1
|
Stevenson EM, Buckling A, Cole M, Lindeque PK, Murray AK. Rising Tide to Silent Tsunami: Unveiling the role of plastics in driving antimicrobial resistance. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138700. [PMID: 40413977 DOI: 10.1016/j.jhazmat.2025.138700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/12/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Pollution caused by plastic production and waste has severe consequences on global economies, social inequalities, and ecosystems. Likewise, antimicrobial resistance (AMR) is one of the greatest One Health challenges. These threats are typically considered in isolation, but there is likely a complex interplay between the two. By adopting a systems approach and looking across the whole life cycle of plastics, we propose the range of ways in which plastic may influence AMR. Starting with raw material extraction processes where the leaching of potentially AMR co-selective chemicals used in pumping or piping of plastic feedstocks may influence AMR development in environmental microbial communities. Then, during production and manufacture, the use of plastic additives may impose selection for AMR. Finally, during use, collection or disposal, plastics can transport AMR biofilms in the community, clinical, agricultural, or aquatic settings. By linking these two important One Health threats, we may be better equipped and informed to combat them.
Collapse
Affiliation(s)
- Emily M Stevenson
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Faculty of Health and Life Sciences, Penryn Campus, Cornwall, UK; Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK; Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK.
| | - Angus Buckling
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
| | - Penelope K Lindeque
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK; Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Aimee K Murray
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Faculty of Health and Life Sciences, Penryn Campus, Cornwall, UK
| |
Collapse
|
2
|
Zucconi L, Fierro-Vásquez N, Antunes A, Bendia AG, Lavin P, González-Aravena M, Sani RK, Banerjee A. Advocating microbial diversity conservation in Antarctica. NPJ BIODIVERSITY 2025; 4:5. [PMID: 40038369 DOI: 10.1038/s44185-025-00076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025]
Abstract
Antarctica, a seemingly barren and icy wilderness, is home to a diverse array of microbial life that plays a critical role in sustaining its ecosystems. These resilient microorganisms drive nutrient cycling and carbon sequestration, but their function in global processes remains unclear. This pristine environment faces mounting threats from human activities, climate change, and increasing tourism. Contaminants, non-native species, and microplastics are increasingly reaching even the most remote regions, disrupting delicate microbial communities existing for millions of years. Antarctic microorganisms are not only ecologically significant but also valuable for biotechnological advancements, making their conservation imperative. Climate change exacerbates these threats, altering microbial habitats and promoting shifts in community structure. Tourism growth, though beneficial for education and economic reasons, poses significant challenges through biological and chemical contamination. Despite efforts under the Antarctic Treaty System to protect the region, there is a critical need for enhanced measures specifically targeting microbial conservation. This article underscores the importance of conserving Antarctic microbial diversity. It highlights the intricate microbial ecosystems and the urgency of implementing strategies such as stringent biosecurity measures, sustainable tourism practices, and comprehensive monitoring programs. Additionally, fostering international collaboration and research initiatives is vital for understanding and designing strategies to mitigate the impacts of environmental changes on microbial life. By prioritizing microbial conservation in policy frameworks and strengthening global cooperation, we can safeguard these unique ecosystems and ensure their resilience for future generations.
Collapse
Affiliation(s)
- Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Natalia Fierro-Vásquez
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, 1240300, Chile
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau SAR, China
- Institute of Science and Environment, University of Saint Joseph, Macau SAR, China
| | - Amanda Gonçalves Bendia
- Instituto Oceanográfico, Departamento de Oceanografia Biológica, Universidade de São Paulo, São Paulo, 05508-120, Brazil
| | - Paris Lavin
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, 1240300, Chile
- Centro de Investigación en Inmunología y Biotecnología Biomédica de Antofagasta, (CIIBBA), Universidad de Antofagasta, Antofagasta, 1240300, Chile
| | | | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD, USA
| | - Aparna Banerjee
- Functional Polysaccharides Research Group, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca, 3467987, Chile.
| |
Collapse
|
3
|
Berber AA, Akinci Kenanoğlu N, Nur Demi R Ş, Aksoy H. Genotoxic and cytotoxic effects of polystyrene nanoplastics on human lymphocytes: A comprehensive analysis. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2025; 902:503850. [PMID: 40044373 DOI: 10.1016/j.mrgentox.2025.503850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 05/13/2025]
Abstract
A growing amount of plastic waste is finding its way into natural ecosystems as a result of the widespread usage of plastics in modern society. These wastes degrade physically and biologically over time, transforming into microplastics (MPs) and nanoplastics (NPs). MPs and NPs emissions from the terrestrial environment then mix with rivers and eventually the seas, forming garbage. The cytotoxic and genotoxic effects of 50 nm polystyrene nanoplastics (PsNP) on human lymphocytes were assessed using the in vitro mitotic index (MI), micronucleus (MN), and comet assays. Both 24 and 48-h applications were performed for MI, and it was determined that 50 nm PsNP provided a statistically significant decrease in MI compared to the control at all concentrations and application times (except 0.001 and 0.1 μg/mL at 24 h). According to the MN test results, the MN frequency increased significantly at all concentrations when compared to the negative control. In the comet test, a statistically significant increase of comet tail length was observed at 0.001, 10 and 100 μg/mL concentration with 50 nm PsNP exposure. Tail moment also showed a statistically significant increase at the lowest concentration of 0.001 μg/mL and the highest concentration of 1, 10, 100 μg/mL compared to the negative control. All test results show that PsNP has both genotoxic and cytotoxic potential.
