1
|
Kalami S, Kalami S, Noorbakhsh R, Shirani M, Koohi MK. Development of nanoscale zero-valent iron embedded on polyaniline reinforced with sodium alginate hydrogel microbeads for effective adsorption of arsenic from apatite soil leachate water. Int J Biol Macromol 2025; 304:140841. [PMID: 39929459 DOI: 10.1016/j.ijbiomac.2025.140841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
A novel polymeric nanocomposite hydrogel adsorbent was developed to enhance the efficiency of arsenic removal from apatite soil leachate. Apatite soil aqueous leachate was treated with nanoscale zero-valent iron embedded on polyaniline reinforced with sodium alginate hydrogel beads. Various analytical techniques including attenuated total reflection -Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy were employed to characterize these chemically synthesized hydrogel beads. The influence of different types and ratios of adsorbent materials, solution pH, adsorbent dosage, contact time, temperature, initial arsenic concentration, and the presence of co-existing ions on the adsorption process were investigated. Under optimum operating conditions; a pH range of 4-6, 80 mg of sorbent, 180 min contact time led to a remarkable arsenic removal efficiency of approximately 90.33 %. Thermodynamic, adsorption isotherm, and kinetic models provided a good description of the observed experimental results. Compared to the Freundlich and Temkin models, the Langmuir model was found to be the best fit for the experimental data, with a maximum adsorption capacity of 104.167 mg/g. Physical adsorption is mainly responsible for controlling the adsorption of arsenic ions onto the hydrogel. Thermodynamic studies verified that the adsorption process was endothermic and spontaneous.
Collapse
Affiliation(s)
- Shaden Kalami
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shakila Kalami
- Department of Chemical Engineering and Petroleum, Chemistry & Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Roya Noorbakhsh
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), PO Box 31745-139, Karaj, Iran.
| | - Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran.
| | - Mohammad Kazem Koohi
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| |
Collapse
|
2
|
Krishna Kumar AS, Swistun E, Sobczyk M, Madhu M, Prabhu SM, Vasimalai N, Tanwar MD, Kakarla DC, Pham PV, Tseng WL, Ganeshraja AS, Rajesh N, Bajda T. Exploration of magnetic zeolite thin film derived from coal fly ash an efficient sorbent: Application to water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:123972. [PMID: 39765058 DOI: 10.1016/j.jenvman.2024.123972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/29/2025]
Abstract
Fly ash, produced during coal combustion for energy making, which is recognized as an industrial by-product, could lead to environmental health hazards. Subsequently, fly ash found that an exceptional adsorption performance for the removal of various toxic pollutants, the adsorption capacity of fly ash might be altered by introducing physical/chemical stimulation. Successfully converting fly ash into zeolites not only recovers their disposal difficulties but also transforms unwanted materials into merchandisable products for various industrial applications. Here we fabricated that, converting fly ash into zeolite and then modifying it with aminopropyl imidazole (ionic liquid), the imidazolium-based zeolite will be used as a template for loading Fe3O4 NPs. The formation of Fe3O4 NPs decorated zeolites is incorporated with polymeric materials [including polystyrene sulphonate (PSS), polyvinyl alcohol (PVA) and chitosan], producing to magnetic film (named Fe3O4 NPs@zeolite film). The fabricated magnetic film exhibits excellent functionality and durability for the sorption of chromium, selenium and organic dyes such as Congo red, RhB. These toxic contaminates were electrostatically bonded through adsorbent due to their protonation of below the pHzpc 7.0 with surface functional groups from imidazolium cationic moiety (R-N+), amino groups derived chitosan (-N, -NH and -NH2), and hydroxyl groups (Fe-OH), electrostatically bind with anionic selenium species are [(SeO32-, Se(IV)), and (SeO42- Se(VI)], chromium species HCrO4-, Cr2O72- and CrO42- the maximum removal performance were achieved in a wide pH range are highly suitable for practical application.
Collapse
Affiliation(s)
- A Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung city, 80424, Taiwan; Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India.
| | - Eugeniusz Swistun
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow city, Poland
| | - Maciej Sobczyk
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow city, Poland
| | - Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung city, 80424, Taiwan
| | - Subbaiah Muthu Prabhu
- Department of Chemistry, School of Advanced Science, VIT-AP University, Near Vijayawada city, 522237, Andhra Pradesh, India
| | - Nagamalai Vasimalai
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science & Technology, Vandalur, Chennai city, 600 048, India
| | - Manju Dhakad Tanwar
- Amity Institute of Biotechnology, Amity University Maharashtra-410206, Panvel, Mumbai City, India; Organic Recycling Systems Limited, Navi Mumbai, 400703, India
| | - D Chandrasekhar Kakarla
- Department of Physics, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Phuong V Pham
- Department of Physics, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung city, 80424, Taiwan; School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung city, 80708, Taiwan
| | - A S Ganeshraja
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai, 600 077, Tamil Nadu, India.
| | - N Rajesh
- Department of Chemistry, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R.R. Dist 500 078, India.
| | - Tomasz Bajda
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow city, Poland
| |
Collapse
|
3
|
Garg R, Mittal M, Tripathi S, Eddy NO. Core to concept: synthesis, structure, and reactivity of nanoscale zero-valent iron (NZVI) for wastewater remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67496-67520. [PMID: 38630403 DOI: 10.1007/s11356-024-33197-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/30/2024] [Indexed: 01/01/2025]
Abstract
Numerous technological advancements have been developed to tackle the issue of wastewater remediation effectively. However, the practical application of these technologies on a large scale has faced several challenges that have hindered their progress. These challenges include low selectivity, high energy requirements, and significant expenses. Nanoscale materials have demonstrated remarkable effectiveness in removing a wide range of contaminants. Nanoscale zero-valent iron (NZVI) exhibits a range of distinctive physical and chemical properties that have proven to be highly effective in various environmental remediation applications. These include its impressive surface area, remarkable reactivity, and its capacity to create stable colloidal suspensions. The paper explores the synthetic techniques for NZVI with special emphasis on green synthesis and the use of capping or support agents for maintaining stability and enhancing the reactivity of NZVI. The various structural and reactivity aspects of NZVI have been highlighted for its potential application in wastewater treatment sequestrating various categories of inorganic and organic contaminants. The discussion also delves into the limitations of NZVI, highlighting its dependence on water as a medium for contact reaction or electron transfer through the action mechanism of NZVI in adsorptive and photocatalytic sequestration of contaminants. The beneficial potential of NZVI-based composite systems in the field of environmental remediation has also been included which aids in the application of NZVI in environmental remediation.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Applied Science and Humanities, Galgotias College of Engineering and Technology, Greater Noida, UP, 201310, India.
| | - Mona Mittal
- Department of Chemistry, Directorate of Geology and Mining, Lucknow, Uttar Pradesh, 226001, India
| | - Smriti Tripathi
- Department of Applied Science and Humanities, Galgotias College of Engineering and Technology, Greater Noida, UP, 201310, India
| | - Nnabuk Okon Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410105, Nigeria
| |
Collapse
|
4
|
Kumari S, Chowdhry J, Kumar M, Chandra Garg M. Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects. ENVIRONMENTAL RESEARCH 2024; 260:119782. [PMID: 39142462 DOI: 10.1016/j.envres.2024.119782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Zeolites possess a microporous crystalline structure, a large surface area, and a uniform pore size. Natural or synthetic zeolites are commonly utilized for adsorbing organic and inorganic compounds from wastewater because of their unique physicochemical properties and cost-effectiveness. The present review work comprehensively revealed the application of zeolites in removing a diverse range of wastewater contaminates, such as dyes, heavy metal ions, and phenolic compounds, within the framework of contemporary research. The present review work offers a summary of the existing literature about the chemical composition of zeolites and their synthesis by different methods. Subsequently, the article provides a wide range of factors to examine the adsorption mechanisms of both inorganic and organic pollutants using natural zeolites and modified zeolites. This review explores the different mechanisms through which zeolites effectively eliminate pollutants from aquatic matrices. Additionally, this review explores that the Langmuir and pseudo-second-order models are the predominant models used in investigating isothermal and kinetic adsorption and also evaluates the research gap on zeolite through scientometric analysis. The prospective efficacy of zeolite materials in future wastewater treatment may be assessed by a comparative analysis of their capacity to adsorb toxic inorganic and organic contaminates from wastewater, with other adsorbents.
Collapse
Affiliation(s)
- Sheetal Kumari
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India
| | | | - Manish Kumar
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India.
| | - Manoj Chandra Garg
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India.
| |
Collapse
|
5
|
Villafranca JC, Berton P, Ferguson M, Clausen R, Arancibia-Miranda N, Martinis EM. Aluminosilicates-based nanosorbents for heavy metal removal - A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134552. [PMID: 38823105 DOI: 10.1016/j.jhazmat.2024.134552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/17/2024] [Accepted: 05/03/2024] [Indexed: 06/03/2024]
Abstract
Contamination of water bodies with heavy metals poses a significant threat to human health and the environment, requiring the development of effective treatment techniques. In this context, aluminosilicates emerge as promising sorbents due to their cost-effectiveness and natural abundance. This review provides a clear, in-depth, and comprehensive description of the structure, properties, and characteristics of aluminosilicates, supporting their application as adsorbents and highlighting their diversity and adaptability to different matrices and analytes. Furthermore, the functionalization of these materials is thoroughly addressed, detailing the techniques currently used, exposing the advantages and disadvantages of each approach, and establishing comparisons and evaluations of the performances of various functionalized aluminosilicates in the extraction of heavy metals in aqueous matrices. This work aims not only to comprehensively review numerous studies from recent years but also to identify trends in the study of such materials and inspire future research and applications in the field of contaminant removal using aluminosilicates.
