1
|
Chen J, Kuang Y, Feng X, Mao C, Zhou S, Zhai W, Zheng J, Ouyang G. Spatial distribution of typical persistent organic pollutants in South China Sea by economical solid phase microextraction with hierarchical porous biochar. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138262. [PMID: 40228452 DOI: 10.1016/j.jhazmat.2025.138262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Rapid, accurate, and cost-effective determination of typical persistent organic pollutants in marine water provides crucial support for risk management and remediation. Herein, an activated Cucumis metuliferus biochar (ACMB) with large specific surface area, hierarchical structure, and large pore volume, was synthesized through a simple treatment process. Subsequently, it was fabricated as uniform solid-phase microextraction (SPME) fiber at a cost of less than 0.17 Renminbi (RMB) per fiber for the extraction of five polycyclic aromatic hydrocarbons (PAHs) and four organochlorine compounds (OCs) in marine water. The ACMB-coated fiber exhibited exceptional enrichment factors ranging from 1601 to 6732, and outperformed the commercial fibers in terms of stability, extraction performance, and production cost, verifying its outstanding practicability. By coupling it with gas chromatography-mass spectrometry (GC-MS), a highly automatic method was developed, exhibiting low detection limits (0.30-0.99 ng L-1), wide linear ranges (5-2000 ng L-1), and good reproducibility. It realized the highly efficient determinations of PAHs and OCs in marine water samples collected from South China Sea (n = 18), providing the spatial distribution of acenaphthene, fluorene, and anthracene in the marine environment.
Collapse
Affiliation(s)
- Jinglin Chen
- School of Chemical Engineering and Technology, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoying Feng
- School of Chemical Engineering and Technology, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Cheng Mao
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Weidong Zhai
- School of Chemical Engineering and Technology, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Juan Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Huang D, Zhang HY, Wang HJ, Huang HJ, Liu S, Qiu CY, Cheng CQ, Huang Y, Luo Z, Yang WD, Li HY, Zheng XF, Li DW. Physiological responses and adaptive mechanisms of the harmful algal bloom species Heterosigma akashiwo to naphthalene exposure. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137846. [PMID: 40056521 DOI: 10.1016/j.jhazmat.2025.137846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), especially naphthalene (Nap), pose a significant threat to coastal ecosystems and may contribute to the occurrence of harmful algal blooms (HABs). However, the response mechanisms of HAB species to PAH pollution remain unclear. This study investigated the physiological and molecular responses of the HAB species Heterosigma akashiwo to varying Nap concentrations. Low concentrations (1-10 μg/L) promoted growth, while high concentrations (20-1000 μg/L) inhibited growth, causing abnormal cell morphology and oxidative stress. Within 96 h, H. akashiwo removed 82.38 % (10 μg/L) and 88.93 % (100 μg/L) of Nap, mainly through biodegradation and intracellular accumulation. Transcriptomic analysis revealed that H. akashiwo employs a multifaceted adaptive strategy to cope with Nap stress. Key mechanisms include the upregulation of calcium signaling, transcription factors (e.g., zinc finger protein C2H2, myeloblastosis transcription factor, basic leucine zipper transcription factor), heat shock proteins (e.g., HSP40), and fatty acid desaturase (FAD), enhancing stress tolerance through detoxification, antioxidant responses, and membrane integrity. Activation of peroxisomal and oxidative phosphorylation genes indicates improved detoxification and energy metabolism. Differential expression of genes in the PI3K-Akt pathway reveals dose-dependent growth responses, with low concentrations promoting proliferation and high concentrations inhibiting growth. These findings offer insights into H. akashiwo's adaptive responses to Nap, aiding ecological risk assessment and bioremediation strategies for PAH pollution in marine environments.
Collapse
Affiliation(s)
- Dan Huang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China
| | - Hao-Yun Zhang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hua-Jun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China
| | - Hong-Jia Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuang Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chu-Yi Qiu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Cai-Qin Cheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yun Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhaohe Luo
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao-Fei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China.
| | - Da-Wei Li
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Vignesh ER, Gireeshkumar TR, Arya KS, Nair MM, Rakesh PS, Jayadev BS, Asma Shirin PP. Phthalic acid esters as an ecological hazard to the coral reef ecosystems: A case study from the coral reef waters of the Lakshadweep Archipelago, Arabian Sea. MARINE POLLUTION BULLETIN 2025; 215:117866. [PMID: 40157213 DOI: 10.1016/j.marpolbul.2025.117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Information regarding the sources, distribution and ecological implications of organic contaminants in the coral reef ecosystems is limited. Phthalic acid esters (PAEs) are toxic contaminants due to their endocrine-disrupting and carcinogenic properties. This study investigated the sources, distribution and ecological risk of PAEs (15 PAE congeners) in dissolved and particulate matter-bound forms present in the coral reefs of the Lakshadweep Archipelago. Samples (water and suspended particulate matter) collected from 24 stations of 4 coral islands (Perumal Par, Bangaram, Agatti and Kavaratti) during January and December 2022 were analysed for 15 PAE congeners. The concentration of PAEs was generally lower in coral reef waters than those reported worldwide. The dissolved PAEs (TDPAEs) ranged from 9.23 to 820.85 ng/L, and the particulate PAEs (TPPAEs) ranged from 642.90 to 28,315.45 ng/g. Principal component analysis (PCA) identified three major clusters: one cluster representing low molecular weight PAEs (cosmetic products), while the other two represented medium to high molecular weight PAEs (plastic products). The study region's risk quotient (RQ) values indicated a moderate to high ecological risk caused by di-isobutyl phthalate (DIBP) and di-n-butyl phthalate (DnBP) to crustaceans and fish and indirectly to human health. Therefore, this study strongly recommends regular, systematic monitoring and pollution assessment to avoid the environmental degradation of these fragile ecosystems. This baseline data on PAEs and their source apportionment can help develop mitigative measures for reducing organic contaminants in the coral reef environment.
Collapse
Affiliation(s)
- E R Vignesh
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India; Cochin University of Science and Technology, Kerala, India
| | - T R Gireeshkumar
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India.
| | - K S Arya
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India; Cochin University of Science and Technology, Kerala, India
| | - Midhun M Nair
- CSIR - National Institute of Oceanography, Regional Centre, Mumbai 400 053, India
| | - P S Rakesh
- CSIR - National Institute of Oceanography, Regional Centre, Mumbai 400 053, India
| | - B S Jayadev
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India
| | - P P Asma Shirin
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India
| |
Collapse
|
4
|
Ren B, Geng J, Qin D, Yang B, Wang P. Distribution of polycyclic aromatic hydrocarbons in key fishing ports of Hainan Island, China. MARINE POLLUTION BULLETIN 2025; 218:118162. [PMID: 40381446 DOI: 10.1016/j.marpolbul.2025.118162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
The widespread distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) pose significant environmental challenges for achieving sustainable development goals. Significant uncertainties exist in their emission sources driven by the complex social and economic activities. This study systematically quantified 16 priority PAHs in the aquatic environment of 10 key fishing ports around Hainan Island in China. The total PAH concentrations (∑16PAHs) were up to 3310 (mean: 569 ± 1050) ng L-1 in water and 3890 (mean: 1060 ± 1330) ng g-1 dry weight in sediment, respectively. A significant correlation was found between the concentrations of PAHs with fewer than 5 rings in water and dissolved oxygen. PAHs with 4 rings were predominant in all media, and they were used for source identification with diagnostic ratios. Results indicated small fishing boats as the primary emission source, and the emission pathways were delineated accordingly. The ecological risk assessment revealed that phenanthrene (Phe) and benzo[a]pyrene (BaP) posed potential chronic ecological risks, whereas anthracene (Ant) and pyrene (Pyr) presented potential acute ecological risks, varying by site. This study underscores the urgent need to ensure a balance between fishery activities and environmental sustainability.
Collapse
Affiliation(s)
- Bingnan Ren
- Zhai Mingguo Academician Workstation, School of Health Industry Management, University of Sanya, Hainan 572022, China
| | - Jing Geng
- Zhai Mingguo Academician Workstation, School of Health Industry Management, University of Sanya, Hainan 572022, China
| | - Dajun Qin
- Zhai Mingguo Academician Workstation, School of Health Industry Management, University of Sanya, Hainan 572022, China
| | - Bo Yang
- Zhai Mingguo Academician Workstation, School of Health Industry Management, University of Sanya, Hainan 572022, China
| | - Pei Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems and Fujian Institute for Sustainable Oceans, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Caliskan B, Celik S, Sakin AE, Tasdemir Y. Atmospheric polycyclic aromatic hydrocarbon concentrations in a semi-urban site: temporal variation, risk assessment, source identification, and estimation of levels in diverse environments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:683-697. [PMID: 39844591 DOI: 10.1093/etojnl/vgaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
This study evaluates atmospheric polycyclic aromatic hydrocarbon (PAH) concentrations in a semi-urban area, Görükle, Turkey, from June 2021 to February 2022. The average concentration of ∑16 PAHs was 24.85 ± 19.16 ng/m3, ranging from 6.70 to 59.11 ng/m3. Seasonal variations were observed, with winter concentrations approximately five times higher than those in summer, driven by increased residential heating emissions and adverse meteorological effects. The results were compared to literature values, revealing lower PAH levels than those found in other urban and industrial areas. Meteorological factors were statistically analyzed. Polycyclic aromatic hydrocarbon concentrations exhibited an inverse relationship with temperature and mixing height, while relative humidity showed a positive linear correlation. The study also estimated PAH concentrations in various environmental media using gas-particle partitioning and equilibrium models. The concentrations of PAHs in the particulate phase were minimal, suggesting that most PAHs were present in the gas phase. Additionally, the equilibrium concentrations of PAHs in soil, leaves, bark, and water were modeled, emphasizing the accumulation of heavier PAHs in these media yet 2- and 3-ring PAHs were predominant in the ambient air samples. Source apportionment and principal component analysis studies identified vehicle emissions and combustion for heating purposes as the primary sources of pollution. However, air mass trajectory analysis indicated contributions from Kocaeli, an area with significant industrial activity. The cancer risk assessment yielded low risks for both adults and children.
Collapse
Affiliation(s)
- Burak Caliskan
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, Nilüfer/Bursa, Turkey
| | - Semra Celik
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, Nilüfer/Bursa, Turkey
| | - Ahmet Egemen Sakin
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, Nilüfer/Bursa, Turkey
| | - Yücel Tasdemir
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, Nilüfer/Bursa, Turkey
| |
Collapse
|
6
|
Huang XL, Xu ZH, Qiu JB, Ou XL, Yu S, Zhang HY, Huang D, Wu SW, Huang YT, Zou LG, Yang WD, Li HY, Ou LJ, Li DW. Understanding the Molecular Mechanisms of Pyrene in Governing the Critical Metabolic Circuits of Alexandrium pacificum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1112-1120. [PMID: 39782680 DOI: 10.1021/acs.est.4c08647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Pyrene, a representative polycyclic aromatic hydrocarbon, frequently occurs in aquatic environments and is associated with lethal impacts on humans and wildlife. This study examined the impact of pyrene on Alexandrium pacificum, a dinoflagellate responsible for harmful algal blooms, and their capability to bioremove pyrene. In a 96 h exposure experiment, A. pacificum effectively reduced the pyrene concentration in seawater to 50, 100, and 200 μg/L, with a combined removal efficiency of 96% in seawater. Furthermore, the study noted a significant reduction in the synthesis of GTX4, GTX1, NEO, and GTX3 toxins in A. pacificum cells exposed to 50 and 200 μg/L of pyrene. Concurrently, exposure to pyrene resulted in marked declines in the growth and photosynthetic efficiency of A. pacificum. Proteomics analysis results showed an upregulation of proteins related to endocytosis, such as HSPA and Arf, while proteins associated with paralytic shellfish toxin (PST) synthesis, specifically SxtU and SxtH, showed a downregulation trend. In summary, the findings of this study preliminarily elucidate the molecular mechanisms underlying A. pacificum's response to pyrene, reveal the impact of pyrene on PST synthesis, and suggest that A. pacificum holds significant potential for pyrene biodegradation.