Collapse
Affiliation(s)
- Ahmet Ali Berber
- Vocational School of Health Services, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye.
| | | | - Şefika Nur Demi R
- School of Graduate Studies, Department of Biology, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Hüseyin Aksoy
- Faculty of Arts and Sciences, Department of Biology, Sakarya University, Sakarya, Türkiye
| |
Collapse
|
4
|
Melissa B, Elisa B, Gabriella C, Maurizio A, Ombretta DA, Andrea DC, Eckert EM, Flavia M. Bacterial Diversity of Marine Biofilm Communities in Terra Nova Bay (Antarctica) by Culture-Dependent and -Independent Approaches. Environ Microbiol 2025; 27:e70045. [PMID: 39895061 PMCID: PMC11788576 DOI: 10.1111/1462-2920.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Applying both culture-independent and -dependent approaches, bacterial diversity of marine biofilm communities colonising polyvinyl chloride panels submerged in Terra Nova Bay (Ross Sea, Antarctica) was investigated. Panels were deployed in two sites subjected to a different degree of anthropogenic impact (Road Bay [RB] impacted site and Punta Stocchino [PTS] control site). Biofilm samples were collected after 3 or 12 months to evaluate both short- and long-term microbial colonisation. Taxonomic composition of the microbial community was studied by 16S rRNA gene amplicon sequencing. Proteobacteria was the predominant phylum, followed by Bacteroidetes, Actinobacteria, Verrucomicrobia and Firmicutes. Impacted RB biofilms were found to contain a relevant fraction of potentially pathogenic bacterial genera, accounting for 27.49% of the whole community. A total of 86 psychrotolerant bacterial strains were isolated from the biofilm samples using culture-dependent techniques designed to enrich in Actinobacteria. These strains were assigned to three different phyla: Actinobacteria (54.65%), Firmicutes (32.56%) and Proteobacteria (12.79%). 2.73% of genera identified by metabarcoding were recovered also through cultivation, while 11 additional genera were uniquely yielded by cultivation. Functional screening of the isolates revealed their hydrolytic and oxidative enzyme activity patterns, giving new insights into the metabolic and biotechnological potential of microbial biofilm communities in Terra Nova Bay seawater.
Collapse
Affiliation(s)
- Bisaccia Melissa
- Department of Biotechnology and Life Sciences (DBSV)University of InsubriaVareseItaly
| | - Binda Elisa
- Department of Biotechnology and Life Sciences (DBSV)University of InsubriaVareseItaly
| | - Caruso Gabriella
- National Research CouncilInstitute of Polar Sciences (ISP)MessinaItaly
| | - Azzaro Maurizio
- National Research CouncilInstitute of Polar Sciences (ISP)MessinaItaly
| | - Dell' Acqua Ombretta
- Department of Sciences of the Earth, Environment and Life (DISTAV)University of GenoaGenoaItaly
| | - Di Cesare Andrea
- National Research CouncilWater Research Institute (IRSA)VerbaniaItaly
| | | | - Marinelli Flavia
- Department of Biotechnology and Life Sciences (DBSV)University of InsubriaVareseItaly
| |
Collapse
|
5
|
Monràs-Riera P, Avila C, Ballesté E. Plastisphere in an Antarctic environment: A microcosm approach. MARINE POLLUTION BULLETIN 2024; 208:116961. [PMID: 39293370 DOI: 10.1016/j.marpolbul.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
Microplastics are present even in remote regions like the Southern Ocean. Once in the water, they are rapidly colonised by marine microorganisms, forming the plastisphere. To address this issue in Antarctic waters, we conducted a microcosm experiment by incubating polypropylene, polyethylene, polystyrene microplastic pellets, and quartz for 33 days on Livingston Island, South Shetland Islands, Antarctica. We analysed plastic colonisation and plastisphere dynamics using scanning electron microscopy, flow cytometry, bacterial cultivation, qPCR, and 16S rRNA gene metabarcoding. Our results show rapid and consistent colonisation, although biomass formation was slightly slower than in other oceans, indicating unique environmental constraints. Time was the main factor influencing biofilm communities, while plastic polymer types had little effect. We observed a transition in microbial communities from early- to late-biofilm stages between days 12 and 19. Additionally, we described the bacterial plastisphere composition in this Antarctic environment, including the presence of hydrocarbon-degrading bacteria.
Collapse
Affiliation(s)
- Pere Monràs-Riera
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Conxita Avila
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
6
|
Zeghal E, Vaksmaa A, van Bleijswijk J, Niemann H. Environmental factors control microbial colonization of plastics in the North Sea. MARINE POLLUTION BULLETIN 2024; 208:116964. [PMID: 39342912 DOI: 10.1016/j.marpolbul.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
Large quantities of plastic enter the oceans each year providing extensive attachment surfaces for marine microbes yet understanding their interactions and colonization of plastic debris remains limited. We investigated microbial colonization of various plastic types (polyethylene, polystyrene, polyethylene-terephthalate, and nylon) in ex-situ incubation experiments. Plastic films, both UV-pretreated and untreated, were exposed to seawater from a coastal and an offshore location in the North Sea. 16S rRNA amplicon sequencing was employed to assess microbial community structures after 5, 10, 30, and 45 days of incubation. Our findings show the significant influence of time, seawater origin and plastic type on microbial community succession. We also identified several genera associated with hydrocarbon or plastic degradation potential as well as genera selecting for specific plastics such as Ketobacter and Microbacterium. Our results highlight potential role of microorganisms in plastic biodegradation and support the idea that microbial colonizers on marine plastics debris seemingly select distinct substrate types.
