unused pharmaceuticals in household solid waste is a cost-effective way of attenuating pharmaceutical emissions. We calculated attenuation rates (ARs) for unused pharmaceuticals by performing mass balance calculations for disposal to landfill. The results indicated that the average ARs for disposal as household solid waste reached 63% to 100% for our investigated pharmaceuticals at the worst scenario, indicating that disposal as household solid waste strongly attenuated emissions of APIs. Disposing of unused pharmaceuticals as household solid waste could be a cost-effective disposal method from the view of reducing APIs emission, but should be used with caution.
Collapse
Affiliation(s)
- Qingwei Bu
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, People's Republic of China.
| | - Hongmei Cao
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, People's Republic of China
| | - Xiaofan He
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, People's Republic of China
| | - Handan Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, People's Republic of China
| | - Gang Yu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
48
|
Yu X, Sui Q, Lyu S, Zhao W, Liu J, Cai Z, Yu G, Barcelo D. Municipal Solid Waste Landfills: An Underestimated Source of Pharmaceutical and Personal Care Products in the Water Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9757-9768. [PMID: 32560585 DOI: 10.1021/acs.est.0c00565] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) have been the focus of increasing concern in recent decades due to their ubiquity in the environment and potential risks. Out-of-date PPCPs are usually discharged into municipal solid wastes (MSWs), enter the leachates in MSW landfills, and have serious adverse effects on the surrounding water environment. However, the occurrence and removal of PPCPs from landfill leachates have rarely been examined to date. This lack of knowledge makes the landfill an underestimated source of PPCPs in the environment. In this review, we collected the relevant publications of PPCPs in landfill leachates, systematically summarized the occurrence of PPCPs in landfill leachates globally, evaluated the removal performances for various PPCPs by different types of on-site full-scale leachate treatment processes, and assessed the impacts of landfill leachates on PPCPs in the adjacent groundwater. In particular, influencing factors for PPCPs in landfill leachates, including the physicochemical properties of PPCPs, climate conditions, and characteristics of landfill sites (i.e., landfill ages) as well as sociological factors (i.e., economic development), were extensively discussed to understand their occurrence patterns. Future perspectives were also proposed in light of the identified knowledge gaps. To the best of our knowledge, this is the first review regarding the occurrence and removal of PPCPs from landfill leachates worldwide.
Collapse
Affiliation(s)
- Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenxiao Cai
- MicroHAOPs Inc., University of Washington, Seattle, Washington 98195, United States
| | - Gang Yu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damia Barcelo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (CSIC), Barcelona 08034, Spain
| |
Collapse
|
49
|
Nika MC, Ntaiou K, Elytis K, Thomaidi VS, Gatidou G, Kalantzi OI, Thomaidis NS, Stasinakis AS. Wide-scope target analysis of emerging contaminants in landfill leachates and risk assessment using Risk Quotient methodology. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122493. [PMID: 32240898 DOI: 10.1016/j.jhazmat.2020.122493] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 06/11/2023]
Abstract
Raw and treated leachate samples were collected from different landfills in Greece and analyzed for several groups of emerging contaminants using high resolution mass spectrometric workflows to investigate the possible threat from their discharge to the aquatic environment. Fifty-eight compounds were detected; 2-OH-benzothiazole was found at 84 % of the samples and perfluorooctanoic acid at 68 %. Bisphenol A, valsartan and 2-OH-benzothiazole had the highest average concentrations in raw leachates, after biological treatment and after reverse osmosis, respectively. In untreated leachates, Risk Quotients > 1 were calculated for 35 and 18 compounds when maximum and average concentrations were used, indicating an ecological threat for the aquatic environment. Leachates' biological treatment partially removed COD and NH4+-N, as well as 52.3 % of total emerging contaminants. The application of reverse osmosis resulted in a 98 % removal of major pollutants, 99 % removal of total emerging contaminants and a significant decrease of ecotoxicity to Lemna minor. Beside the decrease of the detected micropollutants during treatment, RQs > 1 were still calculated for 13 and 3 compounds after biological treatment and reverse osmosis, respectively. Among these, special attention should be given to 2-OH-benzothiazole and bisphenol A that had RQ values much higher than 1 for all tested organisms.
Collapse
Affiliation(s)
- M C Nika
- National and Kapodistrian University of Athens, Department of Chemistry, Laboratory of Analytical Chemistry, 15771, Athens, Greece
| | - K Ntaiou
- University of the Aegean, Department of Environment, Water and Air Quality Laboratory, 81100, Mytilene, Greece
| | - K Elytis
- National and Kapodistrian University of Athens, Department of Chemistry, Laboratory of Analytical Chemistry, 15771, Athens, Greece
| | - V S Thomaidi
- University of the Aegean, Department of Environment, Water and Air Quality Laboratory, 81100, Mytilene, Greece
| | - G Gatidou
- University of the Aegean, Department of Environment, Water and Air Quality Laboratory, 81100, Mytilene, Greece
| | - O I Kalantzi
- University of the Aegean, Department of Environment, Water and Air Quality Laboratory, 81100, Mytilene, Greece
| | - N S Thomaidis
- National and Kapodistrian University of Athens, Department of Chemistry, Laboratory of Analytical Chemistry, 15771, Athens, Greece
| | - A S Stasinakis
- University of the Aegean, Department of Environment, Water and Air Quality Laboratory, 81100, Mytilene, Greece.
| |
Collapse
|
50
|
Zhang J, Xiao K, Huang X. Full-scale MBR applications for leachate treatment in China: Practical, technical, and economic features. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122138. [PMID: 32006937 DOI: 10.1016/j.jhazmat.2020.122138] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Though having been applied for decades in the leachate treatment, membrane bioreactors (MBRs) have not attracted as much attention as their application in the municipal wastewater treatment. A timely survey for full-scale applications of MBRs treating leachate would be necessary to present a thorough knowledge and implication in this field. In this study, 175 full-scale MBRs treating leachate (with individual treatment capacity of ≥100 m3/d) in China were comprehensively analyzed. The accumulative treatment capacity exceeded 65,000 m3/d in 2018, and such projects were primarily distributed in areas with developed economy and large production of municipal solid waste. Sanitary landfill leachate owned 70 % of the leachate-treating MBRs' capacity, while the proportion for incineration plants increased gradually. Synchronously, leachate from incineration plants was more degradable than that from sanitary landfills. MBRs were advantageous to pollutant removal, fouling control, and successive energy mitigation of the whole treatment processes. The investment and footprint of processes adopting MBRs were medially ∼90,000 CNY/(m3/d) and ∼15 m2/(m3/d) respectively, and the energy consumption was 20-30 kW h/m3. The technical and economical applicability and environmental policy forces would strengthen a predictable increment of market share of MBRs in leachate treatment field in the future.
Collapse
Affiliation(s)
- Jiao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kang Xiao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|