Collapse
Affiliation(s)
- Juan C Villafranca
- Facultad de Ingeniería, Universidad Nacional de Cuyo - Centro Universitario, Mendoza, M5500 Mendoza, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Paula Berton
- Chemical and Petroleum Engineering Department, University of Calgary, Calgary, AB, Canada
| | - Michael Ferguson
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ruth Clausen
- Facultad de Ingeniería, Universidad Nacional de Cuyo - Centro Universitario, Mendoza, M5500 Mendoza, Argentina
| | - Nicolás Arancibia-Miranda
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago, Chile; Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Estefanía M Martinis
- Facultad de Ingeniería, Universidad Nacional de Cuyo - Centro Universitario, Mendoza, M5500 Mendoza, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
6
|
Wei X, You Y, Fan Z, Sheng G, Ma J, Huang Y, Xu H. Controllable integration of nano zero-valent iron into MOFs with different structures for the purification of hexavalent chromium-contaminated water: Combined insights of scavenging performance and potential mechanism investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173395. [PMID: 38795988 DOI: 10.1016/j.scitotenv.2024.173395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
This work combined the stability of the porous structure of metal-organic frameworks with the strong reducibility of nano zero-valent iron, for the controllable integration of NZVI into MOFs to utilize the advantages of each component with enhancing the rapid decontamination and scavenging of Cr(VI) from wastewater. Hence, four kinds of MOFs/NZVI composites namely ZIF67/NZVI, MOF74/NZVI, MIL101(Fe)/NZVI, CuBTC/NZVI, were prepared for Cr(VI) capture. The results indicated that the stable structure of ZIF67, MOF74, MIL101(Fe), CuBTC, was beneficial for the dispersion of NZVI that could help more close contact between MOFs/NZVI reactive sites and Cr(VI), subsequently, MOFs/NZVI was proved to be better scavengers for Cr(VI) scavenging than NZVI alone. The Cr(VI) capture achieved the maximum adsorption capacity at pH ~ 4.0, which might be due to the participation of more H+ in the reaction and better corrosion of NZVI at lower pH. Mechanism investigation demonstrated synergy of adsorption, reduction and surface precipitation resulted in enhanced Cr(VI) scavenging, and Fe(0), dissolved and surface-bound Fe(II) were the primary reducing species. The findings of this investigation indicated that the as-prepared composites of ZIF67/NZVI, MOF74/NZVI, MIL101(Fe)/NZVI, CuBTC/NZVI, with high oxidation resistance and excellent reactivity, could provide reference for the decontamination and purification of actual Cr(VI)-containing wastewater.
Collapse
Affiliation(s)
- Xuemei Wei
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Yanran You
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Zheyu Fan
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Guodong Sheng
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China.
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, PR China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, PR China
| | - Huiting Xu
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| |
Collapse
|
7
|
Belviso C, Mancinelli M, Abdolrahimi M, Sturini M, Cavalcante F, Lettino A, Peddis D. Red mud treated with KOH: synthesis of sustainable materials from waste for water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45414-45424. [PMID: 38963630 DOI: 10.1007/s11356-024-34083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Solid waste resulting from bauxite ore (red mud) was converted into useful products consisting in hydrogarnet together with zeolite. Red mud (RM) transformation from disposal material into new source was carried out using potassium hydroxide as an activator and hydrothermal process (HY) or vapor phase crystallization (VPC) approach. HY process was performed at 60, 90, and 130 °C whereas during the VPC method, red mud was contacted only with vapor from the distilled water heated at 60 and 90 °C. The results indicate the formation of katoite and zeolite L (LTL topology) with both approaches. All the synthetic products display magnetic properties. In addition, a preliminary investigation on arsenic removal from drinking water (from 59 to 86%), makes the synthetic materials appealing for environmental applications. Finally, the synthesis of a large amount of very useful newly-formed phases using vapor molecules confirms the efficiency of the innovative and green VPC process in waste material transformation.
Collapse
Affiliation(s)
- Claudia Belviso
- Istituto di Metodologie per l'Analisi Ambientale, IMAA-CNR, 85050, Tito Scalo (Potenza), Italy.
| | - Maura Mancinelli
- Department of Physics and Earth Sciences, University of Ferrara, 44122, Ferrara, Italy
| | - Maryam Abdolrahimi
- Institute of Structure of Matter, National Research Council, nM2-Lab, Via Salaria Km 29.300, Monterotondo Scalo, 00015, Rome, Italy
- Department of Chemistry and Industrial Chemistry & Genova, INSTM RU, nM2-Lab, University of Genova, 16146, Genoa, Italy
| | - Michela Sturini
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Francesco Cavalcante
- Istituto di Metodologie per l'Analisi Ambientale, IMAA-CNR, 85050, Tito Scalo (Potenza), Italy
| | - Antonio Lettino
- Istituto di Metodologie per l'Analisi Ambientale, IMAA-CNR, 85050, Tito Scalo (Potenza), Italy
| | - Davide Peddis
- Institute of Structure of Matter, National Research Council, nM2-Lab, Via Salaria Km 29.300, Monterotondo Scalo, 00015, Rome, Italy
- Department of Chemistry and Industrial Chemistry & Genova, INSTM RU, nM2-Lab, University of Genova, 16146, Genoa, Italy
| |
Collapse
|
8
|
Zhao Y, Zhang X, Xue H, Gong B, Li Q, Guo W, Meng X. Effective immobilization and biosafety assessment of antimony in soil with zeolite-supported nanoscale zero-valent iron. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124082. [PMID: 38697246 DOI: 10.1016/j.envpol.2024.124082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Antimony (Sb) contamination in certain areas caused by activities such as antimony mining and smelting poses significant risks to human health and ecosystems. In this study, a stable composite material consisting of natural zeolite-supported nanoscale zero-valent iron (Z-ZVI) was successfully prepared. The immobilization effect of Z-ZVI on Sb in contaminated soil was investigated. Experimental results showed that Z-ZVI exhibited superior performance compared to pure nano zero-valent iron (nZVI) in terms of stability, with a lower zeta potential (-25.16 mV) at a pH of 7 and a higher specific surface area (54.54 m2/g). It can be easily applied and dispersed in contaminated soils. Additionally, Z-ZVI demonstrated a more abundant porous structure. After 60 days of treatment with 3% Z-ZVI, the leaching concentration of Sb in the contaminated soil decreased from 1.32 mg/L to 0.31 mg/L (a reduction of 76%), and the concentration of available Sb species decreased from 19.84 mg/kg to 0.71 mg/kg, achieving a fixation efficiency of up to 90%. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis confirmed the effective immobilization of Sb in the soil through reduction of antimonate to antimonite, precipitation, and adsorption processes facilitated by Z-ZVI. Moreover, the addition of Z-ZVI effectively reduced the bioavailability of Sb in the contaminated soil, thereby mitigating its toxicity to earthworms. In conclusion, Z-ZVI can be utilized as a promising material for the safe remediation and antimony and other heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyi Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Haotian Xue
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bin Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qingxu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Xiaoguang Meng
- Center for Environmental Systems, Department of Civil, Environmental & Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| |
Collapse
|
9
|
Kalami S, Diakina E, Noorbakhsh R, Sheidaei S, Rezania S, Vasseghian Y, Kamyab H, Mohammadi AA. Metformin-modified polyethersulfone magnetic microbeads for effective arsenic removal from apatite soil leachate water. ENVIRONMENTAL RESEARCH 2024; 241:117627. [PMID: 37967700 DOI: 10.1016/j.envres.2023.117627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Arsenic is the hazardous species and still is the global challenge in water treatment. Apatite soil is highly rich in arsenic species, and its mining presents various environmental issues. In this study, novel magnetic microbeads as adsorbent were developed for the elimination of hazardous arsenic ions from apatite soil's aqueous leachate before discharging into environment. The microbeads were fabricated with metformin polyether sulfone after being doped with zero-valent iron (Met-PES/ZVI). The microbeads were characterized using various techniques, including FTIR, XRD, SEM-EDX, VSM, and zeta potential analysis. The developed adsorbent demonstrated a significant elimination in arsenic in aqueous leachate, achieving 82.39% removal after 30 min of contact time, which further increased to 90% after 180 min of shaking. The kinetic analysis revealed that the pseudo-second-order model best represented the adsorption process. The intra-particle diffusion model indicated that the adsorption occurred in two steps. The Langmuir model (R2 = 0.991), with a maximum adsorption capacity of 188.679 mg g-1, was discovered to be the best fit for the experimental data as compared Freundlich model (R2 = 0.981). According to the thermodynamic outcome (ΔG < -20 kJ/mol), the adsorption process was spontaneous and involved physisorption. These findings demonstrate the potential of magnetic Met-PES/ZVI microbeads as an efficient adsorbent for the removal of arsenic from apatite soil aqueous leachate.
Collapse
Affiliation(s)
- Shakila Kalami
- Department of Chemical Engineering and Petroleum, Chemistry & Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Ekaterina Diakina
- Department of Mechanical Engineering, Bauman Moscow State Technical University, Moscow, Russia; Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Kuwait
| | - Roya Noorbakhsh
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), PO Box 31745-139, Karaj, Iran.
| | - Sina Sheidaei
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, 9318614139, Iran
| |
Collapse
|
10
|
Zhao Z, Li S, Zhang Y, Guo P, Zhao X, Li Y. Repurposing of steel rolling sludge: Solvent-free preparation of α-Fe 2O 3 nanoparticles and its application for As(III/V)-containing wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118286. [PMID: 37269724 DOI: 10.1016/j.jenvman.2023.118286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Steel rolling sludge (SRS) is the by-product of metallurgical industry with abundant iron content, which needs to be utilized for producing high value-added products. Herein, cost-effective and highly adsorbent α-Fe2O3 nanoparticles were prepared from SRS via a novel solvent-free method and applied to treat As(III/V)-containing wastewater. The structure of the prepared nanoparticles was observed to be spherical with a small crystal size (12.58 nm) and high specific surface area (145.03 m2/g). The nucleation mechanism of α-Fe2O3 nanoparticles and the effect of crystal water were investigated. More importantly, compared with the traditional methods of preparation cost and yield, this study was found to have excellent economic benefits. The adsorption results indicated that the adsorbent could effectively remove arsenic over a wide pH range, and the optimal performance of nano adsorbent for As(III) and As(V) removal was observed at pH 4.0-9.0 and 2.0-4.0, respectively. The adsorption process was consistent with pseudo-second-order kinetic and Langmuir isothermal model. The maximum adsorption capacity (qm) of adsorbent for As(III) and As(V) was 75.67 mg/g and 56.07 mg/g, respectively. Furthermore, α-Fe2O3 nanoparticles exhibited great stability, and qm remained at 64.43 mg/g and 42.39 mg/g after five cycles. Particularly, the As(III) was removed by forming inner-sphere complexes with the adsorbent, and it partially oxidized to As(V) during this process. In contrast, the As(V) was removed by electrostatic adsorption and reaction with -OH on the adsorbent surface. Overall, resource utilization of SRS and the treatment of As(III)/(V)-containing wastewater in this study are in line with the current developments in the environmental and waste-to-value research.