Collapse
Affiliation(s)
- Emna Zeghal
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands.
| | - Annika Vaksmaa
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands
| | - Judith van Bleijswijk
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands
| | - Helge Niemann
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, the Netherlands; Faculty of Geosciences, Utrecht University, the Netherlands
| |
Collapse
|
7
|
Caruso G, Azzaro M, Dell’Acqua O, Papale M, Lo Giudice A, Laganà P. Plastic Polymers and Antibiotic Resistance in an Antarctic Environment (Ross Sea): Are We Revealing the Tip of an Iceberg? Microorganisms 2024; 12:2083. [PMID: 39458392 PMCID: PMC11510405 DOI: 10.3390/microorganisms12102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Microbial colonization of plastic polymers in Antarctic environments is an under-investigated issue. While several studies are documenting the spread of plastic pollution in the Ross Sea, whether the formation of a plastisphere (namely the complex microbial assemblage colonizing plastics) may favor the spread of antibiotic-resistant bacteria (ARB) in this marine environment is unknown yet. A colonization experiment was performed in this ecosystem, aiming at exploring the potential role of plastic polymers as a reservoir of antibiotic resistance. To this end, the biofilm-producing activity and the antibiotic susceptibility profiles of bacterial strains isolated from biofilms colonizing submerged polyvinylchloride and polyethylene panels were screened. The colonization experiment was carried out at two different sites of the Ross Sea, namely Road Bay and Tethys Bay. Most of bacterial isolates were able to produce biofilm; several multidrug resistances were detected in the bacterial members of biofilms associated to PVC and PE (also named as the plastisphere), as well as in the bacterial strains isolated from the surrounding water. The lowest percentage of ARB was found in the PE-associated plastisphere from the not-impacted (control) Punta Stocchino station, whereas the highest one was detected in the PVC-associated plastisphere from the Tethys Bay station. However, no selective enrichment of ARB in relation to the study sites or to either type of plastic material was observed, suggesting that resistance to antibiotics was a generalized widespread phenomenon. Resistance against to all the three classes of antibiotics assayed in this study (i.e., cell wall antibiotics, nucleic acids, and protein synthesis inhibitors) was observed. The high percentage of bacterial isolates showing resistance in remote environments like Antarctic ones, suffering increasing anthropic pressure, points out an emerging threat with a potential pathogenic risk that needs further deepening studies.
Collapse
Affiliation(s)
- Gabriella Caruso
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122 Messina, Italy; (M.A.); (M.P.); (A.L.G.)
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122 Messina, Italy; (M.A.); (M.P.); (A.L.G.)
| | - Ombretta Dell’Acqua
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy;
| | - Maria Papale
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122 Messina, Italy; (M.A.); (M.P.); (A.L.G.)
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122 Messina, Italy; (M.A.); (M.P.); (A.L.G.)
- Italian Collection of Antarctic Bacteria, National Antarctic Museum (CIBAN-MNA), Viale Ferdinando Stagno d’Alcontrès 31, 98168 Messina, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dentistry Sciences and Morphological and Functional Images (BIOMORF), University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| |
Collapse
|
8
|
Wilkie Johnston L, Manno C, Salinas CX. Assessment of plastic debris and biofouling in a specially protected area of the Antarctic Peninsula region. MARINE POLLUTION BULLETIN 2024; 207:116844. [PMID: 39163732 DOI: 10.1016/j.marpolbul.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
The aim of this paper is to characterize the plastic and to study a potential relationship between plastic debris characteristics and the presence of fouling biota in an Antarctic Specially Protected Area Robert Island, on the Antarctic peninsula region. A combination of lab-based sorting, advanced spectral analysis and general linear modelling was used to assess the abundance and type of plastic debris washed up on the shore. Observations recorded 730 debris items, with 85 % being plastic. Polystyrene (PS) and Polyethylene terephthalate (PET) were the dominant plastics (61 %). Biofouling was observed on 25 % of plastic debris, with debris complexity and degradation significantly increasing the likelihood of fouling occurring. There was no correlation found between biofouling type and plastic polymer type. Findings raise concerns that even with the highest level of environmental protection, an external marine-based source of pollution can intrude the coastal habitat, with uncertain consequences to local flora and fauna.
Collapse
Affiliation(s)
| | - Clara Manno
- British Antarctic Survey (BAS), Natural Environment Research Council, Cambridge CB3 0ET, UK
| | - Carla Ximena Salinas
- Instituto Antártico Chileno (INACH), Plaza Benjamín Muñoz Gamero 1055, Punta Arenas, Chile.
| |
Collapse
|
9
|
De-la-Torre GE, Santillán L, Dioses-Salinas DC, Yenney E, Toapanta T, Okoffo ED, Kannan G, Madadi R, Dobaradaran S. Assessing the current state of plastic pollution research in Antarctica: Knowledge gaps and recommendations. CHEMOSPHERE 2024; 355:141870. [PMID: 38570048 DOI: 10.1016/j.chemosphere.2024.141870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Antarctica stands as one of the most isolated and pristine regions on our planet. Regardless, recent studies have evidenced the presence of plastic pollution in Antarctic environments and biota. While these findings are alarming and put into perspective the reach of plastic pollution, it is necessary to assess the current knowledge of plastic pollution in Antarctica. In the present review, an updated literature review of plastic pollution in multiple Antarctic environmental compartments and biota was conducted. Studies were cataloged based on environmental compartments (e.g., sediments, seawater, soil, atmosphere) and biota from different ecological niches. A detailed analysis of the main findings, as well as the flaws and shortcomings across studies, was conducted. In general terms, several studies have shown a lack of adequate sampling and analytical procedures for plastic research (particularly in the case of microplastics) and standard procedures; thus, compromising the reliability of the data reported and comparability across studies. Aiming to guide future studies and highlight research needs, a list of knowledge gaps and recommendations were provided based on the analysis and discussion of the literature and following standardized procedures.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | - Luis Santillán
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | | | - Emma Yenney
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Landau, Germany
| | - Tania Toapanta
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - Elvis D Okoffo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - Gunasekaran Kannan
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Reyhane Madadi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| |
Collapse
|
10
|
Lv S, Li Y, Zhao S, Shao Z. Biodegradation of Typical Plastics: From Microbial Diversity to Metabolic Mechanisms. Int J Mol Sci 2024; 25:593. [PMID: 38203764 PMCID: PMC10778777 DOI: 10.3390/ijms25010593] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Plastic production has increased dramatically, leading to accumulated plastic waste in the ocean. Marine plastics can be broken down into microplastics (<5 mm) by sunlight, machinery, and pressure. The accumulation of microplastics in organisms and the release of plastic additives can adversely affect the health of marine organisms. Biodegradation is one way to address plastic pollution in an environmentally friendly manner. Marine microorganisms can be more adapted to fluctuating environmental conditions such as salinity, temperature, pH, and pressure compared with terrestrial microorganisms, providing new opportunities to address plastic pollution. Pseudomonadota (Proteobacteria), Bacteroidota (Bacteroidetes), Bacillota (Firmicutes), and Cyanobacteria were frequently found on plastic biofilms and may degrade plastics. Currently, diverse plastic-degrading bacteria are being isolated from marine environments such as offshore and deep oceanic waters, especially Pseudomonas spp. Bacillus spp. Alcanivoras spp. and Actinomycetes. Some marine fungi and algae have also been revealed as plastic degraders. In this review, we focused on the advances in plastic biodegradation by marine microorganisms and their enzymes (esterase, cutinase, laccase, etc.) involved in the process of biodegradation of polyethylene terephthalate (PET), polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), and polypropylene (PP) and highlighted the need to study plastic biodegradation in the deep sea.