Collapse
Affiliation(s)
- Xue-Ling Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhen-Hao Xu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiang-Bing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao-Li Ou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuang Yu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hao-Yun Zhang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dan Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Si-Wei Wu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Gong Zou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lin-Jian Ou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Luo H, Yang Y, Shao Y, Schäffer A, Chen Z. Air-water exchange: Toxicities, risks and PAHs compounds in the three gorges reservoir of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177981. [PMID: 39657345 DOI: 10.1016/j.scitotenv.2024.177981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Air-water exchange is inevitably accompanied by the transportation of contaminants between atmosphere and water, which significantly leads to the alterations of toxicity and risks. However, the resulting changes of toxicity and risk in water and air due to the cross-interfacial transport of pollutants are still unclear. In this study, the water and atmospheric samples at the Pengxi River located in the Three Gorges Reservoir (TGR), China, were collected in winter and summer seasons respectively. The contaminated water exhibited higher toxicity effects than air in multiple toxicity endpoint tests. Besides, waters collected during winter exhibited greater toxicity effects than in summer. The concentrations of ΣPAHs were 48.0-445 ng L-1 in the water and 9.44-82.3 ng/m3 in the air, with ΣPAHs significantly higher in winter than in summer for water samples. Notably, the 2-3 ring PAHs showed a tendency to volatilize from water to air and may increase atmospheric toxicity, whereas the 4-6 ring PAHs tend to be deposited from air to water and may heighten toxicity in the water. Correlation analysis indicated that PAHs were important toxicants in the air, posing higher incremental carcinogenic risk, particularly during winter. Thus, the changes in toxicity and risk caused by the water-air exchange of pollutants cannot be ignored. This research contributes to a deeper understanding of the changes in toxicity effects and health risks caused by the air-water exchange of pollutants. The importance of considering the toxic effects and health concerns of micropollutants in the air as important as in water is emphasized.
Collapse
Affiliation(s)
- Hongyan Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China
| | - Yinjie Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China
| | - Andreas Schäffer
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China.
| |
Collapse
|
8
|
Coelho NDS, Menezes HC, Cardeal ZDL. Development of new PDMS in tube extraction microdevice for enhanced monitoring of polycyclic aromatic hydrocarbons and their derivatives in water. Talanta 2025; 281:126882. [PMID: 39298806 DOI: 10.1016/j.talanta.2024.126882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Contamination by polycyclic aromatic hydrocarbons (PAHs) is an urgent environmental concern, given its atmospheric dispersion and deposition in water bodies and soils. These compounds and their nitrated and oxygenated derivatives, which can exhibit high toxicities, are prioritized in environmental analysis contexts. Amid the demand for precise analytical techniques, comprehensive two-dimensional chromatography coupled with mass spectrometry (GCxGC/Q-TOFMS) has emerged as a promising tool, especially in the face of challenges like co-elution. This study introduces an innovation in the pre-concentration and detection of PAHs using an extraction fiber based on polydimethylsiloxane (PDMS), offering greater robustness and versatility. The proposed technique, termed in-tube extraction, was developed and optimized to effectively retain PAHs and their derivatives in aqueous media, followed by GCxGC/Q-TOFMS determination. Fiber characterization, using techniques such as TG, DTG, FTIR, and SEM, confirmed the hydrophobic compounds retention properties of the PDMS. The determination method was validated, pointing to a significant advancement in the detection and analysis of PAHs in the environment, and proved effective even for traces of these compounds. The results showed that the detection limits (LOD) and quantification limits (LOQ) ranged from 0.07 ng L-1 to 1.50 ng L-1 and 0.33 ng L-1 to 6.65 ng L-1, respectively; recovery ranged between 72 % and 117 %; and the precision intraday and interday ranged from 1 % to 20 %. The fibers were calibrated in the laboratory, with exposure times for analysis in the equilibrium region ranging from 3 to 10 days. The partition coefficients between PDMS and water were also evaluated, showing logarithm values ranging from 2.78 to 5.98. The fibers were applied to the analysis of real water samples, demonstrating high capacity. Additionally, given the growing demand for sustainable methods, the approach presented here incorporates green chemistry principles, providing an efficient and eco-friendly solution to the current chemical analysis scenario.
Collapse
Affiliation(s)
- Nathan de Souza Coelho
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil
| | - Helvécio Costa Menezes
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil
| | - Zenilda de Lourdes Cardeal
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
9
|
Wu J, Zhang Y, Zhang P, Sanganyado E, Wang Z, Ma S, Tian J, Zhang Y. The trophodynamics of polycyclic aromatic hydrocarbons in marine food webs: The importance of trophic level span from insights into Liaodong Bay (China). ENVIRONMENTAL RESEARCH 2024; 263:120202. [PMID: 39433239 DOI: 10.1016/j.envres.2024.120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024]
Abstract
The occurrence and trophic transfer of polycyclic aromatic hydrocarbons (PAHs) in aquatic ecosystems is vital to assess ecological risks. PAHs concentrations were analyzed in seawater, sediment, plankton, and marine species (15 fish species, 8 invertebrate species, 3 marine mammals), collected from Liaodong Bay (China). Bioaccumulation and biomagnification were calculated to demonstrate the biotransfer pattern of PAHs from the environmental matrix to high-level predators through the food web. Total PAHs concentrations ranged from 81.2 to 197.6 ng/L in seawater, 51.4-304.8 ng/g (dw) in sediment, and 65.3 to 28,885 ng/g (lw) in all biota samples. Three- and four-ring PAHs constituted major components (>81% in each case) of PAH congener profiles. Lower biota-sediment accumulation factors (BSAFs) and bioaccumulation factors (BAFs) values indicated limited bioaccumulation of PAHs within marine organisms. Also, 77% of biomagnification factors (BMFTL) values of PAHs in spotted seal and finless porpoise were >1, whereas opposite transfer patterns of PAHs were observed in food webs with trophic values of 1.5-3.5 and 3.0-4.0; that is, trophic dilution (trophic magnification factor (TMF) < 1) and trophic magnification (TMF >1), respectively. This study provides novel insights into the importance of TL span for trophodynamics of PAHs within food webs.
Collapse
Affiliation(s)
- Jinhao Wu
- Nanjing University of Information Science & Technology, Nanjing, 210044, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | | | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xian, 710021, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Zhaohui Wang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Shuhui Ma
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Jiashen Tian
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Yimin Zhang
- Nanjing University of Information Science & Technology, Nanjing, 210044, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China; Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
10
|
Shi Q, Qin H, Yang J, Huo X, Lu H, Lu S. Polycyclic aromatic hydrocarbons in fish from four lakes in central and eastern China: Bioaccumulation, pollution characteristics, sources, and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175530. [PMID: 39147041 DOI: 10.1016/j.scitotenv.2024.175530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly concerning environmental pollutants due to their toxicity, persistence, and bioaccumulation. In this paper, concentrations and compositions of 16 United States Environmental Protection Agency (USEPA) priority control PAHs in the fish collected from four lakes in central and eastern China were analyzed. 18 species of fish were collected from four typical lakes, namely Taihu Lake, Danjiangkou Reservoir, Yuncheng Salt Lake, and Nansi Lake. Quantitative analysis of PAHs were carried out with gas chromatograph/mass spectrometer, and 13 out of 16 PAHs were identified, with the main components being pyrene, chrysene, naphthalene, and benzo(b)fluoranthene. The accumulation of PAHs in fish from Taihu Lake, Danjiangkou Reservoir, Yuncheng Salt Lake, and Nansi Lake was 28.75-47.27, 26.60-31.93, 33.56-39.30, and 27.22-43.01 ng·g-1, respectively. The toxic equivalents of high-cyclic PAHs in fish of the four lakes were significantly higher than those of low-cyclic and middle-cyclic PAHs (P < 0.05). In Taihu Lake, Danjiangkou Reservoir, and Nansi Lake, the toxicity equivalents were predominantly contributed by benzo[a] pyrene (BaP), while in Yuncheng Salt Lake, dibenzo(a,h) anthracene (DahA) was the main contributor. The residents in central and eastern China exposed to PAHs had a negligible non-cancer risk (non-carcinogenic risk values <1) and a potential low cancer risk. It was noteworthy that the Pleuronichthys cornutus and Lateolabrax japonicus from Yuncheng Salt Lake could pose carcinogenic risks (>10-4) to humans, with benzo[b]fluoranthene (BbF) having the highest risk contribution rate. Source analysis indicated that the main source of PAHs in fish was combustion sources. BaP, DahA, and BbF could become potential pollutants of concern in the field of ecotoxicology. The results of this study on PAHs bioaccumulation, pollution characteristics, sources and health risks in fish from four lakes would provide a scientific basis for local governments to formulate targeted environmental management policies, pollution control measures, and public health strategies.
Collapse
Affiliation(s)
- Qiuyue Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Haijiao Qin
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiapeng Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaokang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongbin Lu
- State Key Laboratory of Coal Conversion, Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
11
|
Shi J, Liu M, Ye J, Chen F, Chen X, Lin Y, Ke H, Cai M. Dissolved PAHs in the Beibu Gulf and adjacent waters of the South China Sea: Physical and biochemical processes-driven distributional variations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117208. [PMID: 39423503 DOI: 10.1016/j.ecoenv.2024.117208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in semi-enclosed gulfs are influenced by physical and biochemical processes, which haven't been well understood. This study aims to investigate the spatial distribution and vertical profiles of dissolved PAHs in the Beibu Gulf (BG) and adjacent waters of the South China Sea, along with hydrological, meteorological, and biochemical variables. Particularly relevant are the effects of atmospheric pressure, salinity, ammonium, chlorophyll-a, as well as riverine inputs (RI), sea currents, and upwelling. In surface seawater, the total concentrations of eight dissolved PAHs (∑8PAHs) were 7.76 ± 2.16 ng/L, with a distribution pattern of western Guangdong waters (WGWs) > BG > Qiongzhou Strait (QS). ∑8PAHs in the northern BG (9.10 ± 2.00 ng/L) was significantly higher than that in the southern BG (6.65 ± 1.54 ng/L) (p < 0.01), suggesting that local anthropogenic activities and unique environmental characteristics significantly influenced PAHs distribution. In water column, PAHs in BG displayed enrichment in surface and bottom but decreased in medium water, while those in WGWs and QS decreased with increasing depth. Source apportionment concluded that PAHs in QS and WGWs were primarily from petroleum sources, and PAHs in BG were mainly from coal combustion. RI, combined with circulation, coastal current, and intrusion of SCS water influenced the surface PAHs distribution in BG, with eddy impacts observed. Specifically, regarding the surface PAHs distribution, differences in atmospheric pressure may influence the air-sea exchange of PAHs, especially positively affecting 4-ring PAHs. Salinity factors further corroborated the contribution of RI to 3-ring PAHs, followed by the regulation of PAHs through biological pumps (ammonia and chlorophyll-a). Moreover, upwelling-induced biodegradation and resuspension affected the vertical distribution of PAHs. While most PAHs posed a negligible risk, coking-generated fluorene posed a moderate risk to ecosystems due to changes in the energy structure, warranting further investigation into its toxicological impacts.
Collapse
Affiliation(s)
- Jingwen Shi
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jiandong Ye
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Fajin Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xuke Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yan Lin
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Hongwei Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Minggang Cai
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
12
|
Liu X, Hong X, Song H, Zhang T, Chen K, Chu J. Exploring source-specific ecological risks of PAHs near oil platforms in the Yellow River Estuary, Bohai Sea. MARINE POLLUTION BULLETIN 2024; 207:116870. [PMID: 39173476 DOI: 10.1016/j.marpolbul.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
The Yellow River Estuary (YRE) is one of highly remarkable regions profoundly impacted by human activities, with numerous oil platforms dispersed throughout. In this area, offshore oil exploitation may pose significant ecological risks. To comprehensively evaluate the quantitative impacts of oil field exploitation on the marine coastal ecosystem, this study investigated the occurrence, sources, and ecological risks associated with 16 polycyclic aromatic hydrocarbons (PAHs) in seawater and sediment near oil platforms in the YRE. We found that 1) The concentrations of PAHs decreased from the surface seawater to sediments; 2) The ecological risk level of PAHs in seawater exceeded that in sediments; 3) terrestrial sources (combustion), rather than offshore oil drilling activities, significantly influenced regional ecological risks through processes of atmospheric deposition and surface runoff. These findings provide essential data for future estuarine research efforts while supporting mitigation measures aimed at addressing marine environmental pollution related to oil production activities.