Collapse
Affiliation(s)
- Zekun Zhao
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Suqin Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yabin Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Penghui Guo
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xin Zhao
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongkui Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
11
|
Li Y, Zhang Y, Yang W, Lin Y. The reaction pathway and mechanism of 2,4-dichlorophenol removal by modified fly ash-loaded nZVI/Ni particles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27770-z. [PMID: 37256401 DOI: 10.1007/s11356-023-27770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Nanoscale zero-valent iron (nZVI) is more valuable in environmental restoration than other materials. Chemical treatment of fly ash (CFA) was employed as a support material to disperse iron nickel bimetal nanoparticles (CFA-nZVI/Ni) to remove 2,4-dichlorophenol (2,4-DCP). Batch experiments showed that 2,4-DCP was completely removed by CFA-nZVI/Ni, and an optimal loading ratio was 8:1. The degradation of 2,4-DCP by CFA-nZVI/Ni was a chemical control reaction with an activation energy of 95.6 kJ mol-1 and followed pseudo-first-order kinetics. The addition of Cl- increased the removal rate of 2,4-DCP by 4%, while the addition of CO32- and SO42- decreased the removal rate of 2,4-DCP by 32% and 72.3%, respectively. The removal process of 2,4-DCP by CFA-nZVI/Ni included adsorption and reduction. The 2-CP (7.1 mg/L) and 4-CP (11.6 mg/L) could be converted to phenol using the CFA-nZVI/Ni system. Cl on the para-position of 2,4-DCP was simpler to remove than on the ortho-position. The following steps were taken in the electrophilic substitution reaction between substituted phenols and hydrogen radicals: 2,4-DCP > 2-CP > 4-CP > phenol. This research provides a novel concept to effectively remove 2,4-DCP and mechanism analysis.
Collapse
Affiliation(s)
- Yajun Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China
| | - Yongxiang Zhang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China.
| | - Wenjing Yang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China
| | - Yuhui Lin
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China
| |
Collapse
|
12
|
He S, Li J, Cao X, Xie F, Yang H, Wang C, Bittencourt C, Li W. Regenerated cellulose/chitosan composite aerogel with highly efficient adsorption for anionic dyes. Int J Biol Macromol 2023:125067. [PMID: 37245747 DOI: 10.1016/j.ijbiomac.2023.125067] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
A novel reusable, high-compressible cotton regenerated cellulose/chitosan composite aerogel (RC/CSCA) was prepared using N-methylmorpholine-N-oxide (NMMO) as the green cellulose solvent, and glutaraldehyde (GA) as the crosslinking agent. The regenerated cellulose obtained from cotton pulp could chemically crosslink with chitosan and GA, to form a stable 3D porous structure. The GA played an essential role in preventing shrinkage and preserving the deformation recovery ability of RC/CSCA. Due to the ultralow density (13.92 mg/cm3), thermal stability (above 300 °C), and high porosity (97.36 %), the positively charged RC/CSCA can be used as a novel biocomposite adsorbent for effective and selective removal of toxic anionic dyes from wastewater, showing an excellent adsorption capacity, environmental adaptability, and recyclability. The maximal adsorption capacity and removal efficiency of RC/CSCA for methyl orange (MO) was 742.68 mg/g and 95.83 %.
Collapse
Affiliation(s)
- Shaochun He
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Junting Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xundan Cao
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310012, China
| | - Fei Xie
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hui Yang
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310012, China
| | - Cheng Wang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Carla Bittencourt
- Chimie des Interactions Plasma-Surface, Université de Mons (UMONS), 20 Place du Parc, 7000 Mons, Belgium
| | - Wenjiang Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
13
|
Kong Y, Xu B, Lu F, Han Z, Ma J, Chen Z, Shen J. Enhancement of 15% calcium oxide doped nano zero-valent iron on arsenic removal from high-arsenic acid wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27604-y. [PMID: 37217816 DOI: 10.1007/s11356-023-27604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Nano zero-valent iron (nZVI) has a great potential for arsenic removal, but it would form aggregates easily and consume largely by H+ in the strongly acidic solution. In this work, 15%CaO doped with nZVI (15%CaO-nZVI) was successfully synthesized from a simplified ball milling mixture combined with a hydrogen reduction method, which had a high adsorption capacity for As(V) removal from high-arsenic acid wastewater. More than 97% As(V) was removed by 15%CaO-nZVI under the optimum reaction conditions of pH 1.34, initial As(V) concentration 16.21 g/L, and molar ratio of Fe/As (nFe/nAs) 2.5:1. The effluent pH solution was weakly acidic 6.72, and the secondary arsenic removal treatment reduced the solid waste and improved arsenic grade in slag from the mass fraction of 20.02% to 29.07%. Multiple mechanisms including Ca2+ enhanced effect, adsorption, reduction, and co-precipitation coexisted for As(V) removal from high-arsenic acid wastewater. Doping of CaO might lead to improving cracking channels which was benefit for electronic transmission and the confusion of atomic distribution. The in situ weak alkaline environment generated on the surface of 15%CaO-nZVI would increase the content of γ-Fe2O3/Fe3O4, which was in favor for As(V) adsorption. In addition, H+ in the strongly acidic solution could accelerate corrosion of 15%CaO-nZVI and abundant fresh and reactive iron oxides continuously generated, which would provide plenty specific reactive site and fast charge transfer and ionic mobility for arsenic removal.
Collapse
Affiliation(s)
- Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Bingjie Xu
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China
| | - Fan Lu
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China
| | - Zhao Han
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China.
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
14
|
Umejuru EC, Mashifana T, Kandjou V, Amani-Beni M, Sadeghifar H, Fayazi M, Karimi-Maleh H, Sithole T. Application of zeolite based nanocomposites for wastewater remediation: Evaluating newer and environmentally benign approaches. ENVIRONMENTAL RESEARCH 2023; 231:116073. [PMID: 37164282 DOI: 10.1016/j.envres.2023.116073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
The presence of heavy metal ions and emerging pollutants in water poses a great risk to various biological ecosystems as a result of their high toxicity. Consequently, devising efficient and environmentally friendly methods to decontaminate these waters is of high interest to many researchers around the world. Among the varied water treatment and desalination means, adsorption and photocatalysis have been widely employed. However, the discussion and analysis of the use of zeolite-based composites as adsorbents are somehow minimal. The porous aluminosilicates (zeolites) are excellent candidates in wastewater treatment owing to various mechanisms of pollutants removal that they possess. The purpose of this review is thus to provide a synopsis of the current developments in the fabrication and application of nanocomposites based on zeolite as adsorbents and photocatalysts for the extraction of heavy metals, dyes and emerging pollutants from wastewaters. The review goes on to look into the effect of weight ratio on photocatalyst, photodegradation pathways, and various factors that influence photocatalysis and adsorption.
Collapse
Affiliation(s)
- Emmanuel Christopher Umejuru
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Tebogo Mashifana
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Vepika Kandjou
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa; Department of Chemical Materials and Metallurgical Engineering (CMME), Faculty of Engineering and Technology (FET), Botswana International University of Science and Technology (BIUST), P/Bag 16, Palapye, Botswana
| | - Majid Amani-Beni
- School of Architecture, Southwest Jiaotong University, 611756, Chengdu, China
| | - Hasan Sadeghifar
- R&D Laboratory, Hollingsworth & Vose (H&V) Company, West Groton, MA, 01452, USA
| | - Mahsa Fayazi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Thandiwe Sithole
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa.
| |
Collapse
|
15
|
Zafeiriou I, Gasparatos D, Ioannou D, Katsikini M, Pinakidou F, Paloura EC, Massas I. Se(IV)/Se(VI) adsorption mechanisms on natural and on Ca-modified zeolite for Mediterranean soils amended with the modified zeolite: prospects for agronomic applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41983-41998. [PMID: 36640241 PMCID: PMC10067652 DOI: 10.1007/s11356-022-24979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In the present study, the ability of a modified CaCl2 zeolite (Ca-Z) to both increase Se(IV) availability and restrict Se(VI) mobility in soils is examined. As it was resulted from batch experiments and verified by X-ray absorption fine structure (XAFS) and X-ray fluorescence (XRF) spectroscopies, higher amounts of both Se species adsorbed on Ca-Z compared to natural zeolite (Z-N) forming outer-sphere complexes while the oxidation state did not alter during agitation of samples. Thereafter, Ca-Z was incorporated in six Greek soils, divided into acid and alkaline, at a 20% (w/w) rate and a series of equilibrium batch experiments were performed with soils alone and soils-Ca-Z mixtures to investigate sorption and desorption processes and mechanisms. The acid soils, either treated with Ca-Z or not, adsorbed higher amounts of Se(IV) than alkaline ones, whereas soils alone did not adsorb Se(VI) but impressively high adsorption of Se(VI) occurred in the Ca-Z-treated soils. Desorption of Se(IV) was higher from the Ca-Z-treated soils and especially from the acid soils. Higher distribution coefficients of desorption than the distribution coefficients of sorption were observed, clearly pointing to a hysteresis mechanism. The experimental data fitted with Langmuir and Freundlich isotherms. In the presence of Ca-Z, the Langmuir qm values increased indicating higher Se(IV) retention while Langmuir bL values decreased suggesting lower bonding strength and higher Se(IV) mobility. Overall, treating the soils with Ca-Z increased Se(IV) adsorption and mobility whereas it provided sites for Se(VI) adsorption that did not exist in the studied soils.