Collapse
Affiliation(s)
- Shiwei Lv
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, China
| | - Yufei Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
| | - Sufang Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, China
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
11
|
Bisaccia M, Binda E, Rosini E, Caruso G, Dell'Acqua O, Azzaro M, Laganà P, Tedeschi G, Maffioli EM, Pollegioni L, Marinelli F. A novel promising laccase from the psychrotolerant and halotolerant Antarctic marine Halomonas sp. M68 strain. Front Microbiol 2023; 14:1078382. [PMID: 36846806 PMCID: PMC9950745 DOI: 10.3389/fmicb.2023.1078382] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2023] [Indexed: 02/12/2023] Open
Abstract
Microbial communities inhabiting the Antarctic Ocean show psychrophilic and halophilic adaptations conferring interesting properties to the enzymes they produce, which could be exploited in biotechnology and bioremediation processes. Use of cold- and salt-tolerant enzymes allows to limit costs, reduce contaminations, and minimize pretreatment steps. Here, we report on the screening of 186 morphologically diverse microorganisms isolated from marine biofilms and water samples collected in Terra Nova Bay (Ross Sea, Antarctica) for the identification of new laccase activities. After primary screening, 13.4 and 10.8% of the isolates were identified for the ability to oxidize 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and the dye azure B, respectively. Amongst them, the marine Halomonas sp. strain M68 showed the highest activity. Production of its laccase-like activity increased six-fold when copper was added to culture medium. Enzymatic activity-guided separation coupled with mass spectrometry identified this intracellular laccase-like protein (named Ant laccase) as belonging to the copper resistance system multicopper oxidase family. Ant laccase oxidized ABTS and 2,6-dimethoxy phenol, working better at acidic pHs The enzyme showed a good thermostability, with optimal temperature in the 40-50°C range and maintaining more than 40% of its maximal activity even at 10°C. Furthermore, Ant laccase was salt- and organic solvent-tolerant, paving the way for its use in harsh conditions. To our knowledge, this is the first report concerning the characterization of a thermo- and halo-tolerant laccase isolated from a marine Antarctic bacterium.
Collapse
Affiliation(s)
- Melissa Bisaccia
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy,*Correspondence: Melissa Bisaccia,
| | - Elisa Binda
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences (CNR-ISP), National Research Council, Messina, Italy
| | - Ombretta Dell'Acqua
- Institute of Polar Sciences (CNR-ISP), National Research Council, Venice, Italy
| | - Maurizio Azzaro
- Institute of Polar Sciences (CNR-ISP), National Research Council, Messina, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Milan, Italy,Cimaina, University of Milan, Milan, Italy
| | - Elisa M. Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Milan, Italy,Cimaina, University of Milan, Milan, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| |
Collapse
|
12
|
Martínez-Campos S, González-Pleiter M, Rico A, Schell T, Vighi M, Fernández-Piñas F, Rosal R, Leganés F. Time-course biofilm formation and presence of antibiotic resistance genes on everyday plastic items deployed in river waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130271. [PMID: 36351347 DOI: 10.1016/j.jhazmat.2022.130271] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The plastisphere has been widely studied in the oceans; however, there is little information on how living organisms interact with the plastisphere in freshwater ecosystems, and particularly on how this interaction changes over time. We have characterized, over one year, the evolution of the eukaryotic and bacterial communities colonizing four everyday plastic items deployed in two sites of the same river with different anthropogenic impact. α-diversity analyses showed that site had a significant role in bacterial and eukaryotic diversity, with the most impacted site having higher values of the Shannon diversity index. β-diversity analyses showed that site explained most of the sample variation followed by substrate type (i.e., plastic item) and time since first colonization. In this regard, core microbiomes/biomes in each plastic at 1, 3, 6 and 12 months could be identified at genus level, giving a global overview of the evolution of the plastisphere over time. The measured concentration of antibiotics in the river water positively correlated with the abundance of antibiotic resistance genes (ARGs) on the plastics. These results provide relevant information on the temporal dynamics of the plastisphere in freshwater ecosystems and emphasize the potential contribution of plastic items to the global spread of antibiotic resistance.