Collapse
Affiliation(s)
- Xin Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; First Institute of Oceanography, MNR, Qingdao 266061, PR China
| | - Xuguang Hong
- First Institute of Oceanography, MNR, Qingdao 266061, PR China
| | - Hongjun Song
- First Institute of Oceanography, MNR, Qingdao 266061, PR China
| | - Tong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; First Institute of Oceanography, MNR, Qingdao 266061, PR China
| | - Kan Chen
- First Institute of Oceanography, MNR, Qingdao 266061, PR China.
| | - Jiansong Chu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
13
|
Hemati S, Heidari M, Momenbeik F, Khodabakhshi A, Fadaei A, Farhadkhani M, Mohammadi-Moghadam F. Hair and urinary 2-hydroxynaphthalene levels in the people living in a region with frequent oil pipeline incidents in Iran: Health risk assessment. PLoS One 2024; 19:e0308310. [PMID: 39241098 PMCID: PMC11379380 DOI: 10.1371/journal.pone.0308310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/21/2024] [Indexed: 09/08/2024] Open
Abstract
Oil spills from pipeline accidents can have long-lasting health effects on residents of polluted regions. Assessing the potential health risk of these accidents is crucial for effective environmental health management. This study analyzed the concentration of 2-OHNAP in urine and hair as biomarkers of PAHs exposure among the people living in a region with frequent oil pipeline incident in Iran. Fifty pairs of hair and urine samples were collected from residents along with demographic information and dietary habits via a questionnaire. The concentration of 2-OHNAP was analyzed using high performance liquid chromatography coupled with fluorescence detector (HPLC-FLD). 2-OHNAP was detected in 100% of urine and 88% of hair samples. The mean concentration of 2-OHNAP in urine was 16.65 ± 21.98 μg/g creatinine and in hair was 8.16±7.62 ng/g dry weight (dw). However, there was no significant correlations between the levels of 2-OHNAP in urine and hair. The mean values of HQ and CR were below 1 and 10-6, respectively. Moreover, some simulated health risk indices were near the threshold levels, and the carcinogenic risk above 70% of the simulated CRs was above 10-6 as well. Therefore, the health risk attributed to the exposure to the parent compound of 2-OHNAP in the study area is currently acceptable, but it is not negligible and may be worsened in the future. This study provides a valuable scientific information for regional decision makers and stakeholders about human health programs and identification of environmental health priorities.
Collapse
Affiliation(s)
- Sara Hemati
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohsen Heidari
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Abbas Khodabakhshi
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abdolmajid Fadaei
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Marzieh Farhadkhani
- Assistant Professor of Environmental Health, Educational Development Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fazel Mohammadi-Moghadam
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
14
|
Wang F, Zhao D, Lu P, Zhang D, Guo Z, Rose NL, Zhang G. Air-plant interaction and air-soil exchange of polycyclic aromatic hydrocarbons in a large human-influenced reservoir in southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124216. [PMID: 38797350 DOI: 10.1016/j.envpol.2024.124216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The Three Gorges Reservoir (TGR) is totally manmade, strongly influenced by anthropogenic activity, and lies on the upper reaches of Yangtze River. The periodic storage and discharge of water from the Three Gorges Dam could have altered the original air-plant/soil interactions of contaminants in TGR. Herein, paired atmospheric gas-particle, air-plant, and air-soil samples were collected to investigate the air-plant interaction and air-soil exchange of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs). The air-plant interaction based on McLachlan's framework to our datasets suggests that PAHs were absorbed via gaseous deposition that was restricted by the plant-gas dynamic equilibrium. The equilibrium indicates a dynamic balance between the gaseous phase and plant surface in PAH absorption. The main limiting factor influencing the PAH uptake was the plant species rather than the atmospheric PAH concentration. The air-soil exchange of PAHs exhibited a net volatilization flux of 16.71 ng/m2/d from the soil to the air based on annual average. There was more volatilization and less deposition in summer and more deposition and less volatilization in autumn and winter. The soil serves as a secondary source of atmospheric PAHs. As the first attempt on probing the multi-interface geochemical process of PAHs, this study highlights the influence of manual water level manipulation from the TGD and environmental factors (such as temperature, humidity, and soil properties) on the regional fate of PAHs in the TGR.
Collapse
Affiliation(s)
- Fengwen Wang
- Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China; Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, 401120, China.
| | - Daiyin Zhao
- Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Peili Lu
- Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Daijun Zhang
- Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Zhigang Guo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Institute of Atmospheric Sciences, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Neil L Rose
- Environmental Change Research Centre, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
15
|
Qiu YW, Li J, Zhao MX, Yu KF, Zhang G. The emerging and legacy persistent organic contaminants in corals of the South China Sea. CHEMOSPHERE 2024; 359:142324. [PMID: 38740339 DOI: 10.1016/j.chemosphere.2024.142324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Seawater warming, ocean acidification and chemical pollution are the main threats to coral growth and even survival. The legacy persistent organic contaminants (POCs), such as polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), and the emerging contaminants, including polybrominated diphenyl ethers (PBDEs), dechlorane plus (DPs) and novel brominated flame retardants (NBFRs) were studied in corals from Luhuitou fringing reef in Sanya Bay and Yongle atoll in Xisha Islands, the South China Sea (SCS). Total average concentrations of ∑16PAHs, ∑23OCPs, ∑34PCBs, ∑8PBDEs, ∑2DPs and ∑5NBFRs in 20 coral species (43 samples) from the SCS were 40.7 ± 34.6, 5.20 ± 5.10, 0.197 ± 0.159, 3.30 ± 3.70, 0.041 ± 0.042 and 36.4 ± 112 ng g-1 dw, respectively. PAHs and NBFRs were the most abundant compounds and they are likely to be dangerous pollutants for future coral growth. Compared to those found in other coral reef regions, these pollutants concentrations in corals were at low to median levels. Except for PBDEs, POCs in massive Porites were significantly higher than those in branch Acropora and Pocillopora (p < 0.01), as large, closely packed corals may be beneficial for retaining more pollutant. The current study contributes valuable data on POCs, particularly for halogenated flame retardants (HFRs, including PBDEs, DPs and NBFRs), in corals from the SCS, and will improve our knowledge of the occurrence and fate of these pollutants in coral reef ecosystems.
Collapse
Affiliation(s)
- Yao-Wen Qiu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Mei-Xia Zhao
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ke-Fu Yu
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
16
|
Cao X, Wang L, Lin J, Wu G, Tang K, Tang J, Yan Z, An M, Liu Z, Zhou Z. Differential bioaccumulation and tolerances of massive and branching scleractinian corals to polycyclic aromatic hydrocarbons in situ. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172920. [PMID: 38701933 DOI: 10.1016/j.scitotenv.2024.172920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Scleractinian corals are capable of accumulating polycyclic aromatic hydrocarbons (PAHs) in reef environments; however, the mechanism behind their PAHs tolerance is unknown. This study investigated the occurrence and bioaccumulation of PAHs in coral reef ecosystems and examined the physiological responses induced by PAHs in coral hosts and their algal symbionts, the massive coral Galaxea fascicularis and branching coral Pocillopora damicornis. G. fascicularis had a higher PAHs accumulation capacity than P. damicornis. Both the coral hosts and algal symbionts preferentially accumulated acenaphthene, dibenzo(a,h)anthracene, and benzo(a)pyrene. The accumulated PAHs by G. fascicularis and P. damicornis hosts was accompanied by a reduction in detoxification ability. The accumulated PAHs could induce oxidative stress in P. damicorni hosts, thus G. fascicularis demonstrated a greater tolerance to PAHs compared to P. damicornis. Meanwhile, their algal symbionts had fewer physiological responses to accumulated PAHs than the coral hosts. Negative effects were not observed with benzo(a)pyrene. Taken together, these results suggest massive and branching scleractinian corals have different PAHs bioaccumulation and tolerance mechanisms, and indicate that long-term PAHs pollution could cause significant alterations of community structures in coral reef ecosystems.
Collapse
Affiliation(s)
- Xiaocong Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Hainan Research Academy of Environmental Sciences, Haikou 571127, China
| | - Licheng Wang
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China
| | - Jiamin Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Guowen Wu
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China
| | - Kai Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhicong Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Mingxun An
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhaoqun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| |
Collapse
|
17
|
Xue C, Du Y, Allinson G, Zeng X, Li X, Fang H. Metals and polycyclic aromatic hydrocarbons pollutants in industrial parks under valley landforms in Tibetan Plateau: Spatial pattern, ecological risk and interaction with soil microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134411. [PMID: 38677117 DOI: 10.1016/j.jhazmat.2024.134411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/13/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
The spatial patterns of pollutants produced by industrial parks are affected by many factors, but the interactions among polycyclic aromatic hydrocarbons (PAHs), metals, and soil microorganisms in the valley landforms of the Tibetan Plateau are poorly understood. Thus, this study systematically investigated the distribution and pollution of metals and PAHs in soil around an industrial park in the typical valley landform of the Tibetan Plateau and analyzed and clarified the interaction among metals, PAHs, and microorganisms. The results were as follows: metal and PAH concentrations were affected by wind direction, especially WN-ES and S-N winds; Cd (2.86-54.64 mg·kg-1) had the highest soil concentrations of the metals screened, followed by variable concentrations of Cu, Pb, and Zn; the pollution levels of metals and PAHs in the S-N wind direction were lower than those in the WN-ES wind direction; the Cd content of Avena sativa in the agricultural soil around the factory exceeded its enrichment ability and food safety standards; the closer to the center of the park, the higher the ecological risk of PAHs; and the TEQ and MEQ values of the PAHs were consistent with their concentration distributions. The results of the soil microbial diversity and co-occurrence network in the dominant wind direction showed that metal and PAH pollution weakened the robustness of soil microbial communities. Additionally, the diversity and robustness of soil microbial communities at the S wind site were higher than those at the ES wind site, which might be attributed to the lower metal content of the former than the latter, which plays a negative role in the biodegradation of PAHs. The results of this study provide insights into the site selection, pollutant supervision, and environmental remediation of industrial parks in typical landforms.
Collapse
Affiliation(s)
- Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Du
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Huajun Fang
- Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Rabieian M, Taghavijeloudar M. Simultaneously removal of PAHs from contaminated soil and effluent by integrating soil washing and advanced oxidation processes in a continuous system: Water saving, optimization and scale up modeling. WATER RESEARCH 2024; 256:121563. [PMID: 38581984 DOI: 10.1016/j.watres.2024.121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Every year a large amount of clean water turns into contaminated effluent by soil washing (SW) process. The release of this effluent has become a growing environmental threat. In this study, a sustainable approach was developed for effective removal of PAHs from contaminated soil and the effluent by integrating SW and advanced oxidation processes (AOPs) in a continuous system. In the constructed continuous system, first small amount of clean water passed through the contaminated soil to remove PAHs. Then, the polluted effluent was treated by a quick AOPs and recycled for SW processes again and again until a complete removal of PHE be achieved. The performance of the continuous system was optimized and compared with batch system (no circulation) at lab scale. In addition, a scale up modeling was developed to predict the performance of continuous system at large scale. According to the results, under the optimum conditions: Tween 80 (TW80) = 6 g/L, ultrasonic = 160 kW, UV = 30 W, O3 = 5 g/h and TiO2 = 2 g/m2, the final PHE degradation efficiency of 98 % and 94 % were achieved by the continuous and batch systems after 130 and 185 min, respectively. The continuous system used 5 times less water volume than the batch system but resulted in better PAHs degradation. The scale up modeling revealed at large scale (100 kg soil), the continuous system could decrease the energy consumption and the required washing solution (water + TW80) up to 50 % and 80 %, respectively in comparison to the batch system. This work suggests a promising and practical approach for contaminated soil remediation without producing polluted water.
