1
|
Wang Y, Gao B, Li Y, Shi C, Li H, You Z, Fang M, Wang C, Deng X, Shao B. Recent Advances in Nontargeted Screening of Chemical Hazards in Foodstuffs. Annu Rev Food Sci Technol 2025; 16:195-218. [PMID: 39819809 DOI: 10.1146/annurev-food-111523-121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The emergence of several chemical substances continues to enrich and facilitate the development of food science, but their irrational use also poses a threat to food safety and human health. Nontargeted screening (NTS) has become an important tool for rapid traceability and efficient identification of chemical hazards in food matrices. NTS in food analysis is highly integrated with sample pretreatment, instrumental analysis platforms, data acquisition and analysis, and toxicology. This article is a systemic review of current sample preparation, analytical platforms, and toxicity-guided NTS techniques and provides the latest advancements in workflows and innovative applications of the NTS process based on mass spectrometric techniques. High-throughput toxicity screening platforms play an important role in NTS of unknown chemical hazards of complex food matrices. Advanced machine learning and artificial intelligence are increasingly accessible fields that may effectively process large-scale screening data and advance food NTS research.
Collapse
Affiliation(s)
- Yang Wang
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, China; ,
| | - Boyan Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Li
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, China; ,
| | - Changzhi Shi
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Zecang You
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Chenxu Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Deng
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, China; ,
| | - Bing Shao
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, China; ,
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
2
|
Newmeyer MN, Lyu Q, Sobus JR, Williams AJ, Nachman KE, Prasse C. Combining Nontargeted Analysis with Computer-Based Hazard Comparison Approaches to Support Prioritization of Unregulated Organic Contaminants in Biosolids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12135-12146. [PMID: 38916220 PMCID: PMC11381038 DOI: 10.1021/acs.est.4c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Biosolids are a byproduct of wastewater treatment that can be beneficially applied to agricultural land as a fertilizer. While U.S. regulations limit metals and pathogens in biosolids intended for land applications, no organic contaminants are currently regulated. Novel techniques can aid in detection, evaluation, and prioritization of biosolid-associated organic contaminants (BOCs). For example, nontargeted analysis (NTA) can detect a broad range of chemicals, producing data sets representing thousands of measured analytes that can be combined with computational toxicological tools to support human and ecological hazard assessment and prioritization. We combined NTA with a computer-based tool from the U.S. EPA, the Cheminformatics Hazard Comparison Module (HCM), to identify and prioritize BOCs present in U.S. and Canadian biosolids (n = 16). Four-hundred fifty-one features were detected in at least 80% of samples, with identities of 92 compounds confirmed or assigned probable structures. These compounds were primarily categorized as endogenous compounds, pharmaceuticals, industrial chemicals, and fragrances. Examples of top prioritized compounds were p-cresol and chlorophene, based on human health end points, and fludioxonil and triclocarban, based on ecological health end points. Combining NTA results with hazard comparison data allowed us to prioritize compounds to be included in future studies of the environmental fate and transport of BOCs.
Collapse
Affiliation(s)
- Matthew N Newmeyer
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Qinfan Lyu
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Jon R Sobus
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Keeve E Nachman
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Risk Sciences and Public Policy Institute, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Center for a Livable Future, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Carsten Prasse
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Risk Sciences and Public Policy Institute, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
3
|
Ballesteros-Gómez A, Ballesteros J, Rubio S. Comprehensive characterization of organic compounds in indoor dust after generic sample preparation with SUPRAS and analysis by LC-HRMS/MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169390. [PMID: 38135084 DOI: 10.1016/j.scitotenv.2023.169390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
In this study supramolecular solvents (SUPRAS) are employed for the first time to perform a wide screening of organic compounds in indoor dust samples. The potential of SUPRAS to efficiently extract a wide polarity range of compounds, and to simplify and improve the green properties of sample treatment in this area are discussed. SUPRAS made up of inverse aggregates of hexanol in tetrahydrofuran:water mixtures, which have been previously and successfully applied to the target determination of a variety of organic contaminants in different environmental matrices, were employed. Analysis was done with liquid chromatography and high resolution mass spectrometry. Twelve samples from public buildings (six educative buildings, two food stores, two nightclubs, one office and a coffee shop) were collected in South Spain. A total of 146 compounds were detected by target (∼33 %), suspect (∼55 %) and non-target screening (∼12 %). Around 86 % of all the compounds were identified (or tentatively identified) with levels of confidence equal or higher than 3. Novel designer drugs of abuse, unreported organophosphorus compounds and well-known organic contaminants, such as bisphenols, parabens, phthalates and flame retardants are reported. Differences with previous studies on wide screening of indoor dust reveal the influence of the employed databases for data processing and of the extraction method together with the different contamination profiles given by the sample location.
Collapse
Affiliation(s)
- Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| | | | - Soledad Rubio
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
4
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
5
|
Maloney EM, Villeneuve DL, Blackwell BR, Vitense K, Corsi SR, Pronschinske MA, Jensen KM, Ankley GT. A framework for prioritizing contaminants in retrospective ecological assessments: Application in the Milwaukee Estuary (Milwaukee, WI). INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1276-1296. [PMID: 36524447 PMCID: PMC10601791 DOI: 10.1002/ieam.4725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Watersheds are subjected to diverse anthropogenic inputs, exposing aquatic biota to a wide range of chemicals. Detection of multiple, different chemicals can challenge natural resource managers who often have to determine where to allocate potentially limited resources. Here, we describe a weight-of-evidence framework for retrospectively prioritizing aquatic contaminants. To demonstrate framework utility, we used data from 96-h caged fish studies to prioritize chemicals detected in the Milwaukee Estuary (WI, USA; 2017-2018). Across study years, 77/178 targeted chemicals were detected. Chemicals were assigned prioritization scores based on spatial and temporal detection frequency, environmental distribution, environmental fate, ecotoxicological potential, and effect prediction. Chemicals were sorted into priority bins based on the intersection of prioritization score and data availability. Data-limited chemicals represented those that did not have sufficient data to adequately evaluate ecotoxicological potential or environmental fate. Seven compounds (fluoranthene, benzo[a]pyrene, pyrene, atrazine, metolachlor, phenanthrene, and DEET) were identified as high or medium priority and data sufficient and flagged as candidates for further effects-based monitoring studies. Twenty-one compounds were identified as high or medium priority and data limited and flagged as candidates for further ecotoxicological research. Fifteen chemicals were flagged as the lowest priority in the watershed. One of these chemicals (2-methylnaphthalene) displayed no data limitations and was flagged as a definitively low-priority chemical. The remaining chemicals displayed some data limitations and were considered lower-priority compounds (contingent on further ecotoxicological and environmental fate assessments). The remaining 34 compounds were flagged as low or medium priority. Altogether, this prioritization provided a screening-level (non-definitive) assessment that could be used to focus further resource management and risk assessment activities in the Milwaukee Estuary. Furthermore, by providing detailed methodology and a practical example with real experimental data, we demonstrated that the proposed framework represents a transparent and adaptable approach for prioritizing contaminants in freshwater environments. Integr Environ Assess Manag 2023;19:1276-1296. © 2022 SETAC.