Collapse
Affiliation(s)
- Sergio Martínez-Campos
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the Universidad de Alcalá, Av. Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, Universidad de Valencia, c/ Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| | - Theresa Schell
- IMDEA Water Institute, Science and Technology Campus of the Universidad de Alcalá, Av. Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the Universidad de Alcalá, Av. Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, 28049 Madrid, Spain
| | - Roberto Rosal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Francisco Leganés
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, 28049 Madrid, Spain.
| |
Collapse
|
13
|
Zhai X, Zhang XH, Yu M. Microbial colonization and degradation of marine microplastics in the plastisphere: A review. Front Microbiol 2023; 14:1127308. [PMID: 36876073 PMCID: PMC9981674 DOI: 10.3389/fmicb.2023.1127308] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/27/2023] [Indexed: 02/19/2023] Open
Abstract
Marine microplastic pollution is a growing problem for ecotoxicology that needs to be resolved. In particular, microplastics may be carriers of "dangerous hitchhikers," pathogenic microorganisms, i.e., Vibrio. Microplastics are colonized by bacteria, fungi, viruses, archaea, algae and protozoans, resulting in the biofilm referred to as the "plastisphere." The microbial community composition of the plastisphere differs significantly from those of surrounding environments. Early dominant pioneer communities of the plastisphere belong to primary producers, including diatoms, cyanobacteria, green algae and bacterial members of the Gammaproteobacteria and Alphaproteobacteria. With time, the plastisphere mature, and the diversity of microbial communities increases quickly to include more abundant Bacteroidetes and Alphaproteobacteria than natural biofilms. Factors driving the plastisphere composition include environmental conditions and polymers, with the former having a much larger influence on the microbial community composition than polymers. Microorganisms of the plastisphere may play key roles in degradation of plastic in the oceans. Up to now, many bacterial species, especially Bacillus and Pseudomonas as well as some polyethylene degrading biocatalysts, have been shown to be capable of degrading microplastics. However, more relevant enzymes and metabolisms need to be identified. Here, we elucidate the potential roles of quorum sensing on the plastic research for the first time. Quorum sensing may well become a new research area to understand the plastisphere and promote microplastics degradation in the ocean.
Collapse
Affiliation(s)
- Xinyi Zhai
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Min Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
14
|
Kim BK, Hwang JH, Kim SK. Modeling of microplastics discharged from a station in Marian Cove, West Antarctica. MARINE POLLUTION BULLETIN 2023; 186:114441. [PMID: 36473247 DOI: 10.1016/j.marpolbul.2022.114441] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Conspicuous amounts of microplastics have been discovered in bays near Antarctic research stations, including several types of microplastics in the water columns of Marian Cove. This study proposes an efficient operating strategy for a wastewater treatment plant to mitigate microplastic accumulations in the bay by assessing the transport and accumulation of microplastics using numerical simulations. Hence, microplastic particles were classified into falling and rising particles to find a mechanism for their vertical migration. The results showed that the characteristics of the vertical migration of the particles and flow conditions critically determined their traveling distance and accumulation location. Further, the amount of microplastics accumulated in the cove depended on the release time of the wastewater during the tidal cycle. Wastewater treatment plants need to be improved to reduce microplastics. However, it is necessary to adjust the location and schedule for releasing them into Marian Cove.
Collapse
Affiliation(s)
- Bo-Kyung Kim
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jin Hwan Hwang
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Seung-Kyu Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, 119 Academy-ro, Yeounsu-gu, Incheon 22012, Republic of Korea; Yellow Sea Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22021, Republic of Korea
| |
Collapse
|
15
|
da Silva JRMC, Bergami E, Gomes V, Corsi I. Occurrence and distribution of legacy and emerging pollutants including plastic debris in Antarctica: Sources, distribution and impact on marine biodiversity. MARINE POLLUTION BULLETIN 2023; 186:114353. [PMID: 36436273 DOI: 10.1016/j.marpolbul.2022.114353] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Since the first explorers reached Antarctica, their activities have quickly impacted both land and sea and thus, together with the long-range transport, hazardous chemicals began to accumulate. It is commonly recognized that anthropogenic pollution in Antarctica can originate from either global or local sources. Heavy metals, organohalogenated compounds, hydrocarbons, and (more recently) plastic, have been found in Antarctic biota, soil sediments, seawater, air, snow and sea-ice. Studies in such remote areas are challenging and expensive, and the complexity of potential interactions occurring in such extreme climate conditions (i.e., low temperature) makes any accurate prediction on potential impacts difficult. The present review aims to summarize the current state of knowledge on occurrence and distribution of legacy and emerging pollutants in Antarctica, such as plastic, from either global or local sources. Future actions to monitor and mitigate any potential impact on Antarctic biodiversity are discussed.
Collapse
Affiliation(s)
- José Roberto Machado Cunha da Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Science / CEBIMar (Centro de Biologia Marinha), University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP: 05509900, Brazil.
| | - Elisa Bergami
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Vicente Gomes
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-120, Brazil
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| |
Collapse
|
16
|
Microplastic Interactions and Possible Combined Biological Effects in Antarctic Marine Ecosystems. Animals (Basel) 2022; 13:ani13010162. [PMID: 36611770 PMCID: PMC9817852 DOI: 10.3390/ani13010162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Antarctica and the Southern Ocean are the most remote regions on Earth, and their quite pristine environmental conditions are increasingly threatened by local scientific, tourism and fishing activities and long-range transport of persistent anthropogenic contaminants from lower latitudes. Plastic debris has become one of the most pervasive and ubiquitous synthetic wastes in the global environment, and even at some coastal Antarctic sites it is the most common and enduring evidence of past and recent human activities. Despite the growing scientific interest in the occurrence of microplastics (MPs) in the Antarctic environment, the lack of standardized methodologies for the collection, analysis and assessment of sample contamination in the field and in the lab does not allow us to establish their bioavailability and potential impact. Overall, most of the Southern Ocean appears to be little-affected by plastic contamination, with the exception of some coastal marine ecosystems impacted by wastewater from scientific stations and tourist vessels or by local fishing activities. Microplastics have been detected in sediments, benthic organisms, Antarctic krill and fish, but there is no clear evidence of their transfer to seabirds and marine mammals. Therefore, we suggest directing future research towards standardization of methodologies, focusing attention on nanoplastics (which probably represent the greatest biological risks) and considering the interactions of MPs with macro- and microalgae (especially sea-ice algae) and the formation of epiplastic communities. In coastal ecosystems directly impacted by human activities, the combined exposure to paint chips, metals, persistent organic pollutants (POPs), contaminants of emerging interest (CEI) and pathogenic microorganisms represents a potential danger for marine organisms. Moreover, the Southern Ocean is very sensitive to water acidification and has shown a remarkable decrease in sea-ice formation in recent years. These climate-related stresses could reduce the resilience of Antarctic marine organisms, increasing the impact of anthropogenic contaminants and pathogenic microorganisms.
