1
|
Ojha A, Bandyopadhyay TK, Das D, Dey P. Microbial Carbonate Mineralization: A Comprehensive Review of Mechanisms, Applications, and Recent Advancements. Mol Biotechnol 2025:10.1007/s12033-025-01433-5. [PMID: 40338440 DOI: 10.1007/s12033-025-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/11/2025] [Indexed: 05/09/2025]
Abstract
Microbial carbonate mineralization, the process by which microorganisms (Bacillus sp., Sporosarcina sp., Penicillium sp., Cyanobacteria, etc.) directly mediate or indirectly influence mineral formation and deposition, represents the next frontier in technology with vast potential across scientific disciplines, including construction, environmental remediation, and carbon sequestration. This review explores the fundamental aspects of microbial carbonate mineralization, focusing on key mechanisms such as photosynthesis, methane oxidation, sulfate reduction, ureolysis, denitrification, carbonic anhydrase activity, iron reduction, and EPS mediation, all of which influence carbonate saturation and mineral nucleation. Additionally, it highlights critical regulatory factors that enhance biomineralization for bio-inspired material development in heavy metal remediation, wastewater treatment, self-healing concrete, biomedical applications, nanoscale technologies, and 3D printing. A major focus is microbial-induced calcite precipitation (MICP), an emerging and cost-efficient biomineralization technique, with an in-depth analysis of its molecular mechanisms and expanding applications. Furthermore, this review discusses current challenges, including process scalability, long-term stability, and environmental and safety considerations, while identifying future research directions to improve the efficacy and sustainability of microbial carbonate mineralization in advanced technological applications.
Collapse
Affiliation(s)
- Amiya Ojha
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India
| | | | - Deeplina Das
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India.
| | - Palash Dey
- Department of Civil Engineering, The ICFAI University, Tripura, Kamalghat, Tripura, 799210, India
| |
Collapse
|
2
|
Ouyang X, Guo Z, Yan C, Yin H. Simultaneous Cd immobilization and oxidative stress alleviation in Brassica chinensis by a novel phosphate-solubilizing strain Sutcliffiella horikoshii P1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126368. [PMID: 40320124 DOI: 10.1016/j.envpol.2025.126368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/22/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Microbial remediation of cadmium (Cd) pollution offers economically green and operationally simple advantages, particularly in environments with mild contamination. The acquisition of efficient strains and coupling between bacterial response and plant fitness are current research emphases in the remediation process. In this study, a novel phosphate-solubilizing strain with outstanding Cd-resistance, Sutcliffiella (S.) horikoshii P1 was isolated. Cd removal efficiency reached 98.85 % by the strain within 24 h at an initial concentration of 5 mg/L. Distribution analysis revealed that the dominant mechanism of Cd removal by the strain varies with Cd concentrations. Notably, the seed soaking of Brassica chinensis with S. horikoshii P1 could improve seed germination rate and growth potential regardless of the presence of Cd stress. Morphological and biochemical trait analysis revealed that the inoculated strain also increased fresh weight and reduced the Cd phytoavailability of Brassica chinensis by producing active substances and alleviating plant oxidative stress. Pot experiment demonstrated that the transport factor (TF) and bioconcentration factor (BCF) decreased by 22.76 % and 33.59 %, respectively, and Cd content in edible parts met food safety standards. Whole-genome sequencing analysis demonstrated that functional genes related to heavy metal resistance and transport (cadC, czcD, znuA, etc.), and gene clusters involved in siderophore secretion may regulate Cd immobilization and the plant growth-promoting effect of S. horikoshii P1. The results underscored the feasibility and effectiveness of Sutcliffiella horikoshii in addressing Cd contamination and promoting plant growth, providing a basis for the future application in agricultural safe production.
Collapse
Affiliation(s)
- Xiaofang Ouyang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
| | - Zhanyu Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Holdings Limited, Guangzhou, 510006, Guangdong, China
| | - Caiya Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Manzoor M, Guan DX, Ma LQ. Plant-microbiome interactions for enhanced crop production under cadmium stress: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178538. [PMID: 39879949 DOI: 10.1016/j.scitotenv.2025.178538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Cadmium (Cd) is a toxic heavy metal that has detrimental effects on agriculture crops and human health. Both natural and anthropogenic processes release Cd into the environment, elevating its contents in soils. Under Cd stress, strong plant-microbiome interactions are important in improving crop production, but a systematic review is still missing. This review demonstrates the importance of microbiomes and their interactions with plants in mitigating Cd toxicity and promoting crop growth. Endogenous and exogenous microbiomes play a role to enhance plant's ability to respond to Cd stress. Specifically, the rhizosphere microbiome, which includes plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi, endosphere microbiome, and phyllosphere microbiome, are involved in Cd accumulation, immobilization, and translocation, and Cd-induced stress management. The mechanisms underlying these plant-microbiome interactions vary depending on the species and varieties of crops, composition and diversity of the microbiome, and level of Cd stress. Among the microbiome-mediated approaches, biosorption, bioprecipitation, and bioaccumulation are promising for Cd remediation in soil. Additionally, the endosphere microbiome, particularly Cd resistant endophytes, reduces Cd toxicity, increases the expression of Cd efflux genes, and enhances crop growth through regulating crops' antioxidant machinery and endogenous hormones. Furthermore, improved agricultural practices modulate the soil and plant microbiomes, thereby reducing Cd stress and increasing crop productivity.
Collapse
Affiliation(s)
- Maria Manzoor
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Mallick S, Pradhan T, Das S. Bacterial biomineralization of heavy metals and its influencing factors for metal bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123977. [PMID: 39752943 DOI: 10.1016/j.jenvman.2024.123977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/03/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Increasing industrial pollution and certain hazardous agricultural practices have led to the discharge of heavy toxic metals into the environment. Among different bioremediation techniques, biomineralization is the synthesis of biomineral crystals extracellularly or intracellularly. Several bacteria, such as Bacillus cereus, Pseudomonas stutzeri, Bacillus subtilis, and Lactobacillus sphaericus have been found to induce heavy metal precipitation and mineralization for bioremediation. This article summarizes the different biomineralization mechanisms of bacterial-induced heavy metal biomineralization, mainly microbial-induced carbonate precipitation (MICP), microbial-induced phosphate precipitation (MIPP), and microbial-induced sulphide precipitation (MISP). Moreover, bacterial structures such as cell wall, biofilm, and extracellular polymeric substances (EPS) influence mineralization and control bacterial compartmentalization of heavy metal precipitation. Several genes control the efficiency of biomineralization in bacteria, such as ureA, ureB, ureC, phoA, dsrA, dsrB, dsrC, dsrD, dsrE, luxS, and ompR. This biomineralization mechanism provides new and broad prospects for its application in soil improvement, industrial applications, and wastewater treatments. In addition, bacterial genetic modification holds immense potential for advancing the biomineralization process to meet diverse environmental and industrial needs.
Collapse
Affiliation(s)
- Souradip Mallick
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Trisnehi Pradhan
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
5
|
Wang Z, Huang M, Zhang Y, Zhou F, Yu J, Chi R, Xiao C. Enhanced Pb immobilization by CaO/MgO-modified soybean residue (okara) in phosphate mining wasteland soil: Mechanism and microbial community structure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123779. [PMID: 39700920 DOI: 10.1016/j.jenvman.2024.123779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Lead (Pb) contamination is an inevitable consequence of phosphate mining, necessitating the development of effective remediation strategies. This study investigated the use of CaO/MgO-modified okara (CMS) as an eco-friendly approach to remediate Pb-contaminated soils from phosphate mining wastelands. In the present study, following 30 d of CMS application, the exchangeable Pb content was significantly decreased to 10.46%, with the majority of Pb transforming into more stable forms: carbonate-bound Pb (56.44%), Fe/Mn oxide-bound Pb (11.03%), and organic-bound Pb (19.58%). Additionally, the treatment led to a substantial enhancement in total phosphorus, available phosphorus, ammonium, and soil organic matter, thereby improving soil fertility. The microbial community structure was also significantly influenced by CMS, with a notable increase in Firmicutes to 45%. Key genera within the microbial community included Azospirillum, Pseudoxanthomonas, Sphingomonas, and Microvirga, with Pseudoxanthomonas and Massilia being the main differential species. These genera were significantly positively correlated, contributing to the maintenance of microbial community homeostasis and promoting the production of CO32- and PO43-, which further accelerated Pb immobilization. The results indicate that CMS is an effective amendment for Pb immobilization in contaminated soils, enhancing soil fertility and modulating the microbial community to promote Pb stabilization. This provides valuable insights into the ecological remediation of Pb-contaminated soils and water bodies, highlighting the potential of waste reuse in environmental management.
Collapse
Affiliation(s)
- Ziwei Wang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Mengting Huang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuxin Zhang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China.
| |
Collapse
|
6
|
Peng D, Zhang Y, Chen X, Zhang Y, Huang H, Liu H, Xu H. Effect of phosphate-mineralized bacteria on multi-metals migration behavior in vanadium tailing slags: Coexistence of immobilization and mobilization. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135880. [PMID: 39298957 DOI: 10.1016/j.jhazmat.2024.135880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Biomineralization techniques have been utilized to remediate heavy metals (HMs) contaminated environments. However, the effect of microbial-induced phosphate precipitation (MIPP) on HMs behavior in vanadium tailing slags has not been revealed. This study is the first to report the influence of MIPP on multiple HMs including Cd, Cu, Pb and Zn in the slags with and without soil mixing. The results showed that MIPP exhibited excellent ability for Cd immobilization, Cd immobilization rate reached 43.41 % under the optimal parameters within 7 days. Cd immobilization performance was significantly improved and sustained after the slags were covered with soil, resulting from better colonization of phosphate mineralizing bacteria in slag-soil mixtures. Surprisingly, DTPA-Cu, Zn and Pb contents in slags were all increased to varying degrees after MIPP treatment. Leaching solution mineralization tests further suggested that MIPP significantly reduced the concentration of Cd2+, Pb2+, Ca2+, Mg2+ and Al3+, but barely changed Cu2+ and Zn2+ concentrations. Characterization analysis confirmed that formation of phosphates including Cd(PO4)2 and dissolution of minerals including PbZnSiO2 were the reason for HMs immobilization and mobilization in vanadium tailing slags. This study provides new insights for understanding biomineralization technology and using MIPP to remediate HMs contaminated mine waste.
Collapse
Affiliation(s)
- Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yumei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Ying Zhang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Huayan Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
7
|
Wang Z, Zhang Z, Peng J, Zhang Y, Zhou F, Yu J, Chi R, Xiao C. Magnesium polypeptide combined with microbially induced calcite precipitation for remediation of lead contamination in phosphate mining wasteland soil. ENVIRONMENTAL RESEARCH 2024; 262:119945. [PMID: 39276836 DOI: 10.1016/j.envres.2024.119945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Soil Pb contamination is inevitable, as a result of phosphate mining. It is essential to explore more effective Pb remediation approaches in phosphate mining wasteland soil to ensure their viability for a gradual return of soil quality for cultivation. In this study, a Pb-resistant urease-producing bacterium, Serratia marcescens W1Z1, was screened for remediation using microbially induced carbonate precipitation (MICP). Magnesium polypeptide (MP) was prepared from soybean meal residue, and the combined remediation of Pb contamination with MP and MICP in phosphate mining wasteland soil was studied. Remediation of Pb using a combination of MP with MICP strain W1Z1 (WM treatment) was the most effective, with the least exchangeable Pb at 30.37% and the most carbonate-bound Pb at 40.82%, compared to the other treatments, with a pH increase of 8.38. According to the community analysis, MP moderated the damage to microbial abundance and diversity caused by MICP. Total nitrogen (TN) was positively correlated with Firmicutes, pH, and carbonate-bound Pb. Serratia inoculated with strain W1Z1 were positively correlated with bacteria belonging to the Firmicutes phylum and negatively correlated with bacteria belonging to Proteobacteria. The available phosphate (AP) in the phosphate mining wasteland soil could encapsulate the precipitated Pb by ion exchange with carbonate, making it more stable. Combined MP-MICP remediation of Pb contamination in phosphate mining wasteland soil was effective and improved the soil microenvironment.