Collapse
Affiliation(s)
- Erin M Maloney
- Department of Biology, Swenson College of Science and Engineering, University of Minnesota-Duluth, Duluth, Minnesota, USA
| | - Daniel L Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Brett R Blackwell
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Kelsey Vitense
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Steven R Corsi
- US Geological Survey, Upper Midwest Water Science Center, Middleton, Wisconsin, USA
| | | | - Kathleen M Jensen
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Gerald T Ankley
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| |
Collapse
|
6
|
Cao M, Fan J, Guo C, Chen M, Lv J, Sun W, Xi B, Xu J. Comprehensive investigation and risk assessment of organic contaminants in Yellow River Estuary using suspect and nontarget screening strategies. ENVIRONMENT INTERNATIONAL 2023; 173:107843. [PMID: 36822001 DOI: 10.1016/j.envint.2023.107843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Contaminants of emerging concerns (CECs) include numerous chemicals that may pose known and unknown risks to the ecosystem, and identification and risk ranking of these compounds is essential for the environmental management. In this study, liquid and gas chromatography time-of-flight mass spectrometry (LC-QTOF-MS and GC-QTOF-MS) were used to characterize the occurrence of CECs in the surface water of the Yellow River Estuary (YRE). A total of 295 and 315 chemicals were identified by LC-QTOF-MS and GC-QTOF-MS, respectively. The occurrence of two compounds, erucamide and 2-phenylquinoline, was for the first time reported in the aquatic environment in YRE. The concentrations of 121 CECs, including 35 antibiotics, 49 pesticides and veterinary, 16 polycyclic aromatic hydrocarbons and 21 phthalic acid esters were further quantified by target analysis, which showed the detection of 99 compounds in the surface water in the range of 7.07-4611.26 ng/L. Ecological risks of pollutants based on the risk quotient (RQ) method revealed that 13 pollutants posed ecological risks to the aquatic ecosystem (RQ > 1), and pesticides (n = 12) were the main risk contributors. Here, all CECs data sets were finally transformed and ranked in the framework of the toxicological priority index (ToxPi), and a total of 81 priority control pollutants were identified in the surface water of YRE. This study highlighted the necessity of suspect and nontarget screening for CECs in estuaries, and revealed the importance of localized contamination sources in urban and agricultural environment.
Collapse
Affiliation(s)
- Miao Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jingpu Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenjun Sun
- Waters Technologies Shanghai Limited, Shanghai 201206, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
7
|
Barbosa J, Asselman J, Janssen CR. Synthesizing the impact of sea-dumped munition and related chemicals on humans and the environment. MARINE POLLUTION BULLETIN 2023; 187:114601. [PMID: 36652858 DOI: 10.1016/j.marpolbul.2023.114601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Marine environments are globally impacted by vast quantities of munition disposed following both World Wars. Dumped munitions contain conventional explosives, chemicals warfare agents as well as a variety of metals. Field monitoring studies around marine dumpsites report the presence of munition constituents in water and sediment samples. The growing interest and developments in the ocean as a new economic frontier underline the need to remediate existing dumpsites. Here, we provide a comprehensive assessment of the magnitude and potential risks associated with marine munition dumpsites. An overview of the global distribution of dumpsites identifying the most impacted areas is provided, followed by the currently available data on the detection of munition constituents in environmental samples and evidence of their toxic potential to human and environmental health. Finally, existing data gaps are identified and future research needs promoting better understanding of the impact of the dumped material on the marine environment suggested.
Collapse
Affiliation(s)
- João Barbosa
- Laboratory for Environmental Toxicology and Aquatic Ecology, GhEnToxLab, Ghent University, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium.
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Colin R Janssen
- Laboratory for Environmental Toxicology and Aquatic Ecology, GhEnToxLab, Ghent University, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| |
Collapse
|
8
|
Alygizakis N, Giannakopoulos T, Τhomaidis NS, Slobodnik J. Detecting the sources of chemicals in the Black Sea using non-target screening and deep learning convolutional neural networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157554. [PMID: 35878861 DOI: 10.1016/j.scitotenv.2022.157554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The Black Sea is an important ecosystem, which is affected by various anthropogenic pressures, such as shipping activities and wastewater inputs from large coastal cities. Significant loads of chemical pollutants are being continuously brought in by major European rivers. This study investigated the spatial distribution of chemicals in the Ukrainian shelf (the northwestern part of the Black Sea) and their main sources. Chemical occurrence data used in the study was generated within the Joint Black Sea Surveys (JBSS), which took place in 2016 and 2017 as a part of the EU/UNDP EMBLAS II project (www.emblasproject.org). During the JBSS, seawater samples were analyzed by a non-target screening workflow using liquid chromatography high-resolution mass spectrometry (LC-HRMS). Open-source algorithms were applied to generate a combined dataset of 30,489 detected chemical signals and their intensities. Out of these, 35 compounds were tentatively identified by the application of a non-target screening identification workflow based on automated matching of their mass spectra against those in available mass spectral libraries. The dataset was used to generate images, representing spatial distribution of each of the signals. These images were then used as an input to a deep learning convolutional neural network classification model. The study resulted in the development of an open-source end-to-end workflow for the estimation of the pollution load by chemicals contributed by the two major inflowing rivers (Danube and Dnieper) and other, so far unidentified, sources. A dedicated dashboard was built to facilitate data visualization per detected signal/compound. The presented model proved to be especially useful at the prioritization of signals of unknown compounds, which is of key importance for the follow up structure elucidation efforts of bulky non-target screening data. The deep learning approach for peak prioritization of unknown chemicals in the environment has been used for the first time.
Collapse
Affiliation(s)
- Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic.
| | | | - Nikolaos S Τhomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | | |
Collapse
|
9
|
Mohammed Taha H, Aalizadeh R, Alygizakis N, Antignac JP, Arp HPH, Bade R, Baker N, Belova L, Bijlsma L, Bolton EE, Brack W, Celma A, Chen WL, Cheng T, Chirsir P, Čirka Ľ, D’Agostino LA, Djoumbou Feunang Y, Dulio V, Fischer S, Gago-Ferrero P, Galani A, Geueke B, Głowacka N, Glüge J, Groh K, Grosse S, Haglund P, Hakkinen PJ, Hale SE, Hernandez F, Janssen EML, Jonkers T, Kiefer K, Kirchner M, Koschorreck J, Krauss M, Krier J, Lamoree MH, Letzel M, Letzel T, Li Q, Little J, Liu Y, Lunderberg DM, Martin JW, McEachran AD, McLean JA, Meier C, Meijer J, Menger F, Merino C, Muncke J, Muschket M, Neumann M, Neveu V, Ng K, Oberacher H, O’Brien J, Oswald P, Oswaldova M, Picache JA, Postigo C, Ramirez N, Reemtsma T, Renaud J, Rostkowski P, Rüdel H, Salek RM, Samanipour S, Scheringer M, Schliebner I, Schulz W, Schulze T, Sengl M, Shoemaker BA, Sims K, Singer H, Singh RR, Sumarah M, Thiessen PA, Thomas KV, Torres S, Trier X, van Wezel AP, Vermeulen RCH, Vlaanderen JJ, von der Ohe PC, Wang Z, Williams AJ, Willighagen EL, Wishart DS, Zhang J, Thomaidis NS, Hollender J, Slobodnik J, Schymanski EL. The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry. ENVIRONMENTAL SCIENCES EUROPE 2022; 34:104. [PMID: 36284750 PMCID: PMC9587084 DOI: 10.1186/s12302-022-00680-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Background The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/). Supplementary Information The online version contains supplementary material available at 10.1186/s12302-022-00680-6.