Collapse
|
17
|
Cappello S, Corsi I, Patania S, Bergami E, Azzaro M, Mancuso M, Genovese M, Lunetta A, Caruso G. Characterization of Five Psychrotolerant Alcanivorax spp. Strains Isolated from Antarctica. Microorganisms 2022; 11:microorganisms11010058. [PMID: 36677350 PMCID: PMC9861381 DOI: 10.3390/microorganisms11010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Five psychrotolerant Alcanivorax spp. strains were isolated from Antarctic coastal waters. Strains were screened for molecular and physiological properties and analyzed regarding their growth capacity. Partial 16S rDNA, alk-B1, and P450 gene sequencing was performed. Biolog EcoPlates and the API 20E test were used to evaluate metabolic and biochemical profiles. Bacterial growth in sodium acetate was determined at 4, 15, 20, and 25 °C to evaluate the optimal temperature. Furthermore, the ability of each strain to grow in a hydrocarbon mixture at 4 and 25 °C was assayed. Biosurfactant production tests (drop-collapse and oil spreading) and emulsification activity tests (E24) were also performed. Concerning results of partial gene sequencing (16S rDNA, alk-B1, and P450), a high similarity of the isolates with the same genes isolated from other Alcanivorax spp. strains was observed. The metabolic profiles obtained by Biolog assays showed no significant differences in the isolates compared to the Alcanivorax borkumensis wild type. The results of biodegradative tests showed their capability to grow at different temperatures. All strains showed biosurfactant production and emulsification activity. Our findings underline the importance to proceed in the isolation and characterization of Antarctic hydrocarbon-degrading bacterial strains since their biotechnological and environmental applications could be useful even for pollution remediation in polar areas.
Collapse
Affiliation(s)
- Simone Cappello
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (CNR-IRBIM), 98122 Messina, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Sabrina Patania
- PhD School in “Applied Biology and Experimental Medicine”, University of Messina, 98166 Messina, Italy
| | - Elisa Bergami
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), 98122 Messina, Italy
| | - Monique Mancuso
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (CNR-IRBIM), 98122 Messina, Italy
| | - Maria Genovese
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (CNR-IRBIM), 98122 Messina, Italy
| | - Alessia Lunetta
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (CNR-IRBIM), 98122 Messina, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council (CNR-ISP), 98122 Messina, Italy
- Correspondence: ; Tel.: +39-090-6015423
| |
Collapse
|
18
|
Yang X, Jiang J, Wang Q, Duan J, Chen N, Wu D, Xia Y. Gender difference in hepatic AMPK pathway activated lipid metabolism induced by aged polystyrene microplastics exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114105. [PMID: 36155338 DOI: 10.1016/j.ecoenv.2022.114105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) pollution becomes an increasing concern and researchers keep exploring the health effects caused by MPs exposure. The ageing process in the environment significantly alters the physicochemical characteristics of MPs and subsequently affects their toxicities. The health effects of aged MPs exposure and the mechanism underlying are worthy of exploration. Polystyrene microplastics (PS-MPs) (with size less than 50 µm) were obtained by grinding and screening polystyrene materials. PS-MPs continued to be aged by ozone treatment (0.4 mg/min, 9 h). Both male and female C57BL/6 mice were orally exposed to 0 or 2 mg/kg/d aged PS-MPs for 28 days. Results showed that PS-MPs were found in liver, ovary and spleen of females and liver, testis and spleen of males in the aged PS-MPs group. Exposure to aged PS-MPs significantly decreased abdominal fat/body coefficient, the adipocyte size and the serum LDL-C level in females. Compared to the control, serum estradiol (E2) level, the mRNA expression levels of genes regulating E2 production (17β-hsd, 3β-hsd and Star) in ovary and the protein expression levels of E2 receptors (ERα, ERβ), AMPKα and p-AMPKα1 in liver increased significantly, and the mRNA expression levels of AMP-activated protein kinase (AMPK) downstream genes (Srebp-1c, Fas and Scd1) in liver decreased significantly in the female aged PS-MPs group. Liver metabolomic profiling showed that differential metabolites between female aged PS-MPs group and female control group were enriched in biotin metabolism and the level of biotin increased significantly in the female aged PS-MPs group. However, no significant changes were detected in males. These results indicated that aged PS-MPs exposure increased ovarian E2 production and activated the AMPK pathway in the liver which might inhibit liver lipid synthesis only in females. Our findings provide new insights into the potential sex-specific health effects of environmental MPs pollution.