Collapse
Affiliation(s)
- Masoud Rabieian
- Department of Civil and Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313, Babol, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744, Seoul, South Korea.
| |
Collapse
|
19
|
Świsłowski P, Wacławek S, Antos V, Zinicovscaia I, Rajfur M, Wacławek M. One year of active moss biomonitoring in the identification of PAHs in an urbanized area-prospects and implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38416-38427. [PMID: 38802616 PMCID: PMC11189310 DOI: 10.1007/s11356-024-33831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Classical monitoring of air pollution provides information on environmental quality but involves high costs. An alternative to this method is the use of bioindicators. The purpose of our work was to evaluate atmospheric aerosol pollution by selected polycyclic aromatic hydrocarbons conducted as part of annual active biomonitoring ("moss-bag" technique) with the use of three moss species: Pleurozium schreberi, Sphagnum fallax, and Dicranum polysetum. The gas chromatography-mass spectrometry (GC-MS) was utilized to determine certain 13 polycyclic aromatic hydrocarbons (PAHs). Three seasonal variations in PAH concentrations have been observed as a result of the study. A fire on the toilet paper plant caused an increase of five new compounds: benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), indeno(1.2.3)-cd_pyrene (IP), dibenzo(a.h)anthracene (Dah), and benzo(g.h.i)perylene (Bghi) in proximity after 8 months of exposure compared to previous months. The effect of meteorological conditions on the deposition of PAHs (mainly wind direction) in mosses was confirmed by principal component analysis (PCA). Dicranum polysetum moss accumulated on average 26.5% more PAHs than the other species, which allows considering its broader use in active biomonitoring. The "moss-bag" technique demonstrates its feasibility in assessing the source of PAH air pollution in a long-term study. It is recommended to use this biological method as a valuable tool in air quality monitoring.
Collapse
Affiliation(s)
- Paweł Świsłowski
- Institute of Biology, University of Opole, Kominka 6, 6a, 45-032, Opole, Poland.
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec, Czech Republic
| | - Vojtěch Antos
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec, Czech Republic
| | - Inga Zinicovscaia
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Bucharest Magurele, 30 Reactorului Str. MG-6, Bucharest, Romania
- The Institute of Chemistry, Moldova State University, 3 Academiei Str., 2028, Chisinau, Moldova
| | - Małgorzata Rajfur
- Institute of Biology, University of Opole, Kominka 6, 6a, 45-032, Opole, Poland
| | - Maria Wacławek
- Society of Ecological Chemistry and Engineering, Zawiszaków 3/103, 45-288, Opole, Poland
| |
Collapse
|
20
|
Li D, Zhu Z, Cao X, Yang T, An S. Ecological risk of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in the sediment of a protected karst plateau lake (Caohai) wetland in China. MARINE POLLUTION BULLETIN 2024; 201:116199. [PMID: 38422826 DOI: 10.1016/j.marpolbul.2024.116199] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Understanding PAH and OCP distributions and sources in lakes is necessary for developing pollutant control policies. Here, we assessed the occurrence, risk, and sources of PAHs and OCPs in the sediment of Caohai Lake. The PAHs were predominantly high-molecular-weight compounds (mean 57.5 %), and the diagnostic ratios revealed that coal, biomass burning, and traffic were the sources of PAHs. HCHs (6.53 ± 7.22 ng g-1) and DDTs (10.86 ± 12.16 ng g-1) were the dominant OCPs and were primarily sourced from fresh exogenous inputs. RDA showed that sediment properties explained 74.12 % and 65.44 % of the variation in PAH and OCP concentrations, respectively. Incremental lifetime cancer risk (ILCR) assessment indicated that hazardous PAHs in Caohai Lake sediment posed moderate risks to children and adults (ILCR>1.0 × 10-4), while the risk from OCPs was low; however, the recent influx of HCHs and DDTs requires additional attention.
Collapse
Affiliation(s)
- Dianpeng Li
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China
| | - Zhengjie Zhu
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China
| | - Xuecheng Cao
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China
| | - Tangwu Yang
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China
| | - Shuqing An
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China.
| |
Collapse
|
21
|
Vignesh ER, Gireeshkumar TR, Arya KS, Nair MM, Rakesh PS, Jayadev BS, Asma Shirin PP. Occurrence, sources and risk assessment of polycyclic aromatic hydrocarbons in the coral reef waters of the Lakshadweep Archipelago, Arabian Sea. MARINE POLLUTION BULLETIN 2024; 200:116123. [PMID: 38330814 DOI: 10.1016/j.marpolbul.2024.116123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The compound effects of anthropogenic disturbances on global and local scales threaten coral reef ecosystems of the Arabian Sea. The impacts of organic pollutants on the coral reefs and associated organisms have received less attention and are consequently less understood. This study examines the background levels, sources, and ecological implications of polycyclic aromatic hydrocarbons (PAHs) in the coral reef ecosystems of Lakshadweep Archipelago. Water and particulate matter were collected from four coral Islands (Kavaratti, Agatti, Bangaram and Perumal Par) of Lakshadweep Archipelago during January and December 2022 and analysed for 15 PAHs priority pollutants. The 15 PAHs congeners generally ranged from 2.77 to 250.47 ng/L in the dissolved form and 0.44 to 6469.86 ng/g in the particulate form. A comparison of available data among the coral reef ecosystems worldwide revealed relatively lower PAHs concentrations in the Lakshadweep coral ecosystems. The isomeric ratios of individual PAH congeners and principal component analysis (PCA) indicate mixed sources of PAHs in the water column derived from pyrogenic, low-temperature combustion and petrogenic. The risk quotient (RQ) values in the dissolved form indicate moderate risk to the aquatic organisms, while they indicate moderate to severe risk in the particulate form.
Collapse
Affiliation(s)
- E R Vignesh
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India; Cochin University of Science and Technology, Kerala, India
| | - T R Gireeshkumar
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India.
| | - K S Arya
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India; Cochin University of Science and Technology, Kerala, India
| | - Midhun M Nair
- CSIR - National Institute of Oceanography, Regional Centre, Mumbai 400 053, India
| | - P S Rakesh
- CSIR - National Institute of Oceanography, Regional Centre, Mumbai 400 053, India
| | - B S Jayadev
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India
| | - P P Asma Shirin
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India
| |
Collapse
|
22
|
Xie T, Wang M, Jiang R, Li L, Chen X, Sarvajayakesavalu S, Chen W. Comparative study on anthropogenic impacts on soil PAHs: Accumulation and source apportionment in tourist and industrial cities in Hebei Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168435. [PMID: 38030005 DOI: 10.1016/j.scitotenv.2023.168435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic contaminants in urban soils. The accumulation and source identifications of PAHs within a city have been frequently studied. However, impacts of urbanization development modes on PAHs accumulation patterns by taking a city as a whole have been seldom reported. Four cities with two development modes in Hebei province, Chengde and Zhangjiakou (tourist cities) and Handan and Tangshan (industrial cities), were selected. The concentrations of 16 priority PAHs in soils in the study areas were investigated. The results showed that the average concentrations of Σ16PAHs in Handan (2517 μg/kg) and Tangshan (2256 μg/kg) were more than twice of those in Chengde (696 μg/kg) and Zhangjiakou (926 μg/kg) approximately. Lines of evidence, provided by a combination of diagnostic ratios, pairwise correlation, and PMF methods, revealed that the dominant sources of PAHs in either city were industrial emission, vehicle emission, and petrogenic/biogenic process but with different proportions. Linear fittings based on Bayesian kernel machine regression analysis (BKMR) were constructed to illustrate the impact of industrialization on PAHs accumulation. The probability of excessing the 10 % (376 μg/kg) and 50 % (1138 μg/kg) of current ∑16PAHs would be higher than 90 % given the gross industrial production per unit area >5.00 × 106 and 20.5 × 106 CNY/km2, respectively. The proposed threshold values of industrialization are of significance for determining industrial structure and proportion in urban management.
Collapse
Affiliation(s)
- Tian Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Rong Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suriyanarayanan Sarvajayakesavalu
- Vinayaka Missions Kirubananda Variyar Arts and Science College, Vinayaka Missions Research Foundation (Deemed to be University), Salem 636308, Tamilnadu, India
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Liu J, Zhang A, Yang Z, Wei C, Yang L, Liu Y. Distribution characteristics, source analysis and risk assessment of polycyclic aromatic hydrocarbons in sediments of Kuye River: a river in a typical energy and chemical industry zone. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:89. [PMID: 38367204 DOI: 10.1007/s10653-023-01802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/08/2023] [Indexed: 02/19/2024]
Abstract
This study systematically analyzed the distribution characteristics, sources, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in Kuye River sediments, located in an energy and chemical industry base in northern Shaanxi, China. The results that revealed the concentrations of 16 PAHs in the sediment ranged from 1090.04 to 32,175.68 ng∙g-1 dw, with the four-ring PAHs accounting for the highest proportion. Positive matrix factorization analysis (PMF) revealed the main sources of PAHs as incomplete fossil fuel combustion, biomass combustion, and traffic emissions. The total toxic equivalent concentration of BaP, risk quotient, and lifetime carcinogenic risk of PAHs suggested moderate to high contamination of PAHs in the area. The higher incremental lifetime carcinogenic risk (ILCR) indicated that PAH ingestion was the primary route of impact on public health, with children potentially being more susceptible to PAH exposure. This study can provide valuable theoretical support for implementing pollution prevention measures and ecological restoration strategies for rivers in energy and chemical industry areas.
Collapse
Affiliation(s)
- Jinhui Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China.
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhuangzhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chunxiao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
24
|
Han M, Yu K, Zhang R, Chen B, Li H, Zhang ZE, Li J, Zhang G. Sources of the Elevating Polycyclic Aromatic Hydrocarbon Pollution in the Western South China Sea and Its Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20750-20760. [PMID: 37909879 DOI: 10.1021/acs.est.3c03452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The environmental implications of polycyclic aromatic hydrocarbons (PAHs) caused by the vigorous development of offshore oil exploitation and shipping on the marine ecosystem are unclear. In this study, the PAH concentrations were systematically characterized in multiple environmental media (i.e., atmosphere, rainwater, seawater, and deep-sea sediments) in the western South China Sea (WSCS) for the first time to determine whether PAH pollution increased. The average ∑15PAHs (total concentration of 15 US EPA priority controlled PAHs excluding naphthalene) in the water of WSCS has increased and is higher than the majority of the oceans worldwide due to the synergistic influence of offshore oil extraction, shipping, and river input. The systematic model comparison confirms that the Ksoot-air model can more accurately reflect the gas-particle partitioning of PAHs in the atmosphere of the WSCS. We also found that the vertical migration of the elevating PAHs is accelerated by particulate matter, driving the migration of atmospheric PAHs to the ocean through dry and wet deposition, with 16% being contributed by the particle phase. The particulate matter sinking alters the PAH distribution in the water column and generates variation in source apportionment, while the contribution of PAHs loaded on them (>20%) to the total PAH reserves cannot be ignored as before. Hence, the ecological threat of PAHs increases by the oil drilling and shipping industry, and the driving force of particulate matter deserves continuous attention.