Collapse
Affiliation(s)
- Hiba Mohammed Taha
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | | | - Hans Peter H. Arp
- Norwegian Geotechnical Institute (NGI), Ullevål Stadion, P.O. Box 3930, 0806 Oslo, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Richard Bade
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | | | - Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Evan E. Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Werner Brack
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt Am Main, Germany
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Wen-Ling Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, 17 Xuzhou Rd., Zhongzheng Dist., Taipei, Taiwan
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Parviel Chirsir
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Ľuboš Čirka
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
- Faculty of Chemical and Food Technology, Institute of Information Engineering, Automation, and Mathematics, Slovak University of Technology in Bratislava (STU), Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Lisa A. D’Agostino
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | | | - Valeria Dulio
- INERIS, National Institute for Environment and Industrial Risks, Verneuil en Halatte, France
| | - Stellan Fischer
- Swedish Chemicals Agency (KEMI), P.O. Box 2, 172 13 Sundbyberg, Sweden
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research-Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona, Spain
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Birgit Geueke
- Food Packaging Forum Foundation, Staffelstrasse 10, 8045 Zurich, Switzerland
| | - Natalia Głowacka
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Juliane Glüge
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Ksenia Groh
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Sylvia Grosse
- Thermo Fisher Scientific, Dornierstrasse 4, 82110 Germering, Germany
| | - Peter Haglund
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus Väg 6, 901 87 Umeå, Sweden
| | - Pertti J. Hakkinen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Sarah E. Hale
- Norwegian Geotechnical Institute (NGI), Ullevål Stadion, P.O. Box 3930, 0806 Oslo, Norway
| | - Felix Hernandez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Elisabeth M.-L. Janssen
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Tim Jonkers
- Department Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Karin Kiefer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Michal Kirchner
- Water Research Institute (WRI), Nábr. Arm. Gen. L. Svobodu 5, 81249 Bratislava, Slovak Republic
| | - Jan Koschorreck
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Martin Krauss
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jessy Krier
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Marja H. Lamoree
- Department Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marion Letzel
- Bavarian Environment Agency, 86179 Augsburg, Germany
| | - Thomas Letzel
- Analytisches Forschungsinstitut Für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Qingliang Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - James Little
- Mass Spec Interpretation Services, 3612 Hemlock Park Drive, Kingsport, TN 37663 USA
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (SKLECE, RCEES, CAS), No. 18 Shuangqing Road, Haidian District, Beijing, 100086 China
| | - David M. Lunderberg
- Hope College, Holland, MI 49422 USA
- University of California, Berkeley, CA USA
| | - Jonathan W. Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | - Andrew D. McEachran
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd, Santa Clara, CA 95051 USA
| | - John A. McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235 USA
| | - Christiane Meier
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Jeroen Meijer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Frank Menger
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Carla Merino
- University Rovira i Virgili, Tarragona, Spain
- Biosfer Teslab, Reus, Spain
| | - Jane Muncke
- Food Packaging Forum Foundation, Staffelstrasse 10, 8045 Zurich, Switzerland
| | | | - Michael Neumann
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Vanessa Neveu
- Nutrition and Metabolism Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Kelsey Ng
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Muellerstrasse 44, Innsbruck, Austria
| | - Jake O’Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | - Peter Oswald
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Martina Oswaldova
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Jaqueline A. Picache
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235 USA
| | - Cristina Postigo
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva S/N, 18071 Granada, Spain
| | - Noelia Ramirez
- University Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili, Tarragona, Spain
| | | | - Justin Renaud
- Agriculture and Agri-Food Canada/Agriculture et Agroalimentaire Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | | | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Schmallenberg, Germany
| | - Reza M. Salek
- Nutrition and Metabolism Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Saer Samanipour
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, Amsterdam, 1090 GD The Netherlands
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Ivo Schliebner
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Wolfgang Schulz
- Laboratory for Operation Control and Research, Zweckverband Landeswasserversorgung, Am Spitzigen Berg 1, 89129 Langenau, Germany
| | - Tobias Schulze
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Manfred Sengl
- Bavarian Environment Agency, 86179 Augsburg, Germany
| | - Benjamin A. Shoemaker
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Kerry Sims
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH UK
| | - Heinz Singer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Randolph R. Singh
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
- Chemical Contamination of Marine Ecosystems (CCEM) Unit, Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Rue de l’Ile d’Yeu, BP 21105, 44311 Cedex 3, Nantes France
| | - Mark Sumarah
- Agriculture and Agri-Food Canada/Agriculture et Agroalimentaire Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Paul A. Thiessen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Kevin V. Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | | | - Xenia Trier
- Section for Environmental Chemistry and Physics, Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Annemarie P. van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Roel C. H. Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Jelle J. Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | | | - Zhanyun Wang
- Technology and Society Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Antony J. Williams
- Computational Chemistry and Cheminformatics Branch (CCCB), Chemical Characterization and Exposure Division (CCED), Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - Egon L. Willighagen
- Department of Bioinformatics-BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | | | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Juliane Hollender
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | | | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|
10
|
Li C, Yang L, Wu J, Yang Y, Li Y, Zhang Q, Sun Y, Li D, Shi M, Liu G. Identification of emerging organic pollutants from solid waste incinerations by FT-ICR-MS and GC/Q-TOF-MS and their potential toxicities. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128220. [PMID: 35016122 DOI: 10.1016/j.jhazmat.2022.128220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Emissions from the incineration of solid waste are a global public health concern, but little attention has been paid to previously unrecognized chemical compounds that are generated by waste incineration and released into the atmosphere. We conducted nontarget analysis of organic chemicals formed during waste incineration by Fourier-transform ion cyclotron resonance mass spectrometry and gas chromatography-quadrupole time-of-flight mass spectrometry. Using toxicity data in the ToxCast library and predicted toxicity data for traditional priority polycyclic aromatic hydrocarbons and 2,3,7,8-tetrachlorodibenzo-p-dioxin, we prioritized 13 compounds including hexachloro-1,3-butadiene, 9 of which are reported here for the first time as constituents of emissions from the incineration of solid waste and hexachloro-1,3-butadiene was included in the Stockholm Convention in 2017. The predicted activity of these pollutants to androgen receptors and to the aryl hydrocarbon receptor were comparable to, or higher than, the 2,3,7,8-tetrachlorodibenzo-p-dioxin and benzo[a]pyrene. In addition, some alkylated polycyclic aromatic hydrocarbons and heteroatom polycyclic aromatic hydrocarbons were also identified in solid waste incineration processes, peak areas of which were 1-2 orders of magnitude higher than dioxins and 1-3 orders of magnitude lower than their parent polycyclic aromatic hydrocarbons. Our study can provide information for better recognizing and regulating the emissions of organic pollutants formed by the incineration of solid waste.