Collapse
Affiliation(s)
- Xiaona Yang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Jiang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qing Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiawei Duan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Na Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
19
|
Guo XP, Chen YR, Sun XL, Li CL, Hou LJ, Liu M, Yang Y. Plastic properties affect the composition of prokaryotic and eukaryotic communities and further regulate the ARGs in their surface biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156362. [PMID: 35640747 DOI: 10.1016/j.scitotenv.2022.156362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Plastic wastes are ubiquitous in the offshore and oceans with an increasing quantity, and inevitably, microbial communities colonized the plastics to form biofilms, which have become dispersal vectors for antibiotic resistance genes (ARGs). This study focused on the impact of plastic properties including hardness, wettability, and zeta-potential on the biomass, prokaryotic and eukaryotic communities and ARGs in biofilms formed on specific plastics (polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET)) in an estuarine environment. The results showed that, in comparison to PP, more biomass characterized by more dry weight, chlorophyll a (Chl a) and total organic carbon (TOC) was found in biofilms formed on PE and PET, which may be related to their lower surface wettability. Proteobacteria were the dominant prokaryotic phyla, and they accounted for 53.06%, 81.90%, 37.06%, 76.25%, and 54.27% of the total sequences in biofilms on PE, PP, PET, water and sediment, respectively. Ascomycota were the predominant eukaryotic phyla in biofilms, water, and sediment, and their abundances were elevated in biofilms on PP, which accounted for 34.73%. The biofilms on PP had a higher relative abundance of ARGs (3.13) compared to those on PE (2.59) and PET (0.23). Furthermore, both the plastic-biofilm properties (e.g. dry weight, Chl a, and TOC) and microbial communities (e.g., Fungi and Proteobacteria) may be involved in regulating the abundance of ARGs. Moreover, mobile genetic elements (MGEs) were significantly correlated to both the absolute and relative abundance of ARGs, indicating that MGEs may regulate the migration of ARGs in biofilms. Taken together, this investigation provides the significance of the plastic type, surface properties, and surrounding environments in shaping microbial communities and ARGs in biofilms formed on plastics.
Collapse
Affiliation(s)
- Xing-Pan Guo
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yu-Ru Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiao-Li Sun
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Cui-Lan Li
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
20
|
Lozoya JP, Rodríguez M, Azcune G, Lacerot G, Pérez-Parada A, Lenzi J, Rossi F, de Mello FT. Stranded pellets in Fildes Peninsula (King George Island, Antarctica): New evidence of Southern Ocean connectivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155830. [PMID: 35561917 DOI: 10.1016/j.scitotenv.2022.155830] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Plastic and microplastic debris is transported by ocean currents over long distances, reaching remote areas, far from its original source. In Polar Regions, microplastics (MPs) can come from local activities or be transported from lower latitudes, with the former being the likely and major source. Although historically Antarctica was considered isolated from the global ocean, there is recent evidence of materials and organisms being transported in and out of the Southern Ocean, despite its multi-front structure. During the austral summer of 2019, beach surveys were conducted on the NW coast of the Fildes Peninsula (King George Island). The beach was characterised, and the first 2 cm of sediment from 5 quadrants (50 × 50 cm) along 100 m of the highest strandline were collected. Large microplastics (LMPs) and mesoplastics (MesoPs) were isolated, counted, measured, weighed and classified by shape. Polymer composition was analysed by FTIR and ageing estimated by Carbonyl Index. We found 293 items of LMPs (188 items) and MesoPs (105 items), with a total average density (±SD) of 234.4 ± 166 items m-2. Foams (130.4 ± 76.3), fragments (58.4 ± 56.0) and pellets (44.0 ± 50.5) were the most abundant shapes. The main polymers found were polystyrene, polypropylene, and polyethylene. We found pellets among the MesoPs, being the first record for beaches in Antarctica. The presence of these primary MPs south of 62°S not only alerts about their possible direct consequences on Antarctic ecosystems, but also gives empirical evidence for the passive entry of plastic debris from lower latitudes through cross-frontal exchanges, providing new evidence of a global connectivity of the Southern Ocean. Despite increasing research, knowledge of plastics dynamics and their impact in the Southern Ocean and Antarctica is still limited but certainly necessary.
Collapse
Affiliation(s)
- J P Lozoya
- Centro Universitario Regional del Este (CURE), Universidad de la República (UDELAR), Cachimba del Rey entre Bvar. Artigas y Av. Aparicio Saravia, 20000 Maldonado, Uruguay.
| | - M Rodríguez
- Centro Universitario Regional del Este (CURE), Universidad de la República (UDELAR), Ruta nacional N°9 intersección con ruta N°15, Rocha, Uruguay.
| | - G Azcune
- Centro Universitario Regional del Este (CURE), Universidad de la República (UDELAR), Ruta nacional N°9 intersección con ruta N°15, Rocha, Uruguay.
| | - G Lacerot
- Centro Universitario Regional del Este (CURE), Universidad de la República (UDELAR), Cachimba del Rey entre Bvar. Artigas y Av. Aparicio Saravia, 20000 Maldonado, Uruguay.
| | - A Pérez-Parada
- Centro Universitario Regional del Este (CURE), Universidad de la República (UDELAR), Ruta nacional N°9 intersección con ruta N°15, Rocha, Uruguay.
| | - J Lenzi
- Centro de Investigación y Conservación Marina (CICMAR), Uruguay
| | - F Rossi
- Centro Universitario Regional del Este (CURE), Universidad de la República (UDELAR), Cachimba del Rey entre Bvar. Artigas y Av. Aparicio Saravia, 20000 Maldonado, Uruguay
| | - F Teixeira de Mello
- Centro Universitario Regional del Este (CURE), Universidad de la República (UDELAR), Cachimba del Rey entre Bvar. Artigas y Av. Aparicio Saravia, 20000 Maldonado, Uruguay.