Collapse
Affiliation(s)
- Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Haolan Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zheng-En Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
25
|
Sun N, Yang AP, Wang SM, Zhu GL, Liu J, Wang TY, Wang ZJ, Qi BW, Liu XY, Lv SX, Li MH, Fu Q. Mechanism of synergistic remediation of soil phenanthrene contamination in paddy fields by rice-crab coculture and bioaugmentation with Pseudomonas sp. ENVIRONMENT INTERNATIONAL 2023; 182:108315. [PMID: 37963424 DOI: 10.1016/j.envint.2023.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/30/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent and harmful pollutants with high priority concern in agricultural fields. This work constructed a rice-crab coculture and bioaugmentation (RCM) system to remediate phenanthrene (a model PAH) contamination in rice fields. The results showed that RCM had a higher remediation performance of phenanthrene in rice paddy compared with rice cultivation alone, microbial addition alone, and crab-rice coculture, reaching a remediation efficiency of 88.92 % in 42 d. The concentration of phenanthrene in the rice plants decreased to 6.58 mg/kg, and its bioconcentration effect was efficiently inhibited in the RCM system. In addition, some low molecular weight organic acids of rice root increased by 12.87 %∼73.87 %, and some amino acids increased by 140 %∼1150 % in RCM. Bioturbation of crabs improves soil aeration structure and microbial migration, and adding Pseudomonas promoted the proliferation of some plant growth-promoting rhizobacteria (PGPRs), which facilitated the degradation of phenanthrene. This coupling rice-crab coculture with bioaugmentation had favorable effects on soil enzyme activity, microbial community structure, and PAH degradation genes in paddy fields, enhancing the removal of and resistance to PAH contamination in paddy fields and providing new strategies for achieving a balance between production and remediation in contaminated paddy fields.
Collapse
Affiliation(s)
- Nan Sun
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Efficient Use of Agricultural Water Resources, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Northeast Agricultural University, Harbin 150030, China; Northeast Agricultural University/Heilongjiang Academy of Environmental Science Joint Postdoctoral Mobile Station, Harbin 150030, China
| | - An-Pei Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Si-Ming Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Guang-Lei Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Jin Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Tian-Yi Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Zi-Jian Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Bo-Wei Qi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Ying Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Shao-Xuan Lv
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Ming-Hang Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
26
|
Li B, Zhao L, Zhong S, An R, Ma R, Xu X, Chen Q. Occurrence, distribution and risk assessment of polycyclic aromatic hydrocarbons in soils around main water source areas of Beijing, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7569-7584. [PMID: 37391576 DOI: 10.1007/s10653-023-01673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in urban environments have been globally concerned due to their significant health impacts on residents. However, little is known about potential risks of PAHs from centralized water source areas. In the present study, 326 soils samples from the main water source areas of Beijing were collected and the occurrence, source appointment, and risks of PAHs were systematically investigated based on the monitoring results from high-performance liquid chromatography (HPLC). The total PAHs (∑16 PAHs) concentrations ranged from 5.70 to 1512 ng/g with median value of 44.2 ng/g, in which 4-ring and 5-ring groups were the major components. PAHs concentrations in the cultivated land were significantly higher than other areas, which could reflect significant impact of soil organic matter and total nitrogen contents on the spatial variations of PAHs. Further source identifications through positive matrix factorization model (PMF) revealed that biomass (22.5%), coal (21.4%), gasoline (17.6%) and diesel (16.4%) combustion were dominant sources of soil PAHs in the study area. Moreover, the risk assessment indicated that total ecological and health risk of PAHs were negligible, but individual PAH, including pyrene and benzo(b)fluoranthene, should be concerned due to their potential risks in several monitored stations located in the secondary protection area of four reservoirs. Our study provided new insights into environmental risks of soils in main water source areas from PAHs and could be helpful for organic micropollutant controlling and drinking water safety in rapidly urbanizing cities.
Collapse
Affiliation(s)
- Bin Li
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China
| | - Liang Zhao
- Beijing Water Authority, Beijing, 100036, People's Republic of China
| | - Sining Zhong
- Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Rui An
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China
| | - Ruoqi Ma
- General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing, 100120, People's Republic of China
| | - Xuming Xu
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China
| | - Qian Chen
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China.
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China.
| |
Collapse
|
27
|
Lin K, Wang R, Tan L, Jiang S, Xu H, Cao Y, Wang J. Assessing the potential risks, sources and the relationship between the dissolved and particulate polycyclic aromatic hydrocarbons (PAHs) in the typical semi-enclosed bay, Bohai Bay of China. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106192. [PMID: 37783158 DOI: 10.1016/j.marenvres.2023.106192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
This study aimed to investigate the spatial and temporal distribution as well as the partitioning behavior of dissolved and particulate polycyclic aromatic hydrocarbons (PAHs) during the summer and autumn seasons of 2020. It was found that the average concentration of PAHs in surface seawater was significantly higher in autumn (58.16 ng L-1) than in summer (40.47 ng L-1) due to a large amount of input in autumn and more photodegradation and biodegradation affected by higher temperatures in summer. The spatial distribution indicated that the river had a significant dilution effect on PAHs in summer and became a significant input source in autumn. In addition, a large number of oil and gas development platforms were distributed throughout the Bohai Bay, and the discharge of production and domestic sewage contributed to the PAHs pollution level. As a semi-enclosed bay, the water exchange capacity of Bohai Bay was poor, leading to a greater accumulation of PAHs in the marine environment. The diagnostic ratios and PCA-MLR indicated that petroleum was the most important source of PAHs with a contribution of 45%, followed by fuel combustion (39%) such as coal and oil. Photooxidation in seawater resulted in a reduction of BaP/BeP, indicating that seasonal variations in photooxidation had a significant impact on the composition of PAHs (summer: 1.49, autumn: 2.96). The concentration of particulate PAHs was correlated with the concentration of dissolved PAHs and SPM, and the proportion of 3-rings (43.8%) and 4-rings (49.8%) PAHs was significantly higher on SPM. The distribution coefficients Log Kd and φspm-water showed a trend of increasing and then decreasing as the number of rings increased, with the 4-rings Pyr exhibiting the highest value. According to the ecological risk assessment, the ecological risk of total PAHs was low (RQNCs < 800, RQMECs < 1), but the ecological risk of individual PAHs and the carcinogenicity of high-ring PAHs could not be ignored (>96.5%). This study is significant for investigating the "sources and sinks" of PAHs in the complex marine environment by analyzing the partitioning behavior of PAHs in different phases.
Collapse
Affiliation(s)
- Kun Lin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Rui Wang
- Shenzhen Academy of Environmental Sciences, Shenzhen, 518000, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Shan Jiang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Hongyan Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yali Cao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
28
|
Xie S, Jiang W, Feng C, Sun Y, Han Y, Xiao Y, Wei C, Yu K. Coral skeletons reveal the impacts of oil pollution on seawater chemistry in the northern South China Sea. CHEMOSPHERE 2023; 338:139632. [PMID: 37487981 DOI: 10.1016/j.chemosphere.2023.139632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023]
Abstract
Oil pollution can release trace metals (TMs) with cumulative toxicity into seawater, harming marine ecosystems in the long term. However, the lack of studies has inhibited our understanding of the effects and mechanisms of oil pollution on TMs in seawater. Hence, we investigated the 10-year monthly variation of TMs in Porites coral skeletons from the northern South China Sea (SCS), complemented by spatial distribution of TMs in seawater, sediments and characterization of TMs in fuel oil. The results of principal component-multivariate linear regression showed that the total contribution of oil pollution as a source to TMs in surface seawater was 77.2%, where the residence time of TMs (Ni, V, Cr, Co, Cu, Mn, Fe, and Mo) released from oil spills in surface seawater was approximately 1.4 months. Due to the geochemical nature of the metals, their seasonal variations are controlled by tropical cyclones (Ni, V, Cr, Co, Cu, Mn, Fe, and Mo), winter monsoons (Pb, Cd, Ba, and Zn) and sea surface temperature (Sr). This study shows that coral skeletons can be used as a new tool to study marine oil pollution. This provides valuable reference data for accurately identifying and quantifying the effects of oil pollution on TMs in seawater from a spatial and temporal perspective.
Collapse
Affiliation(s)
- Sirong Xie
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Wei Jiang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Chunmei Feng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yinan Sun
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yansong Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yuwen Xiao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Chaoshuai Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| |
Collapse
|
29
|
Cheng J, Wang Y, Li Y, Kong L, Wang X, Han J. A Multiphase Coupled Hydrodynamic Model for Fate and Transport Simulation of Polycyclic Aromatic Hydrocarbons in a Semi-Closed Narrow Bay. TOXICS 2023; 11:634. [PMID: 37505599 PMCID: PMC10384533 DOI: 10.3390/toxics11070634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
With their unique geographical characteristics, semi-closed narrow bays are important places for human survival but vulnerable to pollution. Because pollutants (polycyclic aromatic hydrocarbons, PAHs) migrate and undergo transformation through a dynamic mechanism in bays of this type, environmental authorities have formulated a series of effective measures for pollution prevention and control, but these are difficult to realize. Based on monitoring and historical data, a multiphase-coupled hydrodynamic model combined with a carcinogenic risk-assessment model was able to solve the challenging environmental problem. Results showed that the hydrodynamic condition in the semi-closed narrow bay was very complex. A weaker hydrodynamic force had an adverse influence on the diffusion of pollutants, further amplified in part by the head of the semi-closed narrow bay, resulting in a higher ecological risk. The prediction results indicated that the total amount of PAHs transported from seawater to sediments was about 4.7 × 1013 ng/year, which might cause serious threats to aquaculture or human health.
Collapse
Affiliation(s)
- Jiayi Cheng
- National Marine Environmental Monitoring Center 1, No. 42 Linghe Str., Shahekou District, Dalian 116023, China
| | - Ying Wang
- National Marine Environmental Monitoring Center 1, No. 42 Linghe Str., Shahekou District, Dalian 116023, China
| | - Yuxia Li
- National Marine Environmental Monitoring Center 1, No. 42 Linghe Str., Shahekou District, Dalian 116023, China
| | - Lingna Kong
- National Marine Environmental Monitoring Center 1, No. 42 Linghe Str., Shahekou District, Dalian 116023, China
| | - Xiaomeng Wang
- National Marine Environmental Monitoring Center 1, No. 42 Linghe Str., Shahekou District, Dalian 116023, China
| | - Jianbo Han
- National Marine Environmental Monitoring Center 1, No. 42 Linghe Str., Shahekou District, Dalian 116023, China
| |
Collapse
|
30
|
Menezes N, Cruz I, da Rocha GO, de Andrade JB, Leão ZMAN. Polycyclic aromatic hydrocarbons in coral reefs with a focus on Scleractinian corals: A systematic overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162868. [PMID: 36934938 DOI: 10.1016/j.scitotenv.2023.162868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
The impact of petroleum exploitation and oil spills in marine ecosystems has increased over time. Among the concerns regarding these events, the impact on coral reefs stand out because this ecosystem has ecological and economic importance and is globally threatened. We performed a systematic review and bibliometric analysis of studies that determine polycyclic aromatic hydrocarbons (PAHs) in coral reefs, attempting to answer how the studies were distributed around the globe, the main environmental matrices and species of coral studied, the main PAHs found and their mean concentrations, and the methodology used. A bibliographic search resulted in 42 studies with worldwide distribution. The bibliometric results presented more explored terms, such as sediments and toxicology, and newly investigated terms, which should encourage a new area of study, such as those related to zooxanthellae and mucus. The main matrices studied in coral reefs are sediments, corals, and water, whereas air and other invertebrates have rarely been studied. Approximately 45 species of corals with several morphotypes have been reported. PAHs recommended by the United States Environmental Protection Agency (US EPA) were analyzed in all studies, while additional compounds were analyzed in only five. The methods used to determine hydrocarbons are predominantly the most traditional; however, for corals, studies have tended to separate tissue, zooxanthellae, skeleton, and mucus. In the future, we recommend investment in improving the capacity to detect non-conventional PAHs, more studies in regions that are rarely explored in developing countries, and the creation of databases to facilitate management planning on marine coasts.