Collapse
Affiliation(s)
- Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiajia Wu
- Agilent Technologies (China), Inc., Beijing 100102, China
| | - Yujue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxiang Sun
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Da Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Miwei Shi
- Hebei Engineering Research Center for Geographic Information Application, Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang 050011, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| |
Collapse
|
11
|
Sussman EM, Oktem B, Isayeva IS, Liu J, Wickramasekara S, Chandrasekar V, Nahan K, Shin HY, Zheng J. Chemical Characterization and Non-targeted Analysis of Medical Device Extracts: A Review of Current Approaches, Gaps, and Emerging Practices. ACS Biomater Sci Eng 2022; 8:939-963. [PMID: 35171560 DOI: 10.1021/acsbiomaterials.1c01119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The developers of medical devices evaluate the biocompatibility of their device prior to FDA's review and subsequent introduction to the market. Chemical characterization, described in ISO 10993-18:2020, can generate information for toxicological risk assessment and is an alternative approach for addressing some biocompatibility end points (e.g., systemic toxicity, genotoxicity, carcinogenicity, reproductive/developmental toxicity) that can reduce the time and cost of testing and the need for animal testing. Additionally, chemical characterization can be used to determine whether modifications to the materials and manufacturing processes alter the chemistry of a patient-contacting device to an extent that could impact device safety. Extractables testing is one approach to chemical characterization that employs combinations of non-targeted analysis, non-targeted screening, and/or targeted analysis to establish the identities and quantities of the various chemical constituents that can be released from a device. Due to the difficulty in obtaining a priori information on all the constituents in finished devices, information generation strategies in the form of analytical chemistry testing are often used. Identified and quantified extractables are then assessed using toxicological risk assessment approaches to determine if reported quantities are sufficiently low to overcome the need for further chemical analysis, biological evaluation of select end points, or risk control. For extractables studies to be useful as a screening tool, comprehensive and reliable non-targeted methods are needed. Although non-targeted methods have been adopted by many laboratories, they are laboratory-specific and require expensive analytical instruments and advanced technical expertise to perform. In this Perspective, we describe the elements of extractables studies and provide an overview of the current practices, identified gaps, and emerging practices that may be adopted on a wider scale in the future. This Perspective is outlined according to the steps of an extractables study: information gathering, extraction, extract sample processing, system selection, qualification, quantification, and identification.
Collapse
Affiliation(s)
- Eric M Sussman
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Berk Oktem
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Irada S Isayeva
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jinrong Liu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Samanthi Wickramasekara
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Vaishnavi Chandrasekar
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Keaton Nahan
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Hainsworth Y Shin
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jiwen Zheng
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
12
|
Chang D, Richardot WH, Miller EL, Dodder NG, Sedlak MD, Hoh E, Sutton R. Framework for nontargeted investigation of contaminants released by wildfires into stormwater runoff: Case study in the northern San Francisco Bay area. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:1179-1193. [PMID: 34009690 DOI: 10.1002/ieam.4461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/29/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Wildfires can be extremely destructive to communities and ecosystems. However, the full scope of the ecological damage is often hard to assess, in part due to limited information on the types of chemicals introduced to affected landscapes and waterways. The objective of this study was to establish a sampling, analytical, and interpretive framework to effectively identify and monitor contaminants of emerging concern in environmental water samples impacted by wildfire runoff. A nontargeted analysis consisting of comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC/TOF-MS) was conducted on stormwater samples from watersheds in the City of Santa Rosa and Sonoma and Napa Counties, USA, after the three most destructive fires during the October 2017 Northern California firestorm. Chemicals potentially related to wildfires were selected from the thousands of chromatographic features detected through a screening method that compared samples from fire-impacted sites versus unburned reference sites. This screening led to high confidence identifications of 76 potentially fire-related compounds. Authentic standards were available for 48 of these analytes, and 46 were confirmed by matching mass spectra and GC × GC retention times. Of these 46 compounds, 37 had known commercial and industrial uses as intermediates or ingredients in plastics, personal care products, pesticides, and as food additives. Nine compounds had no known uses or sources and may be oxidation products resulting from burning of natural or anthropogenic materials. Preliminary examination of potential toxicity associated with the 46 compounds, conducted via online databases and literature review, indicated limited data availability. Regional comparison suggested that more structural damage may yield a greater number of unique, potentially wildfire-related compounds. We recommend further study of post-wildfire runoff using the framework described here, which includes hypothesis-driven site selection and nontargeted analysis, to uncover potentially significant stormwater contaminants not routinely monitored after wildfires and inform risk assessment. Integr Environ Assess Manag 2021;17:1179-1193. © 2021 SETAC.
Collapse
Affiliation(s)
- Daniel Chang
- San Diego State University Research Foundation, San Diego, California, USA
| | | | - Ezra L Miller
- San Francisco Estuary Institute, Richmond, California, USA
| | - Nathan G Dodder
- San Diego State University Research Foundation, San Diego, California, USA
- School of Public Health, San Diego State University, San Diego, California, USA
| | | | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Rebecca Sutton
- San Francisco Estuary Institute, Richmond, California, USA
| |
Collapse
|
13
|
Polemi KM, Nguyen VK, Heidt J, Kahana A, Jolliet O, Colacino JA. Identifying the link between chemical exposures and breast cancer in African American women via integrated in vitro and exposure biomarker data. Toxicology 2021; 463:152964. [PMID: 34600088 PMCID: PMC8593892 DOI: 10.1016/j.tox.2021.152964] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022]
Abstract
Among women, breast cancer is the most prevalent form of cancer worldwide and has the second highest mortality rate of any cancer in the United States. The breast cancer related death rate is 40 % higher in non-Hispanic Black women compared to non-Hispanic White women. The incidence of triple negative breast cancer (TNBC), an aggressive subtype of breast cancer for which there is no targeted therapy, is also approximately three times higher for Black, relative to, White women. The drivers of these differences are poorly understood. Here, we aimed to identify chemical exposures which play a role in breast cancer disparities. Using chemical biomonitoring data from the National Health and Nutrition Examination Survey (NHANES) and biological activity data from the EPA's ToxCast program, we assessed the toxicological profiles of chemicals to which US Black women are disproportionately exposed. We conducted a literature search to identify breast cancer targets in ToxCast to analyze the response of chemicals with exposure disparities in these assays. Forty-three chemical biomarkers are significantly higher in Black women. Investigation of these chemicals in ToxCast resulted in 32,683 assays for analysis, 5172 of which contained nonzero values for the concentration at which the dose-response fitted model reaches the cutoff considered "active". Of these chemicals BPA, PFOS, and thiram are most comprehensively assayed. 2,5-dichlorophenol, 1,4-dichlorobenzene, and methyl and propyl parabens had higher biomarker concentrations in Black women and moderate testing and activity in ToxCast. The distribution of active concentrations for these chemicals in ToxCast assays are comparable to biomarker concentrations in Black women NHANES participants. Through this integrated analysis, we identify that multiple chemicals, including thiram, propylparaben, and p,p' DDE, have disproportionate exposures in Black women and have breast cancer associated biological activity at human exposure relevant doses.