Collapse
Affiliation(s)
- Ioannis Zafeiriou
- Laboratory of Soil Science and Agricultural Chemistry, Department of Natural Resources Management & Agricultural Engineering, School of Environment & Agricultural Engineering, Agricultural University of Athens, 11855, Athens, Greece
| | - Dionisios Gasparatos
- Laboratory of Soil Science and Agricultural Chemistry, Department of Natural Resources Management & Agricultural Engineering, School of Environment & Agricultural Engineering, Agricultural University of Athens, 11855, Athens, Greece
| | - Dafni Ioannou
- Laboratory of Soil Science and Agricultural Chemistry, Department of Natural Resources Management & Agricultural Engineering, School of Environment & Agricultural Engineering, Agricultural University of Athens, 11855, Athens, Greece
| | - Maria Katsikini
- Department of Physics, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece
| | - Fani Pinakidou
- Department of Physics, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece
| | - Eleni C Paloura
- Department of Physics, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece
| | - Ioannis Massas
- Laboratory of Soil Science and Agricultural Chemistry, Department of Natural Resources Management & Agricultural Engineering, School of Environment & Agricultural Engineering, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
16
|
Raza MB, Datta SP, Golui D, Barman M, Das TK, Sahoo RN, Upadhyay D, Rahman MM, Behera B, Naveenkumar A. Synthesis and Performance Evaluation of Novel Bentonite-Supported Nanoscale Zero Valent Iron for Remediation of Arsenic Contaminated Water and Soil. Molecules 2023; 28:molecules28052168. [PMID: 36903414 PMCID: PMC10004430 DOI: 10.3390/molecules28052168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Groundwater arsenic (As) pollution is a naturally occurring phenomenon posing serious threats to human health. To mitigate this issue, we synthesized a novel bentonite-based engineered nano zero-valent iron (nZVI-Bento) material to remove As from contaminated soil and water. Sorption isotherm and kinetics models were employed to understand the mechanisms governing As removal. Experimental and model predicted values of adsorption capacity (qe or qt) were compared to evaluate the adequacy of the models, substantiated by error function analysis, and the best-fit model was selected based on corrected Akaike Information Criterion (AICc). The non-linear regression fitting of both adsorption isotherm and kinetic models revealed lower values of error and lower AICc values than the linear regression models. The pseudo-second-order (non-linear) fit was the best fit among kinetic models with the lowest AICc values, at 57.5 (nZVI-Bare) and 71.9 (nZVI-Bento), while the Freundlich equation was the best fit among the isotherm models, showing the lowest AICc values, at 105.5 (nZVI-Bare) and 105.1 (nZVI-Bento). The adsorption maxima (qmax) predicted by the non-linear Langmuir adsorption isotherm were 354.3 and 198.5 mg g-1 for nZVI-Bare and nZVI-Bento, respectively. The nZVI-Bento successfully reduced As in water (initial As concentration = 5 mg L-1; adsorbent dose = 0.5 g L-1) to below permissible limits for drinking water (10 µg L-1). The nZVI-Bento @ 1% (w/w) could stabilize As in soils by increasing the amorphous Fe bound fraction and significantly diminish the non-specific and specifically bound fraction of As in soil. Considering the enhanced stability of the novel nZVI-Bento (upto 60 days) as compared to the unmodified product, it is envisaged that the synthesized product could be effectively used for removing As from water to make it safe for human consumption.
Collapse
Affiliation(s)
- Md Basit Raza
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- ICAR-Indian Institute of Soil and Water Conservation, RC Koraput, Odisha 763002, India
| | - Siba Prasad Datta
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence: (S.P.D.); (D.G.); (M.M.R.)
| | - Debasis Golui
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, USA
- Correspondence: (S.P.D.); (D.G.); (M.M.R.)
| | - Mandira Barman
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Tapas Kumar Das
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rabi Narayan Sahoo
- Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Devi Upadhyay
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Ashulia, Savar, Dhaka 1207, Bangladesh
- Correspondence: (S.P.D.); (D.G.); (M.M.R.)
| | | | - A Naveenkumar
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
17
|
Zhou L, Wang K, Yi Y, Fang Z. Sophorolipid modification enables high reactivity and electron selectivity of nanoscale zerovalent iron toward hexavalent chromium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116775. [PMID: 36402015 DOI: 10.1016/j.jenvman.2022.116775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Nanoscale zero-valent iron is considered to be a promising nanostructure for environmental remediation, while increasing the electron selectivity of nanoscale zerovalent iron (nZVI) during target contaminant removal is still a challenge (electron selectivity, defined as the percentage of electrons transferred to the target contaminants over the number of electrons donated by nZVI). In this study, the strategy for increasing the reactivity and electron selectivity of nZVI via sophorolipid (SL-nZVI) modification was proposed. The results showed that the removal efficiency and electron selectivity of SL-nZVI toward Cr(VI) was 99.99% and 56.30%, which was higher than that of nZVI (61.16%, 25.91%). Meanwhile, the particles were well characterized and the mechanism for enhanced reactivity and electron selectivity was investigated. Specially, both the morphology and BET specific surface area characterization suggested that stability against aggregation was higher in SL-nZVI nanoparticles than in nZVI. Besides, X-ray photoelectron spectroscopy (XPS), Tafel polarization curves, and Electrochemical impedance spectroscopy also indicated that the introduction of sophorolipid successfully prevent the nanoparticles from oxidation and benefit the electron transferring. In addition, a water contact angle test revealed that SL-nZVI nanoparticles were less hydrophilic (contact angle = 34.8°) than nZVI (contact angle = 23.9°). Therefore, in terms of reactivity, sophorolipid modification inhibited the aggregation of the nanoparticles and enhanced the electrical conductivity. For electron selectivity, the introduction of sophorolipid not only benefited Cr(VI) adsorption and the electron transfer from Fe0 to the surface-adsorbed Cr(VI) that followed but also reduced the possibility of side reactions between Fe0 and H2O. This study demonstrates that the introduction of sophorolipid is an effective strategy for developing a highly efficient nZVI-based nanocomposite system and highlights the potential role of sophorolipid in improving the electron selectivity of nZVI.
Collapse
Affiliation(s)
- Long Zhou
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou 510006, China
| | - Kuang Wang
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou 510006, China
| | - Yunqiang Yi
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou 510006, China.
| |
Collapse
|
18
|
Huang T, Pan L, Dong J, Zhou L, Tao H, Zhang SW, Li A. A comprehensive investigation of zeolite-rich tuff functionalized with 3-mercaptopropionic acid intercalated green rust for the efficient removal of Hg II and Cr VI in a binary system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116344. [PMID: 36166867 DOI: 10.1016/j.jenvman.2022.116344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In this study, the 3-mercaptopropionic acid (MA) was chosen to achieve the anionic intercalation into the green rust (GR) materials (MA-GR). The zeolite-rich tuff functionalized with the MA-intercalated GR (MA-GR-tuff) was subsequently synthesized and used to remove both HgII cations and CrVI anions in a binary system. MA-GR-tuff showed the best adsorption capacities to both HgII and CrVI among the adsorbent materials. The optimal combination of parameters was determined as the molar ratio of FeII to FeIII of 3.5, the molar ratio of OH- to the total iron of 3.75, the molar ratio of MA to the total iron of 2.5, and the mass ratio of the total iron to the tuff of 1.25. The pseudo-first-order kinetic model was appropriate in describing the kinetic sorption of CrVI by MA-GR-tuff. Both the pseudo-first-order kinetic model and Elovich were suitable for explaining HgII sorption. The maximum monolayer adsorption capacities of MA-GR-tuff towards CrVI and HgII were 185.19 mg/g and 72.99 mg/g, respectively. More flocs and plumes were formed in the MA-GR while the intercalation and more pores and crevices of different sizes were found in the MA-GR-tuff. Sulfhydryl complexation and the molecular sieve of tuff obviously both played a role in influencing the adsorption process. This study directly overcomes the drawback brought by the natural tuff to the treatment of a cationic-and-anionic binary system and supplies a new kind of tuff-based adsorbent for the potential use for the remediation of HM-contaminated wastewater.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
| | - Longwei Pan
- School of Materials Engineering, Changshu Institute of Technology, 215500, China.
| | - Jincheng Dong
- Suzhou Kunshan Environmental Monitoring Station, 215300, China
| | - Lulu Zhou
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Hui Tao
- Chongqing Water Affairs Group Co., Ltd., No. 1, Longjiawan, Yuzhong District, Chongqing, 400000, China
| | - Shu-Wen Zhang
- School of Resource Environmental and Safety Engineering, University of South China, 421001, China
| | - Aiyin Li
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| |
Collapse
|
19
|
Abukhadra MR, Saad I, Othman SI, Katowah DF, Ajarem JS, Alqarni SA, Allam AA, Al Zoubi Investigatio W, Gun Ko Supervisor Y. Characterization of Fe0@Chitosan/Cellulose Structure as Effective Green Adsorbent for Methyl Parathion, Malachite Green, and Levofloxacin Removal: Experimental and Theoretical Studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Noorbakhsh R, Koohi MK, Hassan J, Rahmani A, Rashidi Nodeh H, Rezania S. Magnetic Beads of Zero Valent Iron Doped Polyethersolfun Developed for Removal of Arsenic from Apatite-Soil Treated Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12697. [PMID: 36231997 PMCID: PMC9566726 DOI: 10.3390/ijerph191912697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The drop immerses calcium chloride aqueous solution was utilized to prepare the zero valent iron-doped polyethersulfone beads (PES/ZVI) for the efficient removal of arsenic from apatite-soil treated waters. The proposed beads can assist in promoting uptake efficiency by hindering ZVI agglomeration due to a high porosity and different active sites. The PES/ZVI beads were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and vibrating sample magnetism (VSM). The main objective of this study was to investigate the function of new PES/ZVI beads with an increased removal efficiency for the remediation of arsenic ions from the apatite-soil treated waters. A maximum adsorption removal of 82.39% was achieved when the experiment was performed with 80 mg of adsorbent for a contact time of 180 min. Based on the results, a removal efficiency >90% was obtained after 300 min of shaking time with an arsenic concentration of 20 mg·L-1. The experimental process was fitted with the Langmuir model due to the high R2 (0.99) value compared to the Freundlich model (0.91) with an adsorption capacity of 41.32 mg·g-1. The adsorption process speed was limited by pseudo-second-order (R2 = 0.999) and the adsorption mechanism nature was endothermic and physical.