Collapse
Affiliation(s)
- Natália Menezes
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil.
| | - Igor Cruz
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Laboratory of Biological Oceanography, Federal University of Bahia (UFBA), Department of Oceanography, Institute of Geosciences, Barão de Jeremoabo Street, Ondina, Salvador 40210-340, Bahia, Brazil
| | - Gisele O da Rocha
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto de Química, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| | - Jailson B de Andrade
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, 41650-110 Salvador, BA, Brazil
| | - Zelinda M A N Leão
- Laboratory of Coral Reefs and Global Changes-RECOR, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador 40210-340, Bahia, Brazil
| |
Collapse
|
31
|
Zhao L, Zhao Z, Zhang J, Zhang P. Seasonal variation, spatial distribution, and sources of PAHs in surface seawater from Zhanjiang bay influenced by land-based inputs. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106028. [PMID: 37267664 DOI: 10.1016/j.marenvres.2023.106028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
This study was carried out for a comprehensive understanding of the concentrations, seasonal variation, spatial distribution, sources, and land-based inputs of polycyclic aromatic hydrocarbons (PAHs) in surface seawater from Zhanjiang Bay (ZJB). Although the PAHs were ubiquitous, their concentrations were relatively low, and significant seasonal trends and spatial distributions were observed. Based on the diagnostic ratios and composition profiles, the PAHs found in this study mainly originated from coal/biomass burning, and petroleum and its combustion played an important role in the wet seasons. Furthermore, the PAHs from land-based inputs had seasonal variations, spatial distributions, sources, and composition profiles similar to those in ZJB seawater. By combining the cases of energy structure, residential and industrial layouts, maritime traffic, and activities related to ports and mariculture, this study concluded that PAHs in ZJB seawater are greatly influenced by land-based inputs, atmospheric deposition and human activities.
Collapse
Affiliation(s)
- Lirong Zhao
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zike Zhao
- Analysis and Test Center, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jibiao Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Peng Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
32
|
Zou X, Su Q, Yi Q, Guo L, Chen D, Wang B, Li Y, Li J. Determining the degradation mechanism and application potential of benzopyrene-degrading bacterium Acinetobacter XS-4 by screening. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131666. [PMID: 37236106 DOI: 10.1016/j.jhazmat.2023.131666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
In industrial wastewater treatment, organic pollutants are usually removed by in-situ microorganisms and exogenous bactericides. Benzo [a] pyrene (BaP) is a typical persistent organic pollutant and difficult to be removed. In this study, a new strain of BaP degrading bacteria Acinetobacter XS-4 was obtained and the degradation rate was optimized by response surface method. The results showed that the degradation rate of BaP was 62.73% when pH= 8, substrate concentration was 10 mg/L, temperature was 25 °C, inoculation amount was 15% and culture rate was 180 r/min. Its degradation rate was better than that of the reported degrading bacteria. XS-4 is active in the degradation of BaP. BaP is degraded into phenanthrene by 3, 4-dioxygenase (α subunit and β subunit) in pathway Ⅰ and rapidly forms aldehydes, esters and alkanes. The pathway Ⅱ is realized by the action of salicylic acid hydroxylase. When sodium alginate and polyvinyl alcohol were added to the actual coking wastewater to immobilize XS-4, the degradation rate of BaP was 72.68% after 7 days, and the removal effect was better than that of single BaP wastewater (62.36%), which has the application potential. This study provides theoretical and technical support for microbial degradation of BaP in industrial wastewater.
Collapse
Affiliation(s)
- Xiaoshuang Zou
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qi Su
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qianwen Yi
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ling Guo
- Environmental Testing Department of Guizhou Provincial Testing Technology Research and Application Center, Guiyang 550000, China
| | - Diyong Chen
- Environmental Testing Department of Guizhou Provincial Testing Technology Research and Application Center, Guiyang 550000, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
33
|
Pei J, Hu J, Zhang R, Liu N, Yu W, Yan A, Han M, Liu H, Huang X, Yu K. Occurrence, bioaccumulation and ecological risk of organic ultraviolet absorbers in multiple coastal and offshore coral communities of the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161611. [PMID: 36646224 DOI: 10.1016/j.scitotenv.2023.161611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The occurrence of organic ultraviolet absorbers (OUVAs) in coral reef regions has aroused widespread concern. This study focused on the occurrence, distribution, bioaccumulation and ecological risk of ten OUVAs in both coastal and offshore coral reef regions in the South China Sea. While the Σ10OUVAs was 85 % lower in the offshore seawater (15.1 ng/L) than in the coastal seawater (102.1 ng/L), the Σ10OUVAs was 21 % lower in the offshore corals (1.82 μg/g dry weight (dw)) than in the coastal corals (2.31 μg/g dw). This difference was speculated to relate to the high intensity of human activities in the coastal regions. Moreover, the offshore corals showed higher bioaccumulative capability toward OUVAs (log bioaccumulation factors (BAFs): 1.22-5.07) than the coastal corals (log BAFs: 0.17-4.38), which was presumably the influence of varied physiological status under different environmental conditions. The results of the ecological risk assessment showed that BP-3 resulted in 73 % of coastal corals and 20 % of offshore corals at a risk of bleaching. Therefore, the usage and discharge of BP-3 should be managed and controlled by the countries adjacent to the South China Sea for the protection of coral reefs.
Collapse
Affiliation(s)
- Jiying Pei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Junjie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Nai Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Wenfeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Annan Yan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Huanxin Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
34
|
Rokhbar M, Keshavarzi B, Moore F, Zarei M, Hooda PS, Risk MJ. Occurrence and source of PAHs in Miankaleh International Wetland in Iran. CHEMOSPHERE 2023; 321:138140. [PMID: 36791821 DOI: 10.1016/j.chemosphere.2023.138140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
We examined the occurrence and sources of 16 priority PAHs in the water and sediment samples of the Miankaleh Wetland (Coastal Biosphere Reserve), famous for harbouring huge flocks of migrating birds. The water and sediment samples collected from various locations were visualized and processed using a self-organizing map, positive matrix factorization and GIS. All the sediment samples, and >90% of the water samples, showed some degree of PAHs contamination. Higher PAH levels occur near the Chopoghi Channel, powerplants, sewage outfalls, and near fishing operations. Compared with previous study in this area, the PAHs concentration in the sediments of aquatic ecosystem of Miankaleh Wetland is increasing. The levels of PAH contamination seem too low to account for the mass deaths of migratory birds, and botulinus contamination seems the likely cause. Fugacity calculations show that the sediments act as a sink for PAHs. According to PMF and SOM analyses, three origins of PAHs were recognized: (i) fossil fuel and vehicular emissions with high-molecular weight PAHs (4-5 ring); (ii) municipal and industrial sewages characterized by low-molecular weight PAHs (2-3 ring) typical of petrogenic sources; and (iii) port activity characterized by prevalence of petrogenic influence and petroleum-related activities (combustion PAHs and low-molecular weight PAHs) consistent with port activity. This wetland needs serious attention because of continuous input of pollutants. The results and the methods used in this study may assist in improving coastal wetlands management.
Collapse
Affiliation(s)
- Mahsa Rokhbar
- Department of Earth Sciences, College of Science, Shiraz University, 71454, Shiraz, Iran
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, 71454, Shiraz, Iran.
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, 71454, Shiraz, Iran
| | - Mehdi Zarei
- Department of Earth Sciences, College of Science, Shiraz University, 71454, Shiraz, Iran
| | - Peter S Hooda
- Department of Geography, Geology and the Environment, Kingston University London, Kingston Upon Thames, KT12EE, UK
| | - Michael J Risk
- Department of Earth Sciences, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
35
|
Zhang Q, Shi B, Su G, Zhao X, Meng J, Sun B, Li Q, Dai L. Application of a hybrid GEM-CMB model for source apportionment of PAHs in soil of complex industrial zone. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130565. [PMID: 37055973 DOI: 10.1016/j.jhazmat.2022.130565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Accurate source apportionment is essential for preventing the contamination of pervasive industrial zones. However, a limitation of traditional receptor models is their negligence of transmission loss, which consequently reduces their accuracy. Herein, chemical mass balance (CMB) and generic environmental model (GEM) was fused into a new method, which was employed to determine the traceability of polycyclic aromatic hydrocarbons (PAHs) in a complex zone containing three coking plants, two steel plants, and one energy plant. Five categories of fingerprints comprising various compounds were established for the six plant sources where seven PAHs with low-high rings were screened as the best. Considering volatilization, dry deposition, and advective and dispersive transport, the GEM model generated 232 "compartments" in multimedia to capture subtle variations of PAHs during transmission. More than 90 % of the transmission of the seven PAHs varied between 0.4 % and 6.0 %. Over pure CMB model, acceptable results and best-fit results improved by 1.6-44.4 % and 0.3-80.8 % in the GEM-CMB model. Additionally, the coking, steel, and energy industries accounted for 36.4-56.1 %, 25.6-41.7 %, and 18.3-23.6 % of PAHs sources at four receptor points, respectively. Furthermore, quantifying contaminant loss rendered the traceability results more realistic, judged by distances and discharge capacities. Accordingly, these outcomes can help in precisely determining soil contamination.
Collapse
Affiliation(s)
- Qifan Zhang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xu Zhao
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingwen Dai
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
36
|
Shi W, Liu Q, Cao J, Dong J, Wang Z, Xu M. Analysis of the multi-media environmental behavior of polycyclic aromatic hydrocarbons (PAHs) within Haizhou Bay using a fugacity model. MARINE POLLUTION BULLETIN 2023; 187:114603. [PMID: 36652854 DOI: 10.1016/j.marpolbul.2023.114603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
In this study, we aimed to quantify the transport and fate of PAHs in different environmental phases (air, seawater, soil, sediment and fish), verify application of the Level III fugacity model in a bay simulation, and understand the transport and fate of PAHs in the bay environment on a macroscopic scale. The simulated average concentrations of ∑16PAH in the air and soil (23.8 ng/m3 and 1080.91 ng/g, respectively), which is as a background reference data for the Haizhou Bay. In addition, the soil (307 t), fish (29.4 t), and sediment (9.72 t) phases were found to be important reservoirs in the Haizhou Bay. Emissions from road vehicles (658 t) accounted for the largest share of PAH emissions in the area, and atmospheric deposition contributed most to the input of PAHs to the polluted area in the region. Whereas the contribution of river runoff input was small, and degradation loss was the main output pathway.
Collapse
Affiliation(s)
- Wenting Shi
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Qing Liu
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Jicheng Cao
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Jianwei Dong
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Zaifeng Wang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Min Xu
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
37
|
Kang Y, Zhang R, Yu K, Han M, Li H, Yan A, Liu F, Shi J, Wang Y. Organophosphate esters (OPEs) in a coral reef food web of the Xisha Islands, South China Sea: Occurrence, trophodynamic, and exposure risk. CHEMOSPHERE 2023; 313:137652. [PMID: 36581113 DOI: 10.1016/j.chemosphere.2022.137652] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Despite organophosphate esters (OPEs) are widely prevalent in the environment, however, limited information is available regarding their occurrence, trophodynamics, and exposure risks in coral reef ecosystems. In this study, 11 OPEs were investigated in a tropical marine food web (7 fish species and 9 benthos species) from the Xisha (XS) Islands, South China Sea (SCS). The ∑11OPEs were 1.52 ± 0.33 ng/L, 2227 ± 2062 ng/g lipid weight (lw), 1024 ± 606 ng/g lw, and 1800 ± 1344 ng/g lw in seawater, fish, molluscs, and corals, respectively. Tris (2-chloroisopropyl) phosphate (TCIPPs) were the dominant OPEs in seawater, fish, and molluscs, while tris (2-butoxyethyl) phosphate (TBOEP) predominated in coral tissues. Abiotic and biotic factors jointly affect the OPEs enrichment in marine organisms. Trophic magnification factors (TMFs) (range: 1.31-39.2) indicated the biomagnification potency of OPEs. A dietary exposure risk assessment indicated that OPEs at current levels in coral reef fish posed a low risk to human health but were not negligible. Overall, this study contributes to a further understanding of the environmental behaviors of OPEs in coral reef ecosystems.
Collapse
Affiliation(s)
- Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Haolan Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Annan Yan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Fang Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jingwen Shi
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
38
|
Zhang Y, Pei C, Zhang J, Cheng C, Lian X, Chen M, Huang B, Fu Z, Zhou Z, Li M. Detection of polycyclic aromatic hydrocarbons using a high performance-single particle aerosol mass spectrometer. J Environ Sci (China) 2023; 124:806-822. [PMID: 36182185 DOI: 10.1016/j.jes.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 06/16/2023]
Abstract
The real-time detection of the mixing states of polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs in ambient particles is of great significance for analyzing the source, aging process, and health effects of PAHs and nitro-PAHs; yet there is still few effective technology to achieve this type of detection. In this study, 11 types of PAH and nitro-PAH standard samples were analyzed using a high performance-single particle aerosol mass spectrometer (HP-SPAMS) in lab studies. The identification principles 'parent ions' and 'mass-to-charge (m/z) = 77' of each compound were obtained in this study. It was found that different laser energies did not affect the identification of the parent ions. The comparative experiments of ambient atmospheric particles, cooking and biomass burning emitted particles with and without the addition of PAHs were conducted and ruled out the interferences from primary and secondary organics on the identification of PAHs. Besides, the reliability of the characteristic ions extraction method was evaluated through the comparative study of similarity algorithm and deep learning algorithm. In addition, the real PAH-containing particles from vehicle exhaust emissions and ambient particles were also analyzed. This study improves the ability of single particle mass spectrometry technology to detect PAHs and nitro-PAHs, and HP-SPAMS was superior to SPAMS for detecting single particles containing PAHs and nitro-PAHs. This study provides support for subsequent ambient observations to identify the characteristic spectrum of single particles containing PAHs and nitro-PAHs.
Collapse
Affiliation(s)
- Yao Zhang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Chenglei Pei
- Guangzhou Environmental Monitoring Center, Guangzhou 510030, China
| | - Jinwen Zhang
- Guangzhou Hexin Analytical Instrument Company Limited, Guangzhou 510530, China
| | - Chunlei Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China.
| | - Xiufeng Lian
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Mubai Chen
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Bo Huang
- Guangzhou Hexin Analytical Instrument Company Limited, Guangzhou 510530, China
| | - Zhong Fu
- Guangzhou Hexin Analytical Instrument Company Limited, Guangzhou 510530, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Mei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China.
| |
Collapse
|
39
|
Rayaroth MP, Marchel M, Boczkaj G. Advanced oxidation processes for the removal of mono and polycyclic aromatic hydrocarbons - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159043. [PMID: 36174692 DOI: 10.1016/j.scitotenv.2022.159043] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Aromatic hydrocarbons (AHs) are toxic environmental contaminants presented in most of the environmental matrices. Advanced oxidation processes (AOPs) for the removal of AHs in the account of complete mineralization from various environmental matrices have been reviewed in this paper. An in-depth discussion on various AOPs for mono (BTEX) and polyaromatic hydrocarbons (PAHs) and their derivatives is presented. Most of the AOPs were effective in the removal of AHs from the aquatic environment. A comparative study on the degradation of various AHs revealed that the oxidation of the AHs is strongly dependent on the number of aromatic rings and the functional groups attached to the ring. The formation of halogenated and nitrated derivatives of AHs in the real contaminated water containing chloride, nitrite, and nitrate ions seems to be a challenge in using the AOPs in real systems. The phenolic compounds, quinone, alcohols, and aliphatic acids are the important byproducts formed during the oxidation of AHs, initiated by the attack of reactive oxygen species (ROS) on their electron-rich center. In conclusion, AOPs are the adaptable method for the removal of AHs from different environmental matrices. The persulfate-based AOPs were applied in the soil phase removal as an in situ chemical oxidation of AHs. Moreover, the combination of AOPs will be a conclusive solution to avoid or minimize unexpected or other toxic intermediate products and to obtain rapid oxidation of AHs.
Collapse
Affiliation(s)
- Manoj P Rayaroth
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdańsk, G. Narutowicza 11/12 Str, Poland; GREMI, UMR 7344, Université d'Orléans, CNRS, 45067 Orléans, France
| | - Mateusz Marchel
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdańsk, G. Narutowicza 11/12 Str, Poland
| | - Grzegorz Boczkaj
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233 Gdańsk, G. Narutowicza 11/12 Str, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
40
|
Liu Z, An M, Geng X, Wu Z, Cai W, Tang J, Zhang K, Zhou Z. The scleractinian coral Pocillopora damicornis relies on neuroendocrine regulation to cope with polycyclic aromatic hydrocarbons under heat stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120565. [PMID: 36332711 DOI: 10.1016/j.envpol.2022.120565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/05/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic environmental pollutants and are threatening scleractinian corals. In this study, PAHs treatment did not induce significant physiological responses of the coral Pocillopora damicornis and its algal symbionts, but biological processes including response to toxin, drug metabolic, and oxidation reduction were triggered at the mRNA level. These results implied that PAHs could be a group of slow-acting environmental toxicants, whose effects were moderate but persistent. Besides, it was interesting to find that PAHs activated the neuroendocrine system in the coral by triggering the expression of monoaminergic and acetylcholinergic system related genes, indicating that PAHs might function as environmental hormones. Moreover, the combined treatments of PAHs and heat caused a much obvious effect on the coral and its algal symbionts by elevating antioxidant activity and suppressing photosynthesis in the symbionts. Results from the transcriptome data further indicated that corals might perform stress responses upon PAHs and heat challenges through the TNF and apoptosis pathways, which perhaps was modulated by the neuroendocrine system of corals. Collectively, our survey demonstrates that the PAHs can function as environmental hormones and activate the neuroendocrine regulation in scleractinian corals, which may contribute to the stress responses of symbiotic association by modulating photosynthesis, antioxidation, and apoptosis.
Collapse
Affiliation(s)
- Zhaoqun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mingxun An
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Xinxing Geng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Wenqi Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China; Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
41
|
Han M, Li H, Kang Y, Liu H, Huang X, Zhang R, Yu K. Bioaccumulation and trophic transfer of PAHs in tropical marine food webs from coral reef ecosystems, the South China Sea: Compositional pattern, driving factors, ecological aspects, and risk assessment. CHEMOSPHERE 2022; 308:136295. [PMID: 36064010 DOI: 10.1016/j.chemosphere.2022.136295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Multiple environmental pressures caused by global warming and human activities have aroused widespread concern about PAHs pollution in tropical marine coral reef regions (CRRs). However, the trophodynamics of PAHs in the food webs of the CRRs and the related influence factors have not been reported. This study investigated the occurrence, trophic amplification, and transmission of PAHs in various organisms selecting between at least representative species for each level in CRRs of the South China Sea (SCS); revealed their driving mechanisms; and explored the trophodynamics of PAHs in the food web of the coral reef ecosystem. Results showed that more PAHs can be accumulated in the mantle tissue of Tridacnidae, and the proportion of mantle tissue of Tridacnidae increases with the increase of latitude (y = 0.01x + 0.17, R2 = 0.49, p < 0.05). Latitude drives the differential occurrence level and bioaccumulation of PAHs in tropical marine organisms, and also affects the trophodynamics of PAHs in aquatic ecosystem food webs. PAHs undergo trophic amplification in the food webs of tropical marine ecosystems represented by coral reefs, thus further aggravating the negative environmental impact on coral reef ecosystems. The cancer risk caused by accidental ingestion of PAHs by humans through consumption of seafood in CRRs is very low, but we should be alert to the biomagnification effect of PAHs.
Collapse
Affiliation(s)
- Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Haolan Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Huanxin Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| |
Collapse
|
42
|
Han M, Zhang R, Yu K, Yan A, Li H, Zhang R, Zeng W, Zhang ZE, Liu F. Environmental fate and effects of PAHs in tropical mariculture ponds near the northern South China Sea: Rainfall plays a key role. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157442. [PMID: 35901874 DOI: 10.1016/j.scitotenv.2022.157442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The behavior and fate of PAHs are affected by multiple meteorological factors, but the main factors driving PAHs in tropical mariculture areas are still not clearly understood. This study continuously monitored PAHs in a few tropical land-based mariculture ponds, discussed their dynamic change trend, migration among the multiple media, and the relevant affected factors. Results indicated that PAHs were widely distributed in these environmental media, and the PAHs' concentration showed an obvious attenuation trend in the mariculture cycle. Wet deposition brought overwhelming majority atmospheric PAHs (92 % ± 5.7 %) to the aqueous system, and >72 % of these PAHs came from oil combustion-related sources and biomass combustion. Compared with the natural sea areas in the same region, mariculture ponds sediment could be changed from a sink at the early stage to a secondary release source of PAHs at the late stage of the rainy season, which intensifies the bioaccumulation of PAHs and the risk of edible carcinogenesis of aquatic products. Our research revealed that rainfall drove the occurrence and environmental behavior of PAHs in the tropical mariculture areas, while land-based mariculture ponds ecosystem affected the regional environmental fate of PAHs and weakened their transmission to the marine environment from land.
Collapse
Affiliation(s)
- Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Annan Yan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Haolan Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ruiling Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weibin Zeng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zheng-En Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Fang Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| |
Collapse
|
43
|
Tan H, Wu Q, Wang C, Wu D, Cui Y, Li Q, Wu C. Polycyclic aromatic hydrocarbons (PAHs) in surface soils of tropical reef islands in China under external plant and soil introduction: Occurrence, sources, risks, and relationships with soil properties, vegetation cover, and soil source. CHEMOSPHERE 2022; 306:135556. [PMID: 35803380 DOI: 10.1016/j.chemosphere.2022.135556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
This study explored the levels, sources, and risks of PAHs in soils from Yongle Atoll (YLA) and Xuande Atoll (XDA) of the Xisha Islands (XSIs) in the South China Sea, China, under different vegetation cover types and soil sources. The results clearly showed that the levels of 16 US EPA priority PAHs (Σ16PAHs) are relatively low in XDA and YLA, with concentrations ranging from not detected (ND) to 151 ng/g (average 15.7 ng/g) and ND to 5.8 ng/g (average 2.1 ng/g), respectively. Three- and four-ring PAHs (62.3% and 53.8%) were widely distributed in YLA and XDA. The average concentration of Σ16PAHs in soils with shrub cover was 1.4, 1.8, 4.8, and 5.0 times higher than that in soils with herbaceous cover, vegetable cover, arbor cover, and no plant cover, respectively. Source analysis using binary diagnostic ratios and the positive matrix factorization (PMF) model suggested that PAHs have similar sources (gasoline/coal combustion, coke production, and biomass combustion), but different contributions in native soil and introduced soil. Moreover, diesel-related vehicular emission was identified to be an additional source of PAHs in native soil. Pearson's correlations revealed strong relationships between PAHs and organic matter or total organic carbon. The cancer risk of PAHs varied among different vegetation cover types and soil sources, following the orders herbaceous cover > vegetable cover > shrub cover > arbor cover > no plant cover and introduced soil > mixed soil > native soil. Nevertheless, the risk remained lower than the risk threshold (10-6), suggesting low carcinogenesis risk in the two atolls. Our findings provide new evidence for the introduction of external vegetation/soil acting as a driver of changes in the characteristics of PAHs in islands, and also underline the negligibility of the PAH increase in soils in the South China Sea, China, from the perspective of health hazards.
Collapse
Affiliation(s)
- Huadong Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou, 571737, China.
| | - Qiumin Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Huazhong Agricultural University, College of Resources & Environment, Wuhan, 430070, China.
| | - Chuanmi Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou, 571737, China.
| | - Dongming Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou, 571737, China.
| | - Yanmei Cui
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou, 571737, China.
| | - Chunyuan Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou, 571737, China.
| |
Collapse
|
44
|
Kang Y, Zhang R, Yu K, Han M, Pei J, Chen Z, Wang Y. Organochlorine pesticides (OCPs) in corals and plankton from a coastal coral reef ecosystem, south China sea. ENVIRONMENTAL RESEARCH 2022; 214:114060. [PMID: 35981611 DOI: 10.1016/j.envres.2022.114060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have indicated that coral mucus plays an important role in the bioaccumulation of a few organic pollutants by corals, but no relevant studies have been conducted on organochlorine pesticides (OCPs). Previous studies have also indicated that OCPs widely occur in a few coral reef ecosystems and have a negative effect on coral health. Therefore, this study focused on the occurrence and bioaccumulation of a few OCPs, such as dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB) and p,p'-methoxychlor (MXC), in the coral tissues and mucus as well as in plankton and seawater from a coastal reef ecosystem (Weizhou Island) in the South China Sea. The results indicated that DDTs were the predominant OCPs in seawater and marine biota. Higher concentrations of OCPs in plankton may contribute to the enrichment of OCPs by corals. The significantly higher total OCP concentration (∑8OCPs) found in coral mucus than in coral tissues suggested that coral mucus played an essential role in resisting enrichment of OCPs by coral tissues. This study explored the different functions of coral tissues and mucus in OCP enrichment and biodegradation for the first time, highlighting the need for OCP toxicity experiments from both tissue and mucus perspectives.