Collapse
Affiliation(s)
- Katelyn M Polemi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vy K Nguyen
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Julien Heidt
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Adam Kahana
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Olivier Jolliet
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Been F, Kruve A, Vughs D, Meekel N, Reus A, Zwartsen A, Wessel A, Fischer A, Ter Laak T, Brunner AM. Risk-based prioritization of suspects detected in riverine water using complementary chromatographic techniques. WATER RESEARCH 2021; 204:117612. [PMID: 34536689 DOI: 10.1016/j.watres.2021.117612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Surface waters are widely used as drinking water sources and hence their quality needs to be continuously monitored. However, current routine monitoring programs are not comprehensive as they generally cover only a limited number of known pollutants and emerging contaminants. This study presents a risk-based approach combining suspect and non-target screening (NTS) to help extend the coverage of current monitoring schemes. In particular, the coverage of NTS was widened by combining three complementary separations modes: Reverse phase (RP), Hydrophilic interaction liquid chromatography (HILIC) and Mixed-mode chromatography (MMC). Suspect lists used were compiled from databases of relevant substances of very high concern (e.g., SVHCs) and the concentration of detected suspects was evaluated based on ionization efficiency prediction. Results show that suspect candidates can be prioritized based on their potential risk (i.e., hazard and exposure) by combining ionization efficiency-based concentration estimation, in vitro toxicity data or, if not available, structural alerts and QSAR.based toxicity predictions. The acquired information shows that NTS analyses have the potential to complement target analyses, allowing to update and adapt current monitoring programs, ultimately leading to improved monitoring of drinking water sources.
Collapse
Affiliation(s)
- Frederic Been
- KWR Water Research Institute, P.O. Box 1072, Nieuwegein 3430 BB, the Netherland.
| | - Anneli Kruve
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 16, Stockholm 106 91, Sweden
| | - Dennis Vughs
- KWR Water Research Institute, P.O. Box 1072, Nieuwegein 3430 BB, the Netherland
| | - Nienke Meekel
- KWR Water Research Institute, P.O. Box 1072, Nieuwegein 3430 BB, the Netherland
| | - Astrid Reus
- KWR Water Research Institute, P.O. Box 1072, Nieuwegein 3430 BB, the Netherland
| | - Anne Zwartsen
- KWR Water Research Institute, P.O. Box 1072, Nieuwegein 3430 BB, the Netherland
| | - Arnoud Wessel
- Department of Technology and Sources, Evides, P.O. Box 4472, Rotterdam 3006 AL, the Netherland
| | - Astrid Fischer
- Department of Technology and Sources, Evides, P.O. Box 4472, Rotterdam 3006 AL, the Netherland; Faculty of Civil Engineering and Geosciences, TU Delft 2628 CN, the Netherland
| | - Thomas Ter Laak
- KWR Water Research Institute, P.O. Box 1072, Nieuwegein 3430 BB, the Netherland
| | - Andrea M Brunner
- KWR Water Research Institute, P.O. Box 1072, Nieuwegein 3430 BB, the Netherland
| |
Collapse
|
15
|
Menger F, Boström G, Jonsson O, Ahrens L, Wiberg K, Kreuger J, Gago-Ferrero P. Identification of Pesticide Transformation Products in Surface Water Using Suspect Screening Combined with National Monitoring Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10343-10353. [PMID: 34291901 PMCID: PMC8383268 DOI: 10.1021/acs.est.1c00466] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/21/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Pesticides are widespread anthropogenic chemicals and well-known environmental contaminants of concern. Much less is known about transformation products (TPs) of pesticides and their presence in the environment. We developed a novel suspect screening approach for not well-explored pesticides (n = 16) and pesticide TPs (n = 242) by integrating knowledge from national monitoring with high-resolution mass spectrometry data. Weekly time-integrated samples were collected in two Swedish agricultural streams using the novel Time-Integrating, MicroFlow, In-line Extraction (TIMFIE) sampler. The integration of national monitoring data in the screening approach increased the number of prioritized compounds approximately twofold (from 23 to 42). Ultimately, 11 pesticide TPs were confirmed by reference standards and 12 TPs were considered tentatively identified with varying levels of confidence. Semiquantification of the newly confirmed TPs indicated higher concentrations than their corresponding parent pesticides in some cases, which highlights concerns related to (unknown) pesticide TPs in the environment. Some TPs were present in the environment without co-occurrence of their corresponding parent compounds, indicating higher persistency or mobility of the identified TPs. This study showcased the benefits of integrating monitoring knowledge in this type of studies, with advantages for suspect screening performance and the possibility to increase relevance of future monitoring programs.
Collapse
Affiliation(s)
- Frank Menger
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Gustaf Boström
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Ove Jonsson
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Lutz Ahrens
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Karin Wiberg
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Jenny Kreuger
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Pablo Gago-Ferrero
- Department
of Environmental Chemistry, Institute of Environmental Assessment
and Water Research—Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18−26, 08034 Barcelona, Spain
- Catalan
Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
16
|
Schollée JE, Hollender J, McArdell CS. Characterization of advanced wastewater treatment with ozone and activated carbon using LC-HRMS based non-target screening with automated trend assignment. WATER RESEARCH 2021; 200:117209. [PMID: 34102384 DOI: 10.1016/j.watres.2021.117209] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Advanced treatment is increasingly being applied to improve abatement of micropollutants in wastewater effluent and reduce their load to surface waters. In this study, non-target screening of high-resolution mass spectrometry (HRMS) data, collected at three Swiss wastewater treatment plants (WWTPs), was used to evaluate different advanced wastewater treatment setups, including (1) granular activated carbon (GAC) filtration alone, (2) pre-ozonation followed by GAC filtration, and (3) pre-ozonation followed by powdered activated carbon (PAC) dosed onto a sand filter. Samples were collected at each treatment step of the WWTP and analyzed with reverse-phase liquid chromatography coupled to HRMS. Each WWTP received a portion of industrial wastewater and a prioritization method was applied to select non-target features potentially resulting from industrial activities. Approximately 37,000 non-target features were found in the influents of the WWTPs. A number of non-target features (1207) were prioritized as likely of industrial origin and 54 were identified through database spectral matching. The fates of all detected non-target features were assessed through a novel automated trend assignment method. A trend was assigned to each non-target feature based on the normalized intensity profile for each sampling date. Results showed that 73±4% of influent non-target features and the majority of industrial features (89%) were well-removed (i.e., >80% intensity reduction) during biological treatment in all three WWTPs. Advanced treatment removed, on average, an additional 11% of influent non-target features, with no significant differences observed among the different advanced treatment settings. In contrast, when considering a subset of 66 known micropollutants, advanced treatment was necessary to adequately abate these compounds and higher abatement was observed in fresh GAC (7,000-8,000 bed volumes (BVs)) compared to older GAC (18,000-48,000 BVs) (80% vs 56% of micropollutants were well-removed, respectively). Approximately half of the features detected in the WWTP effluents were features newly formed during the various treatment steps. In ozonation, between 1108-3579 features were classified as potential non-target ozonation transformation products (OTPs). No difference could be observed for their removal in GAC filters at the BVs investigated (70% of OTPs were well-removed on average). Similar amounts (67%) was observed with PAC (7.7-13.6 mg/L) dosed onto a sand filter, demonstrating that a post-treatment with activated carbon is efficient for the removal of OTPs.