Collapse
Affiliation(s)
- Roya Noorbakhsh
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj 3174734563, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Jalal Hassan
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Anosheh Rahmani
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj 3174734563, Iran
| | - Hamid Rashidi Nodeh
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj 3174734563, Iran
| | | |
Collapse
|
21
|
Ma Q, Teng W, Sun Y, Chen Y, Xue Y, Chen X, Zhang C, Zhang H, Fan J, Qiu Y, Fu R. Multi-component removal of Pb(II), Cd(II), and As(V) over core-shell structured nanoscale zero-valent iron@mesoporous hydrated silica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154329. [PMID: 35257767 DOI: 10.1016/j.scitotenv.2022.154329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The application of nanomaterials for the removal of heavy metals has received a great deal of attention because of their high efficiencies in the environment. But it is difficult to remove multiple heavy metals simultaneously with high efficiency and stability. Herein, the core-shell structured nanoscale zero-valent iron (nZVI) encapsulated with mesoporous hydrated silica (nZVI@mSiO2) were prepared for efficient removal of heavy metals including Pb(II), Cd(II), and metalloid As(V). The material prepared uniformly with a high surface area (147.7 m2 g-1) has a nZVI core with the particle size of 20-60 nm and a modified dendritic mesoporous shell of 19 nm. 0.15 g L-1 of the optimal material exhibited an extraordinary performance on removing Cd(II) and the maximum adsorption capacity for Pb(II), Cd(II), and As(V) reached 372.2 mg g-1, 105.2 mg g-1, and 115.2 mg g-1 with a pH value at 5.0, respectively. The dissolved iron during the reaction showed that the mesoporous silica (mSiO2) played an important role in enhancing the stability of nZVI. In addition, the competitive relationship between the coexistence of two heavy metals was discussed and it was found that the removal efficiency of the material for both was improved when Cd(II) and As(V) were removed synergistically.
Collapse
Affiliation(s)
- Qian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yu Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yanyan Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaoqian Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Chuning Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Yuping Qiu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Rongbing Fu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
22
|
Wang T, Jiao Y, He M, Ouyang W, Lin C, Liu X, Xie H. Deep insight into the Sb(III) and Sb(V) removal mechanism by Fe-Cu-chitosan material. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119160. [PMID: 35304178 DOI: 10.1016/j.envpol.2022.119160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Currently, alleviating antimony (Sb) contamination in aqueous solutions is crucial for restoring and recovering ecological and environmental health. Due to its toxicity, bioaccumulation and mobile characteristics, developing an efficient technique for antimony decontamination is imperative. Herein, we prepared a Fe-Cu-chitosan (FCC) composite by a one-step coprecipitation method, in which nanoscale Fe/Cu acts as the active sites and the whole structure is exhibited as porous microscale particles. A Fe/Cu proportion of 2/1 (FCC-2/1) was determined to be the optimum proportion for antimony adsorption, specifically 34.5 mg g-1 for Sb(III) and 26.8 mg g-1 for Sb(V) (initial concentration: 5.0 mg L-1). Spectral characterization, batch experiments and density functional theory (DFT) simulations were applied to determine the adsorption mechanism, in which surface hydroxyls (-OH) were responsible for antimony complexion and Fe-Cu coupling was a major contributor to adsorption enhancement. According to kinetic analysis, Cu provided an electrostatic attraction during the adsorption process, which facilitated the transportation of antimony molecules to the material interface. In the meantime, the FCC electronic structure was modified due to the optimization of the Fe-Cu interface coupling. Based on the Mullikan net charge, the intrinsic Fe-O-Cu bond might favor interfacial electronic redistribution. When the antimony molecule contacted the adsorption interface, the electrons transferred swiftly as Fe/Cu 3d and O 2p orbital hybridization occurred, thus inducing a stabilizing effect. This work may offer a new perspective for binary oxide construction and its adsorption mechanism analysis.
Collapse
Affiliation(s)
- Tianning Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Yonghong Jiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., No. 712 Wen'er West Road, Xihu District, Hangzhou, 310003, China
| |
Collapse
|
23
|
Wu S, Li K, Shi W, Cai J. Preparation and performance evaluation of chitosan/polyvinylpyrrolidone/polyvinyl alcohol electrospun nanofiber membrane for heavy metal ions and organic pollutants removal. Int J Biol Macromol 2022; 210:76-84. [PMID: 35533844 DOI: 10.1016/j.ijbiomac.2022.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022]
Abstract
In this work, a novel electrospun chitosan (CS)/polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) nanofibrous membrane was prepared to remove heavy metal ions and organic pollutants from water. The nanofiber morphologies were adjusted through the optimal electrospinning process parameters. Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations indicated that a well-crosslinked CS/PVP/PVA nanofiber film was formed. Under the optimize conditions, the obtained CS/PVP/PVA nanofiber membranes exhibited porous and uniform nanofibrous structures with an average diameter of 160 nm and a pure water permeability of 4518.91 L·m-2·h-1·bar-1. In addition, the adsorption and separation performance of CS/PVP/PVA nanofiber membranes were evaluated with Cu(II), Ni(II), Cd(II), Pb(II) and Methylene Blue (MB), Malachite Green (MG) as target ions and dyes. The results showed that the retention rate of CS/PVP/PVA nanofiber membranes for Cu(II), Ni(II), Cd(II), Pb(II), MG and MB can reach 94.20%, 90.35%, 83.33%, 80.12%, 84.01% and 69.91%, respectively. The adsorption capacities of Cu(II), Ni(II), Cd(II), Pb(II), MG and MB were 34.79, 25.24, 18.07, 16.05, 17.86 and 13.27 mg g-1. The adsorption kinetics of heavy metal ions and dyes by the nanofiber membranes can be explained by the Langmuir isotherm model and represented by the pseudo-second-order kinetic mechanism that determined the spontaneous chemisorption process. This study provides a synthetic approach to membranes for the removal of organic and heavy metal micropollutants from water.
Collapse
Affiliation(s)
- Shuping Wu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China.
| | - Kanghui Li
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Weijian Shi
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Jiawei Cai
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| |
Collapse
|
24
|
Lin Z, Huan Z, Zhang J, Li J, Li Z, Guo P, Zhu Y, Zhang T. CTAB-functionalized δ-FeOOH for the simultaneous removal of arsenate and phenylarsonic acid in phenylarsenic chemical warfare. CHEMOSPHERE 2022; 292:133373. [PMID: 34958793 DOI: 10.1016/j.chemosphere.2021.133373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/23/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
This study prepared a cetyltrimethylammonium bromide (CTAB) functionalized δ-FeOOH using the coprecipitation method to remove arsenate and phenylarsonic acid in water polluted by phenylarsonic chemical warfare agents. Under neutral conditions, the adsorption capacity for arsenate and phenylarsonic acid was 45.7 and 85.3 mg g-1, respectively. The adsorption process conformed to the pseudo-second-order kinetics and Freundlich isothermal adsorption model, and the adsorption was spontaneous and endothermic. The CTAB-functionalized δ-FeOOH could effectively resist the interference of coexisting anions except for CO32-, SiO32- and PO43-. Furthermore, the adsorption mechanism was proposed by combining the adsorption experimental results, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and density functional theory analyses. The results showed that the adsorption of arsenate by the CTAB-functionalized δ-FeOOH was mainly through the formation of bidentate-dinuclear inner-sphere complexes and electrostatic interactions. While for phenylarsonic acid, the formation of monodentate-mononuclear inner-sphere complexes on (100) and (110) crystal facets, and the formation of bidentate-dinuclear inner-sphere complexes on the (002) crystal facet, as well as hydrogen bonding, electrostatic interaction, and π-hydrophobic interaction between organic compounds were the primary mechanism. Moreover, the CTAB-functionalized δ-FeOOH could maintain about 60% of the adsorption capacity for the two pollutants after five cycles. Overall, CTAB-functionalized δ-FeOOH has good potential for the remediation of inorganic and organic arsenic-contaminated water bodies.
Collapse
Affiliation(s)
- Zuhong Lin
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China; Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenglai Huan
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China; Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinlan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhifeng Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengfei Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
25
|
Martinis EM, Denardin JC, Calderón R, Flores C, Manquián-Cerda K, Maldonado T, Arancibia-Miranda N. Enhanced removal of mercury and lead by a novel and efficient surface-functionalized imogolite with nanoscale zero-valent iron material. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20221-20233. [PMID: 34725756 DOI: 10.1007/s11356-021-17242-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
A novel hybrid nanomaterial, nanoscale zero-valent iron (nZVI)-grafted imogolite nanotubes (Imo), was synthesized via a fast and straightforward chemical procedure. The as-obtained nanomaterial (Imo-nZVI) was characterized using transmission electron microscopy (TEM), electrophoretic mobility (EM), and vibrating sample magnetometry (VSM). The prepared Imo-nZVI was superparamagnetic at room temperature and could be easily separated by an external magnetic field. Sorption batch experiments were performed for single- and multicomponent systems and demonstrated that Hg2+ and Pb2+ could be quantitatively adsorbed at pH 3.0. For multicomponent systems, maximum adsorption capacities of 61.6 mg·g-1 and 76.9 mg·g-1 were obtained for Hg2+ and Pb2+ respectively. It was observed that the functional groups in Imo-nZVI interact preferentially with analytes according to the Misono softness parameter. The higher performance of Imo-nZVI compared with Imo and nZVI is related to the increased number of adsorption sites in the functionalized nanomaterial. The sorption equilibrium data obeyed the Langmuir model, while kinetic studies demonstrated that the sorption processes of Hg2+ and Pb2+ followed the pseudo-second-order model. This study suggests that the Imo-nZVI composite can be used as a promising sorbent to provide a simple and fast separation method to remove Hg and Pb ions from contaminated water.
Collapse
Affiliation(s)
- Estefanía M Martinis
- Facultad de Ingeniería, Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, UNCUYO-CONICET, Mendoza, Argentina.
| | - Juliano C Denardin
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago, Chile
| | - Raul Calderón
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica, 1990, Segundo Piso, Santiago, Chile
- Instituto de Investigaciones Agropecuarias, INIA La Platina, Santa Rosa, 11610, Santiago, Chile
| | - Cristóbal Flores
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Karen Manquián-Cerda
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Tamara Maldonado
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Nicolás Arancibia-Miranda
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago, Chile.