Collapse
Affiliation(s)
- Ziwei Wang
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ziyue Zhang
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Jun Peng
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuxin Zhang
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Fang Zhou
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Junxia Yu
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ruan Chi
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Hubei Three Gorges Laboratory, Yichang, 443007, China
| | - Chunqiao Xiao
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Hubei Three Gorges Laboratory, Yichang, 443007, China.
| |
Collapse
|
8
|
Qiao Z, Fu M, Liang W, Zhou S, Han Y, Luo K, Peng C, Wang G, Zhang W, Zhan X. Effects of Decabromodiphenyl Ethane and Cadmium Coexposure on Their Bioaccumulation, Oxidative Stress, Root Metabolism, and Rhizosphere Soil Microorganisms in a Soil-Rice System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24246-24259. [PMID: 39440867 DOI: 10.1021/acs.jafc.4c05342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Decabromodiphenyl ethane (DBDPE) and cadmium (Cd) are typical pollutants in e-waste, seriously threatening crop growth. This study investigated the bioaccumulation and toxicity mechanisms of DBDPE and Cd in a soil-rice system. The results showed that 50 mg/kg DBDPE could reduce the level of accumulation of Cd in rice roots. DBDPE and Cd induced the antioxidant system (SOD, POD, and MDA) in rice seedlings. The combined exposure reduced the contents of carbohydrates, lipids, amino acids, and organic acids. Phenylalanine and phenylpropanoid metabolisms were identified as the key detoxification metabolic pathways under combined exposure. DBDPE and Cd disrupted the functional cycling of carbon and nitrogen in rhizosphere soil, while Gemmatimonadetes, Actinobacteria, and Bacteroidetes were the key bacterial groups responding to DBDPE and Cd stress. This work provides data for the toxicity risk evaluation of DBDPE and Cd combined exposure to food crops.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailun Luo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gehui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Extension and Service Center, Shanghai 201103, China
| |
Collapse
|
9
|
Sheng M, Liu Y, Zeng G, Zhang Q, Peng H, Lei L, Liu H, He N, Xu H, Guo H. For aqueous/soil cadmium immobilization under acid attack, does the hydroxyapatite converted from Pseudochrobactrum sp. DL-1 induced vaterite necessarily show higher stability? JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135631. [PMID: 39182299 DOI: 10.1016/j.jhazmat.2024.135631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Microbial induced carbonate precipitation (MICP) technology was widely applied to immobilize heavy metals, but its long-term stability is tough to maintain, particularly under acid attack. This study successfully converted Pseudochrobactrum sp. DL-1 induced vaterite (a rare crystalline phase of CaCO3) to hydroxyapatite (HAP) at 30 ℃. The predominant conversion mechanism was the dissolution of CdCO3-containing vaterite and the simultaneous recrystallization of Ca4.03Cd0.97(PO4)3(OH)-containing HAP. For aqueous Cd immobilization, stability test at pH 2.0-10.0 showed that the Cd2+ desorption rate of Cd-adsorbed vaterite (3.96-4.35 ‱) were 7.13-20.84 times greater than that of Cd-adsorbed HAP (0.19-0.61 ‱). For soil Cd immobilization under 60 days of acid-rain erosion, the highest immobilization rate (51.00 %) of exchangeable-Cd and the lowest dissolution rate (-0.18 %) of carbonate-Cd were achieved with 2 % vaterite, while the corresponding rates were 16.78 % and 1.31 % with 2 % HAP, respectively. Furthermore, vaterite outperformed HAP in terms of soil ecological thorough evaluation. In conclusion, for Cd immobilization by MICP under acid attack, DL-1 induced vaterite displayed direct application value due to its exceptional stability in soil and water, while the mineral conversion strategy we presented is useful for further enhancing the stability in water.
Collapse
Affiliation(s)
- Mingping Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Yikai Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Guoquan Zeng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Qingquan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - He Peng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Ling Lei
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Huakang Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Nan He
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science by University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
10
|
Peng D, Chen X, Zhang S, Zeng G, Yan C, Luo H, Liu H, Xu H. Biochar enhances Cd mineralization through microbially induced carbonate precipitation as a soil remediation strategy for rice paddies. CHEMOSPHERE 2024; 366:143441. [PMID: 39362375 DOI: 10.1016/j.chemosphere.2024.143441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Microbial induced carbonate precipitation (MICP) is a promising technique for remediating Cd-contaminated soils. However, the high cost and potential disruption to soil micro-ecology due to the excessive urea addition remain significant challenges, limiting the broader application of MICP technology in agricultural soils. This study aims to improve the efficiency of Cd immobilization by MICP under low urea levels by investigating the stimulatory effect of porous materials on urease secretion by ureolytic bacteria. Results demonstrate that these materials, including biochar, activated carbon, zeolite, and oyster shell, can stimulate the growth of ureolytic bacteria strain kp-22, but not diatomite. Urease activity was greatly improved within 12 h, and the Cd removal rate reached over 82.12% within 0.5 h. Notably, biochar supported urealytic bacterium strain kp-22 (BCM) can steadily remove Cd in solution, with the Cd removal rate remaining close to 99% even after multiple additions of Cd. XRD analysis shows that Cd was removed by BCM due to the formation of CdCO3. Soil experiment reveals that BCM significantly decreased the bioavailable Cd content in both flooded and unflooded paddy soils, even when the urea addition was at a dosage suitable for agricultural production. 16S rRNA gene sequencing shows that the disturbance caused by BCM to the soil bacterial community was lower than that caused by strain kp-22 alone. These findings offer new insights into enhancing the efficiency of MICP for Cd remediation, increasing the potential for broader application of MICP technology in sustainable agriculture.
Collapse
Affiliation(s)
- Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Shuling Zhang
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Guoquan Zeng
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Chaoqun Yan
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Huanyan Luo
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
11
|
Li Y, Zhang M, Wang X, Ai S, Meng X, Liu Z, Yang F, Cheng K. Synergistic enhancement of cadmium immobilization and soil fertility through biochar and artificial humic acid-assisted microbial-induced calcium carbonate precipitation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135140. [PMID: 39002486 DOI: 10.1016/j.jhazmat.2024.135140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Microbially induced carbonate precipitation (MICP) is emerging as a favorable alternative to traditional soil remediation techniques for heavy metals, primarily due to its environmental friendliness. However, a significant challenge in using MICP for farmland is not only to immobilize heavy metals but also to concurrently enhance soil fertility. This study explores the innovative combination of artificial humic acid (A-HA), biochar (BC), and Sporosarcina pasteurii (S. pasteurii) to mitigate the bioavailability of cadmium (Cd) in contaminated agricultural soils through MICP. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses revealed that the integration of BC and A-HA significantly enhances Cd immobilization efficiency by co-precipitating with CaCO3. Moreover, this treatment also improved soil fertility and ecological functions, as evidenced by increases in total nitrogen (TN, 9.0-78.2 %), alkaline hydrolysis nitrogen (AN, 259.7-635.5 %), soil organic matter (SOM, 18.1-27.9 %), total organic carbon (TOC, 43.8-48.8 %), dissolved organic carbon (DOC, 36.0-88.4 %) and available potassium (AK, 176.2-193.3 %). Additionally, the relative abundance of dominant phyla such as Proteobacteria and Firmicutes significantly increased with the introduction of BC and A-HA in MICP. Consequently, the integration of BC and A-HA with MICP offers a promising solution for remediating Cd-contaminated agricultural soil and synergistically enhancing soil fertility.
Collapse
Affiliation(s)
- Yu Li
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Meiling Zhang
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Xiaobin Wang
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Shuang Ai
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Xianghui Meng
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Zhuqing Liu
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China.
| | - Fan Yang
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China.
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China.
| |
Collapse
|
12
|
Omoregie AI, Ong DEL, Alhassan M, Basri HF, Muda K, Ojuri OO, Ouahbi T. Two decades of research trends in microbial-induced carbonate precipitation for heavy metal removal: a bibliometric review and literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52658-52687. [PMID: 39180660 DOI: 10.1007/s11356-024-34722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Amidst the increasing significance of innovative solutions for bioremediation of heavy metal removal, this paper offers a thorough bibliometric analysis of microbial-induced carbonate precipitation (MICP) for heavy metal removal, as a promising technology to tackle this urgent environmental issue. This study focused on articles published from 1999 to 2022 in the Scopus database. It assesses trends, participation, and key players within the MICP for heavy metal sequestration. Among the 930 identified articles, 74 countries participated in the field, with China being the most productive. Varenyam Achal, the Chinese Academy of Sciences, and Chemosphere are leaders in the research landscape. Using VOSviewer and R-Studio, keyword hotspots like "MICP", "urease", and "heavy metals" underscore the interdisciplinary nature of MICP research and its focus on addressing a wide array of environmental and soil-related challenges. VOSviewer emphasises essential terms like "calcium carbonate crystal", while R-Studio highlights ongoing themes such as "soil" and "organic" aspects. These analyses further showcase the interdisciplinary nature of MICP research, addressing a wide range of environmental challenges and indicating evolving trends in the field. This review also discusses the literature concerning the potential of MICP to immobilise contaminants, the evolution of the research outcome in the last two decades, MICP treatment techniques for heavy metal removal, and critical challenges when scaling from laboratory to field. Readers will find this analysis beneficial in gaining valuable insights into the evolving field and providing a solid foundation for future research and practical implementation.
Collapse
Affiliation(s)
- Armstrong Ighodalo Omoregie
- Centre for Borneo Regionalism and Conservation, School of Built Environment, University of Technology Sarawak, No. 1 Jalan University, 96000, Sibu, Sarawak, Malaysia
| | - Dominic Ek Leong Ong
- School of Engineering and Built Environment, Griffith University, 170 Kessels Rd Nathan, South East Queensland, QLD, 4111, Australia
| | - Mansur Alhassan
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Hazlami Fikri Basri
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Khalida Muda
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Oluwapelumi Olumide Ojuri
- Built Environment and Sustainable Technologies (BEST), Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Tariq Ouahbi
- LOMC, UMR 6294 CNRS, Université Le Havre Normandie, Normandie Université, 53 Rue de Prony, 76058, Le Havre Cedex, France
| |
Collapse
|
13
|
Ji G, Huan C, Zeng Y, Lyu Q, Du Y, Liu Y, Xu L, He Y, Tian X, Yan Z. Microbiologically induced calcite precipitation (MICP) in situ remediated heavy metal contamination in sludge nutrient soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134600. [PMID: 38759409 DOI: 10.1016/j.jhazmat.2024.134600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Microbiologically induced calcite precipitation (MICP), as a newly developing bioremediation technology, could redeem heavy metal contamination in diverse scenarios. In this study, MICP bacterium Sporosarcina ureilytica ML-2 was employed to suppress the pollution of Pb, Cd and Zn in municipal sludge nutrient soil. After MICP remediation, the exchangeable Cd and Zn in sludge nutrient soil were correspondingly reduced by 31.02 % and 6.09 %, while the carbonate-bound Pb, Cd and Zn as well as the residual fractions were increased by 16.12 %, 6.63 %, 13.09 % and 6.10 %, 45.70 %, 3.86 %, respectively. In addition, the extractable Pb, Cd and Zn either by diethylenetriaminepentaacetic acid (DTPA) or toxicity characteristic leaching procedure (TCLP) in sludge nutrient soil were significantly reduced. These results demonstrated that the bio-calcite generated via MICP helped to immobilize heavy metals. Furthermore, MICP treatment improved the abundance of functional microorganisms related to urea cycle, while reduced the overall abundance of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs). This work confirmed the feasibility of MICP in remediation of heavy metal in sludge nutrient soil, which expanded the application field of MICP and provided a promising way for heavy metal pollution management.