Collapse
Affiliation(s)
- Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jiying Pei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zhenghua Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
45
|
Li Y, Bai X, Ren Y, Gao R, Ji Y, Wang Y, Li H. PAHs and nitro-PAHs in urban Beijing from 2017 to 2018: Characteristics, sources, transformation mechanism and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129143. [PMID: 35594669 DOI: 10.1016/j.jhazmat.2022.129143] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (NPAHs) attract continuous attention due to their distinct carcinogenicity and mutagenicity. To investigate the characteristics, sources, formation mechanism and health risk assessment of PAHs and NPAHs, PM2.5 were collected at an urban site in Beijing from 2017 to 2018. The highest PAHs and NPAHs concentrations were 77.92 ± 54.62 ng/m3 and 963.71 ± 695.06 pg/m3 in the winter campaign, which were several times larger than those in other seasonal campaigns. Distinct diurnal variations of nocturnal levels higher than daytime levels were shown for PAHs and NPAHs. Source analysis indicated that besides vehicle exhaust, biomass burning and coal combustion were important sources of PAHs and NPAHs in the fall and winter campaigns. Secondary formation in atmosphere was another source of NPAHs especially in the spring and summer campaigns. NO2 and RH could positively influence the heterogeneous formation of NPAHs when RH was less than 60%. Quantum calculation results confirmed the formation pathway of 2N-FLA from the OH/NO3-initiated oxidation of FLA. The results of health risk assessment showed the potential health risks for the residents, especially in the winter campaign. These results indicated that PAHs and NPAHs still deserve attention following with the decrease concentrations of particulate matter.
Collapse
Affiliation(s)
- Yunfeng Li
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Xurong Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yanqin Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rui Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yuanyuan Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yafei Wang
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
46
|
Han M, Liu F, Kang Y, Zhang R, Yu K, Wang Y, Wang R. Occurrence, distribution, sources, and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in multi environmental media in estuaries and the coast of the Beibu Gulf, China: a health risk assessment through seafood consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52493-52506. [PMID: 35258733 DOI: 10.1007/s11356-022-19542-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The coastal zone is a crucial transitional area between land and ocean, which is facing enormous pressure due to global climate change and anthropogenic activities. It is essential to pay close attention to the pollution caused by polycyclic aromatic hydrocarbons (PAHs) in the coastal environment and their effect on human health. The pollution status of PAHs was investigated in the Beibu Gulf, taking into consideration various environmental media. The results showed that the total concentration of 16 PAHs (Σ16PAHs) was significantly higher in winter than in summer. Compared to the coastal area, the status of PAHs in the estuarine areas was found to be more severe in summer, while the regional difference was insignificant in winter. In summer, the Σ16PAHs in estuarine waters (71.4 ± 9.58 ng/L) > coastal waters (50.4 ± 9.65 ng/L); estuarine sediment (146 ± 116 ng/g) > coastal zone (76.9 ± 108 ng/g). The source apportionment indicated that spilled oil, biomass, and coal burning were the primary sources of PAHs in the water. The predominant sources of pollution in the sediments were spilled oil, fossil fuel burning, and vehicle emissions. With regard to the status of PAHs in marine organisms in the coastal area of the Beibu Gulf, the highest average concentration of PAHs was indicated in shellfishes (183 ± 165 ng/g), followed by fishes (73.7 ± 57.2 ng/g), shrimps (42.7 ± 19.2 ng/g), and crabs (42.7 ± 19.2 ng/g) in Beibu Gulf coastal area. The calculated bioaccumulation factor indicates a low bioaccumulation capacity of PAHs in various seafood considering the ambient environment. The human health risk assessment considering multiple age groups indicates minimal health risk on accidental ingestion of PAHs through seafood. However, it is suggested that the intake of shellfish in children be controlled.
Collapse
Affiliation(s)
- Minwei Han
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Fang Liu
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Yaru Kang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Yinghui Wang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Ruixuan Wang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| |
Collapse
|
47
|
Liu M, Zheng H, Chen M, Liang J, Duan M, Du H, Chen M, Ke H, Zhang K, Cai M. Dissolved PAHs impacted by air-sea interactions: Net volatilization and strong surface current transport in the Eastern Indian Ocean. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128603. [PMID: 35255333 DOI: 10.1016/j.jhazmat.2022.128603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
In the Indian Ocean, the marine fate of polycyclic aromatic hydrocarbons (PAHs) is impacted by the unique air-sea interactions with great monsoon characters. By collecting water-column samples during the monsoon transition period, we found PAHs (∑8PAH: 1.1-27 ng L-1) showed significantly different distributions from the Bay of Bengal, Equatorial Indian Ocean, Eastern Indian Ocean, and the South China Sea (p < 0.001). Their vertical profiles showed natural logarithm relationships with depth in the Bay of Bengal and Equatorial Indian Ocean. PAHs were mainly from wood/coal combustion and vehicle emission. The estimation of PAHs' air-seawater exchange flux revealed net volatilizations from seawater except in the Eastern Indian Ocean. The Wyrtki Jet, a surface current driven by the westerly wind, was observed in the equatorial area. This swift current could transport PAHs eastward efficiently with a mass flux of 636 ± 188 g s-1. The subsurface current, Equatorial Undercurrent, played a less crucial role in PAHs' lateral transport with a flux of 115 ± 31.3 g s-1. This study preliminarily revealed the role of air-sea interactions on PAHs' transport and fate in the open ocean. The coupled air-sea interactions with biogeochemical processes should be considered in future work.
Collapse
Affiliation(s)
- Mengyang Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haowen Zheng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Meng Chen
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Junhua Liang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Mengshan Duan
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huihong Du
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Mian Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Hongwei Ke
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong, China
| | - Minggang Cai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
48
|
Zhang X, Zhang ZF, Zhang X, Zhu FJ, Li YF, Cai M, Kallenborn R. Polycyclic Aromatic Hydrocarbons in the Marine Atmosphere from the Western Pacific to the Southern Ocean: Spatial Variability, Gas/Particle Partitioning, and Source Apportionment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6253-6261. [PMID: 35476391 DOI: 10.1021/acs.est.1c08429] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The spatial variability of polycyclic aromatic hydrocarbons (PAHs) in the marine atmosphere contributes to the understanding of the global sources, fate, and impact of this contaminant. Few studies conducted to measure PAHs in the oceanic atmosphere have covered a large scale, especially in the Southern Ocean. In this study, high-volume air samples were taken along a cross-section from China to Antarctica and analyzed for gaseous and particulate PAHs. The data revealed the spatial distribution, gas-particle partitioning, and source contributions of PAHs in the Pacific, Indian, and Southern Oceans. The median concentration (gaseous + particulate) of ∑24PAHs was 3900 pg/m3 in the Pacific Ocean, 2000 pg/m3 in the Indian Ocean, and 1200 pg/m3 in the Southern Ocean. A clear latitudinal gradient was observed for airborne PAHs from the western Pacific to the Southern Ocean. Back trajectories (BTs) analysis showed that air masses predominantly originated from populated land had significantly higher concentrations of PAHs than those from the oceans or Antarctic continents/islands. The air mass origins and temperature have significant influences on the gas-particle partitioning of PAHs. Source analysis by positive matrix factorization (PMF) showed that the highest contribution to PAHs was from coal combustion emissions (52%), followed by engine combustion emissions (27%) and wood combustion emissions (21%). A higher contribution of PAHs from wood combustion was found in the eastern coastal region of Australia. In contrast, engine combustion emissions primarily influenced the sites in Southeast Asia.
Collapse
Affiliation(s)
- Xue Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Fu-Jie Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada
| | - Minghong Cai
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Roland Kallenborn
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- Faculty of Chemistry, Biotechnology & Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| |
Collapse
|
49
|
Lei F, Tian Y, Miao J, Pan L, Tong R, Zhou Y. Immunotoxicity pathway and mechanism of benzo[a]pyrene on hemocytes of Chlamys farreri in vitro. FISH & SHELLFISH IMMUNOLOGY 2022; 124:208-218. [PMID: 35413479 DOI: 10.1016/j.fsi.2022.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Benzo[a]pyrene (B[a]P), a typical PAHs widely existing in the marine environment, has been extensively studied for its immunotoxicity due to its persistence and high toxicity. Nevertheless, the immunotoxicity mechanism remain incompletely understood. In this study, isolated hemocytes of Chlamys farreri were exposed at three concentrations of B[a]P (5, 10 and 15 μg/mL), and the effects of B[a]P on detoxification metabolism, signal transduction, humoral immune factors, exocytosis and phagocytosis relevant proteins and immune function at 0, 6, 12, 24 h were studied. Results illustrated the AhR, ARNT and CYP1A1 were significantly induced by B[a]P at 12 h. Additionally, the content of B[a]P metabolite BPDE increased in a dose-dependent manner with pollutants. Under B[a]P stimulation, the expressions of PTK (Src, Fyn) and PLC-Ca2+-PKC pathway gene increased significantly, while the transcription level of AC-cAMP-PKA pathway gene decreased remarkably. Additionally, the expressions of nuclear transcription factors (CREB, NF-κB), complement system genes and C-type lectin genes up-regulated obviously. The gene expressions of phagocytosis and exocytosis related proteins were also notably affected. 5 μg/mL B[a]P could promote phagocytosis in a transitory time, but with the increase of exposure time and concentration of B[a]P, the phagocytosis, antibacterial and bacteriolytic activities gradually decreased. These results indicated that similar to vertebrates, BPDE, the metabolite of B[a]P, mediated downstream signal transduction via PTK in bivalves. The declined of the immune defense ability of hemocytes might be closely related to the inhibition of AC-cAMP-PKA pathway and the imbalance of intracellular Ca2+ pathway. In addition, the results manifested that complement and lectin systems play a significant role in regulating immune response. In this study, the direct relationship between detoxification metabolism and immune signal transduction in bivalves under B[a]P stress was demonstrated for the first time, which provided important information for the potential molecular mechanism of B[a]P-induced immune system disorder in bivalves.
Collapse
Affiliation(s)
- Fengjun Lei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yimeng Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
50
|
Liu Z, Sun Y, Zeng Y, Guan Y, Huang Y, Chen Y, Li D, Mo L, Chen S, Mai B. Semi-volatile organic compounds in fine particulate matter on a tropical island in the South China Sea. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128071. [PMID: 34922134 DOI: 10.1016/j.jhazmat.2021.128071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Measurements of hazardous semi-volatile organic compounds (SVOCs) in remote tropical regions are rare. In this study, polycyclic aromatic compounds (PACs) [including polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs (NPAHs), and oxygenated PAHs (OPAHs)], organophosphate esters (OPEs), and phthalic acid esters (PAEs) were measured in fine particulate matter (PM2.5) at Yongxing Island in the South China Sea (SCS). The concentrations of PACs (median = 53.5 pg/m3) were substantially low compared with previous measurements. The concentration weighted trajectory (CWT) model showed that the eastern and southern China was the main source region of PAC, occurring largely during the northeast (NE) monsoon. The PM2.5 showed remarkably high concentrations of OPEs (median = 3231 pg/m3) and moderate concentrations of PAEs (13,013 pg/m3). Some Southeast Asian countries were largely responsible for their higher concentrations, driven by the tropical SCS monsoons. We found significant atmospheric loss of the SVOCs, which is an explanation for the low concentrations of PACs. Enhanced formation of N/OPAHs originated from tropical regions was also observed. The positive matrix factorization model was applied to apportion the SVOC sources. The results, as well as correlation analyses of the SVOC concentrations, further indicate insignificant local sources and enhanced atmospheric reactions on this island.
Collapse
Affiliation(s)
- Zheng Liu
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuxin Sun
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yufeng Guan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuqi Huang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuping Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Daning Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ling Mo
- Water Quality Monitoring Section, Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Shejun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|