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
26
|
Li Y, Li S, Hu B, Zhao X, Guo P. FeOOH and nZVI combined with superconducting high gradient magnetic separation for the remediation of high-arsenic metallurgical wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Zoroufchi Benis K, McPhedran KN, Soltan J. Selenium removal from water using adsorbents: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127603. [PMID: 34772553 DOI: 10.1016/j.jhazmat.2021.127603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/05/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se) has become an increasingly serious water contamination concern worldwide. It is an essential micronutrient for humans and animals, however, can be extremely toxic if taken in excess. Sorption can be an effective treatment for Se removal from a wide range of water matrices. However, despite the synthesis and application of numerous adsorbents for remediation of aqueous Se, there has been no comprehensive review of the sorption capacities of various natural and synthesized sorbents. Herein, literature from 2010 to 2021 considering Se remediation using 112 adsorbents has been critically reviewed and presented in several comprehensive tables including: clay minerals and waste materials (presented in Table 1); zero-valent iron, iron oxides, and binary iron-based adsorbents (Table 2); other metals-based adsorbents (Table 3); carbon-based adsorbents (Table 4); and other adsorbents (Table 5). Each of these tables, and their relevant sections, summarizes preparation/modification methods, sorption capacities of various Se adsorbents, and proposed model/mechanisms of adsorption. Furthermore, future perspectives have been provided to assist in filling noted research gaps for the development of efficient Se adsorbents for real-world applications. This review will help in preliminary screening of various sorbent media to set up Se treatment technologies for a variety of end-users worldwide.
Collapse
Affiliation(s)
- Khaled Zoroufchi Benis
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerry N McPhedran
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Jafar Soltan
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
28
|
Yang L, Gao M, Wei T, Nagasaka T. Synergistic removal of As(V) from aqueous solution by nanozero valent iron loaded with zeolite 5A synthesized from fly ash. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127428. [PMID: 34634700 DOI: 10.1016/j.jhazmat.2021.127428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Nanozero valent iron (NZVI) loaded on zeolite 5A can efficiently remove As(V) in water through the synergism of zeolite 5A and NZVI. In this study, zeolite 5A was first obtained by ion exchange using zeolite 4A synthesized from fly ash and CaCl2, and then NZVI-5A zeolite was synthesized by a reduction method to load NZVI on zeolite 5 A. NZVI-5A zeolite had a specific surface area of 238 m2/g. The As(V) removal capacity by NZVI-5A zeolite was 72.09 mg/g by the Langmuir model fitting, and the removal capacity was almost not affected by solution pH in the pH range of 4-12. As(V) was removed by the precipitation of Ca2+ in zeolite 5A with As(V), Ca2+ and NZVI with As(V), and the reduction and inner ball complex reaction of NZVI. The As(V) removal efficiency by NZVI-5A zeolite was almost unaffected by the coexistence of CO32-, SO42-, NO3- and Cl- but decreased with high concentrations of PO43- in solution. The NZVI-5A zeolite could efficiently remove metal ions coexisting with As(V) in solution. The As(V) removal efficiency by the NZVI-5A zeolite was 84.0% after 5 cycles, and the NZVI-5A zeolite could be separated from the solution with an external magnetic field.
Collapse
Affiliation(s)
- Liyun Yang
- School of Metallurgical and Ecological Engineering, University of Science and Technology, Beijing, 100083, PR China; Department of Metallurgy, Graduate School of Engineering, Tohoku University, 02 Aoba-yama, Sendai 980-8579, Japan
| | - Mengdan Gao
- School of Metallurgical and Ecological Engineering, University of Science and Technology, Beijing, 100083, PR China
| | - Tianci Wei
- School of Metallurgical and Ecological Engineering, University of Science and Technology, Beijing, 100083, PR China
| | - Tetsuya Nagasaka
- Department of Metallurgy, Graduate School of Engineering, Tohoku University, 02 Aoba-yama, Sendai 980-8579, Japan
| |
Collapse
|
29
|
Chabazite from Campanian Ignimbrite Tuff as a Potential and Sustainable Remediation Agent for the Removal of Emerging Contaminants from Water. SUSTAINABILITY 2022. [DOI: 10.3390/su14020725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The technological performance of a chabazite-rich rock belonging to the Campanian Ignimbrite formation, outcropping in the nearby of San Mango sul Calore (southern Italy), has been evaluated for the sorption and release of ibuprofen sodium salt after a surface modification of the starting geomaterial using two different chlorinated surfactants. Equilibrium sorption isotherms and in vitro loading tests demonstrated that the maximum sorption capacities of this geomaterial reach up to 24.5 and 13.5 mg/g, respectively, for zeolite modified with cetylpyridinium and benzalkonium. These results, obtained by non-linear mathematical modeling of the experimental curves, are definitely compatible with the concentrations of the most common non-steroidal anti-inflammatory drugs (such as ibuprofen) in wastewaters, which have been recently considered as contaminants of emerging concern. This investigation also encourages a new possible sustainable exploitation of the lithified yellow facies of Campanian Ignimbrite, although future developments will be focused on using more stable and eco-friendlier two-tailed surfactants.
Collapse
|
30
|
Yadav A, Bagotia N, Sharma AK, Kumar S. Simultaneous adsorptive removal of conventional and emerging contaminants in multi-component systems for wastewater remediation: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149500. [PMID: 34388884 DOI: 10.1016/j.scitotenv.2021.149500] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The rapid growth of population and industrialization results in pollution of freshwater sources which leads to the water stress conditions on the world in future. Adsorption is a low cost and popular technique for the removal of contaminants from water bodies. Most of the reports till date are on removal of a single component from aqueous solutions using this technique, but the real-world effluent contains multiple contaminants such as dyes, heavy metals, pesticides, antibiotics and many more. Therefore, a study on simultaneous removal of contaminants is highly needed to obtain a suitable adsorbent that can be used commercially. This critical review provides a detailed study on the removal of contaminants in the presence of other contaminant/s i.e., from a multi-component system (MCS). The different possible interaction mechanisms in MCS like synergism, antagonism and non-interaction are discussed. The MCS containing the mixture of conventional contaminants such as heavy metals and dyes, and other emerging contaminants such as antibiotics, organic contaminants, pesticides and personal care products are explained in depth. This review article will be helpful for researchers working in the field of simultaneous removal of contaminants from MCSs for wastewater remediation.
Collapse
Affiliation(s)
- Aruna Yadav
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021, India
| | - Nisha Bagotia
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021, India
| | - Ashok K Sharma
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana 131039, India
| | - Surender Kumar
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021, India.
| |
Collapse
|
31
|
Zhao G, Zhao H, Shi L, Cheng B, Xu X, Zhuang X. In situ loading MnO 2 onto 3D Aramid nanofiber aerogel as High-Performance lead adsorbent. J Colloid Interface Sci 2021; 600:403-411. [PMID: 34023701 DOI: 10.1016/j.jcis.2021.05.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 11/26/2022]
Abstract
Fabricating a high-performance adsorbent as a desirable candidate for removing Pb2+ from aqueous water remains a challenge. Aramid nanofibers (ANFs) are promising building blocks that have realized multifunctional applications due to their intrinsic mechanical and chemical stability. Herein, an in situ loading strategy for preparing nanofiber composite aerogel was proposed by assembling ANFs into a 3D aerogel and applying it as host media for the in situ polymerization of pyrrole followed by facile redox reaction between the polypyrrole (PPy) and MnO4-1 to load manganese dioxide (MnO2). The idea was to fully exploit the structural advantages of ultra-low bulk density, large specific surface area, and high porosity of ANFs, and the possible chemical adsorption characteristics of MnO2 on the basis of ion exchange reaction. The adsorption capacity of 3D ANF/MnO2 composite aerogel was as large as 554.36 mg/g for Pb2+. The adsorption mechanism based on an exchange reaction between Pb2+ and protons on the surface of MnO2 was also investigated. The desorption results showed that the adsorption performance could remain up to 90% after five times of usage. In conclusion, this research provides promising insights into the preparation of high-performance lead adsorbent for water treatment.
Collapse
Affiliation(s)
- Guodong Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Huijuan Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Lei Shi
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Bowen Cheng
- Tianjin University of Science &Technology, Tianjin 300222, PR China
| | - Xianlin Xu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
32
|
Wang X, Zhang Y, Wang Z, Xu C, Tratnyek PG. Advances in metal(loid) oxyanion removal by zerovalent iron: Kinetics, pathways, and mechanisms. CHEMOSPHERE 2021; 280:130766. [PMID: 34162087 DOI: 10.1016/j.chemosphere.2021.130766] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 06/13/2023]
Abstract
Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhiwei Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
33
|
Han X, Zhang H, Zhang C, Zhao Y, Zhang N, Liang J. Preparation of Sepiolite Nanofibers Supported Zero Valent Iron Composite Material for Catalytic Removal of Tetracycline in Aqueous Solution. Front Chem 2021; 9:736285. [PMID: 34568284 PMCID: PMC8456004 DOI: 10.3389/fchem.2021.736285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 12/07/2022] Open
Abstract
The heavy use of antibiotics in medicine, stock farming and agriculture production has led to their gradual accumulation in environmental media, which poses a serious threat to ecological environment and human safety. As an efficient and promising catalyst for the degradation of antibiotics, nanoscale zero valent iron (nZVI) has attracted increasing attention in recent years. In this study, sepiolite nanofiber supported zero valent iron (nZVI/SEP) composite was prepared via a facile and environmentally friendly method. The nZVI particles (with size of 20–60 nm) were dispersed evenly on the surface of sepiolite nanofibers, and the catalytic performance for the removal of tetracycline hydrochloride (TC-HCl) in aqueous system was investigated. The effect of nZVI loading amount, catalyst dosage, H2O2 concentration and pH on the removal efficiency of TC-HCl were studied. It was revealed that the sepiolite supporter effectively inhibited the agglomeration of nZVI particles and increased the contact area between contaminant and the active sites, resulting in the higher catalytic performance than pure nZVI material. The TC-HCl removal efficiency of nZVI/SEP composite was up to 92.67% when TC-HCl concentration of 20 mg/L, catalyst dosage of 1.0 g/L, H2O2 concentration of 1.0 mM, pH value of 7. Therefore, the nZVI/SEP composites possess high catalytic activity for TC-HCl removal and have great application prospects in antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Xiaoyu Han
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Hong Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Caihong Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Yan Zhao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Na Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Jinsheng Liang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| |
Collapse
|
34
|
Construction of the Cellulose Nanofibers (CNFs) Aerogel Loading TiO 2 NPs and Its Application in Disposal of Organic Pollutants. Polymers (Basel) 2021; 13:polym13111841. [PMID: 34199425 PMCID: PMC8199583 DOI: 10.3390/polym13111841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/21/2021] [Indexed: 12/04/2022] Open
Abstract
Aerogels have been widely used in the adsorption of pollutants because of their large specific surface area. As an environmentally friendly natural polysaccharide, cellulose is a good candidate for the preparation of aerogels due to its wide sources and abundant polar groups. In this paper, an approach to construct cellulose nanofibers aerogels with both the good mechanical property and the high pollutants adsorption capability through chemical crosslinking was explored. On this basis, TiO2 nanoparticles were loaded on the aerogel through the sol-gel method followed by the hydrothermal method, thereby the enriched pollutants in the aerogel could be degraded synchronously. The chemical cross-linker not only helps build the three-dimensional network structure of aerogels, but also provides loading sites for TiO2. The degradation efficiency of pollutants by the TiO2@CNF Aerogel can reach more than 90% after 4 h, and the efficiency is still more than 70% after five cycles. The prepared TiO2@CNF Aerogels have high potential in the field of environmental management, because of the high efficiency of treating organic pollutes and the sustainability of the materials. The work also provides a choice for the functional utilization of cellulose, offering a valuable method to utilize the large amount of cellulose in nature.