Collapse
Affiliation(s)
- Gaosheng Ji
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Chenchen Huan
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shanxi Province 710064, China
| | - Yong Zeng
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qingyang Lyu
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Yaling Du
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lishan Xu
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Yue He
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; College of Food and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Xueping Tian
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| | - Zhiying Yan
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| |
Collapse
|
14
|
Bian ZW, Cheng WC, Xie YX, Rahman MM, He W. Nano-hydroxyapatite-assisted enzyme-induced carbonate precipitation enhances Pb-contaminated aqueous solution and loess remediation. Front Bioeng Biotechnol 2024; 12:1410203. [PMID: 38994125 PMCID: PMC11236532 DOI: 10.3389/fbioe.2024.1410203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Intensive agricultural activities could cause lead (Pb) bioaccumulation, threatening human health. Although the enzyme-induced carbonate precipitation (EICP) technology has been applied to tackle the aforesaid problem, the urease may denature or even lose its activity when subjected to a significant Pb2+ toxicity effect. To this end, the nano-hydroxyapatite (nHAP)-assisted EICP was proposed to reduce the mobility of Pb2+. Results indicated that a below 30% immobilization efficiency at 60 mM Pb2+ was attained under EICP. nHAP adsorbed the majority of Pb2+, preventing Pb2+ attachment to urease. Further, hydroxylphosphohedyphane or hydroxylpyromorphite was formed at 60 mM Pb2+, followed by the formation of cerussite, allowing hydroxylphosphohedyphane or hydroxylpyromorphite to be wrapped by cerussite. By contrast, carbonate-bearing hydroxylpyromorphite of higher stability (Pb10(PO4)6CO3) was developed at 20 mM Pb2+ as CO3 2- substituted the hydroxyl group in hydroxylpyromorphite. Moreover, nHAP helped EICP to form nucleated minerals. As a result, the EICP-nHAP technology raised the immobilization efficiency at 60 mM Pb2+ up to 70%. The findings highlight the potential of applying the EICP-nHAP technology to Pb-containing water bodies remediation.
Collapse
Affiliation(s)
- Zhao-Wei Bian
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Jianke Construction Special Engineering Co., Ltd., Xi’an, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Yi-Xin Xie
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Md Mizanur Rahman
- UniSA STEM, ScaRCE, University of South Australia, Adelaide, SA, Australia
| | - Wenjie He
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| |
Collapse
|
15
|
Zou CX, Sun ZB, Wang WD, Wang T, Bo YX, Wang Z, Zheng CL. The effect of extracellular polymeric substances on MICP solidifying rare earth slags and stabilizing Th and U. World J Microbiol Biotechnol 2024; 40:232. [PMID: 38834810 DOI: 10.1007/s11274-024-04015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Microbially induced carbonate precipitation (MICP) has been used to cure rare earth slags (RES) containing radionuclides (e.g. Th and U) and heavy metals with favorable results. However, the role of microbial extracellular polymeric substances (EPS) in MICP curing RES remains unclear. In this study, the EPS of Lysinibacillus sphaericus K-1 was extracted for the experiments of adsorption, inducing calcium carbonate (CaCO3) precipitation and curing of RES. The role of EPS in in MICP curing RES and stabilizing radionuclides and heavy metals was analyzed by evaluating the concentration and morphological distribution of radionuclides and heavy metals, and the compressive strength of the cured body. The results indicate that the adsorption efficiencies of EPS for Th (IV), U (VI), Cu2+, Pb2+, Zn2+, and Cd2+ were 44.83%, 45.83%, 53.7%, 61.3%, 42.1%, and 77.85%, respectively. The addition of EPS solution resulted in the formation of nanoscale spherical particles on the microorganism surface, which could act as an accumulating skeleton to facilitate the formation of CaCO3. After adding 20 mL of EPS solution during the curing process (Treat group), the maximum unconfined compressive strength (UCS) of the cured body reached 1.922 MPa, which was 12.13% higher than the CK group. The contents of exchangeable Th (IV) and U (VI) in the cured bodies of the Treat group decreased by 3.35% and 4.93%, respectively, compared with the CK group. Therefore, EPS enhances the effect of MICP curing RES and reduces the potential environmental problems that may be caused by radionuclides and heavy metals during the long-term sequestration of RES.
Collapse
Affiliation(s)
- Chang-Xiong Zou
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- School of Civil Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zhen-Bo Sun
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Wei-da Wang
- School of Civil Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
- Yancheng Institute of Technology, Jiangsu Province Yancheng City Hope Avenue Road 1, Yancheng, China.
| | - Tan Wang
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- School of Civil Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yan-Xin Bo
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Zhe Wang
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
- Inner Mongolia Autonomous Region, Inner Mongolia University of Science and Technology, Kundoulun District, No. 7, Alding Street, Baotou City, China.
| | - Chun-Li Zheng
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| |
Collapse
|
16
|
Hu X, He B, Liu Y, Ma S, Yu C. Genomic characterization of a novel ureolytic bacteria, Lysinibacillus capsici TSBLM, and its application to the remediation of acidic heavy metal-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172170. [PMID: 38575034 DOI: 10.1016/j.scitotenv.2024.172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
Soil heavy metal contamination is an essential challenge in ecological and environmental management, especially for acidic soils. Microbially induced carbonate precipitation (MICP) is an effective and environmentally friendly remediation technology for heavy metal contaminated sites, and one of the key factors for its realization lies in the microorganisms. In this study, Lysinibacillus capsici TSBLM was isolated from heavy metal contaminated soil around a gold mine, and inferred to be a novel ureolytic bacteria after phylogenomic inference and genome characterization. The urease of L. capsici TSBLM was analyzed by genetic analysis and molecular docking, and further applied this bacteria to the remediation of Cu and Pb in solution and acidic soils to investigate its biomineralization mechanism and practical application. The results revealed L. capsici TSBLM possessed a comprehensive urease gene cluster ureABCEFGD, and the encoded urease docked with urea at the lowest binding energy site (ΔG = -3.43 kcal/mol) connected to three amino acids threonine, aspartic, and alanine. The urease of L. capsici TSBLM is synthesized intracellularly but mainly functions extracellularly. L. capsici TSBLM removes Cu/Pb from the solution by generating heavy metal carbonates or co-precipitating with CaCO3 vaterite. For acidic heavy metal-contaminated soil, the carbonate-bound states of Cu and Pb increased significantly from 7 % to 16 % and from 23 % to 35 % after 30 days by L. capsici TSBLM. Soil pH improved additionally. L. capsici TSBLM maintained the dominant status in the remediated soil after 30 days, demonstrating good environmental adaptability and curing persistence. The results provided new strain resources and practical application references for the remediation of acidic heavy metal contaminated soil based on MICP.
Collapse
Affiliation(s)
- Xuesong Hu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Banghua He
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Yingchao Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Suya Ma
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China.
| |
Collapse
|
17
|
Su Y, Shi Q, Li Z, Deng H, Zhou Q, Li L, Zhao L, Yuan S, Liu Q, Chen Y. Rhodopseudomonas palustris shapes bacterial community, reduces Cd bioavailability in Cd contaminated flooding paddy soil, and improves rice performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171824. [PMID: 38521273 DOI: 10.1016/j.scitotenv.2024.171824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Photosynthetic bacteria (PSB) are suitable to live and remediate cadmium (Cd) in the slightly oxygenated or anaerobic flooding paddy field. However, there is currently limited study on the inhibition of Cd accumulation in rice by PSB, and the relevant mechanisms has yet to be elucidated. In the current study, we firstly used Rhodopseudomonas palustris SC06 (a typical PSB) as research target and combined physiology, biochemistry, microbiome and metabolome to evaluate the mechanisms of remeding Cd pollution in paddy field and inhibiting Cd accumulation in rice. Microbiome analysis results revealed that intensive inoculation with R. palustris SC06 successfully survived and multiplied in flooding paddy soil, and significantly increased the relatively abundance of anaerobic bacteria including Desulfobacterota, Anaerolineaceae, Geobacteraceae, and Gemmatimonadaceae by 46.40 %, 45.00 %, 50.12 %, and 21.30 %, respectively. Simultaneously, the structure of microbial community was regulated to maintain relative stability in the rhizosphere soil of rice under Cd stress. In turn, these bacteria communities reduced bioavailable Cd and enhanced residual Cd in soil, and induced the upregulation of sugar and organic acids in the rice roots, which further inhibited Cd uptake in rice seedlings, and dramatically improved the photosynthetic efficiency in the leaves and the activities of antioxidative enzymes in the roots. Finally, Cd content of the roots, stems, leaves, and grains significantly decreased by 38.14 %, 69.10 %, 83.40 %, and 37.24 % comparing with the control, respectively. This study provides a new strategy for the remediation of Cd-contaminated flooding paddy fields and the safe production of rice.
Collapse
Affiliation(s)
- Yanqiu Su
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu 610101, China; College of Life Science, Sichuan Normal University, Chengdu 610101, China.
| | - Qiuyun Shi
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Ziyuan Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Hongmei Deng
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Qian Zhou
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Lihuan Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Lanyin Zhao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Shu Yuan
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, Guangdong 510640, China
| | - Yanger Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
18
|
Xie YX, Cheng WC, Xue ZF, Rahman MM, Wang L. Deterioration phenomenon of Pb-contaminated aqueous solution remediation and enhancement mechanism of nano-hydroxyapatite-assisted biomineralization. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134210. [PMID: 38581876 DOI: 10.1016/j.jhazmat.2024.134210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Modern metallurgical and smelting activities discharge the lead-containing wastewater, causing serious threats to human health. Bacteria and urease applied to microbial-induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) are denatured under high Pb2+ concentration. The nano-hydroxyapatite (nHAP)-assisted biomineralization technology was applied in this study for Pb immobilization. Results showed that the extracellular polymers and cell membranes failed to secure the urease activity when subjected to 60 mM Pb2+. The immobilization efficiency dropped to below 50% under MICP, whereas it due to a lack of extracellular polymers and cell membranes dropped to below 30% under EICP. nHAP prevented the attachment of Pb2+ either through competing with bacteria and urease or promoting Ca2+/Pb2+ ion exchange. Furthermore, CO32- from ureolysis replaced the hydroxyl (-OH) in hydroxylpyromorphite to encourage the formation of carbonate-bearing hydroxylpyromorphite of higher stability (Pb10(PO4)6CO3). Moreover, nHAP application overcame an inability to provide nucleation sites by urease. As a result, the immobilization efficiency, when subjected to 60 mM Pb2+, elevated to above 80% under MICP-nHAP and to some 70% under EICP-nHAP. The findings highlight the potential of applying the nHAP-assisted biomineralization technology to Pb-containing water bodies remediation.