| |
Collapse
|
21
|
Macro- and Microplastics in the Antarctic Environment: Ongoing Assessment and Perspectives. ENVIRONMENTS 2022. [DOI: 10.3390/environments9070093] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The number of scientists and tourists visiting Antarctica is on the rise and, despite the management framework for environmental protection, some coastal areas, particularly in the Antarctic Peninsula region, are affected by plastic contamination. The few data available on the occurrence of microplastics (<5 mm) are difficult to compare, due to the different methodologies used in monitoring studies. However, indications are emerging to guide future research and to implement environmental protocols. In the surface and subsurface waters of the Southern Ocean, plastic debris >300 µm appears to be scarce and far less abundant than paint chips released from research vessels. Yet, near some coastal scientific stations, the fragmentation and degradation of larger plastic items, as well as microbeads and microfibers released into wastewater from personal care products and laundry, could potentially affect marine organisms. Some studies indicate that, through long-range atmospheric transport, plastic fibers produced on other continents can be deposited in Antarctica. Drifting plastic debris can also cross the Polar Front, with the potential to carry alien fouling organisms into the Southern Ocean. Sea ice dynamics appear to favor the uptake of microplastics by ice algae and Antarctic krill, the key species in the Antarctic marine food web. Euphausia superba apparently has the ability to fragment and expel ingested plastic particles at the nanoscale. However, most Antarctic organisms are endemic species, with unique ecophysiological adaptations to extreme environmental conditions and are likely highly sensitive to cumulative stresses caused by climate change, microplastics and other anthropogenic disturbances. Although there is limited evidence to date that micro- and nanoplastics have direct biological effects, our review aims at raising awareness of the problem and, in order to assess the real potential impact of microplastics in Antarctica, underlines the urgency to fill the methodological gaps for their detection in all environmental matrices, and to equip scientific stations and ships with adequate wastewater treatment plants to reduce the release of microfibers.
Collapse
|
22
|
Kelly MR, Whitworth P, Jamieson A, Burgess JG. Bacterial colonisation of plastic in the Rockall Trough, North-East Atlantic: An improved understanding of the deep-sea plastisphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119314. [PMID: 35447252 DOI: 10.1016/j.envpol.2022.119314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 05/12/2023]
Abstract
Plastic pollution has now been found within multiple ecosystems across the globe. Characterisation of microbial assemblages associated with marine plastic, or the so-called 'plastisphere', has focused predominantly on plastic in the epipelagic zone. Whether this community includes taxa that are consistently enriched on plastic compared to surrounding non plastic surfaces is unresolved, as are the ecological implications. The deep sea is likely a final sink for most of the plastic entering the ocean, yet there is limited information on microbial colonisation of plastic at depth. The aim of this study was to investigate deep-sea microbial communities associated with polystyrene (PS) and polyurethane (PU) with Bath stone used as a control. The substrates (n = 15) were deployed in the Rockall Trough (Atlantic), and recovered 420 days later from a depth of 1796 m. To characterise the bacterial communities, 16S rRNA genes were sequenced using the Illumina MiSeq platform. A dominant core microbiome (taxa shared across all substrates) comprised 8% of total ASVs (amplicon sequence variant) and accounted for 92% of the total community reads. This suggests that many commonly reported members of the plastisphere are simply opportunistic which freely colonise any hard surface. Transiently associated species consisted of approximately 7% of the total community. Thirty genera were enriched on plastic (P < 0.05), representing 1% of the total community. The discovery of novel deep-sea enriched taxa included Aurantivirga, Algivirga, IheB3-7, Spirosoma, HTCC5015, Ekhidna and Calorithrix on PS and Candidatus Obscuribacter, Haloferula, Marine Methylotrophic Group 3, Aliivibrio, Tibeticola and Dethiosulfatarculus on PU. This small fraction of the microbiome include taxa with unique metabolic abilities and show how bacterial communities can be shaped by plastic pollution at depth. This study outlines a novel approach in categorising the plastisphere to elucidate the ecological implications of enriched taxa that show an affinity for colonising plastic.
Collapse
Affiliation(s)
- Max R Kelly
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Paul Whitworth
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Alan Jamieson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom; Minderoo-UWA Deep Sea Research Centre, University of Western Australia, Oceans Institute, IOMRC Building, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - J Grant Burgess
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| |
Collapse
|
23
|
Wang P, Song T, Bu J, Zhang Y, Liu J, Zhao J, Zhang T, Xi J, Xu J, Li L, Lin Y. Does bacterial community succession within the polyethylene mulching film plastisphere drive biodegradation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153884. [PMID: 35182639 DOI: 10.1016/j.scitotenv.2022.153884] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Agricultural fields are severely contaminated with polyethylene mulching film (PMF) and this plastic in the natural environment can be colonized by biofilm-forming microorganisms that differ from those in the surrounding environment. In this study, we investigated the succession of the soil microbial communities in the PMF plastisphere using an artificial micro-ecosystem as well as exploring the degradation of PMF by plastisphere communities. The results indicated a significant and gradual decrease in the alpha diversity of the bacterial communities in the plastisphere and surrounding liquid. The community compositions in the plastisphere and surrounding liquid differed significantly from that in agricultural soil. Phyla and genera with the capacity to degrade polyethylene and hydrocarbon were enriched in the plastisphere, and some of these microorganisms were core members of the plastisphere community. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis detected increases in metabolism pathways for PMF plastisphere Xenobiotics Biodegradation and Metabolism, thereby suggesting the possibility of polyethylene degradation in the plastisphere. Observations by scanning electron microscopy (SEM) and confocal laser scanning microscopy demonstrated the formation of biofilms on the incubated PMF. SEM, atomic force microscopy, Fourier transform infrared spectroscopy and water contact angle detected significant changes in the surface microstructure, chemical composition and hydrophobicity change of the films, thereby suggesting that the plastisphere community degraded PMF during incubation. In conclusion, this study provides insights into the changes in agricultural soil microorganisms in the PMF plastisphere and the degradation of PMF.
Collapse
Affiliation(s)
- Peiyuan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Song
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingshu Bu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiqiong Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianbo Zhao
- College of Innovation and Experiment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingkai Zhang
- College of Innovation and Experiment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an 271018, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|