Collapse
Affiliation(s)
- Jennifer E Schollée
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf 8600, Switzerland.
| | - Juliane Hollender
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf 8600, Switzerland; ETH Zurich, Institute of Biopollutant Dynamics, Zurich 8092, Switzerland
| | - Christa S McArdell
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf 8600, Switzerland
| |
Collapse
|
17
|
Meekel N, Vughs D, Béen F, Brunner AM. Online Prioritization of Toxic Compounds in Water Samples through Intelligent HRMS Data Acquisition. Anal Chem 2021; 93:5071-5080. [PMID: 33724776 PMCID: PMC8153395 DOI: 10.1021/acs.analchem.0c04473] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
LC-HRMS-based nontarget screening (NTS) has become the method of choice to monitor organic micropollutants (OMPs) in drinking water and its sources. OMPs are identified by matching experimental fragmentation (MS2) spectra with library or in silico-predicted spectra. This requires informative experimental spectra and prioritization to reduce feature numbers, currently performed post data acquisition. Here, we propose a different prioritization strategy to ensure high-quality MS2 spectra for OMPs that pose an environmental or human health risk. This online prioritization triggers MS2 events based on detection of suspect list entries or isotopic patterns in the full scan or an additional MS2 event based on fragment ion(s)/patterns detected in a first MS2 spectrum. Triggers were determined using cheminformatics; potentially toxic compounds were selected based on the presence of structural alerts, in silico-fragmented, and recurring fragments and mass shifts characteristic for a given structural alert identified. After MS acquisition parameter optimization, performance of the online prioritization was experimentally examined. Triggered methods led to increased percentages of MS2 spectra and additional MS2 spectra for compounds with a structural alert. Application to surface water samples resulted in additional MS2 spectra of potentially toxic compounds, facilitating more confident identification and emphasizing the method's potential to improve monitoring studies.
Collapse
Affiliation(s)
- Nienke Meekel
- KWR Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Dennis Vughs
- KWR Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Frederic Béen
- KWR Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Andrea M Brunner
- KWR Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| |
Collapse
|
18
|
Barbosa J, De Schamphelaere K, Janssen C, Asselman J. Prioritization of contaminants and biological process targets in the North Sea using toxicity data from ToxCast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:144157. [PMID: 33333300 DOI: 10.1016/j.scitotenv.2020.144157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The increasing number of chemicals detected in the marine environment underlines the need for appropriate prioritization strategies prior to further testing and potential inclusion into monitoring programs. Here, a prioritization strategy is proposed for chemicals detected in the North Sea over the last decade, through the development of a Concern Index (CI) using exposure and toxicity data obtained from peer-review publications and the ToxCast database, respectively. A total of 158 chemicals were ranked and the most sensitive tested assay endpoints were identified. Additionally, similar analysis was performed for the classes of chemicals and Biological Process Targets (BPTs). By first ranking chemicals currently acknowledged for their high toxicity to the aquatic environment, i.e. naphthalene, salicylic acid and simazine, the obtained results not only reinforce the risk posed by these but also promote a confident extrapolation from mammalian in vitro toxicity data to fish. Furthermore, genes targeted by the most sensitive assays, related to basic cell maintenance processes and immune defense, are highly evolutionarily conserved across species. The identification of these assays further reinforces the importance of a shift from traditional toxicity endpoints to lower levels of biological organization, allowing the detection of adverse effects at lower concentrations.
Collapse
Affiliation(s)
- João Barbosa
- Laboratory for Environmental Toxicology and Aquatic Ecology, GhEnToxLab, Ghent University, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium.
| | - Karel De Schamphelaere
- Laboratory for Environmental Toxicology and Aquatic Ecology, GhEnToxLab, Ghent University, Belgium
| | - Colin Janssen
- Laboratory for Environmental Toxicology and Aquatic Ecology, GhEnToxLab, Ghent University, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| |
Collapse
|
19
|
Helmus R, Ter Laak TL, van Wezel AP, de Voogt P, Schymanski EL. patRoon: open source software platform for environmental mass spectrometry based non-target screening. J Cheminform 2021; 13:1. [PMID: 33407901 PMCID: PMC7789171 DOI: 10.1186/s13321-020-00477-w] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Mass spectrometry based non-target analysis is increasingly adopted in environmental sciences to screen and identify numerous chemicals simultaneously in highly complex samples. However, current data processing software either lack functionality for environmental sciences, solve only part of the workflow, are not openly available and/or are restricted in input data formats. In this paper we present patRoon, a new R based open-source software platform, which provides comprehensive, fully tailored and straightforward non-target analysis workflows. This platform makes the use, evaluation and mixing of well-tested algorithms seamless by harmonizing various common (primarily open) software tools under a consistent interface. In addition, patRoon offers various functionality and strategies to simplify and perform automated processing of complex (environmental) data effectively. patRoon implements several effective optimization strategies to significantly reduce computational times. The ability of patRoon to perform time-efficient and automated non-target data annotation of environmental samples is demonstrated with a simple and reproducible workflow using open-access data of spiked samples from a drinking water treatment plant study. In addition, the ability to easily use, combine and evaluate different algorithms was demonstrated for three commonly used feature finding algorithms. This article, combined with already published works, demonstrate that patRoon helps make comprehensive (environmental) non-target analysis readily accessible to a wider community of researchers.
Collapse
Affiliation(s)
- Rick Helmus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands.
| | - Thomas L Ter Laak
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands.,KWR Water Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Pim de Voogt
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belvaux, Luxembourg
| |
Collapse
|
20
|
Tq D, L C, A I, K N, M M, Ml S. In vitro profiling of the potential endocrine disrupting activities affecting steroid and aryl hydrocarbon receptors of compounds and mixtures prevalent in human drinking water resources. CHEMOSPHERE 2020; 258:127332. [PMID: 32554009 DOI: 10.1016/j.chemosphere.2020.127332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Prioritizing chemicals posing threats to drinking water resources is crucial for legislation considering the cost of water treatment, remediation, and monitoring. We profiled in vitro potential endocrine disrupting activities (both agonistic and antagonistic) of 18 contaminants most prevalent in Walloon raw water resources intended for drinking water production, including several compound groups: pesticides, perfluorinated compounds, polycyclic aromatic hydrocarbons, a corrosion inhibitor, and bisphenol A. Mixtures thereof relevant for human realistic exposure were also investigated. Seven luciferase reporter gene cell lines were used i.e. three (human and rat) responsive to dioxins through the aryl hydrocarbon receptor (AhR) and four (human) responsive to steroids through the estrogen (ER), androgen (AR), progesterone (PR), and glucocorticoid (GR) receptors. Among the 18 compounds, ten caused at least one response in at least one receptor. Specifically, chlorpyrifos, bisphenol A, fluoranthene, phenanthrene, and benzo [a]pyrene displayed significant activities on several receptors. Bisphenol A agonized ER, but abolished the cells' response to androgen and progesterone. While fluoranthene and phenanthrene strongly reduced human AhR and AR transactivation, benzo [a]pyrene strongly activated AhR and ER, but inhibited GR and AR. In human breast cancer cells, benzo [a]pyrene dramatically activated AhR, inducing a 10-fold higher response than 2,3,7,8-tetrachlorodibenzodioxin (TCDD) at concentrations possibly found realistically in human blood. The mixture of the 18 compounds exerted both ER and rat AhR agonism, with the main contribution being from benzo [a]pyrene or its combination with bisphenol A. Moreover, the mixture significantly inhibited TCDD-induced CYP1A activity (detected only by EROD assays) in human hepatoma cells.