Collapse
Affiliation(s)
- Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China
| | - Md Mizanur Rahman
- Geotechnical Engineering, UniSA STEM, ScaRCE, University of South Australia, SA 5000, Australia
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China
| |
Collapse
|
19
|
Zhang L, Wang W, Yue C, Si Y. Biogenic calcium improved Cd 2+ and Pb 2+ immobilization in soil using the ureolytic bacteria Bacillus pasteurii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171060. [PMID: 38378057 DOI: 10.1016/j.scitotenv.2024.171060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Bioremediation based on microbial-induced carbonate precipitation (MICP) was conducted in cadmium and lead contaminated soil to investigate the effects of MICP on Cd and Pb in soil. In this study, soil indigenous nitrogen was shown to induce MICP to stabilize heavy metals without inputting exogenous urea. The results showed that applying Bacillus pasteurii coupled with CaCl2 reduced Cd and Pb bioavailability, which could be clarified through the proportion of exchangeable Cd and Pb in soil decreasing by 23.65 % and 12.76 %, respectively. Moreover, B. pasteurii was combined separately with hydroxyapatite (HAP), eggshells (ES), and oyster shells (OS) to investigate their effects on soil heavy metals' chemical fractions, toxicity characteristic leaching procedure (TCLP)-extractable Cd and Pb as well as enzymatic activity. Results showed that applying B. pasteurii in soil significantly decreased the heavy metals in the exchangeable fraction and increased them in the carbonate phase fraction. When B. pasteurii was combined with ES and OS, the content of carbonate-bound Cd increased by 114.72 % and 118.81 %, respectively, significantly higher than when B. pasteurii was combined with HAP, wherein the fraction of carbonate-bound Cd increased by 86 %. The combination of B. pasteurii and biogenic calcium effectively reduced the leached contents of Cd and Pb in soil, and the TCLP-extractable Cd and Pb fractions decreased by 43.88 % and 30.66 %, respectively, in the BP + ES group and by 52.60 % and 41.77 %, respectively, in the BP + OS group. This proved that MICP reduced heavy metal bioavailability in the soil. Meanwhile, applying B. pasteurii and calcium materials significantly increased the soil urease enzyme activity. The microstructure and chemical composition of the soil samples were studied, and the results from scanning electron microscope, Fourier transform infra-red spectroscopy, and X-ray diffraction demonstrated the MICP process and identified the formation of CaCO3, Ca0.67Cd0.33CO3, and PbCO3 in heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Li Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wenjun Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Caili Yue
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
20
|
Dong Y, Gao Z, Di J, Wang D, Yang Z, Guo X, Zhu X. Study on the effectiveness of sulfate-reducing bacteria to remove Pb(II) and Zn(II) in tailings and acid mine drainage. Front Microbiol 2024; 15:1352430. [PMID: 38618484 PMCID: PMC11010684 DOI: 10.3389/fmicb.2024.1352430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 04/16/2024] Open
Abstract
In view of water and soil getting polluted by Pb(II), Zn(II), and other heavy metals in tailings and acid mine drainage (AMD), we explored the removal effect of sulfate-reducing bacteria (SRB) on Pb(II), Zn(II), and other pollutants in solution and tailings based on the microbial treatment technology. We used the scanning electron microscope-energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and X-ray fluorescence (XRF), to reveal the mechanism of SRB treatment of tailings. The results showed that SRB had a strong removal capacity for Zn(II) at 0-40 mg/L; however, Zn(II) at 60-100 mg/L inhibited the growth of SRB. Similarly, SRB exhibited a very strong ability to remove Pb(II) from the solution. At a Pb(II) concentration of 10-50 mg/L, its removal percentage by SRB was 100%. SRB treatment could effectively immobilize the pollutants leached from the tailings. With an increase in the amount of tailings added to each layer, the ability of SRB to treat the pollutants diminished. When 1 cm of tailingssand was added to each layer, SRB had the best effect on tailing sand treatment. After treatment, the immobilization rates of SO 4 2 - , Fe(III), Mn(II), Pb(II), Zn(II), Cu(II), and total Cr in the leachate of #1 tailing sand were 95.44%, 100%, 90.88%, 100%, 96.20%, 86.23%, and 93.34%, respectively. After the tailings were treated by SRB, although the tailings solidified into a cohesive mass from loose granular particles, their mechanical strength was <0.2 MPa. Desulfovibrio and Desulfohalotomaculum played the predominant roles in treating tailings by mixing SRB. The S2- and carbonate produced by mixing SRB during the treatment of tailings could metabolize sulfate by combining with the heavy metal ions released by the tailings to form FeS, MnS, ZnS, CuS, PbS, Cr2S3, CaCO3, MnCO3, and other precipitated particles. These particles were attached to the surface of the tailings, reducing the environmental pollution of the tailings in the water and soil around the mining area.
Collapse
Affiliation(s)
- Yanrong Dong
- College of Civil Engineering, Liaoning Technical University, Fuxin, China
- School of Mining, Liaoning Technical University, Fuxin, China
| | - Ziqing Gao
- College of Civil Engineering, Liaoning Technical University, Fuxin, China
| | - Junzhen Di
- College of Civil Engineering, Liaoning Technical University, Fuxin, China
| | - Dong Wang
- School of Mining, Liaoning Technical University, Fuxin, China
| | - Zhenhua Yang
- School of Mining, Liaoning Technical University, Fuxin, China
| | - Xuying Guo
- College of Science, Liaoning Technical University, Fuxin, China
| | - Xiaotong Zhu
- College of Civil Engineering, Liaoning Technical University, Fuxin, China
| |
Collapse
|
21
|
Luo Y, Liao M, Lu X, Xu N, Xie X, Gao W. Unveiling the performance of a novel alkalizing bacterium Enterobacter sp. LYX-2 in immobilization of available Cd. J Environ Sci (China) 2024; 137:245-257. [PMID: 37980012 DOI: 10.1016/j.jes.2023.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 11/20/2023]
Abstract
A novel alkalizing strain Enterobacter sp. LYX-2 that could resist 400 mg/L Cd was isolated from Cd-contaminated soil, which immobilized 96.05% Cd2+ from medium. Cd distribution analysis demonstrated that more than half of the Cd2+ was converted into extracellular precipitated Cd through mobilization of the alkali-producing mechanism by the strain LYX-2, achieving the high immobilization efficiency of Cd2+. Biosorption experiments revealed that strain LYX-2 had superior biosorption capacity of 48.28 mg/g for Cd. Pot experiments with Brassica rapa L. were performed with and without strain LYX-2. Compared to control, 15.92% bioavailable Cd was converted to non-bioavailable Cd and Cd content in aboveground vegetables was decreased by 37.10% with addition of strain LYX-2. Available Cd was mainly immobilized through extracellular precipitation, cell-surface biosorption and intracellular accumulation of strain LYX-2, which was investigated through Cd distribution, Scanning Electron Microscope and Energy-Dispersive X-ray Spectroscopy (SEM-EDS), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM) analysis. In addition, the application of strain LYX-2 significantly promoted the growth of vegetables about 2.4-fold. Above results indicated that highly Cd-resistant alkalizing strain LYX-2, as a novel microbial passivator, had excellent ability and reuse value to achieve the remediation of Cd-contaminated soil coupled with safe production of vegetables simultaneously.
Collapse
Affiliation(s)
- Yixin Luo
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Min Liao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| | - Xiongxiong Lu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Na Xu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xiaomei Xie
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; National Demonstration Center for Experimental Environmental and Resources Education, Zhejiang University, Hangzhou 310058, China.
| | - Weiming Gao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; National Demonstration Center for Experimental Environmental and Resources Education, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Taharia M, Dey D, Das K, Sukul U, Chen JS, Banerjee P, Dey G, Sharma RK, Lin PY, Chen CY. Microbial induced carbonate precipitation for remediation of heavy metals, ions and radioactive elements: A comprehensive exploration of prospective applications in water and soil treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115990. [PMID: 38262090 DOI: 10.1016/j.ecoenv.2024.115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Improper disposal practices have caused environmental disruptions, possessing by heavy metal ions and radioactive elements in water and soil, where the innovative and sustainable remediation strategies are significantly imperative in last few decades. Microbially induced carbonate precipitation (MICP) has emerged as a pioneering technology for remediating contaminated soil and water. Generally, MICP employs urease-producing microorganisms to decompose urea (NH2CONH2) into ammonium (NH4+and carbon dioxide (CO2), thereby increasing pH levels and inducing carbonate precipitation (CO32-), and effectively removing remove contaminants. Nonetheless, the intricate mechanism underlying heavy metal mineralization poses a significant challenge, constraining its application in contaminants engineering, particularly in the context of prolonged heavy metal leaching over time and its efficacy in adverse environmental conditions. This review provides a comprehensive idea of recent development of MICP and its application in environmental engineering, examining metabolic pathways, mineral precipitation mechanisms, and environmental factors as well as providing future perspectives for commercial utilization. The use of ureolytic bacteria in MICP demonstrates cost-efficiency, environmental compatibility, and successful pollutant abatement over tradition bioremediation techniques, and bio-synthesis of nanoparticles. limitations such as large-scale application, elevated Ca2+levels in groundwater, and gradual contaminant release need to be overcome. The possible future research directions for MICP technology, emphasizing its potential in conventional remediation, CO2 sequestration, bio-material synthesis, and its role in reducing environmental impact for long-term economic benefits.
Collapse
Affiliation(s)
- Md Taharia
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Debanjan Dey
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC campus, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Koyeli Das
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Uttara Sukul
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Pritam Banerjee
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Gobinda Dey
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pin-Yun Lin
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
23
|
Huang X, Zhang R, Xu Y, Zheng J. Immobilization of Cd 2+ in an aqueous environment using a two-step microbial-induced carbonate precipitation method. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119868. [PMID: 38141349 DOI: 10.1016/j.jenvman.2023.119868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Previous researches indicate that the potent toxicity of cadmium hinders the efficacy of the microbial-induced carbonate precipitation (MICP) process for bioremediation of Cd2+ in aqueous environment. Increasing urea and calcium resource doses, introducing synergists, and utilizing urease-producing consortia can improve bio-immobilization performance of MICP. However, such measures may incur cost increases and/or secondary contamination. This study first verifies the substantial biotoxicity of Cd2+ for urease activity and then analyzes the practical limitation of traditional MICP using Bacillus pasteurii for bioremediation of Cd2+ in an aqueous environment containing 1-40 mM Cd2+ by a series tube tests and numerical simulation. Subsequently, a two-step MICP method, which separates urea hydrolysis and heavy metal precipitation, is introduced in this study to eliminate the inhibitory effect of heavy metal on urease activity. The concentrations of ammonium, Cd2+, and pH were monitored over time. The results indicate that the urease expression in B. pasteurii can be significantly inhibited by Cd2+ particularly at the concentration ranging from 10 to 40 mM, leading to pretty low efficacy of traditional MICP for bioremediation of Cd2+ (Cd2+ removal rate as low as 21.55-38.47% when the initial Cd2+ concentration = 40 mM). In contrast, when the two-step MICP method is applied, the Cd2+ can be almost completely immobilized, even though the concentration ratio of urea to Cd2+ is as low as 1.5:1.0, which is close to the theory minimum concentration ratio for the complete precipitation of carbonate to cadmium ions(1.0:1.0). Therefore, the cost-effective, environmentally sustainable, and straightforward two-step MICP method holds great potential for application in the bioremediation of Cd2+-contaminated solutions in high concentration.
Collapse
Affiliation(s)
- Xiaosong Huang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, Hubei, China
| | - Rongjun Zhang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, Hubei, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, Hubei, China; Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Yaodong Xu
- Institute of Geotechnical and Underground Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Junjie Zheng
- School of Civil Engineering, Wuhan University, Wuhan, 430072, Hubei, China
| |
Collapse
|
24
|
Diez-Marulanda JC, Brandão PFB. Potential use of two Serratia strains for cadmium remediation based on microbiologically induced carbonate precipitation and their cadmium resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5319-5330. [PMID: 38114705 DOI: 10.1007/s11356-023-31062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/11/2023] [Indexed: 12/21/2023]
Abstract
Cadmium (Cd) presence and bioavailability in soils is a serious concern for cocoa producers. Cocoa plants can bioaccumulate Cd that can reach humans through the food chain, thus posing a threat to human health, as Cd is a highly toxic metal. Currently, microbiologically induced carbonate precipitation (MICP) by the ureolytic path has been proposed as an effective technique for Cd remediation. In this work, the Cd remediation potential and Cd resistance of two ureolytic bacteria, Serratia sp. strains 4.1a and 5b, were evaluated. The growth of both Serratia strains was inhibited at 4 mM Cd(II) in the culture medium, which is far higher than the Cd content that can be found in the soils targeted for remediation. Regarding removal efficiency, for an initial concentration of 0.15 mM Cd(II) in liquid medium, the maximum removal percentages for Serratia sp. 4.1.a and 5b were 99.3% and 99.57%, respectively. Their precipitates produced during Cd removal were identified as calcite by X-ray diffraction. Energy dispersive X-ray spectroscopy analysis showed that a portion of Cd was immobilized in this matrix. Finally, the presence of a partial gene from the czc operon, involved in Cd resistance, was observed in Serratia sp. 5b. The expression of this gene was found to be unaffected by the presence of Cd(II), and upregulated in the presence of urea. This work is one of the few to report the use of bacterial strains of the Serratia genus for Cd remediation by MICP, and apparently the first one to report differential expression of a Cd resistance gene due to the presence of urea.