Collapse
|
35
|
Ahmad K, Shah HUR, Ashfaq M, Nawaz H. Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Water contamination is worldwide issue, undermining whole biosphere, influencing life of a large number of individuals all over the world. Water contamination is one of the chief worldwide danger issues for death, sickness, and constant decrease of accessible drinkable water around the world. Among the others, presence of arsenic, is considered as the most widely recognized lethal contaminant in water bodies and poses a serious threat not exclusively to humans but also towards aquatic lives. Hence, steps must be taken to decrease quantity of arsenic in water to permissible limits. Recently, metal-organic frameworks (MOFs) with outstanding stability, sorption capacities, and ecofriendly performance have empowered enormous improvements in capturing substantial metal particles. MOFs have been affirmed as good performance adsorbents for arsenic removal having extended surface area and displayed remarkable results as reported in literature. In this review we look at MOFs which have been recently produced and considered for potential applications in arsenic metal expulsion. We have delivered a summary of up-to-date abilities as well as significant characteristics of MOFs used for this removal. In this review conventional and advanced materials applied to treat water by adsorptive method are also discussed briefly.
Collapse
Affiliation(s)
- Khalil Ahmad
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Habib-Ur-Rehman Shah
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Muhammad Ashfaq
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Haq Nawaz
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| |
Collapse
|
36
|
Zhang X, Li X, Jin Z, Tumrani SH, Ji X. Selenium in wastewater can be adsorbed by modified natural zeolite and reused in vegetable growth. Sci Prog 2021; 104:368504211019845. [PMID: 34030520 PMCID: PMC10364955 DOI: 10.1177/00368504211019845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modified natural zeolites (MNZ) are widely used in pollutant removal, but how to address these MNZ that have adsorbed pollutants must be considered. Selenium is an essential trace element for metabolism and is also a water pollutant. Selenium is adsorbed in the water by MNZ in this study first. Then the Brassica chinensis L. was planted in the soil which contains the MNZ loaded with selenium (MNZ-Se) to explore selenium uptake. MNZ-Se release tests in water and soil were also considered. The results showed the following: (1) The maximum adsorption capacity of MNZ for selenium is 46.90 mg/g. (2) Water release experiments of MNZ-Se showed that regardless of how the pH of the aqueous solution changes, the trend of the release of selenium from MNZ-Se in aqueous solution is not affected and first decreases before stabilizing. (3) Soil release experiments of MNZ-Se showed that the selenium content in the soil increased and reached the concentration in the standard of selenium-rich soil. Addition amount and soil pH value will affect the release ratio. The release ratio of MNZ-Se in the water was higher than that in the soil. (4) With an increase in the soil MNZ-Se content, the selenium content in the soil and B. c increases. Above all, MZN can be a good medium for water pollutant removal and soil improvement.
Collapse
Affiliation(s)
- Xiao Zhang
- School of soil and water conservation, Beijing Forestry University, Beijing, China
| | - Xinyuan Li
- School of soil and water conservation, Beijing Forestry University, Beijing, China
| | - Zihao Jin
- School of soil and water conservation, Beijing Forestry University, Beijing, China
| | | | - Xiaodong Ji
- School of soil and water conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
37
|
Suazo-Hernández J, Manquián-Cerda K, de la Luz Mora M, Molina-Roco M, Angélica Rubio M, Sarkar B, Bolan N, Arancibia-Miranda N. Efficient and selective removal of Se VI and As V mixed contaminants from aqueous media by montmorillonite-nanoscale zero valent iron nanocomposite. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123639. [PMID: 33264859 DOI: 10.1016/j.jhazmat.2020.123639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 06/12/2023]
Abstract
Nanoscale zero-valent iron (NZVI) and NZVI supported onto montmorillonite (NZVI-Mt) were synthetized and used in this study to remove SeVI and AsV from water in mono- and binary-adsorbate systems. The adsorption kinetics and isotherm data for SeVI and AsV were adequately described by the pseudo-second-order (PSO) (r2>0.94) and Freundlich (r2>0.93) equations. Results from scanning electron microscopy showed that the dimension of the NZVI immobilized on the Mt was smaller than pure NZVI. Using 0.05 g of adsorbent and an initial 200 mg L-1 AsV and SeVI concentration, the maximum adsorption capacity (qmax) and partition coefficient (PC) for AsV on NZVI-Mt in monocomponent system were 54.75 mg g-1 and 0.065 mg g-1·μM-1, which dropped respectively to 49.91 mg g-1 and 0.055 mg g-1·μM-1 under competitive system. For SeVI adsorption on NZVI-Mt in monocomponent system, qmax and PC were 28.63 mg g-1 and 0.024 mg g-1·μM-1, respectively. Values of qmax and PC were higher for NZVI-Mt than NZVI and montmorillonite, indicating that the nanocomposite contained greater adsorption sites for removing both oxyanions, but with a marked preference for AsV. Future research should evaluate the effect of different operational variables on the removal efficiency of both oxyanions by NZVI-Mt.
Collapse
Affiliation(s)
- Jonathan Suazo-Hernández
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, PO Box 54-D, Temuco, Chile; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Universidad de La Frontera. UFRO, Temuco, 4780000, Chile
| | - Karen Manquián-Cerda
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O'Higgins, 3363, Santiago, Chile
| | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Universidad de La Frontera. UFRO, Temuco, 4780000, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, PO Box 54-D, Temuco, Chile
| | - Mauricio Molina-Roco
- Agriservice Research Laboratory, Rinconada #9139, CP 7650208, Vitacura, Santiago, Chile
| | - María Angélica Rubio
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O'Higgins, 3363, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago, Chile
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nicolás Arancibia-Miranda
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O'Higgins, 3363, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago, Chile.
| |
Collapse
|
38
|
Weerasundara L, Ok YS, Bundschuh J. Selective removal of arsenic in water: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115668. [PMID: 33017746 DOI: 10.1016/j.envpol.2020.115668] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 05/28/2023]
Abstract
Selective removal of arsenic (As) is the key challenge for any of As removal mechanisms as this not only increases the efficiency of removal of the main As species (neutral As(III) and As(V) hydroxyl-anions) but also allows for a significant reduction of waste as it does not co-remove other solutes. Selective removal has a number of benefits: it increases the capacity and lifetime of units while lowering the cost of the process. Therefore, a sustainable selective mitigation method should be considered concerning the economic resources available, the ability of infrastructure to sustain water treatment, and the options for reuse and/or safe disposal of treatment residuals. Several methods of selective As removal have been developed, such as precipitation, adsorption and modified iron and ligand exchange. The biggest challenge in selective removal of As is the presence of phosphate in water which is chemically comparable with As(V). There are two types of mechanisms involved with As removal: Coulombic or ion exchange; and Lewis acid-base interaction. Solution pH is one of the major controlling factors limiting removal efficiency since most of the above-mentioned methods depend on complexation through electrostatic effects. The different features of two different As species make the selective removal process more difficult, especially under natural conditions. Most of the selective As removal methods involve hydrated Fe(III) oxides through Lewis acid-base interaction. Microbiological methods have been studied recently for selective removal of As, and although there have been only a small number of studies, the method shows remarkable results and indicates positive prospects for the future.
Collapse
Affiliation(s)
- Lakshika Weerasundara
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia.
| | - Yong-Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
39
|
Tasharrofi S, Rouzitalab Z, Maklavany DM, Esmaeili A, Rabieezadeh M, Askarieh M, Rashidi A, Taghdisian H. Adsorption of cadmium using modified zeolite-supported nanoscale zero-valent iron composites as a reactive material for PRBs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139570. [PMID: 32485377 DOI: 10.1016/j.scitotenv.2020.139570] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The main challenge in utilizing permeable reactive barriers (PRB) for remediation of metals-contaminated groundwater is determination of a proper low-cost reactive medium that can remove the desired contaminants simultaneously. In this study, the performance of different zeolite materials and nZVI-based adsorbents for cadmium (Cd) removal was compared. Further, a composite of the best nZVI and zeolite samples was synthesized with the removal efficiency of 20.6 g/kg and selected as the proposed adsorbent. Moreover, the characteristics of the composite were analyzed through different techniques (BET, XRF, XRD, FT-IR, FE-SEM and EDX). In addition, through kinetic and thermodynamic studies, the effect of temperature, pH, ionic strength and presence of other metal ions on Cd removal efficiency was investigated. According to the results, since sodium zeolite (NaZ) provides a large number of specific ion-exchange sites for decoration with nZVI, stabilizes nZVI, and prevents its aggregation and further leaching in the harsh environment, the NaZ-nZVI composite is capable of removing Cd by adsorption and is applicable in PRBs, and thus it seems that the aforementioned composite is a proper candidate for groundwater remediation from a wide range of metal ions.
Collapse
Affiliation(s)
- Saeideh Tasharrofi
- Environment and Biotechnology Research Division, RIPI, Tehran, P.O. Box 14857-33111, Tehran, Iran
| | - Zahra Rouzitalab
- Civil Engineering Division, College of Environment, Karaj, P.O. Box 31746-74761, Alborz, Iran
| | | | - Ali Esmaeili
- Environment and Biotechnology Research Division, RIPI, Tehran, P.O. Box 14857-33111, Tehran, Iran
| | | | - Mojtaba Askarieh
- Carbon and Nanotechnology Research Center, RIPI, Tehran, P.O. Box 14857-33111, Tehran, Iran
| | - Alimorad Rashidi
- Carbon and Nanotechnology Research Center, RIPI, Tehran, P.O. Box 14857-33111, Tehran, Iran.
| | - Hossein Taghdisian
- Environment and Biotechnology Research Division, RIPI, Tehran, P.O. Box 14857-33111, Tehran, Iran
| |
Collapse
|
40
|
Li X, Zhang J, Xie H, Pan Y, Liu J, Huang Z, Long X, Xiao H. Cellulose-based adsorbents loaded with zero-valent iron for removal of metal ions from contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33234-33247. [PMID: 32533473 DOI: 10.1007/s11356-020-09390-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Sawdust loaded with zero-valent iron (S-ZVI) was prepared using a liquid phase reduction method for removing heavy metal ions from contaminated water. Surface chemistry and morphology of adsorbents were characterized with Fourier transform infrared (FT-IR) spectrometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), SEM-mapping, EDX, and X-ray photoelectron spectrum (XPS). The results demonstrated that the zero-valent iron was successfully loaded onto the sawdust. The impact of various factors such as pH, initial metal ion concentration, temperature, and contact time on the removal capability of the adsorbents was systematically investigated. The equilibrium adsorption data showed that the adsorption of arsenic ions and Cr(III) followed the Langmuir model well, and the maximum adsorption reached 111.37 and 268.7 mg/g in an aqueous solution system. In addition, the adsorption kinetics was more accurately described by the pseudo-second-order model, suggesting the domination of chemical adsorption. Meanwhile, the results on recyclability indicated that the high performance of S-ZVI on the removal of arsenic ions was well maintained after three regeneration cycles. The adsorption mechanism revealed in this work suggested that S-ZVI improved the dispersion of ZVI by minimizing the agglomeration, thus leading to highly effective adsorption via chelation, electrostatic interaction, and redox reaction.
Collapse
Affiliation(s)
- Xiaoning Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Jinyao Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Hongtian Xie
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Yuanfeng Pan
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Jie Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Zhihong Huang
- ShengQing Environmental Protection Ltd. Co., Kunming, 650093, Yunnan, China
| | - Xiang Long
- ShengQing Environmental Protection Ltd. Co., Kunming, 650093, Yunnan, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
41
|
Pasinszki T, Krebsz M. Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E917. [PMID: 32397461 PMCID: PMC7279245 DOI: 10.3390/nano10050917] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022]
Abstract
Present and past anthropogenic pollution of the hydrosphere and lithosphere is a growing concern around the world for sustainable development and human health. Current industrial activity, abandoned contaminated plants and mining sites, and even everyday life is a pollution source for our environment. There is therefore a crucial need to clean industrial and municipal effluents and remediate contaminated soil and groundwater. Nanosized zero-valent iron (nZVI) is an emerging material in these fields due to its high reactivity and expected low impact on the environment due to iron's high abundance in the earth crust. Currently, there is an intensive research to test the effectiveness of nZVI in contaminant removal processes from water and soil and to modify properties of this material in order to fulfill specific application requirements. The number of laboratory tests, field applications, and investigations for the environmental impact are strongly increasing. The aim of the present review is to provide an overview of the current knowledge about the catalytic activity, reactivity and efficiency of nZVI in removing toxic organic and inorganic materials from water, wastewater, and soil and groundwater, as well as its toxic effect for microorganisms and plants.
Collapse
Affiliation(s)
- Tibor Pasinszki
- Department of Chemistry, School of Pure Sciences, College of Engineering, Science and Technology, Fiji National University, Suva P.O. Box 7222, Fiji;
| | | |
Collapse
|
42
|
Liu B, Kim KH, Kumar V, Kim S. A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121815. [PMID: 31831285 DOI: 10.1016/j.jhazmat.2019.121815] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
The presence of arsenic in the water system has been a universal problem over the past several decades. Inorganic arsenic ions mainly occur in two oxidation states, As(V) and As(III), in the natural environment. These two oxidation states of arsenic ions are ubiquitous in natural waters and pose significant health hazards to humans when present at or above the allowable limits. Therefore, treatment of arsenic ions has become more stringent based on various techniques (e.g., membrane filtration, adsorption, and ion exchange). This paper aims to review the current knowledge on various functional adsorbents through comparison of removal potential for As on the basis of key performance metrics, especially the partition coefficient (PC). As a whole, novel materials exhibited far better removal performance for As(V) and As(III) than conventional materials. Of the materials reviewed, the advanced sorbent like ZrO(OH)2/CNTs showcased superior performances such as partition coefficient values of 584.6 (As(V) and 143.8 mol kg-1 M-1 (As(III) with excellent regenerability (>90 % of desorption efficiency after three sorption cycles). The results of this review are expected to help researchers to establish a powerful strategy for abatement of arsenic ions in wastewater.
Collapse
Affiliation(s)
- Botao Liu
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
43
|
Xu Q, Li W, Ma L, Cao D, Owens G, Chen Z. Simultaneous removal of ammonia and phosphate using green synthesized iron oxide nanoparticles dispersed onto zeolite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135002. [PMID: 31726293 DOI: 10.1016/j.scitotenv.2019.135002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Since elevated levels of common nutrients, such as ammonia and phosphate, in natural water bodies (lakes and rivers) can lead to significant deterioration of pristine water ecosystems due to eutrophication, new and cost-effectiveness remediation strategies are urgently required. This work investigated the feasibility of using green synthesized iron oxide nanoparticles dispersed onto zeolite by eucalyptus leaf extracts (EL-MNP@zeolite), to simultaneously remove ammonia and phosphate from aqueous solutions. SEM and XRD both showed that EL-MNP@zeolite had better stability and dispersity than unsupported zeolite. At an initial concentration of 10 mg L-1 each for the two co-existing ions the synthesized material removed 43.3% of NH4+ and 99.8% of PO43-. Removal of co-existing NH4+-PO43- was impacted by the ratio of zeolite to EL-MNP, temperature, initial ion concentration and solution pH. Under optimium conditions the maximum adsorption capacity of EL-MNP@zeolite for NH4+ and PO43- was 3.47 and 38.91 mg g-1, respectively. For both ions' adsorption followed a pseudo-second-order kinetic reaction, confirming that the removal of ammonia and phosphate by EL-MNP@zeolite was via chemisorptions, where interaction between NH4+-PO43- and EL-MNP@zeolite may be through either electrostatic adsorption or ligand exchange. Overall these results indicated that EL-MNP@zeolite had significant potential as a nano-remediation strategy to simultaneously remove cationic ammonium and anionic phosphate from wastewaters.
Collapse
Affiliation(s)
- Qianyu Xu
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Wenpeng Li
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Li Ma
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Dan Cao
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| |
Collapse
|
44
|
Rashid US, Saini-Eidukat B, Bezbaruah AN. Modeling arsenic removal by nanoscale zero-valent iron. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:110. [PMID: 31938851 DOI: 10.1007/s10661-020-8075-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Arsenic removal by nanoscale zero-valent iron (NZVI) was modeled using the USGS geochemical program PHREEQC. The Dzombak and Morel adsorption model was used. The adsorption of As(V) onto NZVI was assumed to happen because of the hydrous ferric oxide (Hfo) which was the surface oxide for the model. The model predicted results were compared with the experimental data. While the experimental study reported that 99.57% arsenic removal by NZVI, the model predicted 99.82% removal which is about 0.25% variation. All the arsenic species have also been predicted to be significantly removed by adsorption onto NZVI surface. The effect of pH on As(V) removal efficiency was also evaluated using the model and it was found that above point-of-zero-charge (PZC), the adsorption of As(V) decreases with the increase of pH. The authors conclude that PHREEQC can be used to model contaminant adsorption by nanomaterials.
Collapse
Affiliation(s)
- Umma S Rashid
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58105, USA
| | | | - Achintya N Bezbaruah
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
45
|
Izzo F, Mercurio M, de Gennaro B, Aprea P, Cappelletti P, Daković A, Germinario C, Grifa C, Smiljanic D, Langella A. Surface modified natural zeolites (SMNZs) as nanocomposite versatile materials for health and environment. Colloids Surf B Biointerfaces 2019; 182:110380. [DOI: 10.1016/j.colsurfb.2019.110380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
|
46
|
Yee JJ, Arida CVJ, Futalan CM, de Luna MDG, Wan MW. Treatment of Contaminated Groundwater via Arsenate Removal Using Chitosan-Coated Bentonite. Molecules 2019; 24:E2464. [PMID: 31277493 PMCID: PMC6651155 DOI: 10.3390/molecules24132464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 11/20/2022] Open
Abstract
In the present research, treatment of contaminated groundwater via adsorption of As(V) with an initial concentration of 50.99 µg/L using chitosan-coated bentonite (CCB) was investigated. The effect of adsorbent mass (0.001 to 2.0 g), temperature (298 to 328 K), and contact time (1 to 180 min) on the removal efficiency was examined. Adsorption data was evaluated using isotherm models such as Langmuir, Freundlich, and Dubinin-Radushkevich. Isotherm study showed that the Langmuir (R2 > 0.9899; χ2 ≤ 0.91; RMSE ≤ 4.87) model best correlates with the experimental data. Kinetics studies revealed that pseudo-second order equation adequately describes the experimental data (R2 ≥ 0.9951; χ2 ≤ 0.8.33; RMSE ≤ 4.31) where equilibrium was attained after 60 min. Thermodynamics study shows that the As(V) adsorption is non-spontaneous (ΔG0 ≥ 0) and endothermic (ΔH0 = 8.31 J/mol) that would result in an increase in randomness (ΔS0 = 29.10 kJ/mol•K) within the CCB-solution interface. FT-IR analysis reveals that hydroxyl and amino groups are involved in the adsorption of As(V) from groundwater. Results of the present research serve as a tool to determine whether CCB is an environmentally safe and cost effective material that could be utilized in a permeable reactive barrier system for the remediation of As(V) from contaminated groundwater.
Collapse
Affiliation(s)
- Jurng-Jae Yee
- Department of Architectural Engineering, Dong-A University, Saha-gu, Busan 49315, Korea
| | - Carlo Vic Justo Arida
- Environmental Management Bureau, Department of Environment and Natural Resources, Quezon City 1100, Philippines
| | - Cybelle Morales Futalan
- National Research Center for Disaster-Free and Safe Ocean City, Dong-A University, Busan 49315, Korea.
| | | | - Meng-Wei Wan
- Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| |
Collapse
|