Collapse
Affiliation(s)
- Doan Tq
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - Connolly L
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, BT9 5DL, UK
| | - Igout A
- Department of Biomedical and Preclinical Sciences, Faculty of Medicine, University of Liège, Liège, 4000, Belgium
| | - Nott K
- La Société Wallonne des Eaux (SWDE), Verviers, 4800, Belgium
| | - Muller M
- GIGA-R, Laboratory for Organogenesis and Regeneration, University of Liège, Liège, 4000, Belgium
| | - Scippo Ml
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium.
| |
Collapse
|
21
|
Park M, Snyder SA. Statistical profiling for identifying transformation products in an engineered treatment process. CHEMOSPHERE 2020; 251:126401. [PMID: 32146183 DOI: 10.1016/j.chemosphere.2020.126401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
This study demonstrated statistical profiling consisting of the analysis of variance (ANOVA) and fold change to efficiently identify transformation products of an organic model compound (i.e., carbamazepine, CBZ) in ozonation. To this end, liquid chromatography (LC)-quadrupole time-of-flight mass spectrometry (QTOF-MS) was employed to measure the accurate masses of CBZ transformation products. Subsequently, statistical profiling was applied to differentiating features that are uniquely present in the ozonated samples from those in blanks and control (i.e., CBZ sample without ozonation). The identified transformation products had significant statistical power (i.e., power, 1-β > 0.8) in post hoc power analysis, which suggests that the profiling procedure can be an efficient means of reducing false negative in data analysis. 2-quinazolinone was newly reported here as a tentative transformation of CBZ during ozonation. In addition, a transformation product with one less carbon than CBZ, often called "anomalous" transformation product, was also found. While statistical profiling was applied to a model experiment, such an approach can be further utilized to screen many features with a higher data complexity such as non-targeted screening (NTS) and non-target analysis (NTA) for environmental samples.
Collapse
Affiliation(s)
- Minkyu Park
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ, 85721-0011, USA.
| | - Shane A Snyder
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ, 85721-0011, USA; Nanyang Technological University, Nanyang Environment & Water Research Institute (NEWRI), 637141, Singapore.
| |
Collapse
|
22
|
Responsible Water Reuse Needs an Interdisciplinary Approach to Balance Risks and Benefits. WATER 2020. [DOI: 10.3390/w12051264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Freshwater is a precious resource, and shortages can lead to water stress, impacting agriculture, industry, and other sectors. Wastewater reuse is increasingly considered as an opportunity to meet the freshwater demand. Legislative frameworks are under development to support the responsible reuse of wastewater, i.e., to balance benefits and risks. In an evaluation of the proposed European regulation for water reuse, we concluded that the proposed regulation is not practically feasible, as the water provider alone is responsible for the risk assessment and management, even beyond their span of control. The required knowledge and resources are extensive. Therefore, without clear guidance for implementation, the regulation would hinder implementation of reuse programs. As a consequence, the current practice of uncontrolled, unintentional, and indirect reuse continues, including related risks and inefficiency. Therefore, we provide an outline of the interdisciplinary approach required to design and achieve safe, responsible water reuse. Responsible water reuse requires knowledge of water demand and availability, quality and health, technology, and governance for the various types of application. Through this paper we want to provide a starting point for an interdisciplinary agenda to compile and generate knowledge (databases), approaches, guidelines, case examples, codes of practice, and legislation to help bring responsible water reuse into practice.
Collapse
|
23
|
Punt A, Firman J, Boobis A, Cronin M, Gosling JP, Wilks MF, Hepburn PA, Thiel A, Fussell KC. Potential of ToxCast Data in the Safety Assessment of Food Chemicals. Toxicol Sci 2020; 174:326-340. [PMID: 32040188 PMCID: PMC7098372 DOI: 10.1093/toxsci/kfaa008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tox21 and ToxCast are high-throughput in vitro screening programs coordinated by the U.S. National Toxicology Program and the U.S. Environmental Protection Agency, respectively, with the goal of forecasting biological effects in vivo based on bioactivity profiling. The present study investigated whether mechanistic insights in the biological targets of food-relevant chemicals can be obtained from ToxCast results when the chemicals are grouped according to structural similarity. Starting from the 556 direct additives that have been identified in the ToxCast database by Karmaus et al. [Karmaus, A. L., Trautman, T. D., Krishan, M., Filer, D. L., and Fix, L. A. (2017). Curation of food-relevant chemicals in ToxCast. Food Chem. Toxicol. 103, 174-182.], the results showed that, despite the limited number of assays in which the chemical groups have been tested, sufficient results are available within so-called "DNA binding" and "nuclear receptor" target families to profile the biological activities of the defined chemical groups for these targets. The most obvious activity identified was the estrogen receptor-mediated actions of the chemical group containing parabens and structurally related gallates, as well the chemical group containing genistein and daidzein (the latter 2 being particularly active toward estrogen receptor β as a potential health benefit). These group effects, as well as the biological activities of other chemical groups, were evaluated in a series of case studies. Overall, the results of the present study suggest that high-throughput screening data could add to the evidence considered for regulatory risk assessment of food chemicals and to the evaluation of desirable effects of nutrients and phytonutrients. The data will be particularly useful for providing mechanistic information and to fill data gaps with read-across.