Collapse
Affiliation(s)
- Juan C Diez-Marulanda
- Universidad Nacional de Colombia - Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (GERMINA), Av. Carrera 30 # 45-03, 111321, Bogotá, Colombia.
| | - Pedro F B Brandão
- Universidad Nacional de Colombia - Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (GERMINA), Av. Carrera 30 # 45-03, 111321, Bogotá, Colombia
| |
Collapse
|
25
|
Zou CX, Xiao M, Jiang QH, Wang Z, Zheng CL, Wang WD. Properties and mechanisms of steel slag strengthening microbial cementation of cyanide tailings. CHEMOSPHERE 2024; 346:140645. [PMID: 37951407 DOI: 10.1016/j.chemosphere.2023.140645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/20/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The advantages of microbial induced carbonate precipitation (MICP) as bio-cementation technology for tailings-solidification are under extensive investigation. In order to improve performance of bio-cementation, many strengthening materials were applied to the bio-cementation of tailings. Steel slag (SS) is a kind of industrial solid waste, its chemical composition and mineral composition are similar to cement, and it has a certain application prospect as an auxiliary cementing material. In this study, the properties and mechanism of SS strengthening MICP cementation of cyanide tailings (CT) were investigated. The results showed that Sporosarcina pasteurii growth is not inhibited by SS, and Sporosarcina pasteurii can promote the hydration reaction of SS, providing a suitable alkaline environment and Ca2+, promoting the production of more CaCO3 in the MICP process. When 200 mL of CT leachate was added 1.4 g SS (200-400 mesh), the adsorption of Cu, Pb, Zn, Cd, total cyanide (T-CN), and free cyanide (F-CN) reached 48.05%, 44.28%, 36.25%, 16.67%, 79.05%, and 67.20%, respectively. The maximum unconfined compressive strength(UCS) of the cemented body (with 5%, 150 mesh SS) was 1.97 MPa, which was 3.396 times as high as that without SS. The cemented body with the addition of SS (5%, 150 mesh) contained more carbonate bound Cu (2.75%), Pb (4.89%), Zn (5.37%), and Cd (5.75%), and less exchangeable Cu (3.65%), Pb (6.85%), Zn (2.27%), and Cd (4.42%) than that without SS. In summary, the addition of SS improved the UCS of cemented bodies and the stability of heavy metals and cyanide, reduced the environmental risks existing in the process of CT storage. Meanwhile, it also provides new ideas for resource utilization of industrial solid waste SS and improvement of mine filling materials.
Collapse
Affiliation(s)
- Chang-Xiong Zou
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Meng Xiao
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Qing-Hong Jiang
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Zhe Wang
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Chun-Li Zheng
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 200000, China.
| | - Wei-da Wang
- School of Civil Engineering, Yancheng Institute of Technology, Yancheng, 224001, China.
| |
Collapse
|
26
|
Yi S, Zhu Z, Li F, Zhu L, Wu C, Ge F, Ji X, Tian J. Metagenomic and proteomic insights into the self-adaptive cell surface hydrophobicity of Sphingomonas sp. strain PAH02 reducing the migration of cadmium-phenanthrene co-pollutant in rice. Environ Microbiol 2024; 26:e16577. [PMID: 38183371 DOI: 10.1111/1462-2920.16577] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Cell surface hydrophobicity (CSH) dominates the interactions between rhizobacteria and pollutants at the soil-water interface, which is critical for understanding the dissipation of pollutants in the rhizosphere microzone of rice. Herein, we explored the effects of self-adaptive CSH of Sphingomonas sp. strain PAH02 on the translocation and biotransformation behaviour of cadmium-phenanthrene (Cd-Phe) co-pollutant in rice and rhizosphere microbiome. We evidenced that strain PAH02 reduced the adsorption of Cd-Phe co-pollutant on the rice root surface while enhancing the degradation of Phe and adsorption of Cd via its self-adaptive CSH in the hydroponic experiment. The significant upregulation of key protein expression levels such as MerR, ARHDs and enoyl-CoA hydratase/isomerase, ensures self-adaptive CSH to cope with the stress of Cd-Phe co-pollutant. Consistently, the bioaugmentation of strain PAH02 promoted the formation of core microbiota in the rhizosphere soil of rice (Oryza sativa L.), such as Bradyrhizobium and Streptomyces and induced gene enrichment of CusA and PobA that are strongly associated with pollutant transformation. Consequently, the contents of Cd and Phe in rice grains at maturity decreased by 17.2% ± 0.2% and 65.7% ± 0.3%, respectively, after the bioaugmentation of strain PAH02. These findings present new opportunities for the implementation of rhizosphere bioremediation strategies of co-contaminants in paddy fields.
Collapse
Affiliation(s)
- Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Zhongnan Zhu
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chen Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Xionghui Ji
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jiang Tian
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| |
Collapse
|
27
|
Sanaei D, Sarmadi M, Dehghani MH, Sharifan H, Ribeiro PG, Guilherme LRG, Rahimi S. Towards engineering mitigation of leaching of Cd and Pb in co-contaminated soils using metal oxide-based aerogel composites and biochar. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2110-2124. [PMID: 37916297 DOI: 10.1039/d3em00284e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Applications of metal-based nanomaterials for the remediation of heavy metal (HM) contaminated environments are of great importance. The ability of metal oxide-based carbon aerogel composite to immobilize HMs in multi-metal contaminated soils has not yet been investigated, particularly under acidic conditions. Herein, we investigate the performance of metal oxides (Sr0.7 Mn0.3 Co0.5 Fe0.5O3-δ)-based carbon aerogel composite (MO-CAg) compared with coconut coil fiber biochar (CCFB) and carbon aerogel (CAg) for Cd and Pb immobilization in contaminated soil. The MO-CAg, applied at 2% (w/w), significantly decreased Pb leaching by 67-75% and Cd by 60-65%, CAg decreased Cd by 54% and Pb by 46%, while biochar decreased Cd by 40-44% and Pb by 43%. The addition of MO-CAg altered Cd and Pb geochemical fractions by increasing their residual fraction, i.e., stabilized both metals compared to the control. This presents a comprehensive elaboration on the probable reaction interactions between the MO-Cag and heavy metals, including a combination of (co)precipitation, and reduction-oxidation as the predominant mechanisms of metal stabilization with MO-CAg. Moreover, MO-CAg increased Pb and Cd stabilization in soils by strengthening the bonding between metal oxides and Cd/Pb. By imbedding MO into the CAg, in MO-CAg, the immobilization of Cd(II) and Pb(II) occurred through inner-sphere complexation, while with CCFB and CAg metals, immobilization occurred through outer-sphere complexation. MO-CAg is a promising and highly efficient material that could be recommended for the remediation of Cd- and Pb-contaminated soils in subsequent studies.
Collapse
Affiliation(s)
- Daryoush Sanaei
- Faculty of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sarmadi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad H Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Science, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sharifan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, Texas, USA
| | - Paula G Ribeiro
- Instituto Tecnológico Vale, Boaventura da Silva 955, Belém, PA 66055090, Brazil
| | - Luiz R G Guilherme
- School of Agricultural Science, Federal University of Lavras, Lavras, MG, Brazil
| | - Sajjad Rahimi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
28
|
Zhong S, Liu T, Li X, Yin M, Yin H, Tong H, Huang F, Li F. Cd isotope fractionation in a soil-rice system: Roles of pH and mineral transformation during Cd immobilization and migration processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166435. [PMID: 37598957 DOI: 10.1016/j.scitotenv.2023.166435] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Cd speciation in soil and its transport to rice roots are influenced by the soil pH, oxidation-reduction potential, and mineral transformation; however, the immobilization and migration of Cd in soil-rice systems with different pH values under distinct water regimes remain unclear. This study used Cd isotope fractionation, soil physical analysis, and root gene quantification to elucidate the immobilization and transport of Cd in different soil-rice systems. In drainage soils, the high soil pH enhanced the transformation and magnitude of negative fractionation of Cd from MgCl2 extract to FeMn oxide-bound pool; however, it favored Cd uptake and root-to-grain transport. Compared with drainage regimes, the flooding regimes shifted fractionation toward heavy isotopes from MgCl2-extracted Cd to FeMn oxide-bound Cd in acidic soils (∆114/110CdMgCl2 extract - FeMn oxide-bound Cd = -0.09 ± 0.03 ‰) and to light isotopes from MgCl2-extracted Cd to carbonate-bound Cd in neutral and alkaline soils (∆114/110CdMgCl2 extract - carbonate-bound Cd = 0.29-0.40 ‰). The submerged soils facilitated the forming of carbonate and poorly crystalline minerals (such as ferrihydrite), which were transformed into highly crystalline forms (such as goethite). These results demonstrated that the dissolution-precipitation process of iron oxides was essential for controlling soil Cd availability under flooding regimes, and the relative contribution of carbonate minerals to Cd immobilization was promoted by a high soil pH. Flooding regimes induced lower expressions of OsNRAMP1 and OsNRAMP5 to limit the uptake of light Cd isotopes from MgCl2-extract pool, whereas a teeter-totter effect on gene expression patterns in roots (including those of OsHMA3 and OsHMA2) limited the transport of heavy Cd isotopes from root to grain. These findings demonstrate that flooding regimes could exert multiple effects on soil Cd immobilization and Cd transport to grain. Moreover, alkaline soil was conducive to forming carbonate minerals to sequester Cd.
Collapse
Affiliation(s)
- Songxiong Zhong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Meilin Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Haoming Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
29
|
Xie YX, Cheng WC, Wang L, Xue ZF, Xu YL. Biopolymer-assisted enzyme-induced carbonate precipitation for immobilizing Cu ions in aqueous solution and loess. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116134-116146. [PMID: 37910372 DOI: 10.1007/s11356-023-30665-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Wastewater, discharged in copper (Cu) mining and smelting, usually contains a large amount of Cu2+. Immobilizing Cu2+ in aqueous solution and soils is deemed crucial in preventing its migration into surrounding environments. In recent years, the enzyme-induced carbonate precipitation (EICP) has been widely applied to Cu immobilization. However, the effect of Cu2+ toxicity denatures and even inactivates the urease. In the present work, the biopolymer-assisted EICP technology was proposed. The inherent mechanism affecting Cu immobilization was explored through a series of test tube experiments and soil column tests. Results indicated that 4 g/L chitosan may not correspond to a higher immobilization efficiency because it depends as well on surrounding pH conditions. The use of Ca2+ not only played a role in further protecting urease and regulating the environmental pH but also reduced the potential for Cu2+ to migrate into nearby environments when malachite and azurite minerals are wrapped by calcite minerals. The species of carbonate precipitation that are recognized in the numerical simulation and microscopic analysis supported the above claim. On the other hand, UC1 (urease and chitosan colloid) and UC2 (urea and calcium source) grouting reduced the effect of Cu2+ toxicity by transforming the exchangeable state-Cu into the carbonate combination state-Cu. The side effect, induced by 4 g/L chitosan, promoted the copper-ammonia complex formation in the shallow ground, while the acidic environments in the deep ground prevented Cu2+ from coordinating with soil minerals. These badly degraded the immobilization efficiency. The Raman spectroscopy and XRD test results tallied with the above results. The findings shed light on the potential of applying the biopolymer-assisted EICP technology to immobilizing Cu ions in water bodies and sites.
Collapse
Affiliation(s)
- Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| | - Yin-Long Xu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| |
Collapse
|
30
|
Yu X, Jiang N, Yang Y, Liu H, Gao X, Cheng L. Heavy metals remediation through bio-solidification: Potential application in environmental geotechnics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115305. [PMID: 37517309 DOI: 10.1016/j.ecoenv.2023.115305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Heavy metals are pervasive pollutants found in water, soil, and solid wastes. Bio-solidification offers an environmentally friendly approach to immobilize heavy metal ions using two types of bacteria: urease-producing bacteria (UPB) and phosphatase-producing bacteria (PPB). UPB, exemplified by Sporosarcina pasteurii, secretes urease to hydrolyze urea and generate CO32- ions, while PPB, like Bacillus subtilis, produces alkaline phosphatase to hydrolyze organophosphate monoester (ROP) and produce PO43- ions. These ions react with heavy metal ions, effectively reducing their concentration by forming insoluble carbonate or phosphate precipitates. The success of bio-solidification is influenced by various factors, including substrate concentration, temperature, pH, and bacterial density. Optimal operational conditions can significantly enhance the remediation performance of heavy metals. UPB and PPB hold great potential for remediating heavy metal pollution in diverse contaminated areas such as tailings ponds, electroplating sewage, and garbage incineration plants. In conclusion, harnessing the power of these microbial methods can provide effective solutions for remediating heavy metal-induced pollution across a range of environmental conditions.
Collapse
Affiliation(s)
- Xiaoniu Yu
- Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China.
| | - Ningjun Jiang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
| | - Yang Yang
- School of Civil Engineering, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Haijun Liu
- School of Civil Engineering, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Xuecheng Gao
- School of Civil Engineering, Chongqing University; Chongqing University Industrial Technology Research Institute, Chongqing 400045, China.
| | - Liang Cheng
- School of Environmental and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
31
|
Sharma S, Singh P, Ali HM, Hussain Siddiqui M, Iqbal J. Tillage, green manuring and crop residue management impacts on crop productivity, potassium use efficiency and potassium fractions under rice-wheat system. Heliyon 2023; 9:e17828. [PMID: 37483775 PMCID: PMC10359882 DOI: 10.1016/j.heliyon.2023.e17828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
The conventional crop production practices including intensive tillage and open field crop residue burning in world' largest rice-wheat system (RWS) are adversely affecting crop productivity besides deteriorating natural resources and ecosystems' sustainability. In order to improve system productivity, potassium (K) use efficiency and apparent K balance, adoption of conservation tillage in a RWS with residue management is considered highly effective. We therefore, studied the effect of wheat straw retention and green manure (GM) in rice (main plot treatment), and tillage and rice residue management in subsequent wheat (sub-plot treatments) on crop productivity, K use efficiency and its transformation amongst different fractions of variable solubility. These results revealed that rice straw retention along with GM significantly (p < 0.05) increased the rice yields by ∼5.3-6.7% and wheat yields by ∼10.2-16.9%, compared to the conventional tillage (CT) without GM. Green manuring during the intervening period (CTRW0+GM) significantly increased the rice grain K uptake by ∼36.2% than in plots with no-GM (CTRW0). However, it increased by ∼29.8% under CTRW25+GM, compared with CTRW25-GM treatment. As compared with CTRW0, CTRW0+GM significantly increased the reciprocal internal use efficiency of K of rice by 3.8 kg Mg-1 grain yield (∼29.5%). However, CTRW25+GM increased the RIUEK of rice by 3.3 kg Mg-1 grain yield (∼22.4%), compared with no-GM (CTRW25). Although, apparent K balance was net negative for CTRW25, ZTWR100 treatments, yet there was decreased K mining of 56-262 kg K ha-1 (∼11.9-61.2%) for CTRW25 and ZTWR100 over CTRW0 and ZTWR0. The increased crop yield, K uptake and K use efficiency were significantly related to K enrichment in water soluble K, exchangeable K, non-exchangeable-K, hydrochloric acid extractable-K, lattice-K and total K fractions by ∼1.3, 3.4, 18.6, 11.0 and 34.1%, respectively due to residue retention, compared with no residue. Therefore, conventional tillage with puddled transplanted rice (CTR) with wheat residue and green manure during intervening period (CTRW25+GM), and zero tillage wheat with rice residue retention (ZTWR100) were emerged as highly valuable technological options for mitigating soil degradation effects under intensive RWS for food grains in north-western India.
Collapse
Affiliation(s)
- Sandeep Sharma
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Pritpal Singh
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manzer Hussain Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Iqbal
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, USA
| |
Collapse
|
32
|
Zakrzewska M, Rzepa G, Musialowski M, Goszcz A, Stasiuk R, Debiec-Andrzejewska K. Reduction of bioavailability and phytotoxicity effect of cadmium in soil by microbial-induced carbonate precipitation using metabolites of ureolytic bacterium Ochrobactrum sp. POC9. FRONTIERS IN PLANT SCIENCE 2023; 14:1109467. [PMID: 37416890 PMCID: PMC10321601 DOI: 10.3389/fpls.2023.1109467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/26/2023] [Indexed: 07/08/2023]
Abstract
The application of ureolytic bacteria for bioremediation of soil contaminated with heavy metals, including cadmium (Cd), allows for the efficient immobilization of heavy metals by precipitation or coprecipitation with carbonates. Microbially-induced carbonate precipitation process may be useful also in the case of the cultivation of crop plants in various agricultural soils with trace but legally permissible Cd concentrations, which may be still uptaken by plants. This study aimed to investigate the influence of soil supplementation with metabolites containing carbonates (MCC) produced by the ureolytic bacterium Ochrobactrum sp. POC9 on the Cd mobility in the soil as well as on the Cd uptake efficiency and general condition of crop plants (Petroselinum crispum). In the frame of the conducted studies (i) carbonate productivity of the POC9 strain, (ii) the efficiency of Cd immobilization in soil supplemented with MCC, (iii) crystallization of cadmium carbonate in the soil enriched with MCC, (iv) the effect of MCC on the physico-chemical and microbiological properties of soil, and (v) the effect of changes in soil properties on the morphology, growth rate, and Cd-uptake efficiency of crop plants were investigated. The experiments were conducted in soil contaminated with a low concentration of Cd to simulate the natural environmental conditions. Soil supplementation with MCC significantly reduced the bioavailability of Cd in soil with regard to control variants by about 27-65% (depending on the volume of MCC) and reduced the Cd uptake by plants by about 86% and 74% in shoots and roots, respectively. Furthermore, due to the decrease in soil toxicity and improvement of soil nutrition with other metabolites produced during the urea degradation (MCC), some microbiological properties of soil (quantity and activity of soil microorganisms), as well as the general condition of plants, were also significantly improved. Soil supplementation with MCC enabled efficient Cd stabilization and significantly reduced its toxicity for soil microbiota and plants. Thus, MCC produced by POC9 strain may be used not only as an effective Cd immobilizer in soil but also as a microbe and plant stimulators.
Collapse
Affiliation(s)
- Marta Zakrzewska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grzegorz Rzepa
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| | - Marcin Musialowski
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Goszcz
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Ecotoxicology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Klaudia Debiec-Andrzejewska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
33
|
Zhou Z, Ali A, Su J, Wang Z, Huang T, Li T. In-situ modified biosynthetic crystals with lanthanum for fluoride removal based on microbially induced calcium precipitation: Characterization, kinetics, and mechanism. CHEMOSPHERE 2023; 327:138472. [PMID: 36963578 DOI: 10.1016/j.chemosphere.2023.138472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
In this research, in-situ modified biosynthetic crystals with lanthanum (BC-La) were synthesized based on anaerobic microbially induced calcium precipitation (MICP) and investigated its capacity for groundwater defluoridation under various operational conditions. The kinetic and thermodynamic models were simulated to explore the effect of the material on the removal of fluoride ion (F-) under various parameters (pH, initial concentration of F-, and temperature). BC-La had the maximum F- adsorption capacity of 10.92 mg g-1 and 96.66% removal efficiency. The pseudo-second-order kinetic model and Langmuir isotherm model were the best kinetic and isotherm models for F- removal from BC-La, which indicated that F- were mainly spontaneously removed through chemisorption and adsorption processes. The specific surface area was 54.26 m2 g-1 and the average pore size was 9.0670 nm. BC-La mainly contained LaCO3OH, LaPO4, CaCO3, Ca5 (PO4)3OH, and F- was mainly removed through ion exchange with the material surface. Moreover, OH-, PO43-, and CO32- significantly influenced the F- removal. This work suggested a novel method for in-situ modification of anaerobic biosynthetic crystals, which improved the defluoridation effect of traditional biosynthetic crystals, increased the stability of the BC-La and allowed to remove F- from groundwater consistently.
Collapse
Affiliation(s)
- Zhennan Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tianmeng Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
34
|
Cai Q, Xu M, Ma J, Zhang X, Yang G, Long L, Chen C, Wu J, Song C, Xiao Y. Improvement of cadmium immobilization in contaminated paddy soil by using ureolytic bacteria and rice straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162594. [PMID: 36870501 DOI: 10.1016/j.scitotenv.2023.162594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) in paddy soil can be immobilized via microbially induced carbonate precipitation (MICP), but it poses a risk to the properties and eco-function of the soil. In this study, rice straw coupled with Sporosarcina pasteurii (S. pasteurii) was used to treat Cd-contaminated paddy soil with minimizing the detrimental effects of MICP. Results showed that the application of rice straw coupled with S. pasteurii reduced Cd bioavailability. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirmed that Cd immobilization efficiency was increased in the rice straw coupled with S. pasteurii treatment via co-precipitating with CaCO3. Moreover, rice straw coupled with S. pasteurii enhanced soil fertility and ecological functions as reflected by the high amount of alkaline hydrolysis nitrogen (AN) (14.9 %), available phosphorus (AP) (13.6 %), available potassium (AK) (60.0 %), catalase (9.95 %), dehydrogenase (736 %), and phosphatase (214 %). Further, the relative abundance of dominant phyla such as Proteobacteria and Firmicutes significantly increased when applying both rice straw coupled with S. pasteurii. The most significant environmental factors that affected the composition of the bacterial community were AP (41.2 %), phosphatase (34.2 %), and AK (8.60 %). In conclusion, using rice straw mixed with S. pasteurii is a promising application to treat Cd-contaminated paddy soil due to its positive effects on treating soil Cd as well as its ability to reduce the detrimental effects of the MICP process.
Collapse
Affiliation(s)
- Qian Cai
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jing Ma
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiaohong Zhang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Yang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Lulu Long
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Chen
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Wu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Chun Song
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinlong Xiao
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
35
|
Zheng L, Lin H, Dong Y, Li B, Lu Y. A promising approach for simultaneous removal of ammonia and multiple heavy metals from landfill leachate by carbonate precipitating bacterium. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131662. [PMID: 37247490 DOI: 10.1016/j.jhazmat.2023.131662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
The effective and cheap remediation of ammonia (NH+4) and multiple heavy metals from landfill leachate is currently a grand challenge. In this study, Paracoccus denitrificans AC-3, a bacterial strain capable of heterotrophic nitrification aerobic denitrification (HNAD) and carbonate precipitation, exhibited good tolerance to a variety of heavy metals and could remove 99.70% of NH+4, 99.89% of zinc (Zn2+), 97.42% of cadmium (Cd2+) and 46.19% of nickel (Ni2+) simultaneously after 24 h of incubation. The conversion pathway of NH+4 by strain AC-3 was dominated by assimilation (84.68%), followed by HNAD (14.93%), and the increase in environmental pH was mainly dependent on assimilation rather than HNAD. Calcium (Ca2+) primarily played four roles in heavy metal mineralization: (ⅰ) improving bacterial tolerance to heavy metals; (ⅱ) ensuring the HNAD capacity of strain AC-3; (ⅲ) co-precipitating with heavy metals; and (ⅳ) precipitating into calcite to adsorb heavy metals. The heavy metals removal mechanisms were mainly calcite adsorption and formation of carbonate and hydroxide precipitation for Zn2+, co-precipitation for Cd2+, and adsorption for Ni2+. The Zn2+, Cd2+, and Ni2+ precipitates displayed unique morphologies. This research provided a promising biological resource for the simultaneous remediation of NH+4 and heavy metals from landfill leachate.
Collapse
Affiliation(s)
- Lili Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yanrong Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
36
|
Huang C, Guo Z, Peng C, Anaman R, Zhang P. Immobilization of Cd in the soil of mining areas by FeMn oxidizing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162306. [PMID: 36801403 DOI: 10.1016/j.scitotenv.2023.162306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Microorganisms are widely used in large-scale pollution remediation due to their rapid reproduction and low cost. In this study, bioremediation batch experiments and characterization methods were adopted to investigate the mechanism of FeMn oxidizing bacteria on the immobilization of Cd in mining soil. The results showed that the FeMn oxidizing bacteria successfully reduced 36.84 % of the extractable Cd in the soil. The exchangeable forms, carbonate-bound forms, and organic-bound forms of Cd in the soil decreased by 11.4 %, 8 %, and 7.4 %, respectively, due to the addition of FeMn oxidizing bacteria, while FeMn oxides-bound and residual forms of Cd increased by 19.3 % and 7.5 %, as compared to the control treatments. The bacteria promotes the formation of amorphous FeMn precipitates such as lepidocrocite and goethite, which have high adsorption capacity on soil Cd. The oxidation rates of Fe and Mn in the soil treated with the oxidizing bacteria reached 70.32 % and 63.15 %, respectively. Meanwhile, the FeMn oxidizing bacteria increased soil pH and decreased soil organic matter content, further decreasing the extractable Cd in the soil. The FeMn oxidizing bacteria have the potential to be used in large mining areas to assist in the immobilization of heavy metals.
Collapse
Affiliation(s)
- Chiyue Huang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Richmond Anaman
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Pan Zhang
- Department of Environment Ecology, School of Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
37
|
Xue ZF, Cheng WC, Xie YX, Wang L, Hu W, Zhang B. Investigating immobilization efficiency of Pb in solution and loess soil using bio-inspired carbonate precipitation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121218. [PMID: 36764377 DOI: 10.1016/j.envpol.2023.121218] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Lead (Pb) metal accumulation in surrounding environments can cause serious threats to human health, causing liver and kidney function damage. This work explored the potential of applying the MICP technology to remediate Pb-rich water bodies and Pb-contaminated loess soil sites. In the test tube experiments, the Pb immobilization efficiency of above 85% is attained through PbCO3 and Pb(CO3)2(OH)2 precipitation. Notwithstanding that, in the loess soil column tests, the Pb immobilization efficiency decreases with the increase in depth and could be as low as approximately 40% in the deep ground. PbCO3 and Pb(CO3)2(OH)2 precipitation has not been detected as the majority of Pb2+ combines with -OH (hydroxyl group) when subjected to 500 mg/kg Pb2+. The alkaline front promotes the chemisorption of Pb2+ with CO32- reducing the depletion of quartz mineral close to the surface. However, OH- is in shortage in the deep ground retarding the Pb immobilization. The Pb immobilization efficiency thus decreases with the increase in depth. Quartz and albite minerals, when subjected to 16,000 mg/kg Pb2+, appear not to intervene in the chemisorption with Pb2+ where the chemisorption of Pb2+ with CO32- plays a major role in the Pb immobilization. Compared to the nanoscale urease applied to the enzyme-induced carbonate precipitation (EICP) technology, the micrometer scale ureolytic bacteria penetrate into the deep ground with difficulty. The 'size' issue remains to be addressed in near future.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Bin Zhang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
38
|
Diez-Marulanda JC, Brandão PFB. Isolation of urease-producing bacteria from cocoa farms soils in Santander, Colombia, for cadmium remediation. 3 Biotech 2023; 13:98. [PMID: 36860360 PMCID: PMC9968674 DOI: 10.1007/s13205-023-03495-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/25/2023] [Indexed: 03/01/2023] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that causes serious health problems and is present in agriculturally important soils in Colombia, such as the ones used for cocoa farming. Recently, the use of ureolytic bacteria by the Microbiologically Induced Carbonate Precipitation (MICP) activity has been proposed as an alternative to mitigate the availability of Cd in contaminated soils. In this study, 12 urease-positive bacteria able to grow in the presence of Cd(II) were isolated and identified. Three were selected based on urease activity, precipitates formation and growth, with two belonging to the genus Serratia (codes 4.1a and 5b) and one to Acinetobacter (code 6a). These isolates exhibited low urease activity levels (3.09, 1.34 and 0.31 μmol mL-1 h-1, respectively), but could raise the pH to values close to 9.0 and to produce carbonate precipitates. It was shown that the presence of Cd affects the growth of the selected isolates. However, urease activity was not negatively influenced. In addition, the three isolates were observed to efficiently remove Cd from solution. The two Serratia isolates presented maximum removals of 99.70% and 99.62%, with initial 0.05 mM Cd(II) in the culture medium (supplemented with urea and Ca(II)) at 30 °C and 144 h of incubation. For the Acinetobacter isolate, the maximum removal was 91.23% at the same conditions. Thus, this study evidences the potential use of these bacteria for bioremediation treatments in samples contaminated with Cd, and it is one of the few reports that shows the high cadmium removal capacity of bacteria from the genus Serratia. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03495-1.
Collapse
Affiliation(s)
- Juan C. Diez-Marulanda
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (GERMINA), Av. Carrera 30 # 45-03, 111321 Bogotá, Colombia
| | - Pedro F. B. Brandão
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (GERMINA), Av. Carrera 30 # 45-03, 111321 Bogotá, Colombia
| |
Collapse
|
39
|
Liu Y, Ali A, Su JF, Li K, Hu RZ, Wang Z. Microbial-induced calcium carbonate precipitation: Influencing factors, nucleation pathways, and application in waste water remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160439. [PMID: 36574549 DOI: 10.1016/j.scitotenv.2022.160439] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Microbial-induced calcium carbonate precipitation (MICP) is a technique that uses the metabolic action of microorganisms to produce CO32- which combines with free Ca2+ to form CaCO3 precipitation. It has gained widespread attention in water treatment, aimed with the advantages of simultaneous removal of multiple pollutants, environmental protection, and ecological sustainability. This article reviewed the mechanism of MICP at both intra- and extra-cellular levels. It summarized the parameters affecting the MICP process in terms of bacterial concentration, ambient temperature, etc. The current status of MICP application in practical engineering is discussed. Based on this, the current technical difficulties faced in the use of MICP technology were outlined, and future research directions for MICP technology were highlighted. This review helps to improve the design of existing water treatment facilities for the simultaneous removal of multiple pollutants using the MICP and provides theoretical reference and innovative thinking for related research.
Collapse
Affiliation(s)
- Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun-Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Kai Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rui-Zhu Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
40
|
Xie YX, Cheng WC, Wang L, Xue ZF, Rahman MM, Hu W. Immobilizing copper in loess soil using microbial-induced carbonate precipitation: Insights from test tube experiments and one-dimensional soil columns. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130417. [PMID: 36410249 DOI: 10.1016/j.jhazmat.2022.130417] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Biomineralization as an alternative to traditional remediation measures has been widely applied to remediate copper (Cu)-contaminated sites due to its environmental-friendly nature. Immobilizing Cu is, however, a challenging task as it inevitably causes inactivation of ureolytic bacteria. In the present work, a series of test tube experiments were conducted to derive the relationships of Cu immobilization efficiency versus pH conditions. The Cu speciation transformation that is invisible in the test tube experiments was investigated via numerical simulations. Apart from that, the one-dimensional soil column tests, accompanied by the X-ray diffraction (XRD) and Raman spectroscopy analysis, mainly aimed not only to investigate the variations of Cu immobilization efficiency with the depth but to reveal the underlying mechanisms affecting the Cu immobilization efficiency. The results of the test tube experiments highlight the necessity of narrowing pH ranges to as close as 7 by introducing an appropriate bacterial inoculation proportion. The coordination adsorption of Cu, while performing the one-dimensional soil column tests, is encouraged by alkaline environments, which differs from the test tube experiments where Cu2+ is capsulized by carbonate precipitates to prevent their migration. The findings highlight the potential of applying the microbial-induced carbonate precipitation (MICP) technology to Cu-rich water bodies and Cu-contaminated sites remediation.
Collapse
Affiliation(s)
- Yi-Xin Xie
- PhD student, School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Wen-Chieh Cheng
- Professor, School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Lin Wang
- PhD student, School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Zhong-Fei Xue
- PhD student, School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Md Mizanur Rahman
- Professor in Geotechnical Engineering, UniSA STEM, ScaRCE, University of South Australia, SA 5000, Australia.
| | - Wenle Hu
- PhD student, School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| |
Collapse
|
41
|
Huang H, Lin K, Lei L, Li Y, Li Y, Liang K, Shangguan Y, Xu H. Microbial response to antimony-arsenic distribution and geochemical factors at arable soil around an antimony mining site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47972-47984. [PMID: 36746862 DOI: 10.1007/s11356-023-25507-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Antimony (Sb) mining often causes severe Sb pollution and associate arsenic (As) compound contamination. To further understand the interaction mechanism among soil microorganisms, heavy metal distribution, and geochemical factors, the effects of environmental factors on soil microbial communities under different levels of Sb-As co-contamination were studied in situ of Chashan antimony mine, Guangxi Province. The results showed that the range of Sb and As contents in soil were 1339.63-7762.28 mg/kg and 2170.3-10,371.36 mg/kg, respectively, and the residual fraction accounted for more than 98.0% with less than 2.0% of bioavailable fraction. Besides, the concentration of the two metals is both related to the distance to surface runoff. Different microbial communities in arable soils of each sample site were analyzed, which was significantly affected by soil environmental factors such as pH, ALN, AP, OM, Tot-Sb, Tot-As, Bio-As, and Bio-Sb. The phylum of Actinobacteria in sites 1, 4, and 5 was the most dominant and the phylum of Proteobacteria were the most dominant in sites 2 and 3. Moreover, the results of redundancy analysis (RDA), variation partition analysis (VPA), and Spearman correlation analyses demonstrated that microorganisms, heavy metal distribution, and geochemical factors interacted with each other and together shaped the microbial community. Our findings are beneficial for understanding the response of soil microorganisms to As-Sb distribution and geochemical factors in arable soils under Sb mining areas.
Collapse
Affiliation(s)
- Huayan Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Kangkai Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Ling Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yongyun Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yipeng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Ke Liang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yuxian Shangguan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
- Sichuan Academy of Agricultural Sciences, No. 4, Shizishan Road, Jinjiang District, Chengdu, 610066, China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Department of Ecology and Environment of Sichuan, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| |
Collapse
|
42
|
Liao Z, Wu S, Xie H, Chen F, Yang Y, Zhu R. Effect of phosphate on cadmium immobilized by microbial-induced carbonate precipitation: Mobilization or immobilization? JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130242. [PMID: 36327838 DOI: 10.1016/j.jhazmat.2022.130242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microbial-induced carbonate precipitation (MICP) is a promising technology to immobilize/remediate heavy metals (HMs) like cadmium (Cd). However, the long-term stability of MICP-immobilized HMs is unclear, especially in farmland where chemical fertilization is necessary. Therefore, we performed MICP treatment on soils contaminated with various Cd compounds (CdCO3, CdS, and CdCl2) and added diammonium phosphate (DAP) to explore the impact of phosphate on the MICP-immobilized Cd. The results showed that MICP treatment was practical to immobilize the exchangeable Cd but to mobilize the carbonate and Fe/Mn oxide-bound Cd. After applying DAP, soil pH declined due to ammonium nitrification. At high P/Ca molar ratios (1/2 and 1), partial previously immobilized Cd was released due to the carbonate dissolution. Contrarily, exchangeable Cd transformed to less mobilizable Fe/Mn oxide-bound at low P/Ca molar ratios (1/4 and 1/8). Meanwhile, other treatments were also helpful in avoiding the release of immobilized Cd, such as applying non-ammonium phosphate and adding lime material after soil acidification. Our investigation suggested that the long-term stability of HMs in remediated sites should be carefully evaluated, especially in agricultural areas with phosphate and nitrogen fertilizer input.
Collapse
Affiliation(s)
- Zisheng Liao
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Science, 19 Yuquan Road, 100049 Beijing, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China.
| | - Hong Xie
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Science, 19 Yuquan Road, 100049 Beijing, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| |
Collapse
|
43
|
Zhang W, Zhang H, Xu R, Qin H, Liu H, Zhao K. Heavy metal bioremediation using microbially induced carbonate precipitation: Key factors and enhancement strategies. Front Microbiol 2023; 14:1116970. [PMID: 36819016 PMCID: PMC9932936 DOI: 10.3389/fmicb.2023.1116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
With the development of economy, heavy metal (HM) contamination has become an issue of global concern, seriously threating animal and human health. Looking for appropriate methods that decrease their bioavailability in the environment is crucial. Microbially induced carbonate precipitation (MICP) has been proposed as a promising bioremediation method to immobilize contaminating metals in a sustainable, eco-friendly, and energy saving manner. However, its performance is always affected by many factors in practical application, both intrinsic and external. This paper mainly introduced ureolytic bacteria-induced carbonate precipitation and its implements in HM bioremediation. The mechanism of HM immobilization and in-situ application strategies (that is, biostimulation and bioaugmentation) of MICP are briefly discussed. The bacterial strains, culture media, as well as HMs characteristics, pH and temperature, etc. are all critical factors that control the success of MICP in HM bioremediation. The survivability and tolerance of ureolytic bacteria under harsh conditions, especially in HM contaminated areas, have been a bottleneck for an effective application of MICP in bioremediation. The effective strategies for enhancing tolerance of bacteria to HMs and improving the MICP performance were categorized to provide an in-depth overview of various biotechnological approaches. Finally, the technical barriers and future outlook are discussed. This review may provide insights into controlling MICP treatment technique for further field applications, in order to enable better control and performance in the complex and ever-changing environmental systems.
Collapse
Affiliation(s)
- Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China,*Correspondence: Wenchao Zhang,
| | - Hong Zhang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ruyue Xu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Haichen Qin
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Hengwei Liu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Kun Zhao
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,Insitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
44
|
Zhang P, Liu XQ, Yang LY, Sheng HZY, Qian AQ, Fan T. Immobilization of Cd 2+ and Pb 2+ by biomineralization of the carbonate mineralized bacterial consortium JZ1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22471-22482. [PMID: 36301386 DOI: 10.1007/s11356-022-23587-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Microbially induced carbonate precipitation (MICP) has been proven to effectively immobilize Cd2+ and Pb2+ using a single bacterium. However, there is an urgent need for studies of Cd2+ and Pb2+ immobilized by a bacterial consortium. In this study, a stable consortium designated JZ1 was isolated from soil that was contaminated with cadmium and lead, and the dominant genus Sporosarcina (99.1%) was found to have carbonate mineralization function. The results showed that 91.52% and 99.38% of Cd2+ and Pb2+ were mineralized by the consortium JZ1 with 5 g/L CaCl2 at an initial concentration of 5 mg/L Cd2+ and 150 mg/L Pb2+, respectively. The bioprecipitates were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Moreover, the kinetic studies indicated that the urea hydrolysis reaction fit well with the Michaelis-Menten equation, and the kinetic parameters Km and Vmax were estimated to be 38.69 mM and 58.98 mM/h, respectively. When the concentration of urea increased from 0.1 to 0.3 M, the mineralization rate increased by 1.58-fold. This study can provide a novel microbial resource for the biomineralization of Cd and Pb in soil and water environments.
Collapse
Affiliation(s)
- Peng Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Xiao-Qiang Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Li-Yuan Yang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Hua-Ze-Yu Sheng
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - An-Qi Qian
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Ting Fan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
45
|
Anand S, Singh A, Kumar V. Recent advancements in cadmium-microbe interactive relations and their application for environmental remediation: a mechanistic overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17009-17038. [PMID: 36622611 DOI: 10.1007/s11356-022-25065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
The toxic and persistent nature of cadmium (Cd) in the environment has become a matter of concern with its drastic increase in the concentrations over past few decades. Among the various techniques, the microbial remediation has been accepted as an effective decontamination tool for environmental applications, which is sustainable over a period of time. The Cd decontamination potential of the microbes depends on various internal and external factors that play a crucial role in selection of the microbes for application in a particular environment. Thus, it is important to understand the role of these factors for optimal application of the microbes. This study provides an insight into the mechanisms involved between the microbes and the environmental Cd. The study also briefly reviews the mathematical models that have been used to predict the remediation potential of the microbes and the kinetics involved during the process. A critical analysis of the recent advancements in the techniques for use of bacteria, fungi, and algal cells to remove Cd has been also presented in the manuscript.
Collapse
Affiliation(s)
- Saumya Anand
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
| |
Collapse
|
46
|
Peng D, Zhang R, Chen Y, Jiang L, Lei L, Xu H, Feng S. Effects of secondary release of chromium and vanadium on soil properties, nutrient cycling and bacterial communities in contaminated acidic paddy soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116725. [PMID: 36375431 DOI: 10.1016/j.jenvman.2022.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Although the contamination situation of chromium (Cr) and vanadium (V) have been revealed, the effects of their re-release on ecological risk in contaminated acidic paddy soil are unclear. To evaluate the effects, we assigned soil microcosms across three different concentration (100, 200, 300 mg/L) and introduced Cr and V alone or combination into an already slightly contaminated acidic soil. We found that Cr and V alone or interacted to increased soil bioavailable-metals, changed soil properties and nutrients to varying degrees. Meanwhile, soil ammoniacal nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) contents, nitrogen (N) -cycling enzyme activities, microbial mass N were significantly influenced by Cr addition. Which demonstrated that Cr re-release may disturb soil N cycle. However, V alone significantly improved soil NO3--N contents, cellulase and dehydrogenase activities, soil respiration intensity and microbial mass carbon: nitrogen. Meanwhile, V addition also decreased bacterial diversity while Cr addition increased bacterial diversity and shaped new bacterial community, some V(V) and Cr (VI) reducing bacteria were identified. Heatmap of Pearson correlation and Redundancy analysis showed that NH4+-N, NO3--N, Potassium, Phosphorus, and Cr played an important role in bacterial community structure. These findings suggested that re-release of Cr and V disturbed soil function and raised ecological risks, and the power to destroy the ecosystem stability originated from Cr was much stronger than V. This study was contributed to understand the effects of Cr and V re-release on microecology in contaminated acidic agricultural soil.
Collapse
Affiliation(s)
- Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Renfeng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Yahui Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Lili Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Ling Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| | - Su Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
47
|
Zeng Y, Chen Z, Lyu Q, Cheng Y, Huan C, Jiang X, Yan Z, Tan Z. Microbiologically induced calcite precipitation for in situ stabilization of heavy metals contributes to land application of sewage sludge. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129866. [PMID: 36063711 DOI: 10.1016/j.jhazmat.2022.129866] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Microbiologically induced calcite precipitation (MICP) has shed new light on solving the problem of in situ stabilization of heavy metals (HMs) in sewage sludge before land disposal. In this study, we examined whether MICP treatment can be integrated into a sewage sludge anaerobic digestion-land application process. Our results showed that MICP treatment not only prevented the transfer of ionic-state Cd from the sludge to the supernatant (98.46 % immobilization efficiency) but also reduced the soluble exchangeable Pb and Cd fractions by up to 100 % and 48.54 % and increased the residual fractions by 22.54 % and 81.77 %, respectively. In addition, the analysis of the stability of HMs in MICP-treated sludge revealed maximum reductions of 100 % and 89.56 % for TCLP-extractable Pb and Cd, respectively. Three-dimensional fluorescence, scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy analyses confirmed the excellent performance of the ureolytic bacteria Sporosarcina ureilytica ML-2 in the sludge system. High-throughput sequencing showed that the relative abundance of Sporosarcina sp. reached 53.18 % in MICP-treated sludge, and the urease metabolism functional genes unit increased by a maximum of 239.3 %. The MICP technology may be a feasible method for permanently stabilizing HMs in sewage sludge before land disposal.
Collapse
Affiliation(s)
- Yong Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Zezhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yapeng Cheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xinru Jiang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| |
Collapse
|
48
|
He Z, Xu Y, Wang W, Yang X, Jin Z, Zhang D, Pan X. Synergistic mechanism and application of microbially induced carbonate precipitation (MICP) and inorganic additives for passivation of heavy metals in copper-nickel tailings. CHEMOSPHERE 2023; 311:136981. [PMID: 36283435 DOI: 10.1016/j.chemosphere.2022.136981] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Tailings are one of the largest quantities of hazardous waste in the world, and their treatment is difficult and expensive. In this work, a new, low-cost technique coupling microbially induced carbonate precipitation (MICP) and inorganic additives was proposed, optimized, and applied. The results showed that CaO was the best additive among the six tested, with an optimum dosage of 5%. A 90-day experiment indicated that the MICP-CaO coupled technique was highly effective for all the concerned heavy metals (Cu, Ni, Pb, and Cr) in the Cu-Ni tailings. During the stabilization period (20-90 days), the passivation rates were stable at 78.8 ± 2.9% (Cu), 78.1 ± 1.0% (Ni), 89.2 ± 1.0% (Pb), and 97.8 ± 0.5% (Cr), 2%-866% higher than the single technique of either MICP or CaO. Multiple analyses demonstrated that the synergistic effect of MICP and CaO produced a large amount of calcite (1.5% of the tailings). This calcite cemented the tailings particles, sequestrated heavy metal ions into the lattices, and played a key role in heavy metal passivation. Moreover, CaO and MICP improved the strength and compactness of solidified body, respectively. This work demonstrates the feasibility of the MICP-CaO coupled technique in tailings solidification, which can be applied in practical projects.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yiting Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Wenyi Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoliang Yang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Zhengzhong Jin
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
49
|
Zeng Y, Chen Z, Lyu Q, Wang X, Du Y, Huan C, Liu Y, Yan Z. Mechanism of microbiologically induced calcite precipitation for cadmium mineralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158465. [PMID: 36063935 DOI: 10.1016/j.scitotenv.2022.158465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Microbiologically induced calcite precipitation (MICP) technology shows potential for remediating heavy metal pollution; however, the underlying mechanism of heavy metal mineralization is not well-understood, limiting the application of this technology. In this study, we targeted Cd contamination (using 15:1, 25:1, and 50:1 Ca2+/Cd2+ molar ratios) and showed that the ureolytic bacteria Sporosarcina ureilytica ML-2 removed >99.7 % Cd2+ with a maximum fixation capacity of 75.61 mg-Cd/g-CaCO3 and maximum precipitation production capacity of 135.99 mg-CaCO3/mg-cells. Quantitative PCR analysis showed that Cd2+ inhibited the expression of urease genes (ureC, ureE, ureF, and ureG) by 70 % in the ML-2 strain. Additionally, the pseudo-first-order kinetics model (R2 = 0.9886), intraparticle diffusion model (R2 = 0.9972), and Temkin isotherm model (R2 = 0.9828) described the immobilization process of Cd2+ by bio calcite in MICP-Cd system. The three Cd2+ mineralization products generated by MICP were attributed to surface precipitation (Cd2+ → Cd(OH)2), direct binding with the CO32-/substitution calcium site of calcite (Cd2+ → CdCO3, otavite), and calcite lattice vacancy anchors (Cd2+ → (CaxCd1-x)CO3). Our findings improve the understanding of the mechanisms by which MICP can achieve in situ stabilization of heavy metals.
Collapse
Affiliation(s)
- Yong Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Zezhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xiuxiu Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yaling Du
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
50
|
Li Y, Su J, Ali A, Hao Z, Li M, Yang W, Wang Z. Simultaneous removal of nitrate and heavy metals in a biofilm reactor filled with modified biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158175. [PMID: 35995173 DOI: 10.1016/j.scitotenv.2022.158175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
A biofilm reactor filled with chia seeds gum modified biochar was set up for the simultaneous removal of nitrate, cadmium and zinc from calcium-containing wastewater via denitrification and microbially-induced (calcium) carbonate precipitation. The reactor performance was studied under different conditions of pH, Cd concentration, and hydraulic retention time. The optimal removal efficiency of the reactor for NO3--N, Ca2+, Cd2+, and Zn2+ were 99.98, 79.89, 100, and 99.84 %, respectively. 3D-EEM indicated the aromatic compounds confirming the stability of the reactor. FTIR illustrated the presence of -OH, CaCO3, C-O-C, and C-O-H indicating the precipitation and role of gum in MICP. SEM confirmed that the seed crystal induced the repeated crystallization of free metal ions. XRD showed that heavy metals were removed in the form of CaCO3, CdCO3, ZnCO3, Ca3(PO3)2, Cd3(PO3)2, and Zn3(PO3)2 co-crystallization. SEM-EDS showed the composition and distribution of elements. High-throughput sequencing showed that Curpriavidus sp. GMF1 and Ochrobactrum sp. GMC12 were the dominant bacterial species, with powerful denitrification and MICP mineralization capabilities.
Collapse
Affiliation(s)
- Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhenle Hao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|