Collapse
Affiliation(s)
- Ans Punt
- Wageningen Food Safety Research, 6700 AE Wageningen, The Netherlands
| | - James Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Alan Boobis
- National Heart & Lung Institute, Imperial College London, London W12 0NN, UK
| | - Mark Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | | | - Martin F Wilks
- Swiss Centre for Applied Human Toxicology, University of Basel, 4055 Basel, Switzerland
| | - Paul A Hepburn
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Anette Thiel
- DSM Nutritional Products, 4303 Kaiseraugst, Switzerland
| | | |
Collapse
|
24
|
Priority Setting for Management of Hazardous Biocides in Korea Using Chemical Ranking and Scoring Method. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061970. [PMID: 32192129 PMCID: PMC7143513 DOI: 10.3390/ijerph17061970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 11/20/2022]
Abstract
Biocides are non-agricultural chemical agents for the prevention of unhygienic pests. The worldwide demand for biocidal products has been rapidly increasing. Meanwhile, biocides have been causing negative health effects for decades, resulting in public health scares. Therefore, governments around the world have tried to strictly control biocides, and it is necessary to prioritize the health risks of biocides for efficient management. Chemical ranking and scoring (CRS) methods have been developed for the effective management of chemicals. However, existing methods do not use suitable variables to evaluate biocides, thus possibly underestimating or overestimating the actual health risks. We developed a new CRS method that reflects the exposure and toxicity characteristics of biocides. Eleven indicators were chosen as appropriate for prioritizing biocides, and scoring based on the globally harmonized system of classification and labeling of chemicals (GHS) improved the efficiency of the method. Correlations between individual indicators in this study were low (−0.151–0.325), indicating that each indicator was independent and well-chosen for prioritizing biocides. The effect of each indicator on the total score showed that carcinogenicity, mutagenicity, and reproductive toxicity (CMR) chemicals ranked high with r = 0.558. This result demonstrated that the most dangerous toxicants should play a more decisive role in the top ranking than the others. We expect that our method can be efficiently used to screen regulated biocides by prioritizing their health hazards, thus leading to better policy decision making about biocide use.
Collapse
|
25
|
Brunner AM, Bertelkamp C, Dingemans MML, Kolkman A, Wols B, Harmsen D, Siegers W, Martijn BJ, Oorthuizen WA, Ter Laak TL. Integration of target analyses, non-target screening and effect-based monitoring to assess OMP related water quality changes in drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135779. [PMID: 31818566 DOI: 10.1016/j.scitotenv.2019.135779] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 05/27/2023]
Abstract
The ever-increasing production and use of chemicals lead to the occurrence of organic micro-pollutants (OMPs) in drinking water sources, and consequently the need for their removal during drinking water treatment. Due to the sheer number of OMPs, monitoring using targeted chemical analyses alone is not sufficient to assess drinking water quality as well as changes thereof during treatment. High-resolution mass spectrometry (HRMS) based non-target screening (NTS) as well as effect-based monitoring using bioassays are promising monitoring tools for a more complete assessment of water quality and treatment performance. Here, we developed a strategy that integrates data from chemical target analyses, NTS and bioassays. We applied it to the assessment of OMP related water quality changes at three drinking water treatment pilot installations. These installations included advanced oxidation processes, ultrafiltration in combination with reverse osmosis, and granular activated carbon filtration. OMPs relevant for the drinking water sector were spiked into the water treated in these installations. Target analyses, NTS and bioassays were performed on samples from all three installations. The NTS data was screened for predicted and known transformation products of the spike-in compounds. In parallel, trend profiles of NTS features were evaluated using multivariate analysis methods. Through integration of the chemical data with the biological effect-based results potential toxicity was accounted for during prioritization. Together, the synergy of the three analytical methods allowed the monitoring of OMPs and transformation products, as well as the integrative biological effects of the mixture of chemicals. Through efficient analysis, visualization and interpretation of complex data, the developed strategy enabled to assess water quality and the impact of water treatment from multiple perspectives. Such information could not be obtained by any of the three methods alone. The developed strategy thereby provides drinking water companies with an integrative tool for comprehensive water quality assessment.
Collapse
Affiliation(s)
| | | | | | | | - Bas Wols
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Danny Harmsen
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Wolter Siegers
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | | | | | - Thomas L Ter Laak
- KWR Water Research Institute, Nieuwegein, the Netherlands; Univerisity of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Rager JE, Bangma J, Carberry C, Chao A, Grossman J, Lu K, Manuck TA, Sobus JR, Szilagyi J, Fry RC. Review of the environmental prenatal exposome and its relationship to maternal and fetal health. Reprod Toxicol 2020; 98:1-12. [PMID: 32061676 DOI: 10.1016/j.reprotox.2020.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/05/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
Environmental chemicals comprise a major portion of the human exposome, with some shown to impact the health of susceptible populations, including pregnant women and developing fetuses. The placenta and cord blood serve as important biological windows into the maternal and fetal environments. In this article we review how environmental chemicals (defined here to include man-made chemicals [e.g., flame retardants, pesticides/herbicides, per- and polyfluoroalkyl substances], toxins, metals, and other xenobiotic compounds) contribute to the prenatal exposome and highlight future directions to advance this research field. Our findings from a survey of recent literature indicate the need to better understand the breadth of environmental chemicals that reach the placenta and cord blood, as well as the linkages between prenatal exposures, mechanisms of toxicity, and subsequent health outcomes. Research efforts tailored towards addressing these needs will provide a more comprehensive understanding of how environmental chemicals impact maternal and fetal health.
Collapse
Affiliation(s)
- Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jacqueline Bangma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Celeste Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alex Chao
- Oak Ridge Institute for Science and Education (ORISE) Participant, Research Triangle Park, NC, USA
| | | | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tracy A Manuck
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jon R Sobus
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| | - John Szilagyi
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Rusko J, Perkons I, Rasinger JD, Bartkevics V. Non-target and suspected-target screening for potentially hazardous chemicals in food contact materials: investigation of paper straws. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:649-664. [DOI: 10.1080/19440049.2020.1711969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Janis Rusko
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| | - Ingus Perkons
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| | - Josef D. Rasinger
- Department of Feed Safety, Institute of Marine Research (IMR), Bergen, Norway
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| |
Collapse
|
28
|
Guo Q, Wei D, Zhao H, Du Y. Predicted no-effect concentrations determination and ecological risk assessment for benzophenone-type UV filters in aquatic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113460. [PMID: 31685328 DOI: 10.1016/j.envpol.2019.113460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/18/2019] [Accepted: 10/21/2019] [Indexed: 05/21/2023]
Abstract
Benzophenones (BPs), a group of widely used ultraviolet filters, have been frequently detected out in multiple environment matrices even in organism bodies. Although a variety of toxicological effects of BPs have been disclosed recently, it is barely to evaluate the potential ecological risk of BPs due to lack of reference criteria. Therefore, the determination of predicted no-effect concentration (PNEC) values is necessary for assessing ecological risk of BPs and for protecting safety of aquatic organisms. The toxicological data of 14 BPs from both in vivo tests on aquatic organisms and in vitro tests on strains/cell lines were collected from previous reports, and two methods including assessment factor (AF) and species sensitivity distribution (SSD) were applied to calculate PNECs, respectively. Four groups of PNECs were obtained and compared, a final PNEC value was recommended for each BP based on reliable and conservative consideration. With these PNECs values, the risk quotients of 8 BPs from 35 ambient freshwater samples were calculated, the results demonstrated that 3 BPs including 2,2',4,4'-tetrahydroxyl-BP, 2-hydroxyl-4-methoxyl- BP, and 2-hydroxyl-4-methoxyl-5-sulfonic acid-BP exhibited high ecological risk, and the ecological risk posed by BPs in River Tiff in UK was great. It is anticipated that these results would provide useful reference for assessing and managing BP-type compounds, and for selecting toxicity data and methods to derive PNECs for emerging contaminants.
Collapse
Affiliation(s)
- Qiaorong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